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Abstract. A new approach for smoothing and fringe normalization is pro-
posed, using Bessel functions of the first kind to fit the intensity distribution,
with application for skeletonizing and cancel background illumination in an
interferogram. With this approach, high-frequency noise is immunized,
and the contrast is enhanced by the computation of fitting coefficients
by means of least squares. The new smoothing process works very
well also with asymmetric interferograms. Its main advantages are the sim-
plicity of implementation and almost automatic fringe skeletonizing and
overcoming the problem of the nonuniformity illumination. © 2012 Society
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1 Introduction

The analysis of interferogram, band tracking, and skeletoniz-
ing is a long studied problem.! Automatic analysis exhibits
applications that range from the classical, such as skeletoniz-
ing of holographic interferograms,H profilometric measures,d
topographic maps,? and up to the newest applications such as
SAR interferometric analysis.ﬂ As a long studied problem,
nowadays there are many different techniques that involve
analysis using Fourier transforms,} Zernike polynomial
data fitting8 and gradient filters.# In every other case, a pre-
processing of the image is a must in order to improve fringe
visibility and regularization for a better processing.

When using Fourier transform techniques, it is required to
remove signals of frequencies apart from those the analyst
consider to be the characteristic frequencies of the problem
(high frequencies usually represent noise, and low frequen-
cies usually represent nonuniform illumination). Even when
this process is clear enough and straightforward, it requires
the criteria of an operator to perform correctly. Of course, it
also has some limitations, as it is difficult to filter spurious
frequencies when those are similar to the characteristic ones,
and the process is even more complicated whenever there are
low-contrast fringes. This stage is usually addressed as spa-
tial filtering.l

Another approach to spatial filtering is based in combina-
tion of techniques for image-quality improvement, as the one
presented, for example, by Chuen-Lin et all They developed
an algorithm based on the Zernike polynomial fitting to elim-
inate background illumination. Then they segmented the
image in positive and negative regions and determined the
local maximun and minimun and finally applied a local
region contrast modulation to modulate the amplitude of
the fringes. Chuen-Lin et al. suggest the applicability of
this method for the extraction of the phase.

Another commonly used technique is the fringe skeleto-
nizing, which involves search of local irradiance peaks by
many different methods, including local fitting around the
peak B Although the skeletonizing is less commonly used
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these days, it has the advantage of quickly presenting
basic information such as surface shapes and deviations.
Even now, some optical shops use this method for prelimin-
ary inspection of the elements under fabrication.

All of these procedures can be used in general situations
given the flexibility for which they were intended. However,
in the case of analysis of interferograms, the situation is
always the same: a fringe pattern. It is our proposal that
the spatial filtering (and skeletonizing) can be performed
in a simpler way if the inherent oscillating pattern is taken
into account.

We present here a smoothing process for the fringes in
an interferogram based in a linear least squares fitting
with Bessel functions of the first kind, who serves two pur-
poses simultaneously: mitigate the effect of different types of
noise on digitized images (particularly multiplicative noise),
and being a support framework to easily perform interfero-
gram skeletonizing. Another important potential application
is the reduction of background illumination bias, which is
briefly discussed here, and the details are being published
elsewhere.

In the next section, the regularization process is presented,
with some emphasis on computer implementation. Then
fringe skeletonizing is presented based on the results of
the regularization process and the background suppression
is discussed. Finally we draw some conclusions.

2 Image Smoothing by Means of Fitting Using
Bessel Functions

We propose a new smoothing process using the Bessel func-
tions of the first kind J,, (x) to fit the intensity distribution of
the rows or columns of the image of interferograms. The
resemblance between the Bessel functions and the resulting
interference pattern along one direction makes this a suitable
method to smooth the intensity functions and thus reduce the
noise due to experimental features. It is interesting to note
how similar are the Bessel J,, function and the sin(x) /x func-
tion, which is the propagated field in the Fraunhoffer approx-
imation from a single slit.

The kind of smoothing we apropose here is similar to
the Savitzky-Golay filter,? which is based in a polynomial
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fitting. This filter is characterized by simplicity and speed.
Our proposal here preserves the same characteristics.

Consider an interference pattern with straight fringes,
which has the lateral shearing in the horizontal direction.
The digitized image of the interferogram is a matrix
whose elements represent the average of the intensity over
the sampling points expressed in some arbitrary scale
([0,1] in our case). If the number of sampling points is
high enough (which is usually the case), we can regard an
array of the image (rows or columns) as a very good discrete
approximation of the continuum distribution of intensity. For
the sake of clarity, we will refer to such an array as a slice of
the interferogram. The smoothing process is carried out as
follows:

1. Select an slice of the interferogram (row if the shearing
is in the horizontal direction and column if the shear-
ing is in the vertical direction).

2. Compute the fitting coefficients by means of least
squares, using the following model:

N
fl@) 2 adi(ag), (1)
k=0

where ¢ is the coordinate in the slice, @ is a control
parameter of the oscillation (usually k = 1) This coor-
dinate has to span within a compact support with the
same number of sampling points as those within the
slice. However, it is clear that the limits of the support
[a, b] are arbitrary. With basis on the experience, we
found good results with the intervals [0, 100] and
[-100, 100]. It is very important to include O in the
interval.

3. Reconstruct the slice using the approximation given
by Eq. ([@.
4. Move to the next slice.

The coefficients in the expansion are computed as follows:
let M be the matrix whose entries are: my, = J(kg;), where
Jy 1s the k’th Bessel function (k =0, ---,N — 1) and g, is the
coordinate of the i’th pixel along the current slice. Then the
N coefficients are computed from the following relation:

MA =F, (@)

where A is a column vector whose entries are the coefficients
ay, and F is a column vector with the values of intensity of
the interferogram f(g;). When dealing with rectangular inter-
ferograms, the number of pixels per slice is held fixed, and
one can choose N to match accordingly. However, in the
general situation, the number of functions and the number
of pixels could not match; for example: when smoothing
interferograms in circular domains (like the ones considered
here), the number of pixels per slice changes and if N is
fixed, the system would be underdetermined or overdeter-
mined depending on the slice under consideration. The
usual way to proceed is to compute the Moore-Penrose
generalized inverse,ld which computes a good approximation
for the coefficients in the least-square sense. A flow chart of
the process can be seen on Fig. [.
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Fig. 1 Flow chart of the smoothing process.

It is important to notice that there is no need to address
orthogonality of the functions on Eq. (), even if dealing with
a discrete domain. The model is appropriate for our purposes
because the approximation is unable to represent high spatial
frequency noise or, as we shall show below, multiplicative
noise. One of the key points to perform the fitting is an
appropriate number of functions for the profile reconstruc-
tion. With basis on the experience, around N = 100
would work for most interferograms. Even if this is a
relatively high number of functions needed to the fitting
(compared to, for example, Zernike polynomials), commod-
ity laptop computers can execute such a process in a picture

April 2012/Vol. 51(4)



Penalver, Romero-Antequera, and Granados-Agustin: Interferogram smoothing and skelotonizing. ..

of 400x400 pixels in less than a tenth of a second using, for
example, MATLAB.

Figure J| shows examples of typical slices taken from lat-
eral shearing interferograms. The dots and segmented lines
represent the intensity values of the original images, and the
solid lines is the intensity reconstructed with Bessel
functions. Figure shows a slice of a interference pattern
almost noiseless, Fig. shows a slice with mild noise, and
Fig. exhibits a noisy slice. It is clear from the
pictures that the reconstruction is carried out successfully
at least for each slice in the direction of the shearing, having
a considerable number of functions.

The overall effect of the smoothing process acting over
the entire interferogram is depicted in Fig. . A set of few
intensity slices are bundled and displayed below each inter-
ferogram for a better appreciation of the effect of the smooth-
ing process. It can be seen how the smoothing blurs the
interferogram horizontally, and comparing the intensity sur-
faces, one can observe how the noise is reduced after the
process. It is also interesting to note that irregular back-
ground illumination is enhanced with the smoothing process.

If the number of functions is not high enough, the recon-
struction only performs on a vicinity of O in the g coordinate
system, [Fig. (b]]. Additionally, a strong aliasing-like effect
takes place for the reconstructed region. This occurs because
the first lobe of the Bessel function, in the —g or +¢ direc-
tions, contributes the most to the fitting process. In some
sense, each function provides a displaced lobe with respect
to the origin that can be used to fit the closest fringe to it. This
process is somewhat similar to the use of Gaussian functions
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Fig. 2 Intensity profile of different interferometric patterns. (a) A slice
of an interference pattern almost noiseless; (b) slice with mild noise;
and (c) a very noisy slice. The dots lines in (a) and (b), and the seg-
mented line in (c), represent the intensity values of the original
images. The solid lines in all the figures are the intensity reconstructed
with Bessel functions.
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Fig. 3 The overall effect of the smoothing process acting over an
interferometric pattern. (a) A interferometric pattern with mild noise;
(b) the interferometric pattern of the figure (a) reconstructed with
the Bessel functions; (c) and (d) are the distribution intensity function
of a segment of the interferometric pattern of the figure (a) and (b),
respectively.

in the neighborhood of fringe maxima in order to estimate
the locus of the interference fringes, but having the advan-
tage of being easier to implement and performing almost
automatically over the slice.

The process can be effectively used to improve contami-
nated interferograms. In a general case, for interferograms
with curved fringes, the best result is achieved executing
the process both horizontally and vertically, and then taking
the average of both images. This can be seen in Fig. fi(a]. We
show quantitatively in the [Appendiy that the process reduces
the effect of different types of noises on the image, even for
complicated noises such as multiplicative noise; we also per-
form a comparison between our regularization process and
the adaptive Wiener filter. I If there is interest on performing
fringe detection (skeletonizing), it is a better idea to perform
the smoothing separately in both directions and executing
maxima detection, as is explained in the next section.

Fig. 4 (a) The interferometric pattern reconstructed using 120 Bessel
functions. The process was applied in both directions, horizontally and
vertically. (b) Reconstruction of the interferometric pattern using 30
Bessel functions in the horizontal direction, the wave subpatterns
arises at the reconstruction region.
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3 Skeletonizing Interferograms

The process of skeletonizing interferograms is part of fringe
analysis. The skeletonizing is the search of loci of maximum
intensity of the interferometric pattern. Different methods are
used to achieve that goal, i.e. adaptive thresholds, gradient
operators, piecewise approximations, thinning procedures,
or spatial frequency filtering. In our case, we used a peak
detection algorithm based on image dilation by means of
a plain structural Strel element This simple code that
allowed us to test the potentials of the method proposed
in the Sec. P

In all of these methods the noise of the images plays a
crucial role in the detection of maximum of the fringes, in
the sense that it degrades the image, difficulting the task. Pre-
processing of images using the Bessel smoothing process,
improves maxima detection. This can be seen, for example,
in Fig. [; it is difficult to select a pixel from the original
image as maximum, but once the smoothing process has
been applied, it can be done unambiguously. It is worth noth-
ing that the pixel with the highest value could, in some cases
(as the one shown), not match with the actual maximum of
the fitted function. However, in these cases it is impossible to
distinguish the real maximum from noise deviations; the
method allows to specify a maximum based on the smooth-
ness of the function.

The skeletonizing process depends on the fringes inclina-
tion, for the case of straight lines the skeletonizing is applied
just in the direction of the displacement, but in the case of
curved fringes the method must be applied in both directions,
i.e. horizontally and vertically. The resulting image is the
overlapping of the individual skeletons in each direction.
The skeletonizing process is carried out as follows:

1. Apply the Bessel smoothing process to the interfero-
metric image. The use of Bessel filter allows a correct
maxima and/or minimums detection.

2. Find the loci of the maximum of the lobes in the hor-
izontal and vertical direction.

3. Using a thresholding process on both images. Then the
images are binarized, i.e., the pixels values less than
0.5 are taken to zero and only those that have values
over 0.5 are set to one.

4. The resulting binarized images are combined using an
“OR” operation.
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Fig. 5 Smoothed intensity distribution in the vicinity of a fringe max-
ima. The dotted points represent the values of intensity in the original
image, and the continuous line is the least square fitting using 120
Bessel functions. To improve the fitting, a larger number of function
are required. For our purposes, this number of Bessel functions is
good enough since we want to reduce the marginal noise.
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Figure f§ shows interferograms with vortex-like featuresH an
the resulting skeletonizing. Since the fringes are curved, the
maximum detection is possible by combining the two ske-
letons. Individually, each skeletonizing does not comprise
all of the features of the fringe pattern, having troubles on
the detection of loci in the direction orthogonal to the scan-
ning. It must be noticed that this adds some noise to the final
skeleton that must be filtered somehow (for example, another
filter can be used prior to the smoothing process). The noise
is also induced by the presence of aliasing in the images,
which can be controlled by changing the resolution of the
image under consideration (i.e., changing the sampling
rate). However, in most cases, this does not interfere with
the band tracking. We performed band tracking once the ske-
leton was computed using track of pixel connections using
eight-connected neighborhoods.

It is important here to clarify something: skeletonizing is
different to band-tracking. In the band tracking process, we
can identify a set of coordinates (maxima) with an specifically
numbered band, while skeletonizing is just the detection of the
maxima over the image. It is easy to accomplish band tracking
with computer assistance using digital topological algo-
rithms® when the skeletonizing has been already performed.
The specific problems dealing with broken skeleton lines and
numbering have to be dealt from the band-tracking point of
view; if using, for example, neighborhood tracking, the
lines with separations greater than two pixels will not be con-
nected. In order to solve such a situation, an additional techni-
que must be employed, such as interpolation.

The skeletons can be used to compute “upper” and
“lower” envelopes. The skeleton correspond to the loci of

% N

() (d)

Fig. 6 Skeletonized interferometric pattern with vortices. (a) Is the
interference of a wave with radial phase variation and a reference
wave with phase ¢, = mo. (b) Is the interference of a reference
wave ¢, = mé+ Cr with a wave with radial phase variation. (c)
and (d) are their respective skeletonized images. The blue line is
the selection of one of the bands. The interferograms were taken
from Ref. [3.
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Fig. 7 Interferogram of Fig. @ with suppression of background illumi-
nation and smoothed by means of the Bessel regularization process.

maxima of the image, which is a mask that can be used to
sample the maximum values of the intensity of the interfer-
ogram. If the image is inverted, the loci of minimums can be
computed and thus obtain a mask for sampling minimums
values of the intensity of the interferogram. Choosing
an appropriate basis (for example, Zernike polynomials),
an expansion of the envelopes can be computed via least
squares. This information can be used to compute the
local fringe visibility:

_ E,(x.y) - E|(x.y)
Y3) = B o) T Eey)

where E, and E,; are the upper and lower envelopes. The
background illumination can be computed as the average
of the envelopes. Using these two quantities, it is possible
to correct the interferogram using the intensity as proposed,
for example, by Schemm and Vest.d As an example, we can
see the corrected interferogram of Fig. ] on Fig. []. The
details of the process are being published elsewhere.

3

4 Conclusions

The regularization process can diminish effects of noise
because the Bessel functions are unable to fit to very high-
frequency signals, thus eliminating those on the reconstruction
of the image, just like the Savitzky-Golay filter? Also, tests
have shown the algorithm robust enough to deal with nonuni-
form illumination. On the other hand, the reconstructed image
will exhibit well-defined lobes, allowing a clear identification
of the maxima and automatic skeletonizing using a simple
peak detection algorithm.

This approach is somewhat similar to that of Schemm and
Vest,Z hence sharing some of its advantages; it uses the
whole image, making it appropriate for interferograms exhi-
biting few fringes and deals with noise and nonuniform
illumination. The advantage with respect to Schemm and
Vest approach is the use of linear least squares fitting, pro-
viding a faster regularization and a method good enough to
be implemented on dynamically changing interferograms, or
even for the batch analysis of hundreds of them (for example,
the results in the were obtained contaminating
1000 images of 401x405 pixels with noise and reconstruct-
ing them in less than 20 sec).

Our approach can also be compared with the representa-
tion by means of an array of Gaussians.! Even when this was
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intended to fit wavefront representation in the presence of
sharp local deformations, the same idea can be used to
smooth data and for maximum determination in the vicinity
of a fringe maximum. In order to perform the fitting process,
it is recommended to use an iterative process. The concept of
Gaussian fitting is far more intuitively clear, but the compu-
ter implementation using standard linear least square fitting
is easier using the approach presented here. As it has been
largely studied for many years, least squares algorithms have
been largely optimized and can be easily parallelized if
necessary (the process itself can be parallelized, given that
each slice operation is fully independent).

This procedure also exhibits one advantage in comparison
with Fourier based spatial filtering:# edge effects are not
as strong as in those methods. A few residual oscillations
with very low amplitudes can be seen beyond the edges,
but they are usually filtered in the binarization step of the
skeletonizing.

In a future work, we will give a complete review on how
to use the process for regularization, background suppres-
sion, band tracking, and feature extraction.

Appendix

This section address computing performance of the algo-
rithm and quality reconstruction of the Bessel smoothing
process against Wiener adaptive filter, which perform a simi-
lar regularization.

One of the advantages of our process is the speed of com-
putation. Figure  shows a benchmark analysis performed
over 10 generated shearograms of different sizes. The reported
time corresponds only to the smoothing process using 100
Bessel functions with spatial frequency parameter a = 1
and to the maxima detection. The inset shows the interfero-
gram under analysis. The images are not always squared,
given that the shearing parameter is normalized as a function
of the side of the image, and being most noticeable as the size
of the images increases. The computations were performed in
a laptop using i7 Intel processor and 4 GB of RAM memory;
the code was developed using MATLAB.

Even when the process was conceived as a regularization
tool for unambiguously specify the center of an interference
fringe, it has show itself as an image filter that can deal
with noise. In order to investigate this feature further, we

25

Time (s)
b

0.5 259x261
L 939 185x157

431x436

21x21  34x34 56x5

gy

Pixels

Fig. 8 Time spent performing smoothing of the interferogram for dif-
ferent values of total pixels. The specific image size is shown for each
computational experiment. The inset shows the interferogram under
consideration.
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Fig. 9 Correlation coefficient as function of the characteristic para-
meter for each noise model. The dot-dashed line represents the cor-
relation coefficient for the contaminated image with: (a) salt and
pepper; (b) multiplicative noise; and (c) Gaussian with mean O.
The solid line represents the correlation coefficient for the recon-
structed image using Bessel functions, the dashed line represents
the correlation coefficient for the reconstructed image using Wiener
adaptive filter.

have simulated six different shearograms with vertical,
horizontal, circular bands, and a combination of these. We
contaminated these shearograms with three different noises
and reconstructed them using the Bessel functions and the
Wienerd adaptive filter, which has been largely used for pro-
cessing interferograms.B For characterizing the process, it
was necessary to use a full-reference image quality assess-
ment. We decided to use the image correlation coefficient:
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where A and B are M XN matrices whose entries represent the
intensity values sampled over some region and expressed in
an arbitrary scale (in this case, normalized to 1). This quan-
tity will evaluate to 1 when the images are exactly identical,
and 0 when completely different. Our tests were carried out
using impulse (salt and pepper), Gaussian, and multiplicative
noises. We computed the correlation coefficient of both the
contaminated and reconstructed images with respect to the
original interferogram (Fig. ). The process was repeated
25 times for each value of the characteristic parameter of
the noise model, and averaged. The results can be seen
on Fig. A

The Bessel smoothing process can greatly diminish the
effects of the salt and pepper noise [Fig. P(a]]. The image
degradation (dot-dashed line) occurs following a concave
curve, where the probability density represent the probability
of each pixel switching to on (1) or off (0), while the degra-
dation of the reconstructed image using both filters exhibits a
convex behavior. The effect is most noticeable around the
probability density 0.5. The Bessel smoothing (solid line)
does better than the Wiener adaptive filter (dashed line).

The multiplicative noise used, Fig. P(c], follows:
I =1,+kly,, where k is a uniformly distributed random
noise with mean 0 and variance v. This kind of noise slowly
degrades the image, but still allowing to extract information
from it. The Bessel functions reconstruction, however, works
very well with this kind of noise and improves the image
quality better for higher values of the variance. Bessel
smoothing clearly outperforms the Wiener filter for this
kind of noise.

On the other hand, the smoothing process and Wiener fil-
ter performs similarly on Gaussian noise [Fig. P(b]]. We
choose to use Gaussian white noise with 0 mean and variance
ranging from O to 1. In this scenario, the process works the
best for higher values of the variance.
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