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Abstract

Data by itself is not information, it becomes information only when it is analyzed
and, a big part of such analysis is performed through machine learning techniques.
Choosing the right technique for a dataset is not a trivial task because it requires to
test the performance of the available alternatives and, taking into account that many
of these techniques possess a set of configurable parameters, the process becomes
harder. With the advent of social networks, the information in ambits outside the
scientific research grew to unprecedented scales, this situation favored the storing of
bigger quantities of data potentially rich in information and economical value, but the
challenge of selecting the most adequate technique for those datasets got worsened.

The full model selection analysis emerged as a way to address this issue finding
the best combination of a learning algorithm, a subset of features and a combination
of data-preparation techniques to a dataset. Full model selection is capable to obtain
models with high predictive accuracy and key information about datasets where
there is no prior knowledge but, is not the first alternative when datasets become
bigger. This analysis supposes to perform a series of transformations in the dataset
and the construction of a classifier when a single model is evaluated but, bearing in
mind the combination of all factors involved in the problem, the number of possible
models is huge or even infinite. Consequently, this problem cannot be addressed
through simpler methods as a grid search. Furthermore, the time of this process
grows proportionally to the size of the datasets under analysis, therefore, with bigger
datasets, the problem becomes intractable.

Several approaches as the use of: proxy models, meta-learning techniques and
tools from the Big Data paradigm were explored to be capable to address the huge
search space of the full model selection problem and to enable the analysis of high-
volume datasets within an affordable computing time. The obtained results of this
work showed an important reduction of the time in the search process in comparison
with a robust algorithm for model selection and with models of higher predictive
accuracy. The contributions of this work were: a framework to perform the full model
selection analysis in datasets of any size, based in the MapReduce programming
model. A new paradigm for the creation of proxy models based on classification
algorithms and employing the full model selection analysis to create better proxy
models. The use of the meta-learning paradigm to address the full model selection
problem enabling the storing of the knowledge gained with each analysis and moving
the problem from huge datasets to smaller meta-datasets. The synergy of the new



proxy models and the meta-learning paradigm obtained the best models faster than
all the explored approaches in this work, therefore, the main contribution of this work
was the introduction of the full meta-learning full model selection paradigm.



Resumen

Los datos en sí mismos no son información, se convierten en información solo cuando
son analizados y gran parte de tal análisis es realizado a través de técnicas de
aprendizaje automático. Elegir la técnica adecuada para un conjunto de datos
no es una labor trivial ya que requiere de probar el desempeño de cada alternativa
disponible y tomando en cuenta que muchas de estas poseen un conjunto de parámetros
configurables, el proceso se hace más complicado. Con el advenimiento de las redes
sociales, la información en ámbitos ajenos a la investigación científica creció a escalas
sin precedentes, esta situación favoreció el almacenamiento de grandes cantidades
de datos potencialmente ricos en información y valor económico, pero, el desafío de
seleccionar la técnica más adecuada para un conjunto de datos se hizo más difícil.

El análisis de selección de modelo completo emergió como una forma de afrontar
el problema de encontrar la mejor combinación de un algoritmo de aprendizaje, un
subconjunto de características y una combinación de técnicas de preprocesamiento
para un conjunto de datos. La selección de modelo completo es capaz de obtener
modelos de gran poder predictivo e información de interés en conjuntos de datos que no
han sido analizados, pero, no es la primera alternativa cuando los conjuntos de datos
se hacen más grandes. Este análisis supone realizar una serie de transformaciones en
el conjunto de datos y la construcción de un clasificador cuando solo un modelo es
evaluado, pero, teniendo en mente la combinación de todos los factores involucrados
en el problema, el número de modelos posibles es enorme e incluso infinito. En
consecuencia, este problema no puede ser enfrentado a través de métodos más simples
como la búsqueda en rejilla. Además, el tiempo de dicho proceso crece en proporción
al tamaño del conjunto de datos bajo análisis, por lo tanto, con conjuntos de datos
más grandes el problema se hace intratable.

Varios enfoques como el uso de: modelos proxy, técnicas de meta aprendizaje y
herramientas provenientes del paradigma de Big Data fueron exploradas para tener
la capacidad de enfrentar el enorme espacio de búsqueda del problema de selección
de modelo completo y habilitar el análisis de conjuntos con gran volumen de datos
dentro de un tiempo de computo razonable. Los resultados obtenidos en este trabajo
mostraron una importante reducción del tiempo empleado en el proceso de búsqueda
en comparación con un robusto algoritmo para selección de modelo completo y con
modelos de mayor precisión predictiva. Las contribuciones de este trabajo fueron: un
marco de trabajo para realizar el análisis de selección de modelo completo en conjuntos
de datos de cualquier tamaño, basado en el modelo de programación MapReduce.



Un nuevo paradigma para la creación de modelos proxy basado en algoritmos de
clasificación y empleando el análisis de selección de modelo completo para crear
mejores modelos proxy. El uso del paradigma de meta aprendizaje para enfrentar
el problema de selección de modelo completo posibilitando el almacenamiento del
conocimiento obtenido con cada análisis y moviendo el problema de enormes conjuntos
de datos a pequeños meta conjuntos de datos. La sinergia de los nuevos modelos
proxy y el uso del paradigma de meta aprendizaje obtuvo los mejores modelos y más
rápido que todos los enfoques explorados en este trabajo, por lo tanto, la principal
contribución de este trabajo fue la introducción del paradigma de selección de modelo
completo asistida por el uso completo del paradigma de meta aprendizaje.
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Chapter 1

Introduction

In the last years, emergence of social networks and development and lowering cost of
information technologies made possible the massive generation and storing of data.
Just from 2012 to 2014, 2.5 quintillion of bytes of data were daily created, that means
that 90% of information in the planet was created in a two years interval [160]. On
the other hand, the European Institute of Bioinformatic stores around 20 petabytes
of information and currently is one of the main biologic information repositories in
the world, while the European Organization for Nuclear Research or CERN (by the
acronym in French) each year produces around 15 petabytes of information [104].
Data by itself has no value until information is extracted, then it becomes a profitable
asset. Big part of data analysis is performed through machine learning techniques,
but to choose the right technique to a dataset is not a trivial task, especially when a
non-expert is on charge of such labor.

Although more data could be considered as a universal solution for machine
learning problems, data by itself is not the answer. Considering a Boolean function
of one hundred variables from a million examples, there are 2100 − 106 examples with
unknown class. Similarly, a linear classifier trained on a non-linear dataset, no matter
how many data is available, the accuracy of the classifier is not going to improve.
The “No Free Lunch” theorem of Wolpert and Macready [1997] refers to this situation
saying that no machine learning algorithm is the best for all problems.

The model selection paradigm arose to solve the problem of to find the best model
for a given dataset but, if we add the fact that parameters that govern behavior
and performance of learning techniques must be tuned, the situation is worsened.
Model selection has been faced through a wide range of methods like grid searches
([25, 12, 23, 143]), Bayesian methods ([149, 87]) and different bio-inspired mechanisms
[70, 8, 29, 92].
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Performance of a learning algorithm is also influenced by other factors as prepa-
ration of data into a better suited format for the learning algorithm through data-
preparation techniques and selection of a subset of features that describes better the
dataset using feature selection algorithms. The combination of the aforementioned
factors constitutes the Full Model Selection (FMS) paradigm and is defined as: given
a pool of pre-processing methods, feature selection and learning algorithms, to select
the combination of these that obtains the lowest classification error for a given dataset;
the task also includes the selection of hyper-parameters for the considered methods
[57]. FMS can be considered as a black box fed with a dataset and, as output, a highly
effective classification or regression model is obtained. In absence of this method,
potentially useful classifiers are not considered and are just selected by guessing or
by the popularity of a given algorithm.

FMS has been employed in diverse tasks as: region labeling on images [75], to
help in diagnostic decisions for acute leukemia [58], and for the classification of infant
crying patterns to aid in the health assessment of a baby [132], among others. The
versatility of FMS to assist in multiple domains without the need of expert knowledge,
makes relevant to equip this powerful tool with the ability to deal with the huge data
sets of nowadays.

One of the main drawbacks of this paradigm is the vast search space generated
by all the possible models that can be built given the considered methods and
their hyper-parameters even if restrictions are imposed to the values of that models
can take [57]. In conventional size datasets, in other words those that fit easily in
the main memory of a standard personal computer, full model selection has been
approached through bio-inspired algorithms ([57, 9]) and multi-objective genetic
algorithms ([130, 131]). With the current trend of bigger datasets, transforming large
amounts of data into actionable knowledge in a feasible time frame is an important
task to map large investments in database storage into an actual advantage, however,
despite its advantages, full model selection is not the first option.

To provide this paradigm with the capacity to deal with datasets of any size,
the efforts of this work are focused in the use of tools from the meta-learning field
to be capable to address the exploration of the big search space and intractable
computing-times.

The use of Proxy models, that is to say, a less expensive (computationally speaking)
alternative to a full numerical simulation [3], have been used ([131]) as a way to
compress the time a process takes, but in this work their use was investigated as a
way to guide the search process. Employing the proxy model in this way, models of
higher predictive accuracy can be found sooner. Regarding meta-learning techniques,
they are an important addition to FMS because they provide a way to store the

3



knowledge gained with each model selection task performed, moving the problem from
huge datasets to smaller meta-datasets. The synergy of meta-learning techniques
and proxy models introduces a new approach to assist in a time-consuming process
where the fitness measure of a potential solution is just an estimation and not a real
measure (expected misclassification rate), therefore, the main contribution of this
work is the introduction of this new paradigm to assist in FMS and that can be
extended to other similar problems.

Part of the objectives in the full model selection paradigm is to find a subset
of features with high predictive power and if the dataset dimensionality is reduced
before the model selection task, the quality of the final models could be compromised.
Although the reduction of the dimensionality of datasets could be beneficial to
make them easier to handle with standard PC’s, in this work, the reduction of the
dimensionality and the reduction in the number of instances in the dataset would not
be performed to ensure that the analysis is capable to handle datasets of any size
and to obtain the best possible models.

1.1 Objective
“Developing methods to perform a better exploration of the search space imposed by
the full model selection problem in high volume datasets in terms of computing-time
and models accuracy”.

This will be accomplished using proxy models and meta-learning techniques op-
timized through the FMS paradigm. Despite the ideas presented in this document
are focused to binary classification problems, they can be extended to other domains,
more dimensions, and learning problems. To accomplish this objective, the next
particular objectives are investigated.

• To gain knowledge about which is the best method to perform the FMS analysis
in high volume datasets between a swarm-based method and an evolutive
algorithm.

• To expand the knowledge in the use of the full model selection paradigm to
build better proxy models.

• To expand the knowledge in the development of efficient explorations of the
search space in terms of lower computing-times and more accurate models
through the aforementioned proxy models.
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• To broaden the knowledge of the use of meta-learning to solve the full model
selection problem. Since the number of potential models in the full model
selection paradigm can be infinite, the efforts to adjust the meta-learning
paradigm to our problem will expand the knowledge in this field.

1.2 Hypothesis
The models obtained through the full model selection analysis in high volume datasets
assisted by efficient proxy models and the meta-learning paradigm obtain a lower
misclassification rate and are obtained performing a lower number of fitness evaluations
than those obtained without the use of the aforementioned techniques.

1.3 Contributions
The present work provides the following contributions to the solution of the full model
selection problem on high volume datasets:

• A framework to adapt population-based search algorithms to perform the full
model selection analysis on high volume datasets. This framework is based on
the MapReduce programming model and can be employed by non-expert users.
To the best of the authors knowledge this approach is the first one to address
the FMS problem in high volume datasets and obtaining models with higher
accuracy in most of the evaluated datasets than the available alternatives for
model selection.

• A method to use the full model selection paradigm to build proxy models.
Importance of different aspects of the full model selection paradigm as feature
selection and data preparation has been explored in some related works of proxy
models field, however, not all the aspects of this paradigm has been taken into
account. Taking as the starting point the good models obtained by the FMS, we
extended this idea to proxy models. The evidence presented in this work shows
the suitability of the FMS paradigm in the creation of better proxy models and
to the best of our knowledge this idea was presented first in this work.

• A method to build proxy models using classification algorithms. Due the good
results obtained by the previous contribution and the good classifiers obtained
through FMS, we transformed the problem of predict the expected fitness of
a potential solution into a binary classification problem (promising and not
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promising). This approach is especially useful when the expected fitness of a
solution is an estimation and not a true measure of a phenomenon as in model
selection. This idea was also presented first in this work.

• A new algorithm based on fuzzy rules that can be used as proxy model or a
multi-class classification algorithm. This algorithm was a side contribution of
the approach explored in the use of classification algorithms in the construction
of proxy models. The developed algorithm exploits similarities among the data
points that represent solutions in an optimization algorithm and provides in
addition to target class (promising and not promising) the membership degree
to each one. To our knowledge this multi-class algorithm was not proposed in
another work before.

• A method to use meta-learning techniques to solve the full model selection
problem and a new meta-learner algorithm alternative to K Nearest Neighbors
(K-NN). Due the high number of possible models, full model selection problem
has never been addressed through a meta-learning approach, that is why this
first approach is useful to practitioners and researchers as starting point to
handle this problem. Furthermore, similarly to proxy models, the meta-learning
literature has used some elements from the FMS paradigm to improve the
outcome of the process, however, in this work the use of the entire FMS
paradigm was proposed through a new meta-learner algorithm that obtained
better models than the ones of K-NN.

• A new paradigm to address the FMS problem useful in both, regular size and
high-volume datasets. The Full Meta-learning Full Model Selection provides a
way to preserve and improve the knowledge gained with each model selection
performed. The good quality of the initial models obtained through meta-
learning and the efficient guiding of proxy models based on fuzzy-rules in the
optimization step assures that FMS process can be performed in a smaller
amount of time and obtaining better models that with a common optimization
algorithm. This new approach is especially convenient for non-expert users,
that cannot reduce the search space by picking a subset of learning algorithms
based in their expertise, extending the black box metaphor used to describe the
FMS process.
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1.4 Products
As a result of contributions of last section, the following scientific papers have been
published:

Conference

• Díaz-Pacheco,A. González-Bernal,J.,Reyes-García, C. A., "Full model selection
in huge datasets under the mapreduce paradigm", Proceedings of the Interna-
tional Conference on Big Data Analytics, Data Mining and Computational
Intelligence", p. 271, 2017.

• Díaz-Pacheco,A. González-Bernal,J.,Reyes-García, C. A., "Full model selection
in Big Data", "Proceedings of the Mexican International Conference on Artificial
Intelligence MICAI 2017".

• Díaz-Pacheco A., and Reyes-García, C. A., "Full model selection in huge datasets
through a meta-learning approach", Proceedings of the International Conference
on Big Data Analytics, Data Mining and Computational Intelligence", p. 19,
2018.

• Díaz-Pacheco,A. ,Reyes-García, C. A., "Full model selection in huge datasets
and for proxy models construction", "Proceedings of the Mexican International
Conference on Artificial Intelligence MICAI 2018".

Journal

• Díaz-Pacheco, A., Gonzalez-Bernal, J. A., and Reyes-García, C. A. (2018).
A mapreduce based framework to perform full model selection in very large
datasets. IADIS INTERNATIONAL JOURNAL ON COMPUTER SCIENCE
AND INFORMATION SYSTEMS, ISSN: 1646-3692, 13(1), p. 1-13.

• Díaz-Pacheco and Reyes-García, C. A. Facing the full model selection problem
in high volume datasets employing intelligent proxy models., Intelligent Data
Analysis, ISSN:1571-4128. (To be published in fall of 2019)

1.5 Document organization
The present work has been organized in five parts besides the introduction, which are
described below:
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• In Part II, all the background concepts needed for a better understanding are
provided. This part consists of the three chapters described below.

– Chapter 2 describes two important categories of the machine learning field:
supervised and unsupervised learning. The elements under each one of
these categories are of great importance in the proposed approaches in
this work. The FMS problem and the parts that made it up are described
in this Chapter too.

– Chapter 3 describes relevant aspects of the FMS problem in high volume
datasets as its link with the concept of complex systems and some relevant
features of the data. The software tools used in this work as the MapReduce
programming model and Apache Spark are also described.

– Chapter 4 several tools from the soft computing field were employed in the
contributions. Some of them are: Genetic Algorithms, fuzzy-rules systems,
fuzzy classification and fuzzy clustering. Those concepts are described in
this Chapter.

• In Part III, the contributions and the experiments are contained. Since each
contribution explores different approaches of the meta-learning field and of the
soft-computing area, each chapter has its own related works section, to avoid
confusions. There are three Chapters in this part and are as follows.

– Chapter 5, according the main trends in the state of the art, two bio-
inspired optimization algorithms are tested and adapted to the MapReduce
programming model as a first solution of the FMS problem in high volume
datasets.

– Chapter 6 explores the use of proxy models not as a way to reduce the
time employed in process, instead they are employed to guide efficiently
the search.

– Chapter 7 explores the use of the meta-learning paradigm to provide a
way to move the problem of high-volume datasets to small meta-datasets.

• In Part IV, the general conclusions of this work are outlined.

• Part V is for the appendixes.

– In Appendix A, the MapReduce based algorithms are described.
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– In Appendix B, experiments are conducted to test the employed datasets
in order to have evidence that they represent different problems, regarding
their Intrinsic Dimension. Also, the shape of this datasets is tested to
provide variety in the shapes where the different approaches are tested.
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Part II

Theoretical framework
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Chapter 2

Supervised and unsupervised learning

In the machine learning field there are two important categories for the analysis
tasks developed by this discipline: supervised and unsupervised learning. Under a
supervised learning task, every sample in a dataset D = {(xi, yi)}ni=1 has both, the
input in x ∈ X and the corresponding expected response y ∈ Y . Here, Y represents
the set of possible outputs. The expected output is also referred to as the label.
Formally, given a training set D, the goal of a supervised learning algorithm is to
train a function f : X → Y where f ∈ F . Here F is some predefined family of
functions. Each training sample (xi, yi) is assumed to be sampled independently
of a joint distribution P (x, y), x ∈ X, y ∈ Y , which is not revealed to the learning
algorithm. Once with a trained model, f ∗(x), given a new input x′ ∈ X, the label
ŷ = f ∗(x‘) can be predicted.

On the other hand, the training data in the case of unsupervised learning
contains no supervisory information. Here, D = {x1, . . . , xn} and is assumed that
each xi is sampled independently of a distribution P (x), x ∈ X. Thus, these samples
are independent and identically distributed [144].

As stated earlier, the FMS paradigm was designed to face the problem of to
choose the right model for a dataset, a task that falls under both aforementioned
categories, but it has been mainly investigated for classification jobs. For this reason,
some topics of the supervised learning area, the FMS problem and some key elements
related to it were outlined in this section. Despite this, the FMS paradigm can be
extended to other machine learning problems and similar tasks whit a huge search
space. Regarding unsupervised learning topics addressed in this section, they were
employed in the experiments made to investigate and to adapt the meta-learning
paradigm to our problem. In the same spirit, the meta-learning paradigm is also
outlined in this chapter.
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2.1 Regression and classification tasks
The classification and regression tasks are examples of the supervised learning cate-
gory mentioned above. A regression analysis is a conceptually simple method for
investigating functional relationships among variables. The relationship is expressed
in the form of an equation or a model connecting the response or dependent variable
and one or more explanatory or predictor variables. Let y be the response variable
and the set of predictor variables x1, x2, . . . , xp with (p = number of predictor vari-
ables). The true relationship between y and x1, x2, . . . , xp can be approximated by
the regression model y = f(x1, x2, . . . , xp) + ε where ε is assumed to be a random
error representing the discrepancy in the approximation [26].

The classification analysis is a subtype of the regression analysis because the
response variable is a discrete one instead of a continuous one. In a classification
analysis the problem is defined by a distribution D over x×y, where y = {0, 1, . . . , n}
(with n = number of labels). The goal is to find a classifier h : x→ y minimizing the
error rate on D [98].

It is important to describe both approaches because, in this work the FMS
paradigm was employed to build models for classification problems in high volume
datasets whereas with the regression approach in synergy with the FMS paradigm,
the construction of proxy models was explored. In Figures 2.2.1(a) and 2.2.1(b) a
visual example of a regression and a classification task is showed.

2.2 Clustering analysis
A clustering analysis is a task from the unsupervised learning category and consist in
the grouping of set of objects in a manner that the objects in the same group are
more similar among them than to those in other groups. Formally speaking, given
a dataset D = {t1, t2, . . . , tn} of tuples and an integer number of clusters to create
k partitions, to define a mapping f : D → (1, 2, . . . , k) where each ti is assigned to
one cluster Kj, 1 ≤ j ≤ k. A cluster Kj, contains precisely those tuples mapped to
it; that is Kj = {ti|f(ti) = Kj, 1 ≤ j ≤ n} & ti ∈ D [80]. As will be seen below, the
clustering analysis was employed in this work for the creation of an alternative to
K-NN employed as meta-learner. In Fig. 2.2.1(c) an example of a clustering task is
shown.
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(a) Regression task. (b) Classification task. (c) Clustering task

Figure 2.2.1: Examples of supervised and unsupervised learning tasks.

2.3 Meta-learning and Proxy models
Meta-learning is the study of principled methods that exploits meta-knowledge to
obtain efficient models and solutions by adapting machine learning and data mining
processes [17]. Meta-learning uses a general machine learning approach to generate
meta-knowledge that maps the characteristics of a dataset, captured by meta-features,
to the relative performance of the available algorithms [120].

In this work, the meta-learning approach was used as an advisor to recommend
models or full models to a not analyzed dataset. In an advisory mode, the meta-learner
(the algorithm employed to learn in a meta-learning task) increases its efficiency as it
accumulates meta-knowledge. The lack of experience at the beginning of the learner’s
life compels the meta-learner to use one or more learning strategies without a clear
preference for one of them. However, as more training sets have been examined, it
is expected that the expertise of the meta-learner to dominate in deciding which
learning strategy best suits the characteristics of the training set. The meta-features
extracted from the dataset (Fig. 2.3.1 b) are matched with the meta-knowledge base
(Fig. 2.3.1 f) to produce a recommendation regarding the best available learning
strategy [154].

Proxy-modeling on the other hand, is a subtype of the tasks performed through
the meta-learning paradigm. A proxy model is a computationally less expensive
alternative to a full numerical simulation in assisted history matching, production
optimization, and forecasting. A proxy model is defined mathematically, statistically,
or data driven model defined function that replicates the simulation model output for
selected input parameters. The proxy model’s results are not to mimic the numerical
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simulations with 100% accuracy, but the outputs generated with the amount of time
to run these models, give a reasonable range of error [108]. In a task that involves
the use of proxy models, the knowledge base (Fig. 2.3.1 f) consist of a set of solutions
solved through the full mathematical simulation. In an evolutive or a bio-inspired
search the meta-dataset is constructed with the particles or individuals with their
fitness value, where each part of the vector a meta-feature and the fitness is the
response variable. In this work, the use of proxy models was investigated as a way to
guide the search process in a FMS analysis.

Figure 2.3.1: Meta-learning process in advisory mode.

Source: Based on figure 1.2 of [154]

2.4 Full model selection
The full model selection analysis looks for the best combination of several factors
in order to obtain the lowest misclassification rate in the dataset under analysis.
These factors are feature selection, data preparation, and the selection of a learning
algorithm with its hyper-parameters tuned [57]. As this analysis is play a central
role in this work, Eq. 2.1 is provided as a formal definition and is based in the one
presented in [149]. In the same way all the involved factors and the performance
metrics employed in this work are described in the following sections of this chapter.

a∗wA, p
∗, f ∗ ∈ argmin 1

k

k∑
i=1

L(awA, p, f,D
(i)
train, D

(i)
validation)

a(i) ∈ A, p(i) ∈ P, f (i) ∈ F,wA ∈ WA

(2.1)

Where:
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A = Set of available learning algorithms
P = Set of available data-preparation algorithms including ∅
F = Set of available feature selection algorithms including ∅
WA = Set of hyperparameters of a learning algorithm a
Dtrain, Dval = Disjoint partitions of the dataset under analysis
L = Loss function calculated on the validation set (misclassification rate)
argmin = Values that obtains the lowest misclassification rate on the loss

function L

Given a set of learning algorithms A, data preparation techniques P and feature
selection algorithms F , the goal of the FMS is to determine the combination of
algorithms: a∗wA ∈ A (a machine learning algorithm with an specific configuration in
its hyper-parameter values), p∗ ∈ P and f ∗ ∈ F with the lowest misclassification rate.
The misclassification rate is estimated over the dataset D and this dataset is split in
two disjoint partitions (D(i)

train and D(i)
validation for i = 1, 2, ..., k). The misclassification

rate is calculated with the loss function 1
k

∑k
i=1 L(awA, p, f,D

(i)
train, D

(i)
validation), training

the algorithm awA in the partition D(i)
train, and evaluated in the partition D(i)

validation.
The data partitions are previously transformed by p and f .

2.4.1 Factors that make up the FMS analysis

As mentioned before, the FMS analysis involves the combination of important factors
that can lead to models with higher accuracy. In addition to such factors, it is
necessary to employ metrics to measure the performance of the models evaluated
during the search stage and that depend on what kind of learning task is performed
(classification or regression). The rest of this section describes each one of the
associated factors and the performance metrics employed in this work.

2.4.1.1 Data preparation or data preprocessing

Data preparation is an important step in a data mining process, if there is much irrel-
evant and redundant information present or noisy and unreliable data, the knowledge
discovery during the training phase is more difficult. The set of techniques that com-
prehends a data preparation task are used to pre-process the data to a suitable form
for building models [38]. There are different ways to perform the data-preparation:
from linear and non-linear scaling of the input and outputs, homogenization of the
variability, principal component analysis, among others [84]. This stage includes
data cleaning operations, data integration, data transformation and information
reduction (includes feature and instance selection) [64]. A visual representation of
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the aforementioned task is shown in Fig. 2.4.1.

Data Cleaning

Includes operations that correct bad data, filter some incorrect data out of the
dataset and reduce the unnecessary detail of data. Treatment of missing and noise
data is included here. Other cleaning data tasks involve the detection of discrepancies
and dirty data (fragments of the original data which do not make sense) [63].

Data Transformation

In this pre-processing step, the data is converted or consolidated so that the
mining process result could be applied or may be more efficient. Sub-tasks inside
data transformation are the smoothing, the feature construction, aggregation or
summarization of data, normalization, discretization and generalization [63].

Data Integration

It comprises the merging of data from multiple data stores. This process must
be carefully performed in order to avoid redundancies and inconsistencies in the
resulting dataset. Typical operations accomplished within the data integration are
the identification and unification of variables and domains, the analysis of attribute
correlation, the duplication of tuples and the detection of conflicts in data values of
different sources [63].

Figure 2.4.1: Forms of data preparation.

Source: Based on figure 1.3 of [63].
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2.4.1.2 Feature selection

Feature selection consists of choosing a subset of features that ideally is enough to
describe the target class. Considering this definition, the redundant and irrelevant
features should be removed [139]. The feature selection problem can be defined as to
find a projection of X to X ′, where X is a binary feature vector X = {x1, x2, ..., xn}
with xi ∈ {0, 1} for each 1 ≤ i ≤ n andX ′ ⊆ X. Usually feature selection is performed
in consideration to the fitness of a function p(X ′) [54]. Feature selection methods
can be classified in two approaches: individual evaluation and subset evaluation.
Individual feature evaluation assesses each feature individually according to its
relevance which leads at the end to a feature ranking. The drawback of individual
evaluation is that it is incapable of eliminating redundant features because they have
the same rank. Differently, subset feature evaluation can overcome the inconvenience
of individual evaluation, it uses certain search strategies to select and evaluate a
subset of features according to certain evaluation measures and then compares it
with the previous best one. From this classification, three main approaches can be
identified based on the relationship among the inductive learning method and the
feature selection algorithm: filters, wrappers, and embedded methods [85].

• Filter methods are feature selection algorithms totally independent of any
predictors. Applied directly on the training data, the filter approach is based on
feature ranking techniques that use an evaluation criterion and a threshold to
determine the feature relevance and decide whether to keep it or discard it. The
feature relevance is determined by its capability to provide useful information
about different classes.

• Wrapper methods are feature selection based on three components: a search
strategy, a predictor, and an evaluation function. The search strategy determines
the subset of features to be evaluated. The predictor can be any classification
method and its performance is used as the objective function to evaluate the
subset of features defined by the search strategy to find the optimum subset
that gives the best accuracy of it. The wrapper approach outperforms the
filter approach but is more time-consuming and requires more computational
resources.

• Embedded methods incorporate an interaction between feature selection and
the learning process. Therefore, the solution is reached faster than wrappers
because they make better use of the available data and avoid retraining the
predictors for every selected feature subset. Embedded methods integrate a
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regularized risk function that is optimized taking into account the features
designating parameters and the predictor parameters.

2.4.1.3 Hyper-parameter optimization

In Bayesian statistics, a hyper parameter is a parameter of a prior distribution; the
term is used to distinguish them from parameters of the model for the underlying
system under analysis. For example, when we use the beta distribution to model
the distribution of the parameter p of a Bernoulli distribution, then p is a parameter
of the underlying system, and α and β are parameters of the prior distribution
(beta distribution), hence hyper-parameters [128]. In the machine learning context,
the hyper-parameters are those parameters that define a set of learning functions
{f(x,wA), wA) ∈ A}, where x is an input feature vector, wA is an input vector of
hyper-parameters that depends on the models belonging to A, which is a set of models
[84].

Hyper-parameter optimization on the other hand, is the process of tweaking all
parameters of a model not learned by gradient descent. As an example, considering a
fully connected neural network, its weights can be learned from data, the other settings
of the network can’t. These hyper-parameters include the number of hidden layers, the
number of neurons per hidden layer, the learning rate, and more. Hyper-parameter
optimization methods systematically try multiple choices for hyper-parameters on the
validation set. The best performing set of hyper-parameter values is then evaluated
on a second held-out “test” set to gauge the true model performance. Different
hyper-parameter optimization methods differ in the algorithm they used to propose
new hyper-parameter settings.

2.4.1.4 Evaluation metrics

The right evaluation of the learning models in supervised learning is one of the main
topics in the field of pattern recognition. Once the model is built, it is necessary
to evaluate its generalization capacity in unknown samples and to choose the most
adequate to a dataset. Some of the most important metrics for both classification
and regression [138] are defined below.

Metrics employed in classification tasks

Some of the most popular metrics to evaluate the performance of classification
models are detailed below. In Figure 2.4.2 an example of a confusion matrix employed
in binary classification is shown, and from it the presented fitness metrics are taken:
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Figure 2.4.2: Confusion matrix for a binary classification problem.

Accuracy

This is the most common evaluation metric for a classification model. Is defined
as the degree of right predictions of the model (in its inverse form can be understood
as the misclassification rate).

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

Error =
FP + FN

TP + TN + FP + FN
(2.3)

Balanced Error Rate (BER)

The BER is the average of the ratio of the incorrectly classified samples per label
set over all label sets [37].

BER = 1− 1

2

(
TP

TP + FN
+

TN

TN + FP

)
(2.4)

Metrics employed in regression tasks

In the regression problems the output of a model is continuous or real instead of
discrete, for this reason, the performance metrics are different. Some of the most
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popular metrics for regression models are detailed below.

Mean absolute error (MAE)

This metrics measures the mean magnitude of the error in a set of predictions
without considering its direction. It is the mean over the test samples of the absolute
differences among the predictions and the real observations where all the individual
differences have the same weight.

MAE =
1

n

n∑
j=1

|yj − ŷj| (2.5)

Root mean square error (RMSE)

This metric is a quadratic punctuation rule that also measures the magnitude of
the average error, It is the square root of the differences among predictions and real
observations.

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (2.6)

2.5 Summary
In this chapter relevant concepts of the central axis of this work were analyzed. As
the full model selection analysis can be applied to a wide range of problems in the
machine learning field, the two best known categories in this area: supervised, and
unsupervised learning were described. The regression and classification tasks were
described because both approaches were employed in the experiments performed in
this Thesis, the classification approach in the selection of models for high volume
datasets and the regression approach for the construction of proxy models. On
the other hand, the use of clustering analysis was explored in order to solve the
FMS problem through the meta-learning approach. This last approach along with
proxy models were also briefly described in this section. Finally, the FMS problem
was defined in conjunction with the factors involved in it (data-preparation, feature
selection, hyper-parameter optimization and evaluation metrics).
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Chapter 3

High volume datasets, tools of the
Big Data paradigm and
characteristics of those datasets

As mentioned in Chapter one, more data has been created between 2012 and 2014
than in the entire history of the human race. Some possible causes of this phenomenon
are the emergence of paradigms as social networks and the internet. Despite science
has traditionally dealt with challenges handling large volumes of data in complex
systems, the massive data generations in scopes outside scientific research has favored
the popularization of the analysis of bigger datasets under the paradigm know as Big
Data. This paradigm refers to data objects that are so large and/or complex that it
cannot be perceived, acquired, managed, and processed by traditional information
technology and software/hardware tools within a tolerable time [28]. The term Big
Data was coined to represent growing volumes of data. Along with volume, the term
also incorporates three more attributes, velocity, variety, and value [48] as follows:

• Volume: represents the ever-increasing and exponentially growing amount of
data.

• Velocity: represents the amount of data generated with respect to time and a
need to analyze that data in near-real time for some mission critical operations.

• Variety: represents variety in data formats.

• Value: This is the most important aspect of Big Data. The data is only as
valuable as its utilization in the generation of actionable insight
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This definition is the most extended one of Big Data, and once in a while a new
definition is added to literature but with more V’s. This definition is ambiguous and
does not provide rules to identify a dataset that belongs to the Big Data paradigm,
therefore in order to avoid confusions and for the sake of clarity we prefer the term of
high-volume datasets for those that are big enough to not fit on the main memory
(the training set without reductions and the learning algorithm) of a common personal
computer. In our experiments we explored the use of tools coming from the Big Data
paradigm, therefore, along this chapter were described as well as some important
characteristics of datasets.

3.1 Model selection and high-volume datasets
The choice of a learning algorithm to a specific dataset is not a trivial task, it involves
the testing of several models until to find the most suitable. Though more data could
be thought as a silver bullet to machine learning problems, data alone is not enough,
no matter how much of it you have. Let’s consider learning a Boolean function of
100 variables from a million examples. There are 2100 − 106 examples with unknown
class. In the absence of further information, there is no way to do this [50]. Similarly,
if a linear classifier is trained on a non-linear dataset, no matter how many data is
available, the performance of such classifier is not going to improve. An example
of that is provided in Fig. 3.1.1. This situation is known as the “No Free Lunch”
theorem. It states that given a set of all functions F and a set of benchmark functions
F1, if algorithms A1 is better on average than algorithm A2 on F1, then algorithm
A2 must be better than algorithm A1 on F − F1 [51]. In simply words, basically
states that no machine learning algorithm is the best for all problems. Thus, the
correct choice of algorithm often remains unclear unless the algorithms are tested
through trial and error [53].

From this starting point, the exploration of the search space imposed by the FMS
problem is infinite even if restrictions are imposed on the hyper-parameter values of
the model [57]. Let’s consider a reduced example of a model selection exploration
with L algorithms, M parameters and N levels for each parameter. Supposing that
the complexity of a model λ is bounded by λ0, the complexity of the search will be
bounded by L×M ×N × λ0. Taking into account that complexity and processing
time of many machine learning algorithms are related to the number of examples
in the training set, an adequate model search in large datasets could take too much
time that the search becomes meaningless.

Although, the size of the dataset can be reduced through sampling and instance
selection techniques, it could suppose the loss of model’s quality and an exploration
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in a different direction of the FMS problem. Therefore, to expand the FMS analysis
capabilities and its utility to non-expert practitioners, we explored different ways
to be capable to analyze sets with high-volume of data, using all the instances and
features.

(a) Linear SVM on Banana
dataset.

(b) RBF SVM on Banana
dataset.

Figure 3.1.1: Performance of different models in the same dataset.

Source: https://qph.fs.quoracdn.net/main-qimg-9017c48fbc223cdcf414ce59ee07136f-c

3.2 MapReduce and the divide and conquer paradigm
One of the most powerful techniques for solving problems is to break them down into
smaller, more easily to solve pieces. Smaller problems are less overwhelming and, they
permit us to focus on details that are lost when we are studying the entire problem.
In a divide-and-conquer algorithm, a problem is divided into smaller subproblems
that are solved, and then, merged into one solution of the full problem [141].

In the same vein, the MapReduce programming model was introduced by Dean
& Ghemawat in 2004 to enable the parallelization and distribution of big scale
computation to analyze huge datasets. MapReduce has become almost a synonym of
the Big Data paradigm, even though is one of the many available tools to handle the
tasks of this field. This programming model was designed to work under the master-
slave communication model. In the MapReduce programming model a computing
task is specified as a sequence of stages: map, shuffle and reduce that works on a
dataset X = {x1, x2, ..., xn}. The map step applies a function µ to each value xi to
produce a finite set of key-value pairs (k, v). To allow for parallel execution, the
computation of function µ(xi), must depend only on xi. The shuffle step collects
all the key-value pairs produced in the previous map step, and produces a set of
lists, Lk = (k; v1, v2, ..., vn) where each of such lists consists of all values vi, such that
ki = k for a key k assigned in the map step. The reduce stage applies a function ρ to
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each list Lk = (k; v1, v2, ..., vn), created during the shuffle step, to produce a set of
values y1, y2, ..., yn. The reduce function ρ is defined to work sequentially on Lk but
should be independent of other lists Lk, where k

′ 6= k [67].
Examined in detail, MapReduce is nothing, but the divide-and-conquer technique

mentioned earlier [140]. In the high-volume datasets analysis, the main problem is
the size of the data; now with the MapReduce paradigm, we can work on this data
in parallel and get the desired results in the required timeframe. The logical steps
involved in the process are as follows:

1. Divide the dataset into many chunks.

2. Execute our map function on them in parallel.

3. Start conquering and group the map outputs as per their key.

4. Execute our reduce function on them in parallel.

Figure 3.2.1 shows a representation of the map, shuffle and reduce stages on
a dataset represented by colors (for an easier visual interpretation).

Figure 3.2.1: The MapReduce Programming Model: Map, Shuffle, and Reduce.
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As it can be seen in Fig. 3.2.1, MapReduce is an instance of the divide-and-
conquer technique for algorithms design as in other parallelization techniques. Some
advantages that MapReduce incorporates in its design over other platforms for data
analysis are [134]:

• Low-cost unreliable commodity hardware: Instead of using expensive,
high-performance, reliable symmetric multiprocessing or massively parallel
processing machines equipped with high-end network and storage subsystems,
the MapReduce framework is designed to run on large clusters of commodity
hardware.

• Extremely Scalable RAIN (Redundant Array of Independent Nodes)
cluster: Instead of using centralized RAID (Redundant Array of Independent
Disks) based SAN (Storage Area Network) or NAS (Network-Attached Storage)
storage systems, every MapReduce node has its own local off-the-shelf hard
drives. These nodes can be taken out of service with almost no impact to
still-running MapReduce jobs.

• Fault-tolerant: In case of failure, MapReduce applies a mechanism to replicate
the information in order to keep running the MapReduce tasks. To handle
crashed nodes, system administrators simply take crashed hardware off-line.
New nodes can be plugged in at any time without hassle.

• Highly Parallel: The most important contribution of the MapReduce frame-
work is its ability to automatically support the parallelization of task executions.
MapReduce’s shared architecture makes it scalable and ready for parallelization.

3.2.1 Apache Spark

Apache Spark is an open-source distributed general-purpose cluster computing frame-
work with (mostly) in-memory data processing engine that can do ETL (Extract,
Transform and Load), analytics, machine learning and graph processing on large
volumes of static data (batch processing) or dynamic data (streaming processing).
In contrast to other MapReduce-based frameworks (such as Hadoop), most of the
processing stages are done in memory and hence most of the time provides better
performance for certain applications as iterative algorithms and interactive data
mining [90], therefore is appropriated to be used in the FMS problem.

The RDD (Resilient Distributed Dataset) is the cornerstone of Apache Spark.
A RDD is a resilient and distributed collection of records spread over one or many
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partitions. Using RDD Spark hides data partitioning and so distribution that in
turn allowed them to design parallel computational framework with a higher-level
programming interface (API). The features of RDDs (decomposing the name):

• Resilient, i.e. fault-tolerant with the help of RDD lineage graph and so able
to recompute missing or damaged partitions due to node failures.

• Distributed with data residing on multiple nodes in a cluster.

• Dataset is a collection of partitioned data with primitive values or values of
values, e.g. tuples or other objects (that represent records of working data).

RDDs support two kinds of operations:

• Transformations - lazy operations that return another RDD.

• Actions - operations that trigger computation and return values.

3.3 Full model selection, high-volume datasets, MapRe-
duce and its relation with complex systems

Over the past few years there has been an exponential growth in the rate of available
data sets obtained from complex systems, ranging from the interconnection of millions
of users in social media data, chemo-informatics, hydro-informatics to the information
contained in the complex biological data sets [73]. A complex system is a system
composed of many interacting parts, such that the collective behavior of the parts
together is more than the sum of their individual behaviors. Classic examples of
complex systems are: Condensed matter systems, ecosystems, economic and financial
markets, the brain, the immune system, insect colonies, flocking or schooling behavior
in birds or fish, among others [112]. An initial definition of a complex system can be
given as:

• A system that exhibits behavior that is often non-linear due to large number of
interacting components. The interactions between the components, e.g. cells,
may well be non-linear too.

• A system whose behavior cannot be predicted merely by investigating the
behavior of the individual components in isolation.
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A component of a complex system is any part of the system that can be reasonably
compartmentalized, either by physical or abstract partitions, on the basis that it forms
a functional part of the whole. Linearity on the other hand is defined mathematically
as a behavior that satisfies the properties:

• additivity: f(x) + f(y) = f(x+ y)

• homogeneity: a · f(x) = f(ax)

Neither of these properties is present in pure non-linearity: Let’s consider the
combination of behaviors in complex systems as mathematical functional outputs,
as defined above, which produce other observable behavior where additivity and
homogeneity do not hold. To define non/linearity more clearly, a linear behavior,
in terms of system states, can be predicted with knowledge of any previous state
and then aggregating a fixed amount over a parametric index to the desired index,
whereas this is not always possible with non-linear behavior. In the case of complex
systems non-linearity is a key property. Open complex systems invariably interact
with the environment, which provides a context to their behavior through feedback
mechanisms. Conversely, closed complex systems have no such interaction and are
therefore independently complex. Interaction in the context of complex systems
can be defined as any communicative action between two or more entities where the
entities can be either physical objects, such as molecules or cells, or abstract concepts,
such as behavior. Complex systems exhibit certain characteristics [118] as:

• Complexity in behavior: The behavior is defined as a pattern of state
changes where in the states may refer to both environmental and system states.
The states of the system as well as individual models that mimic the system can
be highly nonlinear. The integration of models must preserve the behavioral
complexity of the original individual entities.

• Complexity of component parts: Complex systems are composed of com-
ponents that may well exhibit a degree of complexity themselves.

• Compartmentalization: Modeling often involves compartmentalization of
the system, which can be based on both real compartments and artificial ones.
A model integration strategy must respect any compartmentalization that exists
within the original models, since these constitute implicit assumptions about
what the models represent.

• Environmental context: Complex systems often interact within the environ-
ment which can affect overall behavior.
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The explosion in the quantity of information in the world enabled the creation
of the Big Data paradigm in order to handle and analyze data of complex systems.
This paradigm also has allowed to researchers to make more accurate models that
mimics the behavior of such systems. The tools to face the Big Data problem
as MapReduce, are based on the divide and conquer programming technique and,
therefore, MapReduce makes use of the superposition property as in a linear non-
complex systems [121]. Taking this into account, we can see that Big Data is not a
complex system, but a tool to model them. In the other hand, the full model selection
problem is composed by all the possible models that can be built given the considered
methods and, as was stated earlier, the search space of the FMS problem is almost
infinite. With the given definition of complex systems, it can be seen that the FMS
problem can be considered as a complex system, because the output of the system
cannot be calculated adding the outputs of each one of its components (selection
of learning algorithm, hyper-parameter optimization, feature selection and selection
of data-preparation techniques). In summary, an infinite search space of a complex
system with a high computational cost to explore each possible solution, makes of
the FMS problem in high volume datasets a hard problem and a complex system.

3.4 Relevant characteristics of the analyzed datasets
As was discussed earlier, the exploration of a vast search space and the time-consuming
process of the model construction with high-volume datasets impose restrictions to
the experiments and the number of datasets to analyze. Despite that, the big quantity
of different types of available datasets makes impossible to select a representative
sample of such sets. In order to be capable to consider that the employed datasets
represent a variety of problems, two important characteristics of them were considered:
The Intrinsic dimension and the Shape of the datasets.

The Intrinsic Dimension (ID) of a given dataset XN ≡ xi
N
i=1 ⊂ RD is the

minimum number of parameters needed to capture, and describe, all the information
carried by the data. XN is said to have an intrinsic dimension equal to d ∈ 1, ..., D
if its elements lie entirely within a d-dimensional subspace of RD [99]. Information
about the ID of a dataset is relevant in many contexts, for instance in molecular
simulations, where often a dimensionality reduction is required, or in bioinformatics,
or in image analysis where the ID is a suitable descriptor to distinguish between
different kinds of image structures [60]. According to the statistical learning theory,
the capacity and generalization capability of a given classifier may depend on the
ID. More specifically, in the particular case of linear classifiers where the data are
drawn from a manifold embedded through an identical map, the Vapnik-Chervonenkis
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dimension of the separation hyperplane is d+1. Since the generalization error depends
on the Vapnik-Chervonenkis dimension, it follows that the generalization capability
may depend on the ID [21]. Therefore, ID can be employed as a way to assure that
each dataset represents a different problem.

Shape on the other hand, is a crucial component in many of scientific analysis,
with examples including geomorphology, powder particle characterization, and biology.
A convexity analysis can be used for a variety of applications, for instance shape
decomposition which in turn can be used to compute shape similarity and has been
applied to object indexing [168]. A dataset with convex shape is the one that haves
the shape of a simple polygon whose interior is a convex set [127]. The convex set is
defined as follows: given a pair of points x and y in En, the line segment xy joining x
and y is the set of all points of the form αx+ βy where α ≥ 0, β ≥ 0 and α + β = 1,
a set S is convex if for each pair of points x and y in S it is true that xy ⊂ S [91].
On the other hand, a non-convex dataset is the one that cannot meet the previous
criteria. In Figure 3.4.1 a convex shape and a non-convex shape are shown. As
this property is capable to separate the datasets in two categories, with the shape
analysis we can know to which category belongs a dataset and therefore, to know the
performance of the FMS analysis in both categories.

Figure 3.4.1: Example of complex and non-convex sets.

3.5 Summary
In this chapter, the problem of performing the FMS analysis in high-volume datasets
was described. The concept of high-volume datasets was defined and separated from
the popular paradigm of Big Data. Despite this fact, in order to be capable to perform
the analysis in the entire datasets, the use of tools from the Big Data paradigm as
MapReduce and Apache Spark were explored and described. The relation of the
Complex systems with the FMS problem was described as well as some important
characteristics of the datasets employed in this work.
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Chapter 4

Soft computing techniques

To be capable to face the search space imposed by the FMS problem, the use of several
techniques from the soft computing field were investigated. For the exploration, two
well-known bio-inspired algorithms were employed: The Genetic Algorithm (GA)
and the Particle Swarm Optimization (PSO) algorithm. The use of the fuzzy logic
paradigm was used in the experiments that involved the use of proxy models and to
investigate the use of the meta-learning paradigm to solve the FMS problem. Along
this chapter, these key elements that are part of the performed experiments were
described.

4.1 Genetic Algorithms
Genetic algorithms are a type of optimization algorithm, meaning they are employed
to finding the optimal solution to a given computational problem that maximizes
or minimizes a particular function. Genetic algorithms imitate the biological pro-
cesses of reproduction and natural selection to solve for the ‘fittest’ solutions. Like
in evolution, many of a genetic algorithm’s process are random, however this op-
timization technique allows us to set the level of randomization and the level of control.

Components and structure

Since genetic algorithms are designed to simulate a biological process, much of
the relevant terminology is borrowed from biology. The basic components common
to almost all genetic algorithms are:

• A fitness function for optimization.
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• A population of chromosomes.

• Selection of which chromosomes will reproduce.

• Crossover to produce next generation of chromosomes.

• Random mutation of chromosomes in new generation.

The fitness function is the function the algorithm is trying to optimize. “Fitness”
concept is taken from evolutionary theory. It is used because the fitness function tests
how “fit” each potential solution is. The term chromosome refers to a numerical value
or values that represent a candidate solution to the problem that the genetic algorithm
is trying to solve. Each candidate solution is encoded as an array of parameter values,
a process that is also found in other optimization algorithms. If a problem has
Nparameter dimensions, then typically each chromosome is encoded as an Nparameter-
element array: chromosome = [p1, p2, . . . , pNparameter ] where each pi is a particular
value of the ith parameter. A genetic algorithm begins with a randomly chosen
assortment of chromosomes, which serves as the first generation (initial population).
Then each chromosome in the population is evaluated by the fitness function to test
how well it solves the problem at hand. Now the selection operator chooses some
chromosomes for reproduction based on a probability distribution defined by the
user. The fitter a chromosome is, the more likely it is to be selected. The crossover
operator resembles the biological crossing over and recombination of chromosomes
to create two offspring. Mutation operator randomly flips individual elements
in the new chromosomes, typically, mutation happens with a very low probability.
Genetic algorithms are iterated until the fitness value of the “best-so-far” chromosome
stabilizes and does not change for many generations. This means the algorithm has
converged to a solution [19].

4.2 Particle Swarm Optimization
The PSO algorithm is a biologically inspired computational search and optimization
method developed in 1995 by Eberhart and Kennedy. The algorithm emulates the
behavior of animal societies that don’t have any leader in their group or swarm,
such as bird flocking and fish schooling. Typically, a flock of animals that have no
leaders will find food by random, follow one of the members of the group that has the
closest position with a food source (potential solution). The flocks achieve their best
condition simultaneously through communication among members who already have
a better situation. The animal which has a better condition will inform it to its flocks
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and the others will move simultaneously to that place. This would happen repeatedly
until the best conditions or a food source is discovered. The process of PSO algorithm
in finding optimal values follows the work of this animal society. Particle swarm
optimization consists of a swarm of particles, where a particle represents a potential
solution [129]. PSO makes use of a velocity vector to update the current position of
each particle in the swarm. The position of each particle is updated based on the
social behavior that a population of individuals, the swam in the case of PSO, adapts
to its environment by returning to promising regions that were previously discovered.
The process is stochastic in nature and makes use of the memory of each particle, as
well as the knowledge gained by the swarm as a whole [153]. The outline of a basic
PSO algorithm is as follows:

1. Start with an initial set of particles, typically randomly distributed throughout
the design space.

2. Calculate a velocity vector for each particle in the swarm.

3. Update the position of each particle, using its previous position and the updated
velocity vector.

4. Go to step 2 and repeat until convergence.

4.3 Fuzzy logic
The fuzzy set theory covers an important quantity of methods and techniques to cap-
ture human knowledge and to deal with the uncertainty in a wide range of problems.
Due its usefulness, part of this paradigm was employed in some experiments that
made use of proxy models based in fuzzy rules and in the design of an alternative to
the meta-learner algorithm K-NN. This last algorithm made use of fuzzy clustering
techniques and therefore of validity indexes for those. All these concepts are described
below. The principal objective of Fuzzy Logic (FL) is the formalization/mechanization
of the capacity of human beings to reason and make decisions in an environment
of uncertainty. There are many misconceptions about fuzzy logic. To begin with,
fuzzy logic is not fuzzy. In large measure, fuzzy logic is precise. Another source of
confusion is the duality of meaning of fuzzy logic. In a narrow sense, fuzzy logic is
a logical system. But in much broader sense which is in dominant use today, FL
is much more than a logical system. More specifically, fuzzy logic has many facets [164].
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Fuzzy-set-theoretic facet

This facet is focused on fuzzy sets, that is, on classes whose boundaries are
unsharp, e.g., the class of beautiful women, the class of honest men and the class of
tall mountains. In more detail, fuzzy sets are graduated in the sense that membership
in a fuzzy set is a matter of degree. A fuzzy set, A, in a universe of discourse, U ,
is defined by a membership function which associates with each object, u ∈ U , the
degree to which u is a member of A. A fuzzy set is basic if its membership function
takes values in the unit interval. More generally, the membership function may take
values in a partially ordered set [164].

Logical facet

The logical facet of FL (FLl), is fuzzy logic in its narrow sense. FLl may be viewed
as a generalization of multivalued logic. Truth values in FLl are allowed to be fuzzy
sets [164].

Relational facet

The relational facet (FLr), is focused on fuzzy relations and, more generally, on
fuzzy dependencies. In FLr, a granulated function, f∗, is described as a collection
of fuzzy if-then rules of the form: if X is A then Y is B , where A and B are fuzzy
sets carrying linguistic labels like small, medium, and large. In this sense, X and
Y are linguistic variables. The concept of a linguistic variable and the associated
calculi of fuzzy if-then rules play pivotal roles in almost all applications of fuzzy
logic. A granulated function, f∗, may be viewed as a summary of f , with f∗ being a
granular value of f . In this perspective, perception of a probability distribution may
be described as a granular probability distribution [164].

4.3.1 Fuzzy sets

The concept of fuzzy sets was introduced as a generalization of the classical set theory.
In the real world, many classes of objects are not as well-defined as a regular set
theory would suggest. For example a set of all tall persons includes of course all
persons taller than 1.9m, but what about persons of length 1.8m?. The definition of a
fuzzy set has what is needed to define a set that has inexact boundaries [94]. A fuzzy
set is a generalization of a crisp set (traditional set). A fuzzy set A′ in a universe of
discourse X is characterized by a membership function µA′ which assigns to each
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element x ∈ X a real number µA′ (x) ∈ [0, 1] expressing the membership grade of x in
the fuzzy set A′ [148]. A membership function (µ) is a curve that defines how each
point in the input space is mapped to a membership value. The shape and equations
of two of the most commonly used membership functions are shown below.

(a) Gaussian. (b) Triangular.

Figure 4.3.1: Examples of membership functions.

Source: https://la.mathworks.com/help/fuzzy/foundations-of-fuzzy-logic.html

Equation of the Gaussian membership function (fig 4.3.1 (a)).

f(x;σ, c) = e
−(x−c)2

2σ2 (4.1)

Equation of the triangular membership function (fig 4.3.1 (b)).

f(x; a, b, c) = max(min(
x− a
b− a

,
c− x
c− b

), 0) (4.2)

4.3.2 Fuzzy rules

Fuzzy rules are key tools for expressing pieces of knowledge in fuzzy logic [52], while
a collection of rules is called a Fuzzy rule system. Those rule systems are tools
that allow storing and represent the expert knowledge [156]. Such rules control the
behavior of any fuzzy system. Fuzzy expert systems are usually involved when process
cannot be described by exact algorithms or when these processes are difficult to model
with conventional mathematical models. A fuzzy rule-base is a set of “IF-THEN"
rules that can be expressed as below:

IF x1 is Ak
1 Then yk is Bk (4.3)

Where:
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i = 1, ..., n; = 1 to number of antecedents
xi = Input value of the i-th antecedent of the rule
Ak

i = K-th fuzzy set of the i-th antecedent
yk = Output value of the consequent
Bk = K-th fuzzy set of the consequent

The part of the rule, If x1 is Ak
1, is known as antecedent or premise and the

terms
Ak

1 and Bk are linguistic variables defined through fuzzy sets in the universe of
discourse X and Y respectively. The part ,yk is Bk, is known as consequent or
conclusion [106].

4.3.3 Fuzzy classification

Fuzzy classification is a natural extension of the traditional classification, the same
way fuzzy sets extend classical sets. In a sharp classification, each object is assigned
to exactly one class, meaning that the membership degree of the objects is 1 in
this class and 0 in all the others. The belonging of the objects in the classes is
therefore mutually exclusive. In contrast, fuzzy classification allows the objects to
belong to several classes at the same time; furthermore, each object has membership
degrees which express to what extent this object belongs to the different classes.
Formally described, let O be an object characterized by a t-dimensional feature vector
x of a universe of discourse U . Let C1, . . . , Cn be a set of classes which is given a
priori or has to be discovered. Fuzzy classification calculates a membership vector
M = {m1, . . . ,mn} for the object O. The vector element mi ∈ [0, 1] is the degree of
membership of O in the class Ci [156].

4.3.4 Fuzzy clustering

The objective of clustering is to partition the data set X into c clusters. For the time
being, assume that c is known, based on prior knowledge. Fuzzy partitions can be
seen as a generalization of hard partition. A fuzzy partition of the data set X can
be represented by a c×N matrix U = [µi, k], where µi,k denotes the degree of mem-
bership that the k-th observation belongs to the c-th cluster (1 ≤ k ≤ N, 1 ≤ i ≤ c).
Therefore, the i-th row of U contains values of the membership function of the i-th
fuzzy subset of X. The matrix U is called the fuzzy partition matrix [1]. Conditions
for a fuzzy partition matrix are given by:
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µi,k ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N (4.4)

c∑
i=1

µi,k = 1, 1 ≤ k ≤ N (4.5)

0 ≤
N∑
k=1

µi,k < N, 1 ≤ i ≤ c (4.6)

4.3.5 Fuzzy clustering validity indices

Clustering validity is an evaluation metric in order to determine how good is the
result of the clustering process. There are several indices to determine the validity of
crisp and fuzzy clusters [41]. Regarding fuzzy clustering, there are indices that make
use only of the membership values of the partitions such as Partition coefficient
and the Entropy partition. Those indexes are easy to calculate but are just useful
for few well separated clusters and don’t take into account the geometrical properties
of the information. In order to overcome such problems, Xie & Beni (1992) defined a
validity index that measures both the compactness and the cluster separation [161].

VXB(U, V ;X) =

∑c
i=1

∑n
k=1 u

m
ik‖xk − vi‖2

n(min(vi − vj))
(4.7)

From equation 4.7, c is the number of clusters, n is instances number of the
dataset, m is the fuzzifier term, V = [v1, v2, . . . , vn] is a vector of cluster centers
and U = (uij) is the fuzzy partition matrix composed by the membership degrees
of each object in the dataset regarding the i−th cluster. The Fukuyama-Sugeno
validity index is another popular index proposed by Fukuyama & Sugeno in 1989.
This index is presented in equation 4.8 and simultaneously measures the compaction
and the cluster separation. The term v is the geometric mean of the cluster centers
V = [v1, v2, . . . , vn].

VFS(U, V ;X) =
c∑

i=1

n∑
k=1

umik(‖xk − vi‖2 − ‖vi − v‖2) (4.8)
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4.4 Summary
The key concepts and techniques employed to face the FMS problem in high volume
datasets were described in this chapter. The two principal search strategies employed:
the GA and PSO, were briefly described. On the other hand, due its usefulness
and suitability, some methods and techniques from the fuzzy logic paradigm were
employed. Fuzzy sets, membership functions, fuzzy rules systems and fuzzy classifi-
cation techniques were of great interest in the construction of a proxy model based
in a fuzzy-rules classification algorithm, therefore were also covered. Regarding the
meta-learning approach followed in this work, the concepts as fuzzy clustering and
fuzzy validity indexes were employed for the design of a new meta-learner algorithm,
and there were explained above.
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Part III

Experiments and contributions
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Chapter 5

First approach to solve the FMS
problem in high-volume datasets

The FMS problem has been widely investigated in datasets where the search of
models does not represent a challenge in terms of time and the use of specialized
algorithms and hardware to handle them. As it was explained in previous chapters,
the FMS problem involves the exploration of a huge or almost infinite search space,
even if restrictions are imposed to the hyper-parameter values. In order to find a first
solution to this problem, two important bio-inspired algorithms were compared to
obtain evidence of their suitability to solve the FMS problem in high volume datasets.

Although similar comparisons were made in the past ([130, 131]), the algorithms for
model selection were built under different packages or frameworks. Those frameworks
employed distinct algorithms for the feature selection and data-preparation step as well
as learning algorithms. As an example, in [131] just SVM was contemplated, reducing
in this way the search space explored by the proposed algorithm. The algorithms
compared in this Chapter, a GA and a PSO were built under the MapReduce
programming model in order to deal with datasets of any size, and in order to make
fair comparisons, the GA and PSO used the same algorithms for all the steps of the
FMS process.

In like manner, at the time the experiments were made, just one of the works
in the literature was able to perform model selection in high volume datasets [142],
while the K-NN algorithm proposed by Yu et al. [2002] was adapted to MapReduce.
Those algorithms were employed to make comparisons and the acronyms used in the
rest of this work are Grid for the work of Sparks et al. [2015] and K-NN for the
work of Yu et al. [2002].

This first set of experiments are related to the first objective defined in this
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document, in order to gain knowledge of which algorithm is better suited to FMS in
high volume datasets. Furthermore, the contributions obtained were the developed
framework to adapt population-based optimization algorithms to perform FMS under
MapReduce and, of course the information obtained from the comparison itself.

The organization of this chapter is as follows: in Section 5.1 a revision of the
relevant work for this experiment is provided, in Section 5.2 the proposed solution is
described, Section 5.3 present the experiments performed and in Section 5.4 are the
final considerations of this chapter.

5.1 Related work
From the analysis of the literature, some parts of the FMS problem has been addressed
as an optimization task, using mainly four groups of search techniques: bio-inspired
methods, grid searches, gradient descent and Bayesian methods methods.

Two important examples of bio-inspired methods, that is, PSO and GA, were
introduced in Chapter 4 and, although the Artificial Immune System (used in [8])
and the Bat algorithm (present in Bansal and Sahoo [2015]) were not described, their
functioning follows almost the same principles that in all bio-inspired methods but
trying to mimic the behavior of Bats and of the Immune system. In the works within
this category, the hyper-parameter optimization problem [70, 29, 8, 92] is addressed,
coding the values of the hyper-parameters of a learning algorithm in a vector that
represents a particle, bat or individual depending on the method used. These potential
solutions are evaluated and according to their fitness and the mechanism of each
technique, the search space is explored until the termination criterion is met or the
quality of the solutions don’t improve.

Regarding fitness evaluation, most of the works relie on a single criterion [70,
57, 58, 29, 92] and just a few, conducted the search evaluation using more than one
criterion [9, 130, 131]. Concerning to multicriteria optimization, two main methods
are employed to select the fittest solutions: weighted sum [9] and the Pareto front
[130, 131]. Despite the usefulness of multicriteria optimization methods, the evaluation
of additional objectives, increments considerably the time of the process, for this
reason, the use of proxy models was proposed in Rosales-Pérez et al. [2015].

The FMS problem has been investigated, [57, 58, 9, 130, 131] just through bio-
inspired methods. The search space of this problem is so huge that, a grid search
could become easily intractable if a good exploration is performed or too poor if the
levels of the factors are considerably reduced to make possible a faster exploration.

Grid search is the simplest way to optimize the hyper-parameters of a learning
algorithm, evaluating all combinations of contemplated factors [25, 12, 23, 143, 83, 13,
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86, 152, 76, 103]. Values of such factors must be necessarily discretized to be capable
to explore the combination that otherwise could result unaffordable. Within the
works of this category, most of them are focused on comparing the efficiency of grid
search against other methods (random search [12, 13]), different fitness evaluation
techniques (Leve one out vs K-fold cross validation [86, 152]) and the advantages and
disadvantages of the model re-train vs re-search of models [23]. Some works of this
group stand out of the rest by considering ways of reducing the time employed in
the search process but without decreasing the quality of models using nested grids
[76] and the hybridization of the grid search and a theoretical decision technique [83].
Another outstanding work deals with the hyper-parameter optimization of algorithms
but considering the use of the MapReduce programming model to handle high volume
datasets [143].

Gradient methods are mainly focused in the hyper-parameter optimization problem
of learning algorithms as the Support Vectors Machine [10, 24] and Neural networks
[89]. These methods are simpler and faster but, they are fallible because are strongly
influenced by their starting point and are easily captured by local optima.

Bayesian methods are also among the popular alternatives to solve the hyper-
parameter optimization problem, and they have been extended to address model-
selection with hyper-parameter optimization [149, 87, 77]. The Sequential Model-
Based Optimization or SMBO is the core optimization algorithm of many works in
the literature. It constructs a regression model to predict the performance of the
true model employed (a proxy model). SMBO iterates between fitting the model
and gathering additional data based on the predicted performance. In the context of
parameter optimization, the proxy model is fitted to a training set where an instance
is made up with the parameters of the true model and its performance with this
configuration. SMBO uses a criterion known as Expected Improvement, which is
employed to select new regions in the search space to explore. SMBO has inherited a
range of limitations inappropriate to the automated algorithm configuration setting.
These limitations include a focus on deterministic target algorithms; use of costly
initial experimental designs; reliance on computationally expensive models; and the
assumption that all target algorithm runs have the same execution costs [77].

From the previous paragraphs, some key elements for the FMS methods presented
in this Chapter were obtained. The first one is the preponderance of the bio-
inspired methods to address the vast search space of the FMS problem, because a
good exploration employing a Grid search could easily become untractable and the
gradient-based methods are not suitable to deal with this problem.

As stated earlier, the FMS problem was explored only through bio-inspired
methods and, among them, two stood out from the rest: PSO and GA. For this
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reason, is of big interest to compare their suitability to the FMS problem in high
volume datasets.

Although the use of MapReduce programming model has been proposed for
hyper-parameter optimization of learning algorithms in high volume datasets, hyper-
parameter optimization is just one part of the whole FMS problem. Synergy of a
better suited search algorithm as the ones mentioned above and the use of MapReduce
programming model could provide a good starting point to solve the problem addressed
in this work.

Finally, just in two works of the ones that address the FMS problem [130, 131],
was remarked the difficulty of selecting a single model from a population as a final
model. Even though in those works, their multi-objective optimization nature makes
hard to assess the quality of each solution to pin point the best of all, it is also true
that even with a single fitness measure, choosing a possible model is also hard. Since
the fitness measure is just an estimation of the true fitness in the test set, the best of
all models could be the third and not the first in the ranking. Taking the experience
provided by the aforementioned works, a new idea to explore to solve this problem is
through an ensemble of all the best models.

To gain knowledge about which is the best method to perform the FMS
analysis in high volume datasets between the two most important approaches in the
literature, that is, genetic algorithms and swarm-based methods, a comparison
was performed. In both approaches it was sought to cover the weak points of
some works (The use of methods unable to explore a vast search space, inability to
handle high volume datasets, selection of a single final model, among others) with
the strongest points of others (the use of MapReduce programming model and
classifiers ensemble) in order to find the best suited algorithm for this problem.

5.2 Bio-inspired algorithms to perform FMS in high
volume datasets

The most commonly used optimization algorithms in the literature to solve the FMS
problem are those based in swarms (PSO in Escalante et al. [2009] and Bat in Bansal
and Sahoo [2015]) and Genetic Algorithms (present in Rosales-Pérez et al., Rosales-
Pérez et al. [2014, 2015]), therefore, in the interest of seeking the most suitable
algorithm to our problem, a GA and PSO were investigated. In the following sections,
aspects as codification scheme, operators employed to update solutions and other key
factors of both methods are described. In order to be able to analyze datasets of any
size, the MapReduce programming model was employed. Algorithms developed
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under this paradigm are shown in Appendix-A. Since two different search methods
were analyzed, the search algorithm presented is a generic one and can be extended
to any population-based search method. For an easier understanding, a flowchart of
the search process performed by both methods is presented in Fig. 5.2.1.

Figure 5.2.1: Flowchart of a generic FMS process.

5.2.1 Codification of solutions

The solutions encoded in a population based meta-heuristic method needs to be
codified in a vector. This vector receives different names according to the algorithm
employed, individual for a GA and particles for PSO. Depending on the nature
of the meta-heuristic method, the codification scheme of such vector varies between
real and binary. A real codification scheme was chosen because its adaptability of a
wide range of meta-heuristic methods. This step, fitness calculation and final model
construction of the optimization process involved in FMS are the same for PSO
and the GA as well as other population-based algorithms that can be adapted to
this framework. Is in the evolutive or Bio-inspired strategies as cross-over, selection,
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replacement and mutation for the GA and velocity and trajectory adjustment for
PSO, where there are important variations and are explained in the following sections.

The solution vector x = [x1, x2, ..., x16] is encoded as follows: In position 1 the
fitness of the potential models is stored. Position 2 allows determining which operation
will be done first: data-preparation or feature selection. Position 3 indicates if the data-
preparation step will be done. Positions 4 to 6 are parameters for the data-preparation
step (method identifier, parameter 1 and parameter 2). Position 7 determines if the
feature selection step will be done. Positions 8 and 9 are for the feature selection step
(Method identifier and number of features to be selected respectively). Positions 10 to
16 are for the machine learning algorithm construction. The range of values that every
element in the vector can take is as follows: [0-100]; [0,1], [0,1], [1,30], [1,NF], [1,50],
[0,1], [1,5], [1,NF], [1,6], [1,2], [1,4], [1,100], [1,60], [1,400], [-20,20] with NF = Number
of Features. This range of values was selected in accordance with the maximum and
minimum values that algorithms employed (see Table 5.2.1) for feature selection,
data preparation and classification algorithms can take. Such algorithms are the ones
available in the Apache Spark 1.6.0 (MapReduce) programming framework.

Table 5.2.1: Data-preparation methods, feature selection and classification algorithms used
in this work.

Data-preparation algorithms

Feature standardization
Normalization
Principal component analysis (PCA)
Shift and scale
Discretization

Feature selection algorithms

Joint Mutual Information (JMI)
Minimum Redundancy Maximum Relevance (mrMR)
Interaction Capping (ICAP)
Conditional Mutual Information Maximization (CMIM)
Informative Fragments (IF)

Classification algorithms

Support Vector Machine (SVM)
Logistic Regression (LR)
Multilayer Perceptron (MLP)
Decision Tree (DT)
Random Forest (RF)
Gradient-Boosted Trees (GBT)
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5.2.2 Crossover, mutation and trajectory adjustment
operators

Particle Swarm Optimization

One of the most popular and successful algorithms to perform the FMS analysis
is the Particle Swarm Model Selection (PSMS) proposed by Escalante et al. [2009].
PSMS is based on the PSO algorithm, which is a population-based search inspired by
the behavior of biological communities that exhibit both individual and social behavior
[57]. PSMS is faster and easier to implement because it is based on a single operator.
A set of potential solutions, in this case particles S = {xt1, xt2, ..., xtm}, is called a
swarm. Each particle has a related velocity value that is used to explore the search
space and the velocity of such particle at time t is as follows V t

i = [vti,1, v
t
i,2, ..., v

t
i,16]

where vti,k is the velocity for dimension k of the particle i at time t. The search
trajectories are adjusted employing the following equations:

Velocity

vt+1
i,j = W × vti,j + c1× r1× (pi,j − xti,j) + c2× r2× (pg,j − xti,j) (5.1)

Adjustment of trajectory

xt+1
i,j = xti,j + vt+1

i,j (5.2)

From Equation 5.1, pi,j is the value in dimension j of the best solution found so far,
also called personal best. pg,j is the value in dimension j of the best particle found
so far in the swarm. The constants c1, c2 ∈ R are used to weight the influence of
local and global best solutions. The values r1, r2 ∼ U [0, 1] introduce randomness
into the search process. Inertia weight W controls the impact of the past velocity
of a particle over the current one, influencing the local and global exploration. As
in the original paper, the inertia weight is adaptive and specified by the triplet
W = (wstart, wf , wend); where wstart and wend are the initial values of W , wf indicates
the fraction of iterations in which W is decreased. W is decreased by W = W −wdec

from the first iteration where W = Wstart to last iteration where W = wend and
wdec = wstart−wend

Number_of_iterations
[57].
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Genetic Algorithm

The genetic algorithm used, was designed as a fusion of some aspects of the
approach known as CHC (Cross-generational elitist selection, Heterogeneous recom-
bination, Cataclysmic mutation) proposed in Eshelman [1991] and others from the
Eclectic GA shown in Morales and Quezada [1998]. From the CHC, the crossover
operator HUX (Half Uniform Crossover) was obtained and adapted to real codifica-
tion. From the Eclectic approach, the selection and replacement model known as
Vasconcelos Model (VM) was taken. In VM, the best individual is mated with
the worst in the population, in other words, the “k” individuals in the population
are ranked by their fitness. Subsequently, VM will select individuals as follows:
(1, k), (2, k − 1), ..., (k/2, k/2 + 1). The traditional mutation operator was preserved
as well as the cataclysmic mutation operator (from the CHC); this last mutation
operator was used as a way to avoid the stagnation in the search process. The use of
real codification makes it necessary to use ad hoc crossover and mutation operators
adapted from Haupt et al. [1998].

Crossover operator

Offi = βPmn + (1− β)Pfn (5.3)

In Eq. 5.3, the i−th offspring (offi) is obtained multiplying the n−th allele of
parent 1 (Pmn) by a random number (β) in the range [0, 1] added to the multiplication
of the n−th allele of parent 2 (Pfn) by 1− β.

Mutation operator

Offi = Offi + σNn(0, 1) (5.4)

In Eq. 5.4, the i−th mutated offspring (Offi) is obtained by adding the value
of the i−th offspring (Offi) to a normally distributed number (σNn(0, 1)) in the
interval [0, 1].

5.2.3 Fitness measure and final model construction

For both methods, the evaluation metric used was the Balanced Error Rate or
BER employed in the original work that proposes the FMS paradigm ([57]), and
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that was explained in Section 2.4 of this work. To asses this metric, the popular
technique for model evaluations, K-fold cross validation was employed. In K-fold
cross-validation, the data is randomly divided in K equal sized and mutually ex-
clusive subsets (or folds). The model is estimated and validated k times; each subset
in turn is reserved for the validation and the remaining data are used for estimation.
The k prediction errors from different iterations are averaged to provide the overall
prediction error estimate [15]. In the same way that in Escalante et al. [2009], ex-
periments were conducted with different number of folds (2...10) without significant
differences and, taking into account the computing time factor, the choice was the
use of the 2-fold cross validation.

Final model construction

Regarding the choice of a final particle or individual as a final model, it is not a
trivial task. Since the fitness measure of each potential model is just an estimation of
the misclassification rate in the test set and not the real measure, there is no certainty
in the choice based on their fitness that one particle is the best of the final swarm.
As both methods are population-based, with an elitist approach, (what means that
best solutions found along all process are stored in a data structure), is possible to
take advantage of this situation and to create an ensemble as a final model. Using an
ensemble as final model, it is possible to reduce the mean error rate over that of the
individual classifier and often, the ensemble outperforms even the strongest individual
member of the ensemble [79]. In our case, having a set with the best classifiers and a
fitness measure to weight their influence in an ensemble, the best option is the use of
a weighted voting ensemble. If the individual classifiers are with unequal performance,
intuitively, it is reasonable to give more power to the stronger classifiers in voting.
The output class label of the ensemble is:

H(x) = CargjmaxΣT
i=1wih

j
i (x) (5.5)

Where wi is the weight assigned to the classifier hi, x is a set of instances, C =
{c1, c2, . . . , cl} is a set of l possible class labels, and H(x) is the final set of labels
[167].
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5.3 Experiments and results
In this section, the model selection experiments conducted to test the performance of
PSMS and the GA in the datasets shown in Chapter B are presented. To be capable
to conduct statistical tests, replications of each dataset were created. Each replication
was created with a random sort of the instances and different among replications.
Following the recommendations proposed to avoid optimistic bias in the performance
evaluation, the Internal protocol for model selection experiments described in Cawley
and Talbot [2010] was employed. In the internal protocol, the model selection step is
performed separately in each replication of each dataset. In each experimental run,
following the conventions in the literature, the dataset (the replication) is divided in
two disjoint sets, one partition to perform the model selection process (60% of the
samples for training set) and the other partition (40% for test set) is employed to
test the performance of the models constructed in the previous partition. To obtain
a statistical power of 90% in a Student’s t-test, 44 replications were performed. The
number of replications may vary according to the test performed and the number
of methods to be compared. The guidelines presented above are the ones that were
followed in all the experiments presented in this work.

Configuration parameters of each algorithm are as follows. For the GA different
population sizes (5,10,20,30,40,50 individuals) and mutation rates (0.05,0.07,0.1) were
evaluated experimentally in the 10% of the RLCP dataset, concerning the crossover
rate, this was fixed and determined by the Vasconcelos Model (also used for selection
and replacement) where all offspring is made by crossover. The best combination of
factors was a population of 30 individuals and a Mutation rate of 0.1%. Regarding
PSMS, the original configuration parameters of the original paper were preserved in
the same way that the adaptive inertia weight mechanism show in section 5.2.2. The
swarm size was changed from 5 to 30 to compete in similar conditions to the GA.
The stopping criterion was set for both methods to perform 47 iterations (in order to
be able to make fair comparisons with the Grid search), what means 1,412 model
evaluations. In Table 5.3.1 the average misclassification rates in the test partition
over 44 replications obtained by GA and PSMS is shown.

Table 5.3.1, shows that PSMS obtained the lowest error in four (Higgs, Synthetic 2,
Epsilon and Non-convex 2) of the nine evaluated datasets, in the datasets Non-convex
1 and Non-convex 3, PSMS obtained the same results as the GA. In datasets RLCP,
KDD and Synthetic 1, PSMS obtained a biger error than the GA. As mentioned
above, to obtain evidence of significant differences, a Student’s t-test was performed
and the results are shown in Table 5.3.2.
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Table 5.3.1: Average misclassification rate obtained in the test partition by GA and PSMS
over 44 replications. The lowest error rates are in bold.

Dataset GA PSMS
RLCP 0.009±0.001 0.052±0.001
KDD 0.025±0.007 0.166±0.148
Synthetic 1 15.862±0.004 15.864±0.004
Higgs 29.507±0.143 28.304±0.064
Synthetic 2 6.684±0.002 6.683±0.005
Epsilon 54.300±1.391 53.928±0.995
Non-convex 1 0.000±0.000 0.000±0.000
Non-convex 2 51.881 ± 1.462 51.675±2.181
Non-convex 3 0.000±0.000 0.000±0.000
Average 17.585±22.427 17.408±22.216

Table 5.3.2: Results obtained from the Student’s t-test for the comparison of the performance
of GA and PSMS in the FMS analysis in high volume datasets. Cases whose p-vale is below
α = 0.05 are in bold.

Dataset p-value
RLCP 2.027 × 10−64

KDD 1.445 × 10−07

Synthetic 1 0.054
Higgs 1.639 × 10−40

Synthetic 2 0.324
Epsilon 0.275
Non-convex 1 -
Non-convex 2 0.622
Non-convex 3 -

As can be seen in Table 5.3.2, there were significant differences in three datasets:
RLCP, KDD and Higgs. It’s important to note that in datasets Non-convex 1 and
Non-convex 3 a comparative cannot be performed because both algorithms obtained
similar results. In datasets RLCP and KDD the differences in the performance of the
search techniques favors GA over PSMS.

Regarding Higgs dataset, PSMS is the one with the best performance. To this
point, it may be thought that both search techniques are similar in performance but
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considering the analysis of datasets shown in Annex-B about the intrinsic dimension,
Higgs is a harder problem than RLCP and KDD with an intrinsic dimension of 12/15
against 2 for RLCP and 1 for KDD. Taking this into account, the performance of
PSMS is superior compared to the GA. In order to compare the performance of both
techniques, two well-known classification/model-selection techniques were employed.
The Kernel Nearest-Neighbour algorithm (K-NN) present in Yu et al. [2002] and a
grid search based on MapReduce available in the libraries of Apache Spark (Grid) for
tuning machine learning algorithms [7]. Concerning the Grid search the number of
models to be evaluated was established to 1,412 (in order to be similar to the number
of models evaluated by PSMS and the GA) using the algorithms mentioned in Table
5.2.1 and for K-NN we set k=9,999 to allow to K-NN exploit the high number of
samples to improve its performance.

The average misclassification rate obtained by all the algorithms mentioned above
are shown in Table 5.3.3. In order to obtain a statistical power of 90% in an ANOVA
test and a Tukey HSD test (pos hoc) that compared four methods, 20 replications
were performed.

Table 5.3.3: Average misclassification rate obtained in the test partition by GA, PSMS the
Grid search and K-NN over 20 replications. The lowest error rates are in bold.

Dataset GA PSMS Grid K-NN
RLCP 0.009±0.001 0.052±0.001 0.001±0.000 0.500±0.098
KDD 0.025±0.007 0.156±0.134 0.001±0.000 19.535±0.261
Synthetic 1 15.862±0.004 15.862±0.004 17.011±0.120 50.088±0.028
Higgs 29.507±0.143 28.299±0.057 30.955±0.228 46.916±0.408
Synthetic 2 6.684±0.002 6.681±0.005 22.152±0.541 50.126±0.115
Epsilon 54.334±1.396 54.008±0.925 29.664±0.174 50.673±3.323
Non-convex 1 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
Non-convex 2 52.007±1.642 51.573±1.955 50.783±1.723 49.041±2.110
Non-convex 3 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
Average 17.585±22.427 17.408±22.216 16.729±18.297 29.653±24.143

Table 5.3.3 shows that the Grid search obtained the best performance in three
datasets: RLCP, KDD and Epsilon. All methods obtained the same results in datasets
Non-convex 1 and Non-convex 3, while in datasets Synthetic 1, Higgs, Synthetic 2
and Non-convex 2, the best results were obtained by PSMS, GA and K-NN.

Regarding all Non-convex datasets, they are useful for several reasons. The first
one is to obtain evidence that the proposed FMS methods are capable to analyze
datasets of different shapes. The second reason is that datasets: Non-convex 1 and
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Non-convex 3 represent a relatively trivial classification task and, if the evaluated
algorithms cannot obtain an error rate near to zero or zero, those algorithms must be
discarded. On the contrary, Non-convex 2 is an impossible classification job, therefore,
no classifier should surpass an accuracy of 50%, which would mean that the classifier
was overfitted.

From Table 5.3.3, it can be seen that, the second-best method in the comparative
was PSMS with the lowest misclassification rates in two datasets: Higgs and Synthetic
2. The GA and PSMS obtained the same performance in Synthetic 1, Non-convex 1
and Non-convex 3. To find statistical evidence of significant differences, both methods
were compared against the Grid search and to K-NN. The Dunnett pos hoc test was
employed to compare each treatment with a single control (the GA or PSMS). 20
replications were performed to obtain a statistical power of 90% in an ANOVA test.
The results of these comparisons are shown in Tables 5.3.4 (PSMS vs Grid and K-NN)
and Table 5.3.5 (GA vs Grid and K-NN).

Table 5.3.4: Results obtained from the ANOVA test for the comparison of the performance
of GA vs the Grid search and K-NN. As a pos hoc analysis, the Dunnett test was performed.
The p-values for each comparison and for the ANOVA test are shown. Cases whose p-vale
is below α = 0.05 are in bold.

Dataset
ANOVA
p-value

PSMS
vs

Grid

PSMS
vs

K-NN
RLCP 3.724 × 10−36 0.012 2.647 × 10−06

KDD 3.967 × 10−100 0.010 2.647 × 10−06

Synthetic 1 3.898 × 10−135 2.647 × 10−06 2.647 × 10−06

Higgs 8.479 × 10−86 2.647 × 10−06 2.647 × 10−06

Synthetic 2 3.674 × 10−101 2.647 × 10−06 2.647 × 10−06

Epsilon 1.625 × 10−43 2.647 × 10−06 6.709 × 10−067.476*
Non-convex 1 - - -
Non-convex 2 4.139 × 10−04 0.335 0.0002
Non-convex 3 - - -

Table 5.3.4 shows that, there were significant differences between PSMS and the
other methods. This test in conjunction with Table 5.3.3, provide evidence that the
performance of PSMS is the best in datasets Synthetic 1, Higgs, and Synthetic 2 and
there were no significant differences when is compared against the Grid search in the
dataset Non-convex 2. Regarding datasets RLCP, KDD and Epsilon, the Grid search
obtained the best performance on those datasets and, although from the perspective
of the ID analysis, the datasets RLCP and KDD are the easiest problems in the
experiments, the Epsilon dataset is the hardest one. Regarding K-NN, this algorithm
was surpassed by PSMS in datasets RLCP KDD, Synthetic 1, Higgs, Synthetic 2 and
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Epsilon. Concerning to Non-convex datasets, no comparisons can be made, because
the performance of both methods was the same in Non-convex 1 and 3, and the best
performance in Non-convex 2 was obtained by the K-NN algorithm.

Table 5.3.5: Results obtained from the ANOVA test for the comparison of the performance
of GA vs the Grid search and K-NN. As a pos hoc analysis, the Dunnett test was performed.
The p-values for each comparison and for the ANOVA test are shown. Cases whose p-vale
is below α = 0.05 are in bold.

Dataset
ANOVA
p-value

GA
vs

Grid

GA
vs

K-NN
RLCP 4.316 × 10−37 0.867 2.647 × 10−06

KDD 4.137 × 10−103 0.841 2.647 × 10−06

Synthetic 1 3.880 × 10−135 2.647 × 10−06 2.647 × 10−06

Higgs 4.553 × 10−84 2.647 × 10−06 2.647 × 10−06

Synthetic 2 3.677 × 10−101 2.647 × 10−06 2.647 × 10−06

Epsilon 1.128 × 10−42 2.647 × 10−06 4.161 × 10−06

Non-convex 1 - - -
Non-convex 2 1.986 × 10−05 0.072 1.049 × 10−05

Non-convex 3 - - -

Regarding the analysis of the performance of the GA, in Table 5.3.5 it can be seen
that there were significant differences in the datasets Synthetic 1, Higgs and Synthetic
2, the datasets where the GA obtained the best performance. However, despite in
datasets RLCP, KDD and Non-convex 2, there were no significant differences compared
to the best method in this comparative (the Grid search), the best performance with
significant differences in the Epsilon dataset was obtained by the Grid search. The
K-NN algorithm was surpassed by the GA in almost all datasets except in the
Non-convex 2, where it obtained the best performance.

5.3.1 Discussion

The experiments conducted, showed that both search algorithms were capable to
obtain models of good quality and the size of the datasets was not a problem,
performing the search process in a tractable time. From the characteristics of the
proposed datasets, the algorithms compared were capable to deal with a wide range
of dataset sizes and with different shapes and, considering the performance obtained
in the dataset Non-convex 2, both algorithms perform a search without overfitting
the models.

Despite the fact that their performance was very similar, the PSMS algorithm
was capable to obtain a performance with significant differences in one of the hardest
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datasets, the Higgs dataset, whose ID are of 12/15, while the GA obtained the best
results in the easiest datasets RLCP with an ID of 2 and KDD with an ID of 1.

Both, the GA and PSMS where compared to two techniques for model selection
and classification techniques, also based in MapReduce. From the comparison, GA
and PSMS were capable to obtain the best performance in three datasets: Synthetic 1,
Higgs and Synthetic 2 but, they were outperformed by the Grid search in the hardest
problem, the Epsilon dataset. This situation suggests that the huge search space
imposed by the FMS problem requires granting more time to the search process or
to guide the search more efficiently. Regarding the K-NN algorithm, both proposed
algorithms were capable to outperform it with significant differences in almost all
datasets.

From the evidence obtained, and due its capacity to solve a harder problem (with
significant differences) than the ones where the GA obtained the best performance, it
can be argued that PSMS is the best of both methods and is better suited to solve the
FMS problem in high volume datasets than the GA. However, also from the evidence,
it is clear that PSMS must be refined to perform better searches in a larger search
space in order to obtain better results than the ones obtained by a simpler search
technique as the Grid search.

5.4 Final considerations
In this Chapter, the use of bio-inspired methods to perform the FMS analysis in high
volume datasets was investigated. The analysis of the relevant work in the literature
showed that the FMS problem has been addressed only for smaller datasets and, it has
been faced only through bio-inspired methods due its vast search space. Also, from
the analysis of the related works, just the hyper-parameter optimization problem in
high volume datasets has been investigated but only through grid-based searches. The
strengths of the analyzed work were taken into account in the algorithms proposed in
this Chapter and are as follows:

• The vast search space imposed by the FMS problem cannot be handled by
gradient-based methods and grid-based searches. The use of bio-inspired meth-
ods has been recommended to these types of problems, that is why the two
most popular methods (Genetic Algorithms and Swarm based algorithms) were
employed.

• To be capable to analyze high volume datasets without reducing the dataset
in number of features or instances, the MapReduce programming model has
been used. The algorithms in this chapter were developed under this paradigm.
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• In the population-based searches as the explored in this chapter, the selection
of a single particle or individual as final model is not easy. In the literature, the
use of ensembles of the best models found during the search has been proposed.
The algorithms of this Chapter employed weighted voting ensembles as final
model.

This first set of experiments was related to the first objective proposed in this
work. This objective pursued to know which algorithm between a GA and PSMS was
the most adequate for FMS in high volume datasets. Although, similar comparisons
were made in the past, the evaluated algorithms didn’t use the same algorithms for all
the stages involved in FMS, that is why the information obtained in this comparison
represents a contribution to this field. Furthermore, the developed framework to adapt
population-based optimization algorithms to MapReduce contributes equipping the
FMS paradigm with the ability to deal with high volume datasets.

The experiments provided evidence that the Swarm-based search, PSMS outper-
formed the GA in one of the hardest problems analyzed and therefore, it can be
argued that PSMS is the best of both algorithms. Despite this fact, both algorithms
were surpassed by a simpler Grid search. This situation suggests that, the bigger
search space in the FMS problem needs a way to guide the search process more
efficiently in order to obtain models of better quality. The use of proxy models has
been suggested as a way to reduce the time of a search process, but it could be
of great interest, to explore their use as a compass to guide the search in a more
efficiently way and, to improve the quality of our models.

54



Chapter 6

Use of proxy models as a way to
guide the search of the FMS problem

Traditionally, proxy models have been used as a tool to speed up time-consuming
optimization processes as: calibration of hydrological models [82], petroleum reservoir
modeling [163], natural gas fields reservoir simulations [3], and wind turbines design
[157], among others. However, proxy models also can be used to guide efficiently
search process as in FMS. This efficiency is given in terms of models of higher accuracy
found in shorter search processes.

In this Chapter, the second and third objectives of this work are addressed. The
central importance of proxy models in this set of experiments, lead the authors to look
for the best way to create accurate proxy models. From the insights of the related
work and from the authors point of view, FMS paradigm is the best alternative for
creation of high-quality proxy models. To the best of the authors knowledge, this is
the first work that considers the use of this paradigm in the construction of proxy
models.

Different strategies were considered in the construction of proxy models, and
another groundbreaking contribution of this work, is the use of classification algorithms
to build them. In order to provide richer information about proxy models and their
use to guide the search in the FMS problem, all approaches that take advantage of
this paradigm are addressed in this Chapter.

The organization of this Chapter is as follows, in Section 6.1 a revision of the
related work is provided, Section 6.2 describes the proposed methods to build proxy
models under the FMS paradigm and their integration with the search of models in
high volume datasets. The experimental results and the discussion are in Section 6.3
and in Section 6.4 are the final considerations.
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6.1 Related work
A wide range of problems where the search space is huge, the model to evaluate a
possible solution is “proprietary technology” (the model is unknown), and the time
that a single evaluation takes is prohibitive have been addressed through the use of
proxy models. As explained in Section 2.3, a proxy model is an inexpensive alternative
to a full numerical simulation. Proxy models range from data-fit models, statistical
models and reduced order models [3] but in most works this alternative comes from a
regression model trained in a set of solutions evaluated with the real model (meta-
dataset). In order to get a better understanding of the approach proposed in this
work to build proxy models and its difference with other approaches in the literature,
Fig. 6.1.1 is provided.

Figure 6.1.1: Proxy models built under FMS (left) and generic proxy models (right).

A significant amount of work relies on a single regression algorithm previously
selected to be employed as proxy model [131, 119, 155, 97, 81, 111, 115, 157, 116]. The
most commonly used algorithms as proxy models are: Neural networks [131, 111, 119],
Gaussian process1 [155, 97, 81, 116] and reduced mathematical models [115].

In the past, the use of proxy models to solve the FMS problem has been explored
[131], however, in the same way that in several works, their use is limited to the
reduction of the time the optimization process takes. A proxy model is a useful tool
that also can be employed to guide the search process. From this perspective, a proxy
model can be thought as a compass to explore the search space, therefore a good idea
is to find a way to build the best compass possible.

1Gaussian process is a probabilistic, non-parametric model with uncertainty predictions. It
can be used for the modelling of complex, non-linear systems. The output of the GP is a normal
distribution expressed in terms of mean and variance [16]
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From the related work, three strategies have been used to improve the performance
of proxy models. The first one is the use of model selection techniques (not to
be confused with the FMS paradigm) in the construction of proxy models [157, 31,
32, 68, 122, 124]. As the “No free lunch” theorem indicates, there is no best model for
all problems, this principle applies for proxy models too. In Wilson et al. [2017] and
[122] this idea is explored using different algorithms for the proxy model construction
(Regression Random Forest, Logistic Regression, Neural networks, among others)
but without hyper-parameter optimization. The remaining work under this category
consider a pool of algorithms and, the hyper-parameter optimization step. For hyper-
parameter optimization and model selection, it has been employed genetic algorithms
[31, 68] and gradient-based methods [32]. The ensemble of models [124] also have
been considered.

The second strategy considers instance selection in the construction of
proxy models [3, 66, 147, 97]. Selection of instances in the meta-dataset (instances
evaluated with the true model) can be used as a way to reduce the time employed
for the construction of the proxy model [97] or to improve the quality of the proxy
model through the selection of the instances that leads to a better replication of the
true model [147, 66]. Moreover, the sampling of data points has been employed to
keep the dataset heterogeneity for a better training [3].

Finally, a third strategy considers use of fuzzy sets theory in the construction
of proxy models [34, 35, 45, 82, 6, 145, 117, 65]. This paradigm was employed
because, there is big interest in capturing expert knowledge [6] and simulating human
behavior [145]. Hyper-parameter optimization and model selection is also performed
in works under this category to improve their performance [117, 65], however, a big
part of these works relies just on neuro-fuzzy networks as proxy models [34, 35, 45, 82]
to exploit the use of granule computing to group similar possible solutions instead of
performing individual evaluations.

From above, it can be seen that, proxy models are applied to a wide range of
problems, using different types of algorithms and employing different methods to
improve their performance. However, there is another important division in the proxy
model literature: those works where main efforts are focused in the construction of the
proxy model and works where the proxy model is a tool build during the optimization
process and then discarded. In FMS, each dataset represents (ideally) a different
computational problem and for this reason, there is no prior information to build a
proxy model. Even if the information is available, the proxy model constructed from
a meta-dataset with the classifiers and their performance on a linear dataset could
have a low accuracy to predict the performance of classifiers in a non-linear dataset,
therefore FMS falls within the second category.
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Different strategies analyzed show great interest in the improvement of accuracy
in proxy models through instance selection, model selection and, hyper-parameter
optimization techniques. In FMS problem and similar, proxy model provides a
mechanism to decide if a potential solution is promising enough to be evaluated with
a true model or if it should be discarded. Along progression of search of models, meta-
dataset changes continuously and, in the same way, importance of the meta-features
and the suitability of learning algorithms. A way to build highly adaptable proxy
models is through the use of the FMS paradigm and, due in past this paradigm has
proved its usefulness in classification tasks, next logical step is to take FMS paradigm
to proxy models field.

Upon a foundation of good models, the evolutive mechanisms of bio-inspired
searches lead the process to better regions and, therefore, to obtain better models.
Thinking outside the box, discrimination process between promising and not promising
solutions can be addressed also as a classification task. In this Chapter, three
approaches were explored in order to gain information about the use of the FMS
paradigm to build better proxy models, and using them to guide efficiently
through the vast search space of the FMS problem. Those approaches are
described below:

• Proxy models construction employing FMS paradigm. That is, performing
data-preparation, feature selection, selection of a learning algorithm and hyper-
parameter optimization on the meta-dataset. The success of FMS paradigm to
build highly accurate models, was the starting point to employ this paradigm to
build better proxy models that can guide the search process and finding better
models in a shorter search process. To the authors best knowledge, this is the
first work that proposes the use of FMS to build proxy models.

• Using classification algorithms in conjunction with FMS paradigm. The ap-
proach mentioned above performs model selection step among regression algo-
rithms. In this approach instead of predicting the expected fitness of a model, a
discrimination between promising and not promising models is provided. Taking
advantage of the success of FMS to build highly accurate classification models,
the next logical step was to use those classifiers to assist in FMS process. With
a better discrimination between potential and not potential solutions, the time
of the optimization process is invested in the search of finer models. At the
time of writing this document, this approach was considered only in this work.

• Using a fuzzy classification algorithm build under FMS paradigm. Fuzzy classifi-
cation algorithms provide a membership degree of an object to considered classes.
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This membership degree can be employed to perform a finer discrimination.
Investing the time of the process in potential solutions enables to bio-inspired
mechanisms to use them as a cornerstone to obtain better models in a fraction
of the time of the unassisted process. This approach was also considered first
in this work.

6.2 Highly adaptive proxy models to guide the search
in the FMS problem

In FMS problem and similar, proxy models cannot replace true model entirely, and
both models must be used together. Since fitness of each potential solution in a
model selection process is just an estimation of true performance of the model, proxy
model has no way to replicate accurately the true model, that is why, the proxy
model cannot replace time-consuming fitness-function. In order to understand the
use of proxy models in a model selection process, Fig. 6.2.1 shows a flowchart of this
process.

Figure 6.2.1: Use of proxy models in the full model selection problem.

Although the use of proxy models can be extended to any search algorithm, to
avoid confusions, this process will be described in the context of a PSO algorithm.

1. During a given number of iterations, all the particles in the swarm are evaluated
with the true fitness function to collect data for the meta-dataset. The meta-
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features in this meta-dataset are each one of the elements in the particles and
as target, their fitness is employed (a regression task).

2. A learning algorithm is trained in this meta-dataset and from this point it
becomes the Proxy model. The particles are evaluated with the proxy model
and according their expected fitness, the promising ones are evaluated with the
true fitness function, the rest are discarded.

3. The meta-dataset is updated with the particles evaluated with the true fitness
function.

4. Return to step 2 until termination criterion is met.

6.2.1 Considerations of the proxy models developed through
FMS

In the previous Chapter, experimental results provided evidence of the superiority
of PSMS in the FMS task compared to the GA, that is why, this algorithm was
employed as cornerstone of all subsequent experiments. In this case, PSMS was
adapted to perform the construction of proxy models and to perform FMS analysis
in high volume datasets. This situation can be quite confusing, then, it is necessary
to use different acronyms to distinguish these elements. PSMS algorithm employed
for model selection in high volume datasets was referred along this Chapter as Main
PSMS (M-PSMS). For the search assisted by proxy models that uses regression
algorithms, (S-PSMSReg) was employed and regarding PSMS assisted by proxy
models constructed with classification algorithms, the acronym (S-PSMSClass) was
used.

For S-PSMSReg, and S-PSMSClass the learning algorithms shown in Table 5.2.1, in
their regression and classification versions were employed. As proxy models produced
by S-PSMSReg are for regression tasks, traditional feature selection algorithms
cannot be employed. In a regression task there are no discretized classes, which is a
requirement for feature selection algorithms in Table 5.2.1. Such task was addressed
through the Principal Component Analysis.

In the case of S-PSMSClass is necessary to transform the learning process on the
meta-dataset from a regression problem to a classification problem. Although this
transformation is to a certain extent an easy job, in a model selection process is not
that simple. Taking the scenario where there is no prior information about a dataset
and information about the best performance that a learning algorithm can achieve,
it is not easy to decide when a particle is promising and when not. To overcome
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this situation, the fuzzy sets theory was used, and three fuzzy sets2 were created
(shown in Fig. 6.2.2): Low, Medium and High. In previous Chapter was explained
that the Balanced Error Rate or BER was employed for the fitness evaluation of
the particles, then a small BER means a model with high accuracy, therefore the
particles whose BER has the highest membership degree to the “Low" fuzzy set, are
marked as promising and the rest are discarded. The class unbalance was another
challenge faced by this approach. At the beginning of the search the number of
promising solutions is lower than the not-promising ones. To overcome this problem,
the well-known strategies of over-sampling and under-sampling were employed in
order to get an equal proportion of both classes.

Figure 6.2.2: Fuzzy sets employed in the S-PSMSClass approach.

6.2.2 A proxy model based on fuzzy classification rules and
constructed under the FMS paradigm

The use of a fuzzy classification algorithm at this point does not look like as a logical
choice for a proxy model. However, in the experiments section of this Chapter,
such connection will be stablished. As explained above, from a fuzzy classifier we
can obtain the class of an object and its membership degree to that class. This
membership degree can be used as a lower bound to discriminate more effectively
between classes. Whit this in mind, the idea of a fuzzy-rules classifier provided in
Ishibuchi and No & [1994] was employed, but to exploit the benefits of granular
computing to find similarities among object, the classifier was constructed using fuzzy
granules with the well-known clustering algorithm Fuzzy C-Means (FCM) [14]. Let
X = {x1, x2, ..., xn} ⊂ RS be an unlabeled dataset with n samples. The objective

2The Eq. 4.2 is employed to calculate the membership degree of an element to a triangular fuzzy
set.
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function of FCM was defined as:

Jm(U, V ) =
c∑

i=1

n∑
j=1

umijd
2
ij (6.1)

From eq. 6.1, c is the number of clusters, n is the number of instances or data
points, the exponent m is a fuzzifier for controlling the fuzzy degree of the clustering
result, V = [v1, v2, ..., vn] is a vector of cluster centers, dij is the distance of object xj
to vi, U = (uij) is a fuzzy partition matrix composed of the membership degrees of
each object xj with respect to ith cluster, where uij satisfies

∑c
i=1 uij = 1, 0 ≤ uij ≤ 1

and
∑n

j=1 uij > 0 (∀i). The condition for minimizing Jm(U, V ) are as follows:

uij =
(1/d2ij)

1/(m−1)∑c
k=1(1/d

2
kj)

1/(m−1) , i = 1, ..., c, j = 1, ..., n. (6.2)

vi =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

, i = 1, ..., c. (6.3)

With the granules obtained from the FCM algorithm, we can turn them into fuzzy
membership functions for the construction of a fuzzy-rules classifier. Each cluster is
turned into one rule with a grade of certainty and a consequent class in the form of:

Rule Rc
i : If xp is Cluster

c
i Then xp belongs to C

M
t with CF = CF c

i

Where Rc
i is the label of the rule, xp is a data point or pattern, Clusterci is the

i-th cluster, and in this case the membership function, CM
t is the t-th class of M total

classes and CF c
i is the grade of certainty of the rule. Next step is the construction

of these rules using the procedure in [78] but adapted to our membership functions.
First the sum of the compatibility of xp in Class T or βCt is calculated using the
fuzzy partition matrix U obtained in the clustering stage as follows:

βCt =
∑
p∈Ct

uip, t = 1, 2, ...,M and i = 1, 2, ..., c (6.4)

Subsequently, the Class X (CX) of Rc
i is determined as:

βCx = max{βc1, βc2, ..., βcm}, t = 1, ...,M. (6.5)
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If two or more classes take the maximum value, consequent CM
t = ∅ because,

consequent class cannot be determined uniquely. Subsequently, the certainty degree
of the rule is calculated as follows:

CF c
i =
|βCx − β|∑M

t=1 βCt

(6.6)

β =
M∑

t=1,Ct/∈Cx

βCt/(M − 1) (6.7)

From the foregoing, there are several factors that cannot be established in advance
as: number of clusters c, fuzzifier parameter m, similarity measure, features employed,
among others. The optimal values of these parameters can be obtained through
the FMS paradigm and according to trends in the literature, instance selection
was also considered. A PSO algorithm was employed. The particle vector xti =
[xti,1, x

t
i,2, ..., x

t
i,nf , x

t
i,nf+1, ..., x

t
i,ni] codification is as follows: Position 1 stores the fitness

of particle (BER of 2-fold cross validation). Position 2 is for the Fuzzifier term m of
the FCM algorithm. Position 3 is the identifier of similarity measure. The following
similarity measures were considered: 1) Euclidean distance, 2) Manhattan distance,
3) Pearson coefficient, 4) Cosine measure and 5) Chebyshev distance. Position 4 is
for the number of iterations of FCM. Position 5 is for number of clusters. Position 6
is the identifier of data preparation method. The methods employed were: 1) Feature
standardization, 2) data normalization and 3) do nothing. Alternative methods were
considered without differences in the performance of the algorithm. The feature
selection process is performed as a wrapper approach (position 7 to nf or number
of features). The same approach was employed in the instance selection process
(position nf + 1 to ni or number of instances). Choosing a single rule set as surrogate
model can be a difficult task, because the real performance could be underestimated
or overestimated. For this reason, the final model is also a weighted-voting ensemble
of the best rule sets found in the search. To the synergy of PSMS and this fuzzy-rules
algorithm is referred along this work as Fuzzy Rules based proxy model for PSMS
(FR-PSMS).

6.3 Experiments and results
The first searches assisted by FMS-based proxy models (S-PSMSReg and S-PSMSClass)
were compared to PSMS (the unassisted search) and to a surrogate assisted search,
that is PSMS assisted by a Multilayer Perceptron (PSMS-MLP). In the PSMS-MLP
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version, hyper-parameters of the MLP were adjusted through a grid search at the
beginning of FMS analysis and during the rest of the process, the MLP was just
re-trained with the updated meta-dataset. Regarding FR-PSMS, this approach was
proposed at a later stage of this research due to the success of the Classification-based
proxy models. Performance of the methods mentioned above and the remarkable
performance of S-PSMSClass will be shown in the next sections.

The termination criterion of PSMS was changed from 47 iterations (used in the
previous Chapter) to 50. As swarm size was of 30 particles, the number of particles
evaluated was of 1,500. Although this search process explores an important quantity
of potential models, not all evaluated particles are employed to build the final model,
therefore, evaluation of models considered as “bad” is just a waste of time. In order
to know the average number of “good” models evaluated by PSMS and to provide
evidence that proposed approaches perform a more efficient3 search, fitness of all
the evaluated particles (in some datasets) was stored and, following the procedure
to transform a regression task into a classification one (show in Section 6.2.1), this
quantity was determined. To know about how many potential models are found in a
conventional FMS process is essential to determine the value of termination criterion
in all proxy assisted searches. This value must be chosen carefully in order to perform
a smaller search than the one performed by the unassisted search, measured in the
number of evaluations performed with the time-consuming fitness function, and big
enough to obtain models of similar or even superior quality. In Table 6.3.1 these
results are shown.

Table 6.3.1: Average amount of “good” models found by PSMS exploring 1,500 particles
over 20 replications.

Datasets Number of promising models
RLCP 830.70± 38.16
KDD 709.60± 192.57
Synthetic 1 404.85± 116.57
Higgs 508.50± 53.07
Synthetic 2 290.15± 63.53
Epsilon 310.05± 10.34

The average amount of promising models in the datasets is 508, for this reason the
3The Merriam-Webster dictionary defines the efficiency as: effective operation as measured by a

comparison of production with cost (as in energy, time, and money).
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total number of models evaluated will be of 500. In Table 6.3.2, the mean classification
error obtained by the different algorithms in this chapter is shown.

Table 6.3.2: Average misclassification rate obtained in the test partition by PSMS, PSMS-
MLP, S-PSMSReg and S-PSMSClass over 43 replications. The lowest error rates are in
bold.

Dataset PSMS PSMS-MLP S-PSMSReg S-PSMSClass
RLCP 0.052± 0.001 0.426± 1.593 0.059± 0.123 0.028±0.067
KDD 0.165±0.150 5.071±7.537 0.078±0.002 0.159±0.136
Synthetic 1 15.864±0.005 15.861±0.004 15.864±0.006 15.865±0.006
Higgs 28.307±0.062 29.651±1.781 30.156±0.635 28.325±0.171
Synthetic 2 6.683±0.006 6.682±0.004 6.681±0.003 6.681±0.004
Epsilon 54.046±1.029 33.121±5.085 28.813±2.564 28.418±1.107
Non-convex 1 0.000±0.000 4.279±3.852 0.365±0.529 0.000±0.000
Non-convex 2 51.626±2.182 48.803±2.309 50.903±1.561 51.364±2.441
Non-convex 3 0.000±0.000 1.117±1.858 0.392±0.588 0.000±0.000
Average 17.467±22.186 16.112±17.186 14.812±18.209 14.537±18.174

Table 6.3.2 shows that S-PSMSClass obtained the best performance in six datasets:
RLCP, Synthetic 1, Synthetic 2, Epsilon and Non-convex 3. The second-best algorithm
in the comparative was PSMS with the best performance in four datasets: Synthetic
1, Higgs, Non-convex 1 and Non-convex 3. Regarding S-PSMSReg, it obtained the
best performance just in three datasets (KDD, Synthetic 1 and Synthetic 2), while
PSMS-MLP was the best just in two (Synthetic 1 and Non-convex 2).

It is important to remember that all surrogate-based approaches evaluated only
a third part of the particles assessed by PSMS and despite that, they were capable
to obtain a performance near to the obtained by PSMS and even, this performance
was surpassed in the Epsilon dataset. As was mentioned in previous sections of this
Chapter, the proxy models were employed with the main purpose of to guide the
search process, therefore is interesting to known how this was done. The following
figures are employed to provide some insight of how this process was performed in
two datasets: Higgs (Fig. 6.3.1) and Synthetic 1 (Fig. 6.3.2). Those figures show
the estimated BER of the best particle in the Y axis and in X axis the number of
evaluated models is used to show the progression of the search.
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Figure 6.3.1: Search process performed by PSMS, PSMS-MLP, S-PSMSReg and S-
PSMSClass in dataset Synthetic 1. In X axis the quantity of evaluated particles is shown;
the Y axis shows the estimated BER of the best particle in the swarm.
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Figure 6.3.2: Search process performed by PSMS, PSMS-MLP, S-PSMSReg and S-
PSMSClass in dataset Higgs. In X axis the quantity of evaluated particles is shown;
the Y axis shows the estimated BER of the best particle in the swarm.

Fig. 6.3.1 shows that, PSMS-MLP was the fastest search-method in the comparison.
The most important model of PSMS-MLP, the one with the highest weight in its final
ensemble was found after 59 evaluated particles. The lower estimated BER found by
PSMS-MLP was around of 7%, near to the lowest BER found by PSMS but after
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680 evaluations. Regarding the FMS-based proxy model approaches, S-PSMSReg
obtained an estimated BER of 10% after 110 evaluations, while S-PSMSClass obtained
an estimated BER around of 13% after 490 evaluations. Since all methods obtained
a similar performance in this dataset, it can be argued that PSMS-MLP is the most
efficient method of the comparison, performing a faster process and obtaining similar
and slightly better results than those obtained by PSMS.

Regarding Fig. 6.3.2, the PSMS-MLP algorithm was again the fastest method with
an estimated BER of 42% after 67 evaluations. The second best was S-PSMSReg with
120 evaluations and a BER also of 42%. PSMS obtained its best particle after 1,200
evaluations and its BER was of 39%. S-PSMSClass obtained its best particle after 290
evaluations and with a BER below of 36%. From the results in Table 6.3.2 shows that
the best performance was obtained by PSMS followed by S-PSMSClass, PSMS-MLP
and S-PSMSReg. To find evidence of significant differences in the performance of the
compared strategies, an ANOVA test and a Dunnett test was performed, in Table
6.3.3, the reported p-values of the mentioned tests with confidence level of 95% are
shown.

Table 6.3.3: Results obtained from the ANOVA test for the comparison of the performance
of PSMS, PSMS-MLP, S-PSMSReg and S-PSMSClass. As a pos hoc analysis, the Dunnett
test was performed. The p-values for each comparison and for the ANOVA test are shown.
Cases whose p-vale is below α = 0.05 are in bold.

Dataset Anova F

PSMS
vs

PSMS-MLP

PSMS
vs

S-PSMSReg

PSMS
vs

S-PSMSClass
RLCP 0.000011 8.705 × 10−05 0.997 0.998
KDD 2.175 × 10−10 2.717 × 10−06 0.999 1
Synthetic 1 0.073 0.055 0.994 0.511
Higgs 2.518 × 10−20 2.689 × 10−06 2.687 × 10−06 0.999
Synthetic 2 0.075 0.495 0.053 0.087
Epsilon 3.576 × 10−96 2.687 × 10−06 2.687 × 10−06 2.687 × 10−06

Non-convex 1 N/A N/A N/A N/A
Non-convex 2 7.487 × 10−09 2.709 × 10−06 0.279 0.896
Non-convex 3 N/A N/A N/A N/A

The results reported in Table 6.3.3 shows that all surrogate-based methods sur-
passed the performance of PSMS with significant differences in the Epsilon dataset,
however just S-PSMSClass obtained a performance without significant differences in
almost all datasets, therefore S-PSMSClass with around one third of the evaluations,
is as good as PSMS and was capable to achieve a better performance in the hardest
dataset, Epsilon. Regarding PSMS-MLP and S-PSMSReg, even in those datasets
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where they obtained the best performance, there were no significant differences (KDD,
Synthetic1 and Synthetic 2 for S-PSMSReg and Synthetic 1 for PSMS-MLP). Regard-
ing Non-convex 2 dataset, PSMS-MLP was overfitted in this hard classification task,
while both regression-based searches (PSMS-MLP and S-PSMSReg) had problems
with the non-convex datasets. From the definition of the concept “efficiency” it can
be say that an efficient method for our problem, obtain similar or even better models,
performing a lower quantity of evaluations or employing a smaller amount of time.
The computing time of all methods was registered and are shown as a bar chart in
Fig. 6.3.3. The performance of the methods in the Non-convex datasets is shown in
Fig. 6.3.4 due to differences in time scales. The experiments were performed in a
workstation using 12 threads with an Intel(R) Xeon(R) CPU E5-2695 at 2.40GHz
and 30 GB in RAM.

Figure 6.3.3: Bar chart with the average execution times (in minutes) obtained by PSMS,
PSMS-MLP, S-PSMSReg and S-PSMSClass over 20 replications in the convex datasets.
Each color represents a different dataset and the bars are grouped by algorithm. The
standard deviation is depicted as a solid black line over the bars.
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Figure 6.3.4: Bar chart with the average execution times (in minutes) obtained by PSMS,
PSMS-MLP, S-PSMSReg and S-PSMSClass over 20 replications in the Non-convex datasets.
Each color represents a different dataset and the bars are grouped by algorithm. The
standard deviation is depicted as a solid black line over the bars.

Figure 6.3.3 shows that the highest execution times were obtained by PSMS in the
convex datasets while, in the non-convex ones (Fig. 6.3.4) S-PSMSReg was the one
that took more time. Is not a surprise that all surrogate-based searches obtained
a lower execution time than the one obtained by PSMS in the convex datasets.
Nonetheless, is uncommon that with a lower number of evaluations, PSMS-MLP got
higher execution times than S-PSMSClass in the Higgs dataset. Fig. 6.3.2 shows that
PSMS-MLP and S-PSMSReg obtained its best performance before S-PSMSClass,
however, the longer execution times are due to another termination criterion used
for the surrogate-based searches. All these searches were conditioned to perform an
evaluation of 500 particles with the true model (training and model evaluation in
the test set) or to perform 1000 iterations in the search algorithm, whatever occurs
first. This measure was taken in order to avoid performing a very poor exploration
and obtaining bad models. Without this measure, the performance of PSMS-MLP
and S-PSMSReg may have been worse. Regarding to Non-convex datasets, the
execution times of both regression-based proxy-assisted searches are not important,
despite PSMS-MLP obtained the lowest time in this category, because both methods
obtained the worst performance in all datasets. From both figures, it can be seen that
S-PSMSClass obtained an average classification time compared to the other surrogate
based methods and considerably lower compared to the execution times obtained by
PSMS.
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6.3.1 Discussion of the results obtained in the first proxy-
based methods

From all the average misclassification rates, the statistical analyses, the way the
search process is performed and the execution times, there is evidence to support
that the best method to this point is S-PSMSClass. This algorithm does not fit in
the strict definition of a proxy model, because this mechanism does not provide the
expected fitness of a particle. The discrimination of the particles evaluated in the
categories promising and not-promising is capable to produce a swarm composed by
models with high potential. The devices in the bio-inspired searches are capable to
evolve them (so to speak) to promising regions in the search space and obtaining
better results faster. This method was capable to obtain results as good as the ones
obtained by PSMS with a third of the evaluations (500 against 1,500) and in a fraction
of the time. From the figures about the exploration process, it can be seen that
all regression-based proxy-assisted search performs a more hurried search than the
one performed by S-PSMSClass. This is because the regression-based proxy models
become more meticulous and, at early stages in the search, no particle is evaluated
as promising again.

This approach is an excellent way to address the FMS problem in high volume
dataset, because it can find models of high quality, as good as the ones obtained
by a longer search and even surpassing the results of PSMS in the hardest problem
(Epsilon) according the ID analysis. The method exploited efficiently the time the
search process takes due to the good guidance of the classification-based proxy models
to explore the vast search space.

6.3.2 Comparison of FR-PSMS against S-PSMSClass

Due to the good results obtained by S-PSMSClass, it was compared against FR-PSMS.
As mentioned earlier in this Chapter, FR-PSMS was a sub-product of the idea of using
classification-based proxy models. Taking as starting point that the discrimination
provided by this new device is good, the discrimination provided by a classifier that
also give information about the membership of an object to the different classes could
be better. This membership degree can be used as a lower bound in order to perform
a stricter discrimination of the particles.

This new device was allowed to decide the number of evaluations needed until the
final model construction and, as termination criterion, to complete 50 iterations. In
Table 6.3.4 the average misclassification rates are shown and in the third column the
average evaluations performed by FR-PSMS over 44 replications.
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Table 6.3.4: Average misclassification rate obtained in the test partition by S-PSMSClass
and FR-PSMS over 44 replications. PSMS is shown just for demonstrative purposes. The
lowest error rates are in bold.

Dataset S-PSMSClass FR-PSMS
Mean number of function
evaluations in FR-PSMS PSMS

RLCP 0.035±0.056 0.013±0.016 201±75.214 0.052± 0.001
KDD 0.160±0.134 0.001±0.000 245±62.147 0.165±0.150
Synthetic 1 15.865±0.006 15.863±0.004 530±20.045 15.864±0.005
Higgs 28.320±0.172 27.656±0.981 334±130.198 28.307±0.062
Synthetic 2 6.681±0.004 6.681±0.003 210±60.75 6.683±0.006
Epsilon 28.821±1.095 27.467±0.322 254±107.706 54.046±1.029
Non-convex 1 0.000±0.000 0.000±0.000 230 ± 60.147 0.000±0.000
Non-convex 2 51.333±2.421 51.721±2.129 232±24.547 51.626±2.182
Non-convex 3 0.000±0.000 0.067±0.085 223±43.334 0.000±0.000
Average 14.579±18.203 14.385±18.125 273.222±18.125 17.467±22.186

Table 6.3.4 shows that FR-PSMS was capable to obtain the best performance in
seven datasets but specially in datasets Higgs and Epsilon, where its performance
was remarkable, even compared to PSMS. From the third column in Table 6.3.4,
it can be seen that FR-PSMS was capable to reduce considerably the number of
evaluations performed in almost all datasets with a performance of 266 evaluations (the
average plus the standard deviation) in Non-convex 3 (the best case) but performing
550 evaluations in the worst case (Synthetic 1), surpassing to S-PSMSClass by
50 evaluations. S-PSMSClass was the best method from the previous comparison,
because it was able to achieve a similar performance than PSMS but with a lower
number of evaluations and smaller execution times. Therefore, in order to know if
FR-PSMS is capable to outperform the best approach from the previous stage, a
Student’s t-test was performed with 43 replications to obtain a power of 90%. In
Table 6.3.5 the reported p-values of the test are shown.

According to Table 6.3.5, it can be seen that there are significant differences in
almost all convex datasets, except in Synthetic 2. However, in datasets RLCP and
Synthetic 1, those p-vales are slightly below the threshold (0.05) and it was considered
as that there were no differences in the performance of both methods in those datasets
(RLCP, Synthetic 1 and Synthetic 2). Despite that, there were differences in two
important datasets: Higgs and Epsilon, and also, in the KDD dataset. Regarding
Non-convex datasets, the performance of both methods was similar in the datasets
Non-convex 1 and Non-convex 2, while in Non-convex 3, no comparisons could be
made. FR-PSMS got the worst performance in Non-convex 3, however, from the
other surrogate-based alternatives (PSMS-MLP and S-PSMSReg), its performance
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was better and near to a misclassification rate of zero. The computing time factor was
also considered and, a bar chart with the performance of both methods along with
PSMS is shown in Fig. 6.3.5 for the convex sets and, in Fig. 6.3.6 for the non-convex
sets. The hardware configuration was the one mentioned above.

Table 6.3.5: Results obtained from the Student’s t-test for the comparison of the performance
of FR-PSMS and S-PSMSClass in the FMS analysis in high volume datasets. Cases whose
p-vale is below α = 0.05 are in bold.

Dataset p-value
RLCP 0.022
KDD 7.281 × 10−10

Synthetic 1 0.039
Higgs 9.188 × 10−05

Synthetic 2 0.630
Epsilon 6.303 × 10−09

Non-convex 1 -
Non-convex 2 0.405
Non-convex 3 -

Figure 6.3.5: Bar chart with the average execution times (in minutes) obtained by PSMS, S-
PSMSClass and FR-PSMS over 20 replications in the convex datasets. Each color represents
a different dataset and the bars are grouped by algorithm. The standard deviation is
depicted as a solid black line over the bars.
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Figure 6.3.6: Bar chart with the average execution times (in minutes) obtained by PSMS,
S-PSMSClass and FR-PSMS over 20 replications in the Non-convex datasets. Each color
represents a different dataset and the bars are grouped by algorithm. The standard deviation
is depicted as a solid black line over the bars.

The incorporation of PSMS to both figures provides further insight into the
reduction of the time employed in the search process by both surrogate-assisted
methods. From the comparison in the convex sets (Fig. 6.3.5) shows that FR-PSMS
obtained a similar performance as the one obtained by S-PSMSClass but with a small
reduction of time in the Higgs dataset. However, compared to PSMS, the computing
time of FR-PSMS represents a considerable reduction without decreasing the models
quality. Regarding Non-convex sets (Fig. 6.3.6), performance of FR-PSMS was near
to the one obtained by PSMS and smaller than the one obtained by S-PSMSClass.
From all tests performed, there is evidence to support that FR-PSMS is the best
approach so far, therefore, it was compared against the Grid search and K-NN. In
Table 6.3.6 the average misclassification errors of FR-PSMS, the Grid search and
K-NN is shown. To find statistical evidence, an ANOVA with a Dunnett test was
performed and the obtained results are shown in Table 6.3.7.
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Table 6.3.6: Average misclassification rate obtained in the test partition by FR-PSMS, the
Grid search and K-NN over 20 replications. The lowest error rates are in bold.

Dataset FR-PSMS Grid K-NN
RLCP 0.011±0.019 0.001±0.000 0.500±0.098
KDD 0.156±0.134 0.001±0.000 19.535±0.261
Synthetic 1 15.863±0.003 17.011±0.120 50.088±0.028
Higgs 27.258±0.641 30.955±0.228 46.916±0.408
Synthetic 2 6.681±0.003 22.152±0.541 50.126±0.115
Epsilon 27.232±0.920 29.664±0.174 50.673±3.323
Non-convex 1 0.000±0.000 0.000±0.000 0.000±0.000
Non-convex 2 51.575±2.167 50.783±1.723 49.041±2.110
Non-convex 3 0.031±0.089 0.000±0.000 0.000±0.000
Average 14.385±18.125 16.729±18.297 29.653±24.143

Table 6.3.7: Results obtained from the ANOVA test for the comparison of the performance
of FR-PSMS vs the Grid search and K-NN. As a pos hoc analysis, the Dunnett test was
performed. The p-values for each comparison and for the ANOVA test are shown. Cases
whose p-vale is below α = 0.05 are in bold.

Dataset
ANOVA
p-value

FR-PSMS
vs

Grid

FR-PSMS
vs

K-NN
RLCP 1.237 × 10−36 0.862 9.560 × 10−10

KDD 4.326 × 10−95 0.055 9.560 × 10−10

Synthetic 1 9.055 × 10−143 9.560 × 10−10 9.560 × 10−10

Higgs 1.245 × 10−77 0.005 9.560 × 10−10

Synthetic 2 6.438 × 10−83 9.560 × 10−10 9.560 × 10−10

Epsilon 1.634 × 10−43 0.002 9.560 × 10−10

Non-convex 1 - - -
Non-convex 2 6.775 × 10−04 0.432 0.0005
Non-convex 3 - - -

Table 6.3.6 shows that FR-PSMS obtained the best performance in five datasets
(Synthetic 1, Higgs, Synthetic 2, Epsilon and Non-convex 1) while the Grid search,
got the best performance in four (RLCP, KDD, Non-convex 1 and Non-convex 3)
and K-NN just in three (all the Non-convex). Concerning Table 6.3.7, FR-PSMS
outperformed to K-NN in all convex sets and obtained significant differences regarding
the Grid search in all datasets where FR-PSMS is the best and there were no differences
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in those datasets where the Grid search obtained the best performance. In the non-
convex datasets, it can be seen that K-NN was slightly overfitted and FR-PSMS
obtained the worst performance in Non-convex 3.

6.3.3 Discussion of the results obtained by FR-PSMS

FR-PSMS was compared against the best method of the previous experimental
stage: S-PSMSClass. Both methods employed proxy models based in classification
algorithms and built under the FMS paradigm. The mechanisms present in the fuzzy-
rules algorithm of FR-PSMS were capable to guide the search of models efficiently,
finding models of similar quality of those obtained through a larger search process
and even better in two hard datasets: Epsilon and Higgs. The computing time of
FR-PSMS was slightly lower compared to the one obtained by S-PSMSClass but the
quality of its models surpassed to all previous approaches (GA,PSMS,PSMS-MLP,
S-PSMSReg and S-PSMSClass). It is important to mention that FR-PSMS was
the first approach capable to surpass the performance of the Grid search in the
Epsilon dataset. Despite its performance was not the best in the non-convex datasets,
FR-PSMS was capable to obtain good results in two of them, without overfitting in
Non-convex 2 and with lower misclassification rates in Non-convex 3, compared to
other surrogate based approaches of this Chapter (PSMS-MLP and S-PSMSReg).

The better results and the smaller computing times of FR-PSMS, makes of this
approach an excellent alternative to address the FMS problem in high volume datasets.
The mechanism provided in this method are capable to make a better use of the time
assigned to perform the search of models. With the metaphor of the compass in mind,
in this experimental stage arose the idea of to obtain a tool equivalent to a Map for
the search space. This idea directed the efforts on this work to explore the use of the
meta-learning paradigm.

6.4 Final considerations
In this Chapter, the use of proxy models to assist the search in FMS problem was
explored. As in this problem, ideally each dataset represents a different problem, the
efforts cannot be directed to the construction of a proxy model to be used in all the
datasets, as opposed to other works. In FMS problem, proxy models must be built
during the search process and taking into account that fitness evaluation is not a
true measure but just an estimation of performance of the models, proxy models are
also slightly inaccurate. In the previous Chapter, proposed methods were not able
to outperform a simpler Grid search because exploration of the vast search space of
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the FMS was harder than the exploration of the hyper-parameter optimization of
the grid search. Unlike other approaches, in this work, the use of proxy models as
a way to guide the search process instead of a time reducer was explored. Using a
proxy model to guide a search can be seen as turning it into a compass and a way
to build the best compass is through the FMS paradigm. Following this path, three
FMS-based proxy model alternatives were constructed.

• A version of PSMS assisted by proxy models constructed under the FMS
paradigm. This alternative used regression algorithms to build a device that
predicts the fitness of a particle in order to decide if it is worth assessing
this particle with the time-consuming fitness function or not. Proxy models
constructed under this paradigm were able to guide efficiently the search process
in FMS, obtaining models of higher quality that those obtained by the unassisted
search and to a search assisted by a proxy model built with a regression algorithm
(traditional approach in the literature). Although some aspects of the FMS
paradigm have been considered in the literature as meta-feature selection and
hyper-parameter optimization, the use of the entire paradigm obtained accurate
proxy models that achieved good solutions performing only a third of the
evaluations performed by the unassisted search.

• A version of PSMS assisted by proxy models that employed classification
algorithms. This approach was not traditional because there is no prediction
of the expected fitness. The transformation of this regression problem into a
classification one permitted to choose particles whose fitness was not as good
as expected at the moment of its evaluation but, during the evolution of the
search process, several of these particles evolved to good quality models. This
approach performed a better exploration and achieved superior models than
those obtained with traditional approaches based on regression algorithms. The
proposed method is especially useful to guide in optimization process where the
fitness of a solution is just an estimation and not a real measure as in FMS.
Use of classification algorithms in proxy models was first proposed in this work.

• A version of PSMS assisted by a fuzzy-rules classification algorithm devel-
oped under the FMS paradigm. This alternative was most atypical but was
investigated following the logic that if a classification algorithm as surrogate
function was good, a classification algorithm that provides the membership
degree of an object to the class “promising” was better. Using the membership
degree of the particles as a lower bound, the discrimination process can be
finer. Despite that traditional approach (a regression algorithm as proxy model)
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achieved an important reduction of the computing-time in the FMS problem,
the fuzzy-classification based proxy models achieved both, reduction of the
computing-time and highly accurate models. For this reason, this was the best
approach so far in this work, well suited for the FMS problem in high volume
datasets. To the best of the authors knowledge, this approach was proposed
first in this work.

To our best knowledge, this is the first work that proposes the use of the FMS
paradigm to build proxy models and the use of classification and fuzzy-classification
algorithms. From all the above alternatives, those that employed classification
algorithms proved to be the best. The evidence collected in the experiments suggested
that algorithm FR-PSMS, the one that uses a fuzzy-classification algorithm as proxy
model, was the best of all the explored methods. This algorithm was capable to
outperform to the unassisted search obtaining models of high quality, conducting a
better exploration of the search space and within a fraction of the time employed by
the complete search. FR-PSMS was the first method that surpassed the performance
of the Grid search in almost all datasets.
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Chapter 7

Use of the meta-learning paradigm to
address the FMS problem in High
volume datasets.

In the previous Chapter, a device to be employed as a compass to lead through the
search space of FMS problem was proposed. As this search space is so big, it is
a good idea to find some kind of map of such space. In this Chapter, the use of
meta-learning paradigm was explored to assist in the search of models. Meta-learning
has been employed in many problems as: instance selection [93], recommendation of
under-sampling algorithms [40], image segmentation algorithms [18], and classification
algorithms in gene expression classification [43], among others, for that reason it is
well suited for the FMS problem. The set of experiments presented in this Chapter is
related to the last objective in this work. This objective seeks to gather information
about the use of meta-learning to solve the FMS problem in high volume datasets.
Unlike other problems in the literature (as model selection) that have been addressed
as a supervised learning problem in the meta-learning stage, in FMS, the number
of potential models is huge or even infinite, therefore, meta-learning step cannot be
approached as a supervised learning task. For that reason, in this Chapter is also
proposed a new meta-learner alternative to traditional K-NN algorithm employed in
similar tasks. FMS has never been addressed by a meta-learning approach, therefore,
the information collected is of special interest, to know if FMS problem can be moved
from huge datasets to small meta-datasets. On the other hand, the new meta-learner
proposed tries to replicate benefits of a supervised classification process, it is adequate
to be employed to solve the FMS problem and supposes an alternative to K-NN, the
most employed meta-learner.
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The organization of this Chapter is as follows: in Section 7.1 the related work are
presented, Section 7.2 describes the proposed methods to solve the FMS problem
through the meta-learning paradigm. Section 7.3 is for the experiments and in Section
7.4 the final considerations are presented.

7.1 Related work
In Section 2.3, the meta-learning paradigm was briefly described but, for the task
at hand it can be said that, the key idea behind meta-learning is to employ the
knowledge acquired from previous similar problems to recommend one or more
techniques successfully applied, now for the dataset under analysis [18].

In a technique-recommendation scenario using meta-learning paradigm, dataset
must be characterized. This set of characteristics are the meta-features that will be
employed in a learning process. This last step is addressed with a learning algorithm,
in this case referred as the meta-learner. Several algorithms have been used as meta-
learner, some examples are: Decision Trees, Neural Networks, SVM and Naive Bayes
but the most popular meta-learner employed is the K-NN algorithm. Analyzed work
can be split in two different categories: those that addresses the meta-learning
step as a supervised learning task [4, 159, 93, 102, 36, 88, 40, 33, 18, 136, 113,
137, 123, 43, 27, 166, 30, 146] and, the ones that approached this stage as an
unsupervised learning one [126, 39, 107].

The first category is preferred in problems where it is required to know the
performance of several techniques in a dataset in the form of a ranking [4, 40, 137,
43, 5, 30], in tasks where there is interest in to analyze the expected performance
of an approach [159, 36, 136, 113, 123], and for processes of techniques suggestion
[93, 102, 88, 33, 18, 166, 146]. All these works have in common that there is a
small quantity of different techniques to recommend, to rank and to predict their
performance. With few different methods, these problems can be addressed as a
classification problem with one class per algorithm. With sharper categories, classes
or groups, success of these approaches can easily be evaluated and if a meta-learner
has a low performance it can be replaced by another with higher accuracy. In this
way, it can be obtained an outcome nearest to the true result (expected accuracy of a
classifier), that is why, the meta-learning step is mostly addressed in this manner.

Regarding second category, all analyzed works [126, 39, 107] make use of meta-
learning paradigm to recommend individuals, particles or data-points with high
potential for an optimization algorithm. Those potential solutions are evolved, and
then better solutions are obtained, in a fraction of the time as opposite of starting the
search with an initial set of random solutions. These approaches are mostly employed
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in problems where there is a high number of potential solutions to assign a label for
each one and, the meta-learning step is performed through similarity measures to
find the closest problems to the one under analysis.

To improve the quality of the meta-learning process, several approaches has been
followed as model selection for the meta-learner [93, 27], feature selection, in the
meta-dataset [159, 36, 33, 123], discretization of the meta-features [159], and the use
more meta-features [4, 27]. From this perspective, it can be seen that the use of
the FMS paradigm is well suited to improve the meta-learning process. However,
although better results can be obtained in a supervised-based meta-learning process,
the nature of the FMS problem cannot be adjusted to this paradigm.

In order to investigate the effect of the FMS paradigm in the meta-
learning field and to find a way to solve the FMS problem in high volume
datasets through meta-learnig, in this Chapter the following approaches were
explored:

• The use of the meta-learning paradigm was investigated to solve FMS problem.
In this approach, the employed datasets for experiments were characterized and
a meta-dataset was built from previous FMS analyzes. The K-NN algorithm was
employed as meta-learner. Although this is the traditional approach employed
in the literature, it was not explored before for the FMS problem, therefore is
important to know the suitability of meta-learning to a problem with a huge
search space that have always been addressed through optimization algorithms.
A better performance of meta-learning over a typical approach for FMS (PSMS)
would provide evidence that the problem can be moved from bigger datasets to
smaller meta-datasets.

• An alternative meta-learner algorithm to K-NN was proposed to improve the
quality of the meta-learning process. From above, it can be seen that is preferred
to address meta-learning stage as supervised learning task. As the nature of
FMS cannot be adapted to this paradigm, a possible solution was to propose a
new meta-learner but with some advantages of a supervised learning task, as
the discrimination in classes. Following some main trends in the literature, this
new algorithm was developed under the FMS paradigm to improve the quality
of the process. This new meta-learner and the ability to store knowledge of
each FMS task performed, are powerful tools that improves the quality of the
models obtained and reducing the time employed for a time-consuming process.

• The use of solutions found through meta-learning as initial population of an
optimization algorithm. Since the nature of FMS problem, allows the use of
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meta-learning paradigm only through this schema, potential solutions can be
employed as an initial swarm better placed in the search space and, obtaining
models of high quality in a fraction of the time than using an initial random
population. This approach was tested with PSMS and FR-PSMS. The use of
the meta-learning paradigm in conjunction with the search assisted by a new
kind of proxy models of FR-PSMS, produced a new paradigm not explored
before, the Full Meta-Learning Full Model Selection, the fastest and the best
approach in this work.

7.2 Use of the meta-learning paradigm to solve the
FMS problem in high volume datasets

As detailed above, in the meta-learning paradigm employed in this work, there are
two key elements: the meta-dataset construction and the meta-learner algorithm. The
meta-dataset consists of meta-features extracted from several datasets and in the case
of a supervised based meta-learning approach, a target class. As the FMS paradigm
does not fit well in a supervised approach, instead of an identifier of the best technique
for a dataset or the expected fitness of such technique, a file with the best models
found for a specific dataset was employed. As it can be seen, in order to build a meta-
dataset, it is required to analyze several datasets with the FMS analysis. Although
this situation can be seen as an important weakness of this paradigm, it is also an
important advantage of meta-learning. As has been mentioned through this work, the
FMS analysis is a time-consuming process, and in high volume datasets, the process
takes more time. Without the use of the meta-learning paradigm, the knowledge
gained with each analysis could be lost, therefore, to store useful information and to
improve the quality of the models with each analysis performed, the meta-learning
approach was considered as an advantage.

From the analysis of the related works, information about the meta-features was
obtained. In this work, the most popular meta-features employed across all those
works are used (Table 7.2.1). The meta-features are divided in three groups: simple
features, statistical and information theory properties. The first group consist of
features of the dataset as the number of descriptive variables and the number of
instances. Second group is for the statistical properties that describes the dataset as
the skewness and kurtosis. Third group describes the dataset in terms of information
theory measures as the entropy and the mutual information. Regarding the datasets
employed to build the meta-dataset, they are show in Table 7.2.2 and were obtained
from Lichman [2013], Fan [2018] and Alcalá-Fdez et al. [2011]. As most of them can
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be considered as “small” or that can be analyzed with a conventional desktop PC,
the time needed to analyze them all was lower than the time needed to perform a
single replication of the Epsilon dataset with PSMS.

Table 7.2.1: Meta-features employed.

Type of meta-feature Meta-feature

Simple

Proportion of attributes with outliers
Number of continuous attributes
Number of discrete attributes
Proportion of examples and number of attributes

Statistical

Mean absolute correlation coefficient
Standard deviation ratio
Bhattacharyya distance
Mean skewness
Mean kurtosis
Fisher discriminant ratio

Information theory
Mean mutual information
Noise-signal ratio
Mean entropy

Table 7.2.2: Datasets employed in the creation of the meta-dataset.

banana breast-cancer diabetis flare-solar german
heart image ringnorm splice thyroid
titanic twonorm waveform ionosphere sonar
adult australian colon codrna fourclass
abalone9vs10 ijcnn1 liver-disorders madelon mushrooms
phishing skinNoskin susy2 svmguide svmguide3
w1a haberman pima tictactoe bupa
crx monk2 mamographic houseofvotes bands
magic appendicitis chess coil2000 phoneme
saheart fars spambase spectfheart wdbc

7.2.1 An alternative to the K-NN algorithm in an unsuper-
vised meta-learning process

The K-NN algorithm is simple and effective, because it is capable to find similar
datapoints (in this case, datasets) to the one under analysis through a distance
measure, commonly the Euclidean distance. As mentioned above, in problems as the
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one analyzed here, there are no known categories or classes to be able to perform a
good discrimination process. To overcome this limitation, the employ of the well-
known algorithm for fuzzy clustering, FCM (described in Section 6.2.2) was proposed.
Using the instance of the meta-dataset that describes the dataset under analysis as
one of the centroids of FCM, we can obtain different groups and the membership
degree of each object to each centroid. With this data, the process of finding similar
problems can be limited to the objects that belongs to the cluster of interest and,
if we need more similar points than the ones available in that cluster, other data
points with a higher membership degree to our “centroid” can be obtained. Allowing
the competition, the process becomes more reliable assuring that the obtained data
points are really more similar to the one under analysis. However, although FCM
offers advantages over K-NN, is plain to see that several factors need to be chosen
carefully as the distance function, the value of fuzzifier ”m”, and the number of groups.
These and other important factors addressed in the meta-learning literature as the
meta-feature selection and pre-processing of the meta-dataset, can be approached
through the FMS paradigm. The use of more than one similarity measure and the
meta-feature selection process, allow discovering new relations among the objects
under analysis that otherwise would be ignored. This optimization is explained below.

7.2.1.1 An FMS-based meta-learner

In order to select the best values and combinations of the factors mentioned above,
FCM is optimized through the PSO algorithm. This synergistic combination will be
onwards referred as FCM optimized through PSO (PS-FCM). The particles of PSO
were codified as a vector xi = [xi1, x

i
2, ..., x

i
7+nf ]. The elements of the particles and the

range of values are as follows: Position 1 stores the fitness of particle [0-100]. The
fitness function is explained in Section 7.2.1.2. Position 2 is for the Fuzzifier term m of
the FCM algorithm [2-10]. Position 3 is the identifier of the similarity measure. Were
considered the following similarity measures: 1) Euclidean distance, 2) Manhattan
distance, 3) Pearson coefficient, 4) Cosine measure and 5) Chebyshev distance [1-5].
Position 4 is for the number of iterations of FCM [100-500]. Position 5 is for number
of clusters [2-10]. Position 6 is the identifier of the data preparation method. The
methods employed were: 1) Feature standardization, 2) data normalization and 3)
do nothing [1-3]. Alternative methods were considered without differences in the
performance of the algorithm. Feature selection process was performed as a wrapper
approach, that is why the values that position 7 to nf (number of features) can take
are in the interval 0-1, that indicates if the feature will be used or removed.
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7.2.1.2 Fitness function for PS-FCM

To evaluate the particles in PS-FCM, it is required to use fuzzy-clustering quality mea-
sures. Several quality measures were tried (Dun Index, Bezdek partition entropy, Xie
& Beni index, Fukuyama-Sugeno index, Fuzzy hyper-volume) obtaining contradictory
results (some of them suggesting the maximum number of clusters and some of them
suggesting the minimum). In experiments with toy-datasets, those quality measures
were not able to determine the correct number of clusters, even when are easy to
identify by plain sight. In order to overcome this obstacle, the Fukuyama-Sugeno and
Xie & Beni indexes were employed (they are shown in Eq. 4.7 and 4.8). Those indexes
were selected because, it was observed in the experiments that, the Fukuyama-Sugeno
index always obtained the highest number of possible clusters (in this case 10), while
the Xie & Beni index obtained the lowest (2). To find the most accurate number of
fuzzy partitions, both indexes were combined through a fuzzy inference system. The
results of each index are scaled in the interval [0-1] and used as input of a fuzzy-rule
set. The rules are specified to obtain the maximum value, where both indexes obtain
the maximum membership degree in the fuzzy set Medium (the same of Fig. 6.2.2).
That is Ri : If XB is Medium And FS is Medium Then fitness is High. In
Fig. 7.2.1 the performance of proposed combined indexes in toy-datasets is shown.
As PS-FCM is a population-based algorithm, when it converges, all solutions in the
swarm are of similar quality. To take advantage of this fact, a voting scheme was
employed. In this way, the variance in the list of similar problems is reduced and all
the different relations found among the objects is exploited.

Figure 7.2.1: Performance of the combined quality index in toy-datasets.
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7.3 Experiments and results
Both meta-leaners, that is PS-FCM and K-NN, were compared to find differences in
their performance. With the best models employed in the 30 most similar problems
(due to the size of the swarm) to the one under analysis a weighted voting ensemble
was built with the procedure mentioned in Section 5.2.3. Table 7.3.1 shows the
average misclassification rates of both meta-leaners and the performance of the best
approach so far (FR-PSMS). The performance of FR-PSMS was show as a way to
know how near to, or far from, are the meta-learning approaches from FR-PSMS.

Table 7.3.1 shows that PS-FCM obtained the best performance in seven datasets:
KDD, Synthetic 1, Higgs, Synthetic 2, Epsilon, Non-convex 1 and Non-convex 3.
Comparing the results of PS-FCM against the ones of FR-PSMS, it can be seen
that they are pretty close except in the datasets: Higgs, Epsilon and Non-convex 3.
In order to find significant differences in the performance of both meta-learners, a
Student’s t-test was performed (shown in Table 7.3.2) with a statistical power of 90%.

Table 7.3.1: Average misclassification rate obtained in the test partition by PS-FCM and
K-NN over 44 replications. The performance of FR-PSMS is just for demonstrative purposes.
The lowest error rates are in bold.

Dataset PS-FCM K-NN
for meta-learning FR-PSMS

RLCP 0.013±0.005 0.004±0.003 0.013±0.016
KDD 0.026±0.005 0.030±0.004 0.001±0.000
Synthetic 1 15.863±0.003 15.863±0.003 15.863±0.004
Higgs 31.041±0.212 31.046±0.246 27.656±0.981
Synthetic 2 6.683±0.003 6.683±0.003 6.681±0.003
Epsilon 31.316±0.876 31.476±1.740 27.467±0.322
Non-convex 1 0.000±0.000 4.161±1.361 0.000±0.000
Non-convex 2 51.490±2.095 50.268±2.600 51.721±2.129
Non-convex 3 1.644±0.120 3.600±1.992 0.067±0.085
Average 15.314±18.628 15.903±17.789 14.385±18.125
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Table 7.3.2: Results obtained from the Student’s t-test for the comparison of the performance
of PS-FCM and K-NN in the FMS analysis in high volume datasets. Cases whose p-vale is
below α = 0.05 are in bold.

Dataset p-value
RLCP 4.708 × 10−14

KDD 3.106 × 10−06

Synthetic 1 0.201
Higgs 0.934
Synthetic 2 0.938
Epsilon 0.586
Non-convex 1 -
Non-convex 2 0.012
Non-convex 3 4.588 × 10−08

From the results in Table 7.3.2, concerning to convex datasets, both meta-leaners
were almost similar except in datasets RLCP where the performance of K-NN was
the best, and KDD where PS-FCM outperformed to K-NN. From the ID analysis,
it can be argued that RLCP is a problem harder than KDD with dimensions of 2
and 1 respectively, therefore, from the convex datasets, K-NN was the best approach.
Regarding non-convex sets, it can be seen that the performance of PS-FCM was the
best in Non-convex 1 (although no comparisons could be made) and Non-convex 3.
Despite there was a significant difference in Non-convex 2, both meta-leaners were
not overfitted and, obtaining lower misclassification rates in this dataset, is evidence
of an overfitted classifier in an impossible classification task. Consequently, with the
best performance in three datasets (KDD, Non-convex 1 and Non-convex 3), the best
meta-leaner was PS-FCM.

It is worth to note that, both meta-learners with just 30 models, obtained a
performance close to FR-PSMS in the datasets: RLCP, KDD, Synthetic 1, Synthetic
2, Non-convex 1 (only FR-PSMS) and Non-convex 3. Using the meta-learning
paradigm in this way, can provide an initial population better placed in the search
space, so, the models obtained by PS-FCM were used to feed to PSMS in the datasets
Higgs, Epsilon and Non-convex 3. Since this population was better placed, lesser
model evaluations were needed, the best performance was obtained after the first 10
iterations without further improvement and even, with deteriorate performance after
20 iterations. The obtained results after 44 replications were: 29.647±0.101 in Higgs,
29.538±0.402 in Epsilon and 0.000±0.000 in Non-convex 3. A Student’s t-test was
employed to compare the performance of FR-PSMS against PS-FCM, in Table 7.3.3,
these results are shown.
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Table 7.3.3: Results obtained from the Student’s t-test for the comparison of the performance
of FR-PSMS and PS-FCM in the FMS analysis in high volume datasets. Cases whose p-vale
is below α = 0.05 are in bold.

Dataset p-value
RLCP 0.941
KDD 1.123 × 10−31

Synthetic 1 0.863
Higgs 6.056 × 10−17

Synthetic 2 0.701
Epsilon 2.211 × 10−27

Non-convex 1 -
Non-convex 2 0.614
Non-convex 3 -

The information in Table 7.3.3 showed that, despite the refining process performed
through PSMS, there were significant differences in three datasets: KDD, Higgs and
Epsilon. However, the misclassification rate in the dataset Non-convex 3 was reduced
and outperformed the performance of FR-PSMS. Although, this approach was not
the best compared to FR-PSMS, its performance was close to the performance of
PSMS in the Higgs dataset, where PS-FCM obtained an average misclassification
rate of 29.647± 0.101 performing 300 evaluations and PSMS obtained 28.299± 0.057
after 1,500 evaluations. Regarding Epsilon, the performance of PS-FCM was superior
with an average misclassification rate of 31.316± 0.876 with just 30 models against
54.008 ± 0.926 of PSMS. Since in the pure meta-learning approach (that is, with
no further optimization), the development of the search process cannot be tracked,
the figures with this process are not shown, instead, to know the time employed by
this approach, Fig. 7.3.1 and Fig. 7.3.2 show the computing times of FR-PSMS and
PS-FCM.
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Figure 7.3.1: Bar chart with the average execution times (in minutes) obtained by FR-PSMS
and PS-FCM over 20 replications in the convex datasets. Each color represents a different
dataset and the bars are grouped by algorithm. The standard deviation is depicted as a
solid black line over the bars.

Figure 7.3.2: Bar chart with the average execution times (in minutes) obtained by FR-PSMS
and PS-FCM over 20 replications in the Non-convex datasets. Each color represents a
different dataset and the bars are grouped by algorithm. The standard deviation is depicted
as a solid black line over the bars.

Although best performance in three datasets (Higgs, Epsilon and Non-convex 3)
was not obtained by PS-FCM, the computing times shown in the previous figures
was dramatically lower than the obtained by all approaches in this document in all
datasets. Despite its excellent time reduction, the performance obtained by PS-FCM
need to be improved to achieve a good compromise between time and accuracy. In
the same way that in previous Chapters, the performance of PS-FCM was compared
against the Grid search and K-NN (for classification in high volume datasets). In
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Table 7.3.4 are the average misclassification rates and, in Table 7.3.5, the reported
results of an ANOVA and a Dunnett test are shown.

Table 7.3.4: Average misclassification rate obtained in the test partition by PS-FCM, the
Grid search and K-NN over 20 replications. The lowest error rates are in bold.

Dataset PS-FCM Grid K-NN
RLCP 0.012±0.006 0.001±0.000 0.500±0.098
KDD 0.026±0.005 0.001±0.000 19.535±0.261
Synthetic 1 15.863±0.003 17.011±0.120 50.088±0.028
Higgs 29.633±0.113 30.955±0.228 46.916±0.408
Synthetic 2 6.683±0.002 22.152±0.541 50.126±0.115
Epsilon 29.461±0.449 29.664±0.174 50.673±3.323
Non-convex 1 0.000±0.000 0.000±0.000 0.000±0.000
Non-convex 2 51.753±2.042 50.783±1.723 49.041±2.110
Non-convex 3 0.000±0.000 0.000±0.000 0.000±0.000
Average 15.314±18.628 16.729±18.297 29.653±24.143

Table 7.3.5: Results obtained from the ANOVA test for the comparison of the performance
of PS-FCM vs the Grid search and K-NN. As a pos hoc analysis, the Dunnett test was
performed. The p-values for each comparison and for the ANOVA test are shown. Cases
whose p-vale is below α = 0.05 are in bold.

Dataset
ANOVA
p-value

PS-FCM
vs

Grid

PS-FCM
vs

K-NN
RLCP 5.473 × 10−37 0.771 2.647 × 10−06

KDD 4.146 × 10−103 0.812 2.647 × 10−06

Synthetic 1 3.866 × 10−135 2.647 × 10−06 2.647 × 10−06

Higgs 3.761 × 10−84 2.647 × 10−06 2.647 × 10−06

Synthetic 2 3.675 × 10−101 2.647 × 10−06 2.647 × 10−06

Epsilon 2.748 × 10−42 0.922 2.647 × 10−06

Non-convex 1 - - -
Non-convex 2 2.245 × 10−04 0.214 0.0001
Non-convex 3 - - -

From the results in Table 7.3.4, PS-FCM was able to obtain the best performance
in six datasets (Synthetic 1, Higgs, Synthetic 2, Epsilon, Non-convex 1 and Non-convex
3), while the Grid search was the best in four (RLCP, KDD, Non-convex 1 and Non-
convex 3), and K-NN jus in three (all the non-convex sets). Table 7.3.5 showed that
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there were significant differences in those datasets where PS-FCM obtained the best
performance (compared to the Grid search) and in almost all datasets compared to
K-NN. Although, PS-FCM was not the best approach from all the explored methods,
the evidence above supports that PS-FCM was able to outperform to the Grid search,
PSMS and K-NN (both meta-leaner and for classification).

7.3.1 Discussion of the results in the first meta-learning based
strategies to perform the FMS analysis in high volume
datasets

Two strategies to perform the FMS selection analysis through a meta-learning approach
were compared. The K-NN algorithm employed as meta-leaner was able to obtain
excellent models in almost all the convex sets, while, PS-FCM, the meta-learner
approach designed under the FMS paradigm, was capable to obtain an excellent
performance in both, the convex and the non-convex datasets. For this reason,
PS-FCM was elected to be compared against the best approach so far, FR-PSMS.
Considering that, the final model of PS-FCM was built with the best models obtained
from the 30 most similar problems to the dataset under analysis, their results were
good but needed an improvement. The way, the meta-learning step was performed
in this work, allowed to use these 30 models as an initial swarm for an optimization
algorithm as PSMS. Through this optimization step, were obtained better models for
the datasets where PS-FCM obtained a higher misclassification rate than FR-PSMS.
However, although this optimization was performed, the models of PS-FCM were
not capable to outperform the ones of FR-PSMS. Despite this fact, PS-FCM was
capable to outperform to the Grid search and K-NN in those datasets where PSMS
was not able to outperform the Grid search. Considering that, the information gained
with each FMS analysis stored, and the meta-learning process improves with each
analysis, this alternative is of special interest and more for searches of models in
high volume datasets, where powerful hardware is not available, the meta-learning
paradigm allows to move the problem from bigger datasets to smaller meta-datasets.

Taking into account that the models obtained through the meta-learning approach
can be refined, a good alternative to do that is through a good search strategy,
therefore, the FR-PSMS algorithm and PS-FCM were employed in the same way that
the metaphor used in this work of a compass and map to address the big search space
of the FMS analysis in high volume datasets. Below are the experiments and results
of the synergy of these approaches.
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7.3.2 Synergy of the meta-learning paradigm and the proxy
models to address the FMS problem in high volume
datasets

The experiments above showed the flexibility of the meta-learning paradigm, that can
be used as a final answer or as a seed of better searches. However, the combination
of this initial population with high potential and an optimization algorithm was
not enough to surpass the performance of the best approach so far, FR-PSMS. In
pursuance of better models, the idea of combining the two meta-learning techniques
used in this work arose. This paradigm or Full Meta-learning to assist in the Full
Model Selection problem (FML-FMS), is the synergy of the initial population provided
by PS-FCM and the best approach in this work, FR-PSMS. This approach was tested
in all the proposed datasets, but there was not important improvement (neither
in time nor accuracy) except in datasets: Higgs, Epsilon and Non-convex 3. The
performance of FR-PSMS and FML-FMS is shown in Table 7.3.6. In the third and
fourth columns are the average evaluations performed by each method. Also, to find
significant differences, in Table 7.3.7 the reported p-values of a Student’s t-test are
shown.

Table 7.3.6: Average misclassification rates obtained in the test partition by FML-FMS and
FR-PSMS over 44 replications. The lowest error rates are in bold.

Dataset FML-FMS FR-PSMS

Mean number of
function evaluations in

FML-FMS

Mean number of
function evaluations in

FR-PSMS
Higgs 27.648±0.409 27.656±0.981 269.636±26.145 323.500±114.157
Epsilon 26.918±1.712 27.467±0.322 212.909±46.896 247.000±87.706
Non-convex 3 0.000±0.000 0.031±0.089 177.045±44.467 203.500±54.311
Average 18.188±15.756 18.384±15.895 219.863±46.685 258.000±60.751

Table 7.3.7: Results obtained from the Student’s t-test for the comparison of the performance
of FML-FMS and FR-PSMS in the FMS analysis in high volume datasets. Cases whose
p-vale is below α = 0.05 are in bold.

Dataset p-value
Higgs 0.956
Epsilon 0.049
Non-convex 3 -
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Table 7.3.6 showed that FML-FMS was capable to obtain the lowest error in
the three datasets and performing a lower number of evaluations than FR-PSMS.
Regarding the statistical test, FML-FMS outperform to FR-PSMS in the Epsilon
dataset, however, the p-value is slightly lower than 0.05, therefore was considered
as there was not difference at all. Despite that FML-FMS did not outperformed to
FR-PSMS in the convex sets, it was capable to obtain similar results that the best
approach with a lower number of evaluations. Regarding the dataset Non-convex 3,
FML-FMS outperformed to FR-PSMS. In order to show how the search process was
conducted, the Fig. 7.3.3 is provided.

Figure 7.3.3: Search process performed by FML-FMS and FR-PSMS in dataset Higgs. In X
axis the quantity of evaluated particles is shown; the Y axis shows the estimated BER of
the best particle in the swarm.
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Fig. 7.3.3 shows that FML-FMS started the search in a better place than FR-
PSMS with an estimated BER of 38% for FML-FMS and around of 50% for FR-PSMS.
After 44 evaluations, FML-FMS was capable to outperform to FML-FMS with an
estimated BER of 33% that was not obtained by FR-PSMS even after 110 evaluations.
From this information, is plain to see that the combination of both meta-learning
approaches is able to equip with new capabilities the FMS paradigm. These additional
devices provided the capacities to search efficiently a huge search space that involves
higher training times. Regarding the time factor, execution-times of FML-FMS and
FR-PSMS are shown in Fig 7.3.4 for the convex datasets and, due the differences in
the time-scale, the execution-times of both methods in Non-convex 3 are shown in
Fig. 7.3.5.

Figure 7.3.4: Bar chart with the average execution times (in minutes) obtained by FML-FMS
and FR-PSMS over 20 replications in the convex datasets. Each color represents a different
dataset and the bars are grouped by algorithm. The standard deviation is depicted as a
solid black line over the bars.
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Figure 7.3.5: Bar chart with the average execution times (in minutes) obtained by FML-FMS
and FR-PSMS over 20 replications in the Non-convex datasets. Each color represents a
different dataset and the bars are grouped by algorithm. The standard deviation is depicted
as a solid black line over the bars.

Fig. 7.3.4 shows that FML-FMS considerably reduced the time employed in the
search process in datasets Higgs and the Non-convex 3, however, exceeded by far the
time of FR-PSMS in the Epsilon dataset. This could be because the initial particles of
FML-FMS represents more complex models than the ones of FR-PSMS and therefore,
the training of those models takes more time.

FML-FMS was also compared to the Grid search and K-NN, the obtained results
are shown in Table 7.3.8 and in Table 7.3.9, the reported p-values of an ANOVA and
a Dunnett test are presented.

Table 7.3.8: Average misclassification rate obtained in the test partition by FML-FMS, the
Grid search and K-NN over 20 replications. The lowest error rates are in bold.

Dataset FML-FMS Grid K-NN
Higgs 27.594±0.455 30.955±0.228 46.916±0.408
Epsilon 26.825±1.904 29.664±0.174 50.673±3.323
Non-convex 3 0.000±0.000 0.000±0.000 0.000±0.000
Average 18.139±15.714 20.206±17.511 32.529±28.234
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Table 7.3.9: Results obtained from the ANOVA test for the comparison of the performance
of FML-FMS vs the Grid search and K-NN. As a pos hoc analysis, the Dunnett test was
performed. The p-values for each comparison and for the ANOVA test are shown. Cases
whose p-vale is below α = 0.05 are in bold.

Dataset
ANOVA
p-value

FML-FMS
vs

Grid

FML-FMS
v

K-NN
Higgs 2.482 × 10−78 2.647 × 10−06 2.647 × 10−06

Epsilon 1.030 × 10−40 0.0003 2.647 × 10−06

Non-convex 3 - - -

According to Table 7.3.8, FML-FMS was the best approach from all the compared
methods in all datasets and from Table 7.3.9, it can be seen that, there were significant
differences in all datasets except in Non-convex 3, where all methods obtained the
same results.

7.3.3 Discussion of the results obtained by FML-FMS

The synergistic combination of both meta-learning approaches was capable to obtain
excellent results in the experiments performed, however, the obtained models did
not outperform the ones obtained by FR-PSMS. Despite this fact, is important to
note that performance of FML-FMS did not decrease, even considering that the time
employed in the process was lower.

This new approach equips with new capacities the FMS analysis, guiding the
search process efficiently, storing the information obtained during the process and
improving the results with each analysis performed without increase the computing
times.

It is worth to mention that were presented the results of only three datasets,
because in the remining six, the best obtainable results with the search strategy
employed (PSMS) were found using just the suggested solutions offered by PS-FCM
and, there was not necessary to use the full meta-learning approach. Nevertheless,
the decision of when to use the FML-FMS approach and when use only the models
obtained through the meta-learning method (PS-FCM), is not trivial and, it is part
of the future work.

From all the evidence obtained, it can be argued that, FML-FMS is the best
approach of this work because according the definition of efficiency, the quality of the
product (the models in this case) is preserved but without increasing the cost or time.
In the FMS problem in high volume dataset, the search of models employing the FML-
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FMS approach can be addressed according the budget of time or resources (equipment)
of the practitioner, searching for models through the MapReduce paradigm or moving
the problem from huge datasets to small meta-datasets.

7.4 Final Considerations
In this Chapter, the meta-learning paradigm to address the FMS problem in high
volume datasets was proposed. Nature of FMS makes it harder to address as a
supervised meta-learning task, the most common approach in the literature. This
approach has been preferred because is easier to address the problem in this way and,
if the accuracy of the employed meta-learner is low, it can easily be exchanged by
other with better performance, among other factors. Since search space of FMS is
huge and each combination of factors represents a model, it cannot be addressed as a
supervised meta-learning task. In this work, the meta-learning stage was addressed as
a search of most similar problems to the one under consideration. A meta-dataset was
built employing the most popular meta-features in the literature and three strategies
were followed.

• In the first strategy, the search of most similar problems was performed em-
ploying the K-NN algorithm as meta-learner, in the same way that most works
in meta-learning field. Although this approach is the most traditional, this
is the first work that addresses the FMS problem by means of meta-learning.
The meta-learning paradigm empowers FMS with the ability to preserve the
information gained with each model selection task and re-use it in new analyses.

• Second strategy employed a new algorithm based on FMS paradigm (PS-
FCM). This new algorithm was constructed considering some of the most
important trends in the literature to improve the quality of meta-learning
process, performing meta-feature selection and data-preparation. As these
processes are part of FMS paradigm, it was employed to construct a meta-leaner
in conjunction with the FCM algorithm. This new algorithm offers an alternative
to K-NN in a meta-learning process. PS-FCM was able to outperform K-NN
and although it was not the best approach in this work, the obtained results
showed that using the meta-learning paradigm, FMS problem can be moved
from huge datasets to smaller meta-datasets.

• The third strategy improved the solutions obtained by a meta-learner through
an optimization algorithm. Solutions provided by PS-FCM are in a better
region of the search space, enabling in this way a shorter search of models with
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a higher quality than those drawn at random. The combination of PS-FCM
and FR-PSMS produced a new paradigm, the Full Meta-Learning Full Model
Selection, the best approach found in this work to address the search of models
in high volume datasets. This new approach was capable to make a better use
of the time assigned to the search process, obtaining highly accurate models in
a fraction of the time employed by a traditional optimization algorithm, the
conventional procedure in this kind of problems.

Both meta-leaners (K-NN and PS-FCM) were compared and PS-FCM was the
only one with a good performance in convex and non-convex datasets. The models
obtained by PS-FCM were compared against the best approach so far (FR-PSMS) but,
the performance of the last was the best. In the third strategy the PSMS algorithm
was used to improve the models obtained by PS-FCM. Despite the improvement of
solutions, the results did not surpass those of FR-PSMS. As part of the third strategy,
models were also improved through the best approach in this work, FR-PSMS. The
quality of models slightly improves but without significant differences to the results
obtained by FR-PSMS but with an important reduction of the time. FML-FMS was
capable to obtain good results in six datasets without the optimization step, therefore,
there is evidence that is more efficient than previous approaches. These new tools
equipped the FMS paradigm with new capacities to store and improve with each
analysis the information obtained of problems addressed.
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Part IV

General conclusion
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Chapter 8

Conclusions

The development of new technologies has marked a trend in the generation of high
amounts of data in several and distinct fields of human endeavor. In the period
between 2012 and 2014 was created the 90% of the data (to that time) in the world
[160], while the CERN and the European Institute of Bioinformatic generated around
20 and 15 petabytes each per year [104].

This data becomes information and justify its storage expenditure when it is
analyzed and, big part of this analysis is performed by means of machine learning
algorithms. However, the choice of the right learning algorithm is not a trivial task,
even when data fits easily in the main memory of a standard personal computer.

Selection of the right algorithm that fits better a dataset is a problem known as
model selection and although the availability of more data could be thought as an
accuracy booster for any learning algorithm, the reality is that there is now evidence
that a given learning is superior to others in all datasets, no matter how much data
we have. This situation is addressed by the “No Free Lunch Theorem” of Wolpert
and Macready [1997] and basically states that no machine learning algorithm is the
best for all problems.

Accuracy of a learning algorithm is influenced by other factors as the selection of
a subset of features that describes better the phenomenon in the dataset and a combi-
nation of pre-processing techniques to transform data into a more effective format for
the learning algorithm. This combination of feature selection, data-preparation tech-
niques, the selection of a learning algorithm and the tuning of its hyper-parameters
is known as Full Model Selection [57].
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This paradigm is capable to obtain models with higher accuracy and it has been
employed in several problems as region labeling on images [75], assist in the diagnosis
for acute leukemia [58], and classification of infant crying patterns [132], among others.
FMS can be considered as a Black Box whose input is a dataset and their output is
a highly accurate model, therefore it can be extremely useful for both experts and
practitioners.

The search space of this problem is huge or infinite even if restrictions are imposed
to the hyper-parameter values of the considered techniques. FMS in conventional size
datasets involves the use of time-consuming optimization techniques but with the
bigger datasets of nowadays, this optimization process becomes intractable.

In order to equip this paradigm with the capacity to deal with high volume
datasets, the objective of this work was “to develop methods to perform a better explo-
ration of the search space imposed by this problem in high volume datasets in terms
of computing-time and models accuracy”. The followed hypothesis was that “models
obtained through the full model selection analysis in high volume datasets assisted by
efficient proxy models and the meta-learning paradigm obtain a lower misclassification
rate and are obtained performing a lower number of fitness evaluations than those
obtained without the use of the aforementioned techniques”.

For easier understanding, the followed approaches and contributions are described
in the next sections as well as the future work.

8.1 Approaches followed in this work
Three sets of experiments were performed related to the specific objectives in this
work. In the next sections they are briefly described.

8.1.1 First approach to solve the FMS problem in high-volume
datasets

To be able to explore the vast search space of FMS and the big computing times
of high-volume datasets, two important bio-inspired optimization algorithms were
taken to MapReduce. In the literature revision was highlighted that all the works
that addresses FMS problem employed bio-inspired optimization algorithms because
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the enormous number of combinations cannot be tried through simpler grid searches.
On the other hand, just one work addressed the problem of bigger computing times
through the MapReduce programming model.

Combining these ideas, a GA and a model selection algorithm based on PSO
(PSMS) were adapted to MapReduce and comparisons were made. Although similar
comparisons were made in the past, such algorithms were developed employing differ-
ent frameworks and algorithms in the stages involved in the FMS process (feature
selection, data-preparation and learning step).

The contributions obtained from this set of experiments was a framework to
adapt population-based search algorithms for FMS in high volume datasets. To the
best of the authors knowledge, this is the first approach to address this problem in
high volume dataset. Moreover, the information obtained from the comparison in
similar conditions of the aforementioned algorithms was also a contribution of this
work.

Conclusions extracted from these experiments were that PSMS outperformed the
GA, therefore PSMS is better suited for FMS in high volume datasets, however both
approaches were outperformed by a simpler grid search (also based in MapReduce)
in a similar amount of time. Search space of FMS makes necessary to seek for tools
to guide efficiently through optimization process in order to obtain models of higher
quality and reduce the computing time.

8.1.2 Use of proxy models to guide in FMS process

The second set of experiments explored the use of proxy models. Although, proxy
models have been used to speed up time-consuming optimization processes as cali-
bration of hydrological models [82], petroleum reservoir modeling [163], natural gas
fields reservoir simulations [3], and wind turbines design [157], it was analyzed its
suitability to guide efficiently the search process of FMS in terms of models accuracy
and reduction of the time employed.

The state-of-the-art analysis revealed that to improve the accuracy of proxy
models, some steps of the FMS paradigm are used in the creation of such models as
feature selection and data-preparation. With this in mind and from the evidence in
the literature of the capacity of FMS to obtain highly accurate models, this paradigm
was employed in the proxy model construction. This approach addressed the second
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objective in this work to gain information about the use of FMS to build better proxy
models.

Three strategies to build proxy models were followed to address the third ob-
jective in this work. The first one employed FMS to build proxy models, that is,
performing data-preparation, feature selection, selection of a learning algorithm and
hyper-parameter optimization on the meta-dataset.

The second one used classification algorithms in conjunction with the FMS
paradigm. First approach performed the model selection step among regression
algorithms. In this approach instead of predicting the expected fitness of a model, a
discrimination between promising and not promising models was provided.

In the third strategy a fuzzy classification algorithm built under FMS paradigm
was employed. Fuzzy classification algorithms provide a membership degree of an
object to considered classes. This membership degree can be employed to perform a
finer discrimination.

The contributions obtained from this set of experiments are as follows:

• Introduction of the use of FMS paradigm to build proxy models. Some parts
of FMS paradigm have been employed in the literature to boost the accuracy
of proxy models, however, this is the first work that proposes the use of this
paradigm to build proxy models based on the evidence of the high-quality
classification models obtained by this paradigm. Proxy models built in this way
have a higher accuracy and obtain models of higher quality in comparison to
traditional approaches based only in one regression algorithm.

• Introduction of the use of FMS and classification algorithms in the proxy model
construction. This approach is especially useful when the expected fitness of a
solution is an estimation and not a true measure of a phenomenon as in model
selection. This idea was also presented first in this work.

• A new algorithm based on fuzzy rules and the FMS paradigm that can be used
as proxy model or a multi-class classification algorithm. This algorithm exploits
similarities among the data points that represent solutions in an optimization
algorithm and provides in addition to target class (promising and not promising)
the membership degree to each one.
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Conclusions from these experiments are:

• The use of FMS paradigm obtained accurate proxy models that achieved good
solutions performing only a third of the evaluations performed by the unassisted
search PSMS.

• Turning proxy models from a regression problem into a classification one
permitted to choose particles whose fitness was not as good as expected at the
moment of its evaluation but, during the evolution of the search process, several
of these particles evolved to good quality models. Using FMS in conjunction
with classification algorithms for proxy models, performed a better exploration
and achieved superior models than those obtained by the regression-based proxy
models.

• Using a fuzzy-classification algorithm built under the FMS paradigm performed
a better discrimination process and achieved an important reduction of the
computing-time in the FMS problem. Despite that traditional approach (a
regression algorithm as proxy model) achieved an important reduction of the
computing-time in the FMS problem, the fuzzy-classification based proxy models
achieved both, reduction of the computing-time and models of higher accuracy
than the aforementioned approaches.

8.1.3 Use of meta-learning to address FMS problem in high-
volume datasets

The use of meta-learning paradigm was explored to assist in the search of models.
Meta-learning has been employed in many problems as: instance selection [93], rec-
ommendation of under-sampling algorithms [40], image segmentation algorithms [18],
and classification algorithms in gene expression classification [43], among others, that
is why it is well suited for the FMS problem.

This set of experiments was related to the last objective in this work. That is, to
gather information about the use of meta-learning to solve the FMS problem in high
volume datasets. Unlike other problems in the literature that have been addressed
as a supervised learning problem in the meta-learning stage, in FMS, the number of
potential models is huge, therefore, meta-learning step cannot be approached as a
supervised learning task.
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A revision of the literature showed that most works addressed the meta-learning
step as a classification problem with one class per algorithm or technique. With
sharper categories, classes or groups, success of these approaches can easily be evalu-
ated and if a meta-learner has a low performance, it can be replaced by another with
higher accuracy. On the other hand, few works approached meta-learning step as the
recommendation of particles or data-points with high potential for an optimization
algorithm through a meta-learner based on similarity measures, K-NN most of the
time.

A meta-dataset was built employing the most popular meta-features present in
all the considered works. Also, the traditional K-NN algorithm was employed as
meta-learner. Although this is the traditional approach in the literature, it was
not explored before for the FMS problem, therefore was important to know the
suitability of meta-learning to a problem with a huge search space that have always
been addressed through optimization algorithms.

A second strategy followed was to propose an alternative meta-learner (PS-FCM)
to K-NN in order to improve the quality of the meta-learning process. Following
some main trends in the literature, this new algorithm was developed under the FMS
paradigm.

The last strategy proposed was to use the solutions found through meta-learning
as initial population of an optimization algorithm. This approach was tested with
PSMS and FR-PSMS.

The contributions obtained from this set of experiments are as follows:

• A method to use meta-learning techniques to solve the full model selection
problem. Although this is the traditional approach employed in their literature,
it was not explored before for the FMS problem.

• A new meta-learner algorithm alternative to K-NN. According main trends in
the literature, this new algorithm was developed under the FMS paradigm to
improve the quality of the process. The new meta-learner and the ability to
store knowledge of each FMS task performed, are powerful tools that improves
the accuracy of the models obtained and reducing the time employed in a
time-consuming process.

• A new paradigm to address FMS in high volume datasets, that is, the synergy
between meta-learning along with the search assisted by a new kind of proxy
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models of FR-PSMS. This paradigm is known as Full Meta-Learning Full Model
Selection.

Conclusions from these experiments are:

• Meta-learning paradigm empowers FMS with the ability to preserve the infor-
mation gained with each model selection task and re-use it in new analyses.
Meta-learning makes possible to move FMS problem from high volume datasets
to smaller meta-datasets.

• The new meta-learner proposed offers an alternative to K-NN and is capable
to outperform it obtaining better models in a fraction of the time required by
PSMS.

• Full Meta-Learning Full Model Selection was the best approach found in this
work to address the search of models in high volume datasets. This approach
outperformed all previous methods in terms of model accuracy and computing-
time.

8.2 Future work
Several aspects from the explored strategies were not addressed in this work. They
are part of the future work and are mentioned below:

• As mentioned above, the FML-FMS approach is the combination of the models
provided by PS-FCM and the optimization performed by FR-PSMS. However,
although the use of the meta-learning was investigated to know when use just
PS-FCM and when to use both methods in combination, the results did not
provide accurate information, therefore this should be further developed.

• Meta-learning can be employed in different levels of granularity, that is, from
recommending the right technique for the whole dataset to recommendation by
each instance. As finer level of granularity is not an option for huge datasets, it
could be of great interest to explore this paradigm in subsets of a dataset to
obtain more robust models.

• Since the FMS analysis provides information about datasets, it would be
interesting to study the incorporation of the information collected through
this method in the meta-features employed by PS-FCM. This is known in the
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literature as landmarking but to the best of the authors knowledge it was not
performed through the FMS paradigm. FMS can bring very useful information
as the number of features with better discriminant power, the best combination
of preprocessing techniques, the best learning algorithms for a dataset, among
others.

• Although the use of a fuzzy inference system was a useful solution to combine
the performance of two fitness measures in PS-FCM, it would be interesting to
investigate the utility of this method compared to the well-known Pareto front.
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Appendix A

Algorithms

In this section, the algorithms that make up the framework presented in Chapter 5 are
described. This framework can be adapted to any population-based search method
and therefore the search algorithm is a generic one and does not incorporate the
operations of any specific method. These algorithms were developed to work under
the MapReduce programming model, the Apache Spark 1.3 framework specifically,
that is why, the operations to obtain an RDD from the file that contains the dataset
is shown. For an easier understanding, the algorithms are remarked and, the remarks
are indicated by the symbol ..

Algorithm 1 Get the RDD
1: procedure getRDD(PathDataset,numparts)
2: RowRDD = Load(PathDataset,numparts)
3: . Obtains RDD[String] and divide it among each node
4: RDDcol = RowRDD.map(row → row.split(","))
5: . The split function is applied to every row in the RDD[String] and then it is transformed into

RDD[Array[String]] (separated by columns)
6: RDDVect = RDDcol.map(row → Vector(row.map(ColInR → ColInR.toDouble)))
7: . Every column is transformed to Double type and RDD[Vector[Double]] is obtained
8: Return(RDDvVect)
9: end procedure
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Algorithm 2 Generic search algorithm
1: procedure searchMethod(TestSet,TrainSet,NIt)
2: Population = CreateInitialRandomPopulation()
3:
4: fitness = MRfitness(Population,TrainSet,labels)
5: . MRfitness evaluates the performance of the solutions
6: ItCount=0;
7:
8: while GenCount < NIt do
9: UpdatedPop = updatesPopulation(Population)
10:
11: fitness = MRfitness(Population,TrainSet,labels)
12:
13: Population = replacement(Population,UpdatedPop)
14: . Elitistic replacement by the solution fitness
15: ItCount +=1
16:
17: end while
18: fModel = buildFM(Population) . Builds final model
19: finalFitness = evalFinalModel(fModel,TestSet)
20:
21: end procedure

The model evaluation stage is made up by data preparation, feature selection, and
the training of a classification algorithm. In Algorithm 3 this process is shown.

Algorithm 3 Fitness calculation
1: procedure MRfitness(Population,TrainSet)
2: fitness = Array[Double](Population.length)
3: for i = 0; i < Population.length; i++ do
4: solution = Population(i)
5: precedence = solution(2)
6: if precedence == 0 then
7: RDDPrep = DataPrep(TrainSet,solution) . Performs data preparation
8: RDDFS = FeatSelection(RDDPrep,solution) . Performs feature selection
9: fitness(i) = Classification(RDDFS,solution) . Performs classification
10: else
11: RDDFS = FeatSelection(TrainSet,solution) . Performs feature selection
12: RDDPrep = DataPrep(RDDFS,solution) . Performs data preparation
13: fitness(i) = Classification(RDDPrep,solution) . Performs classification
14: end if
15: end for
16: Return(fitness)
17: end procedure
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The constitutive parts of Algorithm 3 are shown in the following algorithms for data
preparation, feature selection and classification under the MapReduce programming
model.

Algorithm 4 Data preparation
1: procedure DataPrep(DataSet,solution)
2: Return(DataSet.map(row → row.toArray.map(col → Transform(col,solution))))
3: . The Transform function is applied to every column of each row in the RDD according to the

parameters encoded in the particle
4: end procedure

Algorithm 5 Feature Selection
1: procedure FeatSelection(DataSet,solution)
2: numFeat = solution(9)
3: rankRDD = DataSet.map(row → RankingCalculation(row))
4: . The RankingCalculation function obtains the ranking of the features of the dataset
5: reducedRDD = rankRDD.map(row → getF(row,numFeat))
6: . The function getF is applied to every row in rankRDD and returns a reduced dataset
7: Return(reducedRDD)
8: end procedure

Algorithm 6 Classification
1: procedure Classification(DataSet,solution)
2: NumFolds = 2
3: kFolds = createFold(DataSet,NumFolds)
4: . The createFold function creates an RDD for k-Fold Cross validation
5: error=kFolds.map {
6: case(Training,Validation)
7: . The dataset is separated in Training and Validation partitions
8: model = createModel(Training, solution)
9: . The createModel function creates a model using the parameters codified in the particle
10: PredictedTargets = Validation.map(Instance → model.predict(Instance.features))
11: . Performs the predictions in the validation set
12: accuracy= getAcc(PredictedTargets,Validation.targets)
13: . Obtains the accuracy in each fold
14: error = 100-accuracy
15: Return(error)
16: }
17: meanError=error.sum/error.length
18: Return(meanError)
19: end procedure
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Appendix B

Analysis of the datasets employed for
the experiments

The huge quantity of data available for analysis makes it very difficult the choice of
a group of datasets to represent the entire data universe. For the model selection
analysis in smaller datasets, some benchmarks have been proposed as the IDA [125]
benchmark and PMLB [114], just to mention a few. In order to have evidence of
the variety of problems that methods proposed in this work can handle, the data
properties mentioned in Section 3.4 were investigated in the employed datasets. Those
datasets were obtained from the UCI repository [95]. The “Synthetic 1" and “Synthetic
2" datasets were created using the tool for synthetic datasets generation in the context
of ordinal regression: “Synthetic Datasets Nspheres" provided in [135]. Despite having
been developed for ordinal regression, the tool can be properly adjusted for traditional
binary or multi-class problems and provides mechanisms to control overlaps and
class balance. Along this chapter the datasets were analyzed to know their Intrinsic
Dimension (ID) and their Shape. In Table B.0.1 the proposed datasets are shown.

Table B.0.1: Proposed datasets

Datasets Data points Attributes Samples by class Type of variables File size
RLCP 5749111 11 (5728197;20915) Real 261.6 MB
KDD 4856150 41 (972780;3883369) Categorical 653 MB
Synthetic 1 200000000 3 (100000000;100000000) Real 5.5 GB
Higgs 11000000 28 (5170877;5829123) Real 7.5 GB
Synthetic 2 49000002 30 (24500001;24500001 ) Real 12.7 GB
Epsilon 500,000 2000 (249778;250222) Real 15.6 GB
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B.1 Topology of the datasets
In order to determine the topology of the datasets, analyses were performed employing
the alpha-shape algorithm presented in Edelsbrunner et al. [1983] and with the
calculation of the Betti-numbers from [42]. The Betti numbers represent the number
of n−D holes in a space, and they are an important topological feature. Betti
numbers are determined by analyzing the simplicial complex like simplices. The
simplices or simplex are spatial objects classified according to their spatial dimensions.
For each dimension, a minimal object exists, the 0−simplices are represented by
nodes, 1−simplices stand for edges, 2−simplices stand for triangles, 3−simplices are
tetrahedrons. A simplicial complex is a finite collection of simplices and its faces [56].
Regarding Betti-numbers, Betti 0 represents the number of connected components.
If everything is connected by an edge, Betti 0 is 1. Betti 1 represents the number
of holes in a surface. For example, a 1−Complex can be represented by a triangle.
It has 3 edges and 1 hole. Betti 2 represents voids (Empty volumes) [42]. Taking
into account the definition of shape in a dataset provided in section 3.4 and the
aforementioned techniques employed to analyze the datasets, it can be seen that if
there are holes in a dataset we can conclude that is a non-convex dataset, if there are
holes, then is a convex dataset. The analysis of a torus is provided in Figure B.1.1
as example of a non-convex dataset. It can be seen that Betti 0 = 1 meaning that
there is a single component, Betti 1 = 1 stands for the central hole in the dataset,
and finally Betti 2 = 1 stands for the cavity in the interior of the torus. On the other
hand, the alpha-shape algorithm was used to find the contour and to draw a polygon
of the approximated shape of the dataset. A simple visual analysis allows us to find
that there is a single component with a hole in the middle (coinciding with B1=1
and B2=1), therefore is a non-convex dataset. The following figures represent the
class distribution (represented as blue crosses and red dots), the alpha-shapes and
the Betti numbers of the datasets in Table B.0.1.

Figure B.1.1: A Torus with its alpha-shape and Betti numbers: B0=1, B1=2, B2=1.
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Figure B.1.2: Class distributions, alpha-shape and Betti numbers of the RLCP dataset.
B0=1, B1=0, B2=18060.

Figure B.1.3: Class distributions, alpha-shape and Betti numbers of the KDD dataset.
B0=1, B1=0, B2=18060.

Figure B.1.4: Class distributions, alpha-shape and Betti numbers of the Synthetic 1 dataset.
B0=1, B1=0, B2=18424.

Figure B.1.5: Class distributions, alpha-shape and Betti numbers of the Higgs dataset.
B0=1, B1=0, B2=18424.
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Figure B.1.6: Class distributions, alpha-shape and Betti numbers of the Synthetic 2 dataset.
B0=1, B1=0, B2=18424.

Figure B.1.7: Class distributions, alpha-shape and Betti numbers of the Epsilon dataset.
B0=1, B1=0, B2=18377.

To this point, it can be seen that the topology of all the datasets is convex, because
their Betti number values are the same in the dimensions B0 and B1 (number of
components and holes). The dimension B2 is employed to find holes in higher
dimensions and is not useful for this analysis. On the other hand, a visual analysis
of the polygons provided by the alpha-shape algorithm shows a single component
and no holes in all figures, therefore those datasets are convex. In order to explore
the capabilities of the algorithms proposed in this work, new synthetic datasets with
non-convex topology and with separated components were created. To ensure its
non-convex topology, the datasets were created with two dimensions. Referring to
the other characteristics, all the datasets have equally distributed samples by class
(5000 and 5000) with a total of 10,000 samples and 1 GB of file size. In the following
figures, their class distribution and alpha-shape are shown.
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Figure B.1.8: Class distributions and alpha-shape of the non-convex 1 dataset.

Figure B.1.9: Class distributions and alpha-shape of the non-convex 2 dataset.

Figure B.1.10: Class distributions and alpha-shape of the non-convex 3 dataset.

B.2 Intrinsic dimension analysis
The ID is the minimum number of parameters needed to represent the data without
information loss. The ID of the employed datasets was estimated with the “Minimum
neighbor distance estimator" (MNDE) [99] and the “Dimensionality from angle and
norm concentration" (DANCO) estimator [22]. The importance of the estimation
of the “id” of each dataset is to ensure that each dataset represents a different
computational problem and, therefore, that proposed algorithms have the capability
to deal with a wide range of problems and in the context of this work also with
datasets of different sizes. In the Table B.2.1, the calculated intrinsic dimension using
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the aforementioned estimators is shown. In the case of the non-convex datasets, this
dimension is not shown because they were created with two dimensions in order to
ensure their non-convex topology.

Table B.2.1: Intrinsic dimension of the datasets.

Datasets MNDE DANCO
RLCP 2 2
KDD 1 1
Synthetic 1 3 3
Higgs 12 15
Synthetic 2 22 28
Epsilon 160 78

Table B.2.1 shows that all evaluated datasets have a wide range of values from 1 to
160 or 78, depending on the estimator employed. Considering the evidence provided
by the ID analysis, it can be argued that all employed datasets are different among
each other. Regarding the Shape analysis, although all datasets in Table B.0.1 are of
convex shape, the new datasets created (non-convex 1 to 3) provide variety to our
group for data analysis. These two properties in combination provide us evidence
that evaluated datasets can be employed to test the algorithms proposed in this work
because they represent a variety of problems to analyze.

B.3 Summary
This chapter presented the datasets that were employed to test our algorithms. In
order to provide evidence of the variety of problems that these datasets represent,
two important analysis were performed, the ID analysis and the Shape analysis. The
results obtained showed that all datasets represent a variety of different problems.
Concerning the data size, the datasets are of incremental size starting from 261 MB
to 15.6 GB. Taking into account all these factors, the employed datasets can be used
to test the capability of the proposed algorithms to deal with datasets of a wide range
of size, different intrinsic dimensions and different topologies.
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Acronyms

FCM Fuzzy C-Means. 61–63, 84, 97, 135

FL Fuzzy Logic. 32, 33, 135

FML-FMS Full Meta-learning to assist in the Full Model Selection problem. 92–96,
98, 106, 135

FMS Full Model Selection. 3–6, 8, 11, 12, 14, 15, 20, 22, 23, 25, 28–30, 37, 39–43,
45, 46, 49, 50, 53–60, 63, 64, 71, 76–82, 84, 91, 94, 96–98, 101–107, 135

FR-PSMS Fuzzy Rules based proxy model for PSMS. 63, 64, 71, 72, 74–76, 78, 82,
86–88, 91–96, 98, 105, 106, 135

GA Genetic Algorithm. 30, 37, 39–44, 46, 48–54, 60, 76, 102, 135

ID Intrinsic Dimension. 28, 29, 51, 53, 71, 87, 130, 134, 135

K-NN K Nearest Neighbors. 6, 12, 32, 39, 50–53, 74–76, 79–81, 83, 84, 86, 87, 89–91,
95–98, 105, 106, 135

M-PSMS Main PSMS. 60, 135

PS-FCM FCM optimized through PSO. 84–92, 96–98, 105–107, 135

PSMS Particle Swarm Model Selection. 45, 48–54, 60, 63–65, 68, 70–74, 76, 77,
81–83, 87, 88, 91, 96, 98, 102, 104–106, 135

PSMS-MLP PSMS assisted by a Multilayer Perceptron. 63, 65, 67–70, 72, 76, 135

PSO Particle Swarm Optimization. 30–32, 37, 39–45, 59, 63, 84, 102, 135
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S-PSMSClass PSMS assisted by proxy models constructed with classification algo-
rithms, the acronym. 60, 63–65, 68, 70–72, 74, 76, 135

S-PSMSReg the search assisted by proxy models that uses regression algorithms,.
60, 63, 65, 68–70, 72, 76, 135
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