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1 Introduction
The interferometers are interesting devices used for the esti-
mation of physical quantities. Among those quantities, there
is the fringe pattern, which is a sinusoidal function of the
phase variation. The computation of the phase, then, involves
the inversion of a cosine function, whose result is a wrapped
phase modulo 2π. This wrapped phase, although correctly
reproduces the fringe pattern, does not correctly represent
the wavefront under consideration. There is a large number
of methods for phase unwrapping, i.e., the reconstruction of
the wavefront from the data in the wrapped phase; however,
independently of the method, a preprocessing (or spatial fil-
tering1) of the acquired data should be carried out.

The background illumination suppression is a fundamen-
tal step in the analysis of interferometric images.1–5 For sev-
eral situations, the typical solution is the enhancement of
laboratory conditions in order to obtain better contrast
and/or homogeneous illumination. However, there are cer-
tain scenarios where it is not possible to change laboratory
conditions, i.e., expensive data acquisition, postprocessing of
dynamic phenomena, etc. In these situations, a suitable algo-
rithm must be implemented in order to enhance the acquired
images and suppress background illumination.

Probably, the best known method for achieving so was
presented by Takeda6 in a classical paper. The method yields
on the manipulation of the Fourier spectra in order to identify
both background illumination and spurious (noise) frequen-
cies. This method has a major drawback: it is necessary for
the scientist to identify such frequencies and filter them out.
For an experienced user, this is a powerful tool, but it is clear
that an automatic or semiautomatic method would do better
in many situations.

Although this is an old problem, a new approach is pub-
lished from time to time.7–10 Quiroga et al.7 presented an algo-
rithm for fringe normalization using two orthogonal bandpass
filters. Following this work, Quiroga and Servin8 presented
an approach, which is a direct and isotropic operator,
based on the application of an n-dimensional quadrature
transform. Tavares y Vaz9 proposed a technique where a sec-
ond image with a fringe pattern orthogonal to the first one is

used in order to eliminate the central component (background
illumination) in frequency space. Chuen-Lin et al.10 shows an
approach based on a two-stage model: computation and
extraction of a background-like quantity and local normaliza-
tion of the fringes. As stated by Chuen-Lin,10 the elimination
of background illumination with a digital filter could filter out
required phase information, and the orthogonal projection
requires two images, but some errors could be generated
when illumination varies with time.

Here, we present a single-stage method based on the
computation of the envelopes of the intensity function,
and derivation of background illumination and visibility
from those. The method is clear, given that it handles quan-
tities understandable from a physical point of view, and its
implementation is straightforward. In Sec. 2, the underlying
equations are presented; in Sec. 3, we discuss some details
concerning the implementation of the method; Sec. 4 dis-
cusses the results of some tests on real and simulated inter-
ferograms and compares them with the results of Chuen-Lin
et al. Finally, some conclusions are presented in Sec. 5.

2 Theoretical Basis
For the purposes of the present work, the intensity distribu-
tions considered are given by Ref. 11:

Iðx; yÞ ¼ Aðx; yÞð1þ Bðx; yÞ cos½ϕðx; yÞ�Þ; (1)

where the A function is the background illumination and B is
the local visibility of the fringes. The ϕ function is the phase
function. In order to perform the phase extraction, both A and
B must be known, both representing unwanted irradiance
variations arising from the nonuniform light due to features
of the experimental setup in the optical test. One usual
approach to remove background illumination is to use an
image without fringe pattern in order to compute A,11

given that usually it is determined by the illuminating con-
ditions. Another approach is to take several pictures different
interferograms and extract the information from there.12 The
approach we present here is a single image approach,
which is useful because there are several circumstances
where it is not possible to obtain more than one image,
for example: analysis of dynamic interferograms, SAR satel-
lite images, etc.0091-3286/2012/$25.00 © 2012 SPIE
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Let fxL; yLg and fxU; yUg the set of coordinates of the
local minima and local maxima of the interferogram given
by Eq. (1). The local fringe visibility is given by Ref. 11:

Bðx; yÞ ¼ EUðx; yÞ − ELðx; yÞ
EUðx; yÞ þ ELðx; yÞ

jγ12ðτÞj; (2)

where EU is the upper envelope and EL is the lower envelope
and γ12 is a function related to the coherence of the waves.
For our purposes here, we will take jγ12ðτÞj ¼ 1. The upper
envelope is a smooth field that corresponds to the best fit in
the least squares sense over the values of intensity in the
coordinates fxU; yUg. Correspondingly, the lower envelope
is the best fit in the least square sense over the values of
intensity in the coordinates fxL; yLg.

Notice that over the set of local minima and maxima coor-
dinates we have the following equations:

IðxU; yUÞ ¼ AðxU; yUÞ
�
1þ EUðxU; yUÞ − ELðxU; yUÞ

EUðxU; yUÞ þ ELðxU; yUÞ
�

≈ EUðxU; yUÞ; (3)

IðxL; yLÞ ¼ AðxL; yLÞ
�
1 −

EUðxL; yLÞ − ELðxL; yLÞ
EUðxL; yLÞ þ ELðxL; yLÞ

�

≈ ELðxL; yLÞ; (4)

where the approximation is given in the least squares sense.
It is easy to see that the following ansatz:

Aðx; yÞ ¼ EUðx; yÞ þ ELðx; yÞ
2

; (5)

satisfies Eqs. (3) and (4) in the least squares sense.
What would Eq. (1) would look like in the best illumina-

tion conditions? In such a case, one should expect
EUðx; yÞ ¼ 1 and ELðx; yÞ ¼ 0. Notice that 1 and 0 values
for the upper and lower envelopes, respectively, are arbitrary
(the intensity itself is in arbitrary units). Here, we choose
those values for convenience on the analysis of the images.
It follows that Aðx; yÞ ¼ 1

2
and Bðx; yÞ ¼ 1. The corrected

distribution function then would be given by:

iðx; yÞ ¼ 1

2
ð1þ cos½ϕðx; yÞ�Þ; (6)

and it is related to the original distribution function via:

iðx; yÞ ¼ 1

2

�
1þ 1

Bðx; yÞ
�
Iðx; yÞ
Aðx; yÞ − 1

��
: (7)

3 Implementation
This section explains in detail the implementation of the algo-
rithm for processing of the interferometric images. The gen-
eral idea of the method is to find the maxima and minima of
the interference pattern and to use linear least squares (LLS)
with, for example, Zernike polynomials to fit them and obtain
the upper and lower envelope. After that, using Eqs. (2) and
(5), compute the background illumination and the local visi-
bility. The process is summarized in Fig. 1.

The preprocessing of the image consists of the removal of
high-frequency noise components of the interferogram. The
usual approach is to apply a low-pass filter with small convo-
lution matrices.1 Such filters are designed with some specific
impulse response bear in mind. Some authors10 have used the
Wiener filter,13 whose purpose is to reduce the amount of
noise present in a signal in comparison with an estimation
of the desired noiseless signal. Some algorithms compute
such estimations locally in the neighborhood of the region
being filtered, and because of this, they are usually termed
as adaptive filters. In this work, we have used a smoothing
process developed by us,14 based on the fitting of the intensity
distribution using Bessel functions of the first kind over slices
of the interferogram. The discussion about the selection of fil-
ters is out of the scope of the present paper, but any approach
should suffice as long as it helps to properly identify the max-
ima and minima of interference fringes.

The next step is the skeletonizing of the fringes. Within
this context, it is important to clarify something: skeletoniz-
ing is different form band-tracking. In the band-tracking pro-
cess, we can identify a set of coordinates (maxima) within an
specifically numbered band, while skeletonizing is just the

Fig. 1 Flow chart of the process.
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detection of the maxima over the image. This can be
performed by searching with algorithms based on line track-
ing, threshold comparison, or adaptive binarization.1 There
are very sophisticated approaches, such as algorithms that
use the signal derived either from the image histogram or
the cumulative distribution function to locate the peaks in
the image histogram.15 We obtained very good results
using a simple peak detection algorithm based on image dila-
tion by means of a plain structural Steel element.16 The
detection of the maxima is performed over the intensity dis-
tribution; as most algorithms are used for peak (maxima)
detection, usually one can consider the auxiliary function
1 − Iðx; yÞ, where I have values in ½0; 1�. This election is
arbitrary and depends on the scale used for the intensity
values.

The envelopes are smooth functions defined over the
domain of the coordinates of the interferogram that are eval-
uated to the maxima (or minima) values of the intensity dis-
tribution in those coordinates, in the least squares sense. We
have chosen to use LLS fitting of those values, but this is not
the only possible approach: cubic splines or Lagrange inter-
polation polynomials are other options. We decided in favor
of LLS because the implementation is largely known and
algorithms are very efficient now-a-days. The problem is
summarized in the following expression:

Iðxi; yiÞ ≈
XM
s¼1

csAsðxi; yiÞ; (8)

where I is the intensity distribution in the coordinates
fxi; yig (i.e., the maxima or minima coordinates), cs is a
set of coefficients to be found, and As are the chosen
basis functions. Such a system can be recast in the following
matrix form:

Ac̄ ¼ Ī; (9)

where A is a matrix whose columns represent each of
the basis functions and the rows are those functions
evaluated on each of the i-th coordinates; c̄ is the row vector
of the coefficients and Ī is the row vector of the intensity
distribution at the desired coordinates. The A matrix is
not square, and usually there are more points than basis func-
tions; this means that the system is over-estimated, and it
is solved using, for example, the Moore-Penrose generalized
inverse.17

The condition number18 of matrix A is a crucial quanti-
tative indicator of the reliability of the computed coefficients,
given that it is a measure of the error amplification factor
when solving the least squares problem. If the matrix A is
orthogonal, i.e., a matrix whose columns are orthogonal
between them, its condition number is the lowest possible
value: 1, no error amplification when computing the general-
ized inverse. In the general case, the matrix A will not be
orthogonal over the discrete set of points under consideration
for the selected basis functions. In the cases where there are
problems with the computation of the coefficients because of
large condition numbers of A, the matrix can be factorized
using QR decomposition,18 which allows the representation
in a new basis set with different coefficients and an ortho-
gonal matrix.

For our purposes, we have selected the Zernike polyno-
mials as our basis functions, given that we are dealing with
circular domains. Each basis set have specific domains, so
the coordinates should be scaled accordingly. When dealing
with domains with different geometries, other basis should
be considered. For example, for Cartesian domains, a
good basis set should be Chebyshev polynomials.19 The
Zernike polynomials are invariant in form with respect to
rotation of axes around the origin.11 In other words, we
are dealing for polynomials in the following form:

Zm
n ¼ eim θRm

n ðρÞ; (10)

where the term eim θ is the usual Euler symbol, an orthogonal
function with index m that close over itself after a 2π revolu-
tion. The Rm

n polynomial is usually know as the radial
Zernike polynomial of degree n, and contains no powers
of degree lower than jmj; also, Rm

n is an even or odd poly-
nomial according asm is even or odd. Then, the total number
of terms up to degree N is ðN þ 1ÞðN þ 2Þ∕2.

The degree required for the correct fitting of the envelopes
depends on the irregularity of the background illumination: a
higher degree is required for more irregular illuminating con-
ditions. This is also related to the following rule of thumb:
for any LLS problem, the number of sampled points (in this
case, intensity values), must be at least the number of terms
considered in the expansion.

It is also important to consider the distribution of the
points along the domain; the values of the envelope functions
in the intermediate coordinates between the sampling points
are interpolated according to the respective Zernike expan-
sion, while the values of the envelope functions for coordi-
nates not between sampling points are extrapolated, hence
being less meaningful and subject to greater uncertainty.
For example, for an interferogram with only one bright ver-
tical fringe spanned through the whole domain, the corre-
sponding locus of the maxima would be a line along
the center of the domain (and probably no loci for the
minima). This interferogram would sample the upper envel-
ope in the vertical direction, but brings no information in the
horizontal direction; at the same time, it may not bring any
information for the lower envelope, providing poor local vis-
ibility and background illumination functions. Following this
argument, it is easy to see that a higher number of resolvable
fringes in the interferogram allows a better fitting of the
envelope functions, thus allowing a better correction of
the image.

The last step in the implementation is the computation of
the local visibility, Eq. (2), and the background illumination,
Eq. (5). The correction of the image is then straightforward
using Eq. (7).

Various authors have discussed about the meaning of an
adequate management of these two quantities: Takeda
explains how to separate the carrier frequency of the
unwanted background variation via spectral analysis, in
order to succeed in determining the phase;6 more recently,
Chuen-Lin et al. proposed a new method for fringe normal-
ization by Zernike polynomials fitting to cancel the
background illumination and local normalization in the
regions near the maxima and minima of the modified pattern,
with the purpose of enhancement of the contrast fringe to
separate the carrier frequency as proposed by Takeda.10

Other works9 have tried to mitigate the effect of the
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unwanted illumination and improve the contrast of the
fringes and also eliminating the high-frequency to determine
the phase using Takeda, because the Takeda method
is the simplest and more effective method for shape
measurement.

4 Results and Discussion
In this section, we implement the proposed method to correct
real interferograms that exhibit significant nonuniform
illumination. According to Takeda,6 the fringe pattern in
the Fourier space is compounded by unwanted background
and the carrier frequency plus frequency associated with
noise . On the Takeda proposal, the carrier frequency is iso-
lated and used to obtain the phase. In some cases, this
frequency is overlapping with the rest of the other, making
the isolation more difficult.9,10,12 We will not be able to
develop the whole process to extract the phase in this
paper, but we show how much the interferogram images
can be enhanced suppressing the intensity background com-
puted by our method and normalizing the contrast.

In the Fig. 2(a), an experimental interferogram obtained
from a Ronchi test is shown. This is a lateral shearing inter-
ferogram and can be appreciated a well defined carrier
frequency. On the other hand, the Fig. 2(b) shows the
same interferogram after the background intensity suppres-
sion and the normalization of the visibility, Eq. (7). The
differences between the images are clear to the eye, in
terms on contrast of the fringes as well as homogeneity in
the illumination.

A more quantitative picture can be seen in Fig. 3, where a
row of the original interferogram, Fig. 2, is displayed as a red
continuous line; the black continuous lines are the computed
envelopes and the dashed blue line is the intensity of the cor-
rected interferogram. A full overview of the process is pre-
sented in the Fig. 4: Fig. 4(a) shows the fringe visibility
computed by means of Eq. (2) from the original interfero-
gram; Fig. 4(b) shows the background illumination
computed by means of Eq. (5). Both results were used in
order to process the image; the Fig. 4(c) is a three-dimen-
sional (3-D) mesh of the original interferogram, and
Fig. 4(d) is a 3-D mesh of the corrected interferogram.

Recently, Chuen-Lin et al.10 have suggested the use of
Zernike polynomials to compute a quantity similar to back-
ground illumination via least squares fitting over the intensity
function. This quantity is subtracted directly to the intensity
function. Then, the high-frequency noise is filtered using
adaptive Wiener filter to smooth the image. Finally, fringe

normalization should be carried out using a local region
(basically defining it as the locus of the fringe) contrast mod-
ulation. The amplitude modulation process is implemented
as follows:

(1) Plus and minus regions are created from the values of
the images pixels, after the background illumination
had been removed.

(2) Local maximum in the plus region and local mini-
mum in the minus region are computed.

(3) Finally, each of the regions are divided by the abso-
lute value of local maximum and minimum, respec-
tively.

This method had proved to be quite efficient, but it has the
drawback of being somewhat confusing because it does not
resemble the physical quantities involved in the interference
process. It may seem that our proposal is very similar to the
one proposed by Chuen-Lin et al., but it posses some key
differences: on one hand, the least squares fitting is per-
formed only over the maxima (or minima) of the pattern,
allowing a suitable computation of the upper (or lower)
envelope. Based on these functions, the envelopes, the com-
putation of the background illumination, and visibility is per-
formed, and using both of them, the correction is executed.
This allows the preservation of the shape of the fringes, con-
trary to the proposal of Chuen-Lin, where the local normal-
ization may change them. Another key difference between
the approaches is the preprocessing of the images: while
Chuen-Lin uses the adaptive Wiener filter, the recommenda-
tion here is to use a smoothing process using Bessel func-
tions,14 because it has been proved that it works excellent
with interferogram images, due to the resemblance between
the Bessel function and the interference pattern along one
direction.

In order to compare the two methods, the process was
applied to an interferogram taken under very poor illumina-
tion conditions. The Fig. 5 shows the results using both
approximations: Fig. 5(a) exhibits the plots of the intensity

Fig. 2 (a) Original interferogram obtained from a Ronchi test.
(b) Corrected interferogram by means of background illumination
regularization.

Fig. 3 Slice of the intensity distribution of the interferogram of Fig. 2.
The red continuous line is the intensity of the original image after
of a smoothing process. The black continuous lines are the computed
envelopes. The dashed blue line is the intensity of the corrected
interferogram.
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Fig. 4 (a) Fringe visibility computed bymeans of Eq. (2) from the interferogram of Fig. 2. (b) Background illumination computed bymeans of Eq. (5).
(c) 3-D mesh of the interferogram of Fig. 2. (d) 3-D mesh of the corrected interferogram of the Fig. 2.

Fig. 5 (a) Intensity function for a slice of the original and processed interferograms; the original image in red circles; the black continuous line are
the results obtained using Chuen-Lin et al. approximation,10 and in blue dashed line the results using the method presented here. The purple
continuous line are the computed envelopes. (b) and (c), are a 3-D mesh for our proposal and Chuen-Lin et al. aproximation, respectively.
The inset are the interferogram of : (a) Original, (b) our method and (c) Chuen-Lin et al. aproximation.
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function for a slice of the original and processed interfero-
grams; the original image in red circles; the black continuous
line are the results obtained using Chuen-Lin et al. approx-
imation,10 and in blue dashed line, the results using the
method presented here. The purple continuous line are the
computed envelopes. The inset in the Fig. 5(a) displays
the original interferogram.

It can be observed that the strong nonuniformity of the
illuminating field, even when the method could not correctly
compute the envelopes for the intensity distribution, it per-
formed somewhat better than the one proposed by Chuen-
Lin et al. Usually, software with image capabilities such
as Matlab truncates values higher than one or lower than
zero; this “visually” improves the final result, at least
from a human point of view. Besides, the fringe shape
(width) is preserved using our approach. In Fig. 5(b) and
5(c), we can see a 3-D mesh for each processed image
(with their respective picture in the inset); the difference
between the oscillations in the intensity functions is clearly
seen, where larger, better defined oscillations represent
images with better contrast.

4.1 Performance Testing

In order to test the performance of the method in “compli-
cated” situations, we simulated an interferogram using a pat-
tern with vortices,20 which is an interference of two waves
with the following phase functions:

ϕ1 ¼ π sinð6θÞ; (11)

ϕ2 ¼ 5θ þ 50ρ; (12)

in polar coordinates. The interference pattern can be seen on
the inset of Fig. 6(a). This pattern is interesting because the
fringes have very complicated geometries. For simulating the
unfavorable illumination conditions, the following A and B
functions were proposed:

Aðθ; ρÞ ¼ 0.4þ 0.1 sin½πρ cosðθÞ� sin½πρ sinðθÞ�; (13)

Bðθ; ρÞ ¼ exp½−ðρ∕2Þ2�: (14)

Figure 6(a) shows a mesh of the vortex interference
image, and the modified image with the uneven background
illumination can be easily appreciated on Fig. 6(b). The reg-
ularized image, result of the process, can be seen in Fig. 6(c).
Also, a plot of the whole computed background illumination
can be seen in Fig. 7(a), and the local visibility can be seen in
Fig. 7(b). The A and B functions were intentionally chosen to
not being trivially represented by Zernike polynomials.

Fig. 6 Regularization of a vortex interferogram. (a) Original (simu-
lated) interferogram. (b) Interferogram with complicated uneven illu-
mination conditions. (c) Processed interferogram with regularization
method. The insets show the interference pattern in each case.

Fig. 7 (a) Background and (b) local visibility computed from the vortex
interferogram.
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In order to analyze the effect of noise or incorrect loca-
lization of the extrema in the interference image, we
designed a test, where a fraction of the maxima and minima
of the image are incorrectly identified, shifting randomly its
correct position some pixels in a random direction horizon-
tally and vertically. The Fig. 8 shows three examples of such
a test. In all of the examples, the maxima (and minima) can
change their position up to five pixels horizontally and up to
five pixels vertically, with random direction (left and right or
up and down, respectively).

The Fig. 8(a) shows the locus of the minima and the plot
for the center vertical slice of the regularization. It can be
seen that a small fraction of noise (1%) in the localization
of minima and maxima have no repercussion on the process
and the interferogram can be properly corrected. As the frac-
tion of noise is raised, the process executes less efficiently, as
can be seen in Fig. 8(b), with a fraction of 30%, and Fig. 8(c),
with a fraction of 50%.

It is specially important to address something here: the
wrong localization of the extrema is equivalent to have a
noisy image. Noise in the interferogram produces false
peaks (extrema) that can be identified by the skeletonizing
algorithm as extrema of the intensity distribution. Inaccurate
localization of the maxima of the interferogram leads to
incorrect computation of the envelopes, and then, to incorrect
A and B functions.

In order to quantify these deviations, we compute a resi-
dual function for the corrected interferogram as follows:

R ¼ 1

2

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNmax

i

ðImax
i − 1Þ2

vuut þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNmin

i

ðImin
i − 0Þ2

vuut
1
CCA; (15)

where Nmax and Nmin is the total number of maxima and
minima detected, respectively; Imax

i and Imin
i are the i-th max-

ima and minima detected, respectively. This residual is a
mean between the standard deviation of the maxima with
respect to the ideal maximum value (1) and the standard
deviation of the minima with respect to the ideal minimum
value (0), of the corrected interferogram. The results for the
test can be seen on Fig. 9. The residual was computed for the
same image, varying the amount of incorrectly located
extrema, for several values of the maximum pixel deviation,
and averaging the residual for 10 interferograms. Empiri-
cally, the region below R ¼ 1 is of acceptable tolerance
for deviations.

Fig. 8 Effect of the incorrect localization of the extrema in the regularization process. (a) Fraction of incorrectly localized extrema: 1%. (b) Fraction
of incorrectly localized extrema: 30%. (c) Fraction of incorrectly localized extrema: 50%. In all of the plots, the maximum pixel deviation is 5.
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Fig. 9 Residual as a function of the fraction of incorrectly located
extrema, for several values of the maximum pixel deviation.
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5 Conclusions
A new method to suppress the background illumination and
to control the local visibility in interferometric images was
presented. This new approach involves physical-like quanti-
ties, which are by tradition the main parameters for the study
of interferometry, making the process of understanding much
more natural and obvious. The background illumination and
visibility can affect the correct phase extraction, therefore
must to be controlled by manipulating the experimental con-
ditions and/or by computational treatment.

Finding the maxima and minima of the interference pat-
tern and using them for LLS with Zernike polynomials, the
upper and lower envelope are computed. Using Eqs. (2)
and (5), the background illumination and the local visibility
are achieved, then the correction is performed. This proposal
seems similar to the Chuen-Lin et al. approximation, but the
differences are remarkable: first of all, in the proposal of this
work, the least squares fitting is performed only over the
maxima (or minima) of the pattern, allowing a suitable com-
putation of the upper (or lower) envelope; on the other hand,
the other work proposed use Zernike polynomial to compute
a quantity similar to background illumination via least
squares fitting over whole the intensity function. The
other big difference between the methods is how fringe nor-
malization is carried out. Chuen-Lin et al. suggest to distin-
guish plus and minus regions (for fringe patterns defined
with positive and negative values of intensity) after the back-
ground illumination had been removed to compute local
maximum in the plus region and local minimum in the
minus region and finally each of the regions are divided
by the absolute value of local maximum and minimum,
respectively. In this paper, the best illumination conditions
are achieved using the Eq. (7), making some changes to
the original interferometric image until the conditions are
met, this means, introducing into the equation calculated
values of visibility Bðx; yÞ and background Aðx; yÞ.

The results showed how much the interferometric image
can be enhanced when the method proposed is implemented.
Since the visibility and background can be corrected using
this method, then the extraction of the phase or Fourier ana-
lysis can be implemented with higher success avoiding pro-
blems such as the overlapping of the Fourier components.
We have shown two key factors in the success of the appli-
cation of the method: on one hand, the number of detected
extrema should be at least ðN þ 1ÞðN þ 2Þ∕2, where N is the
highest degree in the Zernike polynomials considered, which
is a small number in comparison to the number of points in a
typical interferogram; and on the other hand, those extrema
should accurately detected. This method provides a simple,
elegant, rapid, and natural process to enhance the contrast of
the interferometric image, and prepare it for future studies.
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