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a b s t r a c t

Trapped ions are considered one of the best candidates to perform quantum information
processing. By interacting them with laser beams they are, somehow, easy to manipulate,
which makes them an excellent choice for the production of nonclassical states of their
vibrational motion, the reconstruction of quasiprobability distribution functions, the
production of quantum gates, etc. However, most of these effects have been produced
in the so-called low intensity regime, this is, when the Rabi frequency (laser intensity)
is much smaller than the trap frequency. Because of the possibility to produce faster
quantum gates in other regimes it is of importance to study this system in amore complete
manner, which is the motivation for this contribution. We start by studying the way ions
are trapped in Paul traps and review the basic mechanisms of trapping. Thenwe show how
the problem may be completely solved for trapping states; i.e., we find (exact) eigenstates
of the full Hamiltonian. We show how, in the low intensity regime, Jaynes–Cummings
and anti-Jaynes–Cummings interactionsmay be obtained, without using the rotating wave
approximation and analyze the medium and high intensity regimes where dispersive
Hamiltonians are produced. The traditional approach (low intensity regime) is also studied
and used for the generation of non-classical states of the vibrational wavefunction. In
particular, we show how to add and subtract vibrational quanta to an initial state, how to
produce specific superpositions of number states and how to generate NOON states for the
two-dimensional vibration of the ion. It is also shownhowsqueezingmaybemeasured. The
time dependent problem is studied by using Lewis–Ermakov methods. We give a solution
to the problem when the time dependence of the trap is considered and also analyze a
specific (artificial) time dependence that produces squeezing of the initial vibrational wave
function. A way to mimic the ion–laser interaction via classical optics is also introduced.
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1. Introduction

The possibility to trap small clouds of particles, or inclusive to trap individual atoms or ions, in a small region of space,
was opened with the invention of electromagnetic traps. These traps allow to study isolated particles for long periods of
time. The Kingdon trap [1] is considered the first type of trap developed. It consists of a metallic filament surrounded by a
metallic cylinder, and a direct current voltage applied between them; the ions are attracted by the filament, but its angular
momentum makes them turn around in circular orbits, with a low probability to crash against it. A dynamic version of this
trap can be obtained if an alternate current voltage is applied between the poles. However, this type of trap was not widely
used at that time, because it has short storage times and because its potential is not harmonic. In 1936, Penning invented
another trap [2] in which the action of magnetic fields together with electric fields make possible the trapping of ions. The
complete development of this type of trap was reached when, in 1959, Wolfgang Paul designed an electrodynamic trap
(now called Paul trap) [3]. In the Paul trap the idea is that a charged particle cannot be confined in a region of space by
constant electric fields, instead an electric field oscillating at radio frequency, must be applied. The Paul trap uses not only
the focusing or defocusing forces of the quadrupolar electric field acting on the ions, but also takes advantage of the stability
properties of the equations of motion. The ions trapped individually are very interesting, mainly because they are simple
systems to be studied. In particular, we take advantage that the ion motion in the Paul trap is approximately harmonic,
making this system a simple one, allowing a better and more direct comparison with the theory. Individual ions of Ca+,
Be+, Ba+ and Mg+, can be stored, even for several days. The trapped ions can be used to implement quantum gates, and a
bunch of ions arranged in a chain, is a promising tool to achieve a quantum computer (each ion in the chain is a fundamental
unit of information or qubit) [4]. The trapping of individual ions also offers a lot of possibilities in spectroscopy [5], in the
research of frequency standards [6,7], in the study of quantum jumps [8], the engineering of specific Hamiltonians [9] and
in the generation of nonclassical vibrational states of the ion [10–17], to name some. To make the ions more stable in the
trap, increasing the time of confinement, and also to avoid undesirable random motions, it is required that the ion be in
its vibrational ground state. This can be accomplished by means of an adequate use of lasers; with the help of these lasers,
the internal energy levels of the trapped ion can be coupled to their vibrational quantum states, in such a way, that for a
certain detuning, the coupling is equivalent to the Jaynes–Cummings Hamiltonian [18–23]. On the other hand, the beam that
induces the coupling can be tuned to allow interactions that generate simultaneous transitions of the internal and vibrational
states, either to lower vibrational energy levels (while passing from the excited to the ground state) or to higher vibrational
energy levels (while passing from the ground to the excited state); this type of coupling is called anti-Jaynes–Cummings.
Alternating successively Jaynes–Cummings and anti-Jaynes–Cummings interactions, the trapped ion can be driven to its
vibrational ground state. In this paper, we study part of the physics of the trapped ions interacting with a laser field. By
using a set of time-dependent unitary transformations, it is shown that this system is equivalent to the interaction between
a quantized field and a two level systemwith time dependent parameters. The Hamiltonian is linearized in such away that it
can be solved with methods that are found in the literature, and that involve time-dependent parameters. The linearization
is free of approximations and assumptions on the parameters of the system as are; for instance, the Lamb-Dicke parameter,
the time-dependency of the trap frequency and the detuning. Thus, we can obtain the best solution for this kind of systems.
Also, we analyze a particular case of time-dependency of the trap frequency.
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Because wewill assume an ion trapped in a Paul trap, in Section 2, we review the basic mechanisms of it. In Section 3, we
show how exact eigenstates may be obtained for the ion–laser system. In Section 4, we show how this interaction may be
solved in different regimes. In Section 5, the standard approach to this interaction is treated; i.e., the low intensity regime,
where by application of the rotating wave approximation, Jaynes–Cummings and anti-Jaynes–Cummings interactions may
be generated. By using this approach, we show how nonclassical states may be generated; in particular, we show how to
add phonons to a vibrational state, how to filter specific superpositions of the motional wave function and how to generate
NOON states in ions vibrating in two dimensions.We also propose here a scheme that allows themeasurement of squeezing.
In Section 6, we analyze the case of an ion with a time-dependent frequency interacting with a laser beam. By doing a series
of unitary transformations, we linearize the Hamiltonian of the system to an exact soluble form; this linearization is also
valid for any detuning and for any time dependence of the trap. In Section 7, we show how the ion–laser interaction may be
modeled by evanescently coupling waveguides and Section 8 is left for conclusions.

2. Paul trap

2.1. The quadrupolar potential of the trap

As we already said, the Paul trap uses static and oscillating electric potentials to confine charged particles. A charged
particle is linked to an axis if a linear restoring force acts over it; i.e., if the force is

F⃗ = −cr⃗, (1)

where r⃗ is the particle position and c is a constant. In other words, if the particle moves under the action of a parabolic
potential, that it can be written in the general form as

Φ(x, y, z) = A(αx2 + βy2 + γ z2), (2)

where A is another constant. The potentialΦ must satisfy the Laplace equation, which means that

∇
2Φ = 0, (3)

where ∇
2 is the Laplacian operator. The Laplace equation (3) imposes the condition

α + β + γ = 0. (4)

To satisfy the above condition, we have several possibilities.
(a) We make α = 1, β = 0 and γ = −1, and this takes us to the bidimensional potential

Φ =
Φ0

2r20
(x2 − z2). (5)

(b) Another possibility is α = 1, β = 1 and γ = −2, and in this case we have, in cylindrical coordinates, the potential

Φ =
Φ0

r20 + 2z20
(r2 − 2z2), (6)

with r20 = 2z20 .
Configuration (a), Eq. (5), is created by four hyperbolic electrodes linearly extended in the z direction, as shown in Fig. 1.

Configuration (b), expression (6), is created by two electrodes in the form of a hyperboloid of revolution around the z axis.
Themost used trap is the linear trap, as the one shown in Fig. 1, butwith poles having circular transverse section instead of

hyperbolic, because it is easier to build. This cylindrical formdoes not correspond to some set of values of (4), but numerically
it has been demonstrated that the potential produced by these electrodes near the axis of the trap is very similar to the one
produced by the hyperbolic electrodes [24].

For the tridimensional case the magnitude of the field is given by

Ex =
Φ0

r20
x, Ey =

Φ0

r20
y, Ez = 2

Φ0

r20
z. (7)

Expressions (6) and (7) reveal that the components r and z of the electric field are independent from each other, and that
they are linear functions of r and z, respectively. We also see that we have a harmonic oscillator potential (parabolic and
attractive) in the radial direction and a parabolic repulsive potential in the z direction. If a constant voltage Φ0 is applied,
and an ion is injected, the ion will oscillate harmonically in the x–y plane, but because of the opposite sign in the field
Ez , its amplitude in the z direction will grow exponentially. The particles will be out of focus, and they will be lost by
crashing against the electrodes. Thus, the quadrupolar static potential, by itself, is not capable to confine the particles in
three dimensions; at most, with this potential, we get unstable equilibrium. We will see next, how to solve this problem.
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Fig. 1. Electrode structure for the bidimensional configuration expressed by Eq. (5).

Fig. 2. Scheme of a Paul trap to store charged particles using oscillating electric fields generated by a quadrupole. The figure shows two states during an
alternate current cycle.

2.2. Oscillating potential of the trap

To avoid the unstable behavior of the charged particles under a static potential, the trapmust bemodified. If an oscillatory
electric field is applied, the particles can be confined. Because of the periodic change of the sign of the electric force, we get
focusing and defocusing in both directions of r and z alternatively with time.

If the applied voltage is given by a continuous voltage plus a voltage with a frequencyΩ , we have

Φ0 = U0 + V0 cosΩt, (8)

and the potential in the axis of the trap is

Φ =
U0 + V0 cosΩt

r20 + 2z20
(r2 − 2z2), (9)

where r0 is the distance from the trap center to the electrode surface.
In Fig. 2, we show a transversal section of a Paul trap using an oscillating electric field.

2.3. Motion in the Paul trap

We will study now some details of the ion motion in a Paul trap. Let us consider the particular case of just one ion, in
three dimensions. Ifm is the mass of the ion, and e its charge, the equation of motion is

m¨⃗r(x, y, z) = qE⃗ = −q∇Φ. (10)
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In order to analyze the trapping conditions, we explicitly write each component as

ẍ = −
2e
mR2 (U0 + V0 cosΩt) x, (11)

ÿ = −
2e
mR2 (U0 + V0 cosΩt) y, (12)

and

z̈ =
2e
mR2

2 (U0 + V0 cosΩt) z, (13)

where R2
= r20 + 2z20 .

Making the substitution

ar =
8eU0

mR2Ω2
= −

az
2
, qr = −

4eV0

mR2Ω2
= −

qz
2
, τ =

Ωt
2
, (14)

Eqs. (11)–(13) take the form of the Mathieu equation; i.e., take the form

d2x
dτ 2

+ (ar − 2qr cos 2τ)x = 0, (15)

d2y
dτ 2

+ (ar − 2qr cos 2τ)y = 0, (16)

and

d2z
dτ 2

+ (az − 2qz cos 2τ)z = 0, (17)

respectively. We can write the three equations as the following one,

d2ui

dτ 2
+ (ai − 2qi cos 2τ)ui = 0. (18)

The subindices i = r, z corresponds to the quantities associated with the axial and radial motions of the ion, respectively.
The quantities ui represent the displacement in the directions r and z.

2.4. Approximated solution to the Mathieu equation

The Mathieu equation is a linear ordinary differential equation with periodic coefficients. This equation can be solved
using Floquet’s theorem [25], which takes us to the general solution

ui(τ ) = Aieiβiτφ(τ)+ Bie−iβiτφ(−τ), (19)

where Ai, Bi and βi are constants determined by the initial position, by the initial velocity of the ion, and by the trap
parameters a and q, and

φ(τ) = φ(τ + π) =

+∞
n=−∞

Cne2inτ (20)

is a periodic function.
The Mathieu equation has two types of solutions.
(1) Stable motion. When the characteristic exponent β is real, the variable u(τ ) is bounded, and in consequence

the motion is stable. That means that the particle oscillates with bounded amplitudes and without crashing against the
electrodes. These conditions allow to trap the ion.

(2) Unstable motion. When the characteristic exponent β has an imaginary part, the function u(τ ) has an exponential
growing contribution. The amplitudes grow exponentially and the particles are lost when they crash against the electrodes.
The boundaries of the stability regions correspond to zero and integer values of βi, and the first region of stability is
surrounded by the four lines βr = 0, βr = 1, βz = 0, and βz = 1, as shown in Fig. 3 [26].

As βi is determined by a and q, the Mathieu equation has stable solutions as a function of a and q. Stability regions for the
solutions of Eq. (18) correspond to regions in the space of the parameters a − q, where there is an overlap of the stability
regions in the axial and radial directions.
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Fig. 3. Stability region in the Paul trap.

In the literature it is not possible to find analytic solutions for Eq. (18), but inmost of the applications a specification of the
map of stability of the solutions is enough, and a detailed functional dependence is not necessary. However, an approximated
solution can be given in the stability region of interest. To this end, we can write expression (19) as

ui(τ ) = Ai

+∞
n=−∞

C i
2n cos(2n + βi)τ + Bi

+∞
n=−∞

C i
2n sin(2n + βi)τ (21)

where, as we already said, Ai and Bi are determined by the initial position ui(0) and initial speed u̇i(0) of the ion, respectively.
The subindices i = r, z coincide with the quantities associated with the radial and axial ion motion, respectively.

The coefficients in the solution (21) are given by the recurrence relations

C i
2n+2 − Di

2nC
i
2n + C i

2n−2 = 0, (22)

with

Di
2n =

ai − (2n + βi)
2

qi
. (23)

Once given ai and qi, the quantities C i
2n and βi can be calculated. If we define,

Gi
2n =

C i
2n

C i
0
, A′

i = AiC i
0, B′

i = BiC i
0, (24)

and we make

ui(t) = us
i (t)+ um

i (t), (25)

we get, from Eq. (21),

us
i (τ ) = A′

i cosωit + B′

i sinωit, (26)

and

um
i (τ ) =

∞
n=1

(A′

i cosωit + B′

i sinωit)(Gi
2n + Gi

−2n) cos nΩt + (B′

i cosωit − A′

i sinωit)(Gi
2n − Gi

−2n) sin nΩt, (27)

where ωi = βiΩ/2.
Analyzing Eqs. (26) and (27), it is possible to realize that the ion motion has two components: us

i (t), a harmonic
oscillation of frequency ωi, and, um

i (t), a superposition of several harmonics with a fundamental frequency Ω , and
amplitudes modulated by the frequency ωi. However, the proportion of the two components, the values of ωi, the number
of subcomponents that contribute appreciably and their weights, depend strongly on the values of ai and qi, in such a way
that they will change in the stability region. All parameters are determined when the values βi and Gi

2n are given. Several
values of βi and Gi

2n, corresponding to some typical values of ai and qi, are listed in [27]. In the table there, it is possible to
see that in the first region for a ≪ q ≪ 1, we can assume that Gi

2
∼= Gi

−2 and the rest of the coefficients Gi
±2n, n > 1, can be

ignored; thus, Eqs. (26) and (27) can be rewritten as

us
i (τ ) = ui0 cos(ωit + δi), (28)

and

um
i (τ ) = Cui0 cosΩt cos(ωit + δi); (29)
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Fig. 4. Micro motion and secular motion of a trapped ion with parameters q = 0.2, β = 0.02. The oscillations at high frequency are the micro motion and
those at low frequency are the secular motion.

or in other words,

ui(t) = ui0 cos(ωit + δi)(1 + C cosΩt), (30)

with

ui0
2

= A′

i
2
+ B′

i
2
, (31)

δ = arccos

 A′

i
A′

i
2
+ B′

i
2

 , (32)

and C = 2Gi
2.

In Fig. 4, we plot Eq. (30). The ion motion is composed of two types of oscillations: the harmonic oscillation with
frequency ωi, called secular motion, and the small contributions oscillating at a frequencyΩ , called micromotion. Usually,
the micromotion is ignored, but it can be reduced using additional electrodes [28]. In this way, the ion motion is controlled
by Eq. (28) and behaves as it was confined in a harmonic pseudo-potential, that for the radial part, has the form

Φr =
m
2


ω2

xx
2
+ ω2

yy
2 . (33)

Typically U0 = 0, thus a = 0 (Eq. (14)); in any case, we are working in the region where a ∼ 0. Thus, the frequenciesωx and
ωy are degenerated, and Eq. (33) reduces to

Φr =
mω2

r

2


x2 + y2


. (34)

To obtain an expression for ωr , we can use the approximation [29],

βr =


ar +

q2r
2
, (35)

with the definition ωr = βrΩ/2, to get

ωr =
Ωqr
23/2

=
eV0

√
2mr20Ω

. (36)

Experimentally, the typical ranges of operation are V0 ≈ 300–800 V,Ω/2π ≈ 16–18 MHz, and r0 ≈ 1.2 mm, that gives a
radial frequency ωr ≈ 1.4–2.0 MHz for calcium ions (40Ca+).

We can summarize this section, saying that under certain conditions it is a good approximation to treat the ion motion
as a harmonic oscillator. This allows us to apply algebraic techniques well known for this system to the ion–laser interaction
in the following. In particular, invariant methods [30–32] permit the handling of time dependent systems in a simple way.

3. Ion–laser interaction in a trap with time-independent frequency

Despite the relative simplicity of the ion–laser interaction, the full theoretical treatment of its dynamics is a nontrivial
problem, because this interaction is highly nonlinear. Even in the simplest case, where only a single ion is in the trap, one is
usually forced to employphysicallymotivated approximations in order to find a solution. Awell-knownexample is the Lamb-
Dicke approximation, in which the ion is considered to be confined within a regionmuch smaller than the laser wavelength.
Many treatments also assume a weak coupling approximation; i.e., a sufficiently weak laser–ion coupling constant. Under
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these conditions, tuning the laser frequency to integer multiples of the trap frequency results in effective Hamiltonians of
the Jaynes–Cummings type [18–23], in which the center-of-mass of the trapped ion plays the role of the fieldmode in cavity
QED. Recently, a new approach to this problem has been suggested, based on the application of a unitary transformation T̂
that linearizes the total ion–laser Hamiltonian. Under this transformation the Hamiltonian becomes exactly equivalent to
the classic Jaynes–Cummingsmodel (JCM), including counter-rotating terms and an extra atomic driving term. Remarkably,
the ion-trap system is thus formally equivalent to an atom interacting with a single-mode quantized electromagnetic field.

This equivalence does not of course lead to an exact solution to the ion-trap problem, since the complete JCM is also
notoriously unsolved. To our knowledge, eigenstates and eigenvalues for this model have only ever been obtained either
numerically or expressed in the form of a series with no known closed expression. Still, some advantages can be taken of
regimes where the JCM is analytically, albeit approximately, soluble, such as the well-known ‘‘weak-coupling’’ limit where
the rotating-wave approximation can be made. Using the already mentioned map T̂ Ď to translate this solution back into
the ion-trap scenario has led to the identification of a new soluble regime for that system. This in turn has already proven
useful in the context of quantum computing. In this section, we study the interaction of a laser with a trapped ion in a
harmonic potential with constant frequency. We start with the Hamiltonian of the system, and we show that it is possible
to find Jaynes–Cummings type transitions and anti-Jaynes–Cummings type transitions, depending on the different cases of
resonance and laser intensities that induce the coupling between the ion internal states and the ion vibrational states.

We can write the Hamiltonian of the trapped ion as

H = Hvib + Hat + Hint, (37)

where Hvib is the ion’s center of mass vibrational energy, Hat is the ion’s internal energy, and Hint is the interaction energy
between the ion and the laser. As we explained in the previous section, the vibrational motion can be fairly approximated
by a harmonic oscillator. Internally, the ion will be modeled by a two level system. In the interaction between the ion and
the laser, we will make the dipolar approximation, so we will write the interaction energy as −er⃗ · E⃗, where −er⃗ is the
dipolar momentum of the ion and E⃗ is the electric field of the laser, that will be considered a plane wave. Thus, we write the
Hamiltonian explicitly as

H = νn̂ +
ω21

2
σz + λE0


ei(kx−ωt)σ+ + e−i(kx−ωt)σ−


. (38)

The first term in the Hamiltonian is the ion vibrational energy; in the ion vibrational energy, the operator n̂ = âĎâ is the
number operator, and the ladder operators â and âĎ are given by the expressions

â =


ν

2
x̂ + i

p̂
√
2ν

(39)

and

âĎ =


ν

2
x̂ − i

p̂
√
2ν
, (40)

where we have made the ion mass equal to 1. Also, for simplicity, we have displaced the vibrational Hamiltonian by ν/2,
the vacuum energy, that in this case is not important.

The second term in the Hamiltonian corresponds to the ion internal energy; the matrices σz , σ+, and σ− are the Pauli
matrices, and obey the commutation relations

[σz, σ±] = ±2σ±, [σ+, σ−] = σz, (41)

and ω21 is the transition frequency between the ground state and the excited state of the ion.
Finally, the third term, is the interaction energy between the ion and the laser; in this last term, we have used again the

rotating wave approximation.

3.1. Exact eigenstates

In this subsection we show that, under certain combinations of system parameters, it is possible to obtain exact
eigenstates for the ion-trap Hamiltonian. Using the map T̂ we also obtain therefore exact eigenstates of the complete JCM.
The set of states we construct is by no means complete, and it is also unclear at present how (or if) it may be extended.
Nevertheless, we believe that its existence may provide a clue to a deeper understanding of both models.

Let us start by recalling the equivalence between the ion-trap system and the JCM [18–23,33]. The Hamiltonian for the
ion–laser interaction can be written as

Hion = νn̂ +
δ

2
σz +Ω


σ+D̂(iη)+ σ−D̂Ď(iη)


, (42)
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where D̂(iα) = eiα(â+âĎ) [34] is the displacement operator, ν the harmonic trapping frequency, δ = ω21 − ω the laser–ion
detuning,Ω the (real) Rabi frequency of the ion–laser coupling and

η = K


1

2mν
(43)

is the so-called Lamb-Dicke parameter, that is a measure of the amplitude of the oscillations of the ion with respect to the
wavelength of the laser field represented by its wave vector K .

On the other hand, the Jaynes–Cummings Hamiltonian with counter-rotating terms is given by

HJCM = ωn̂ +
ω0

2
σz + iλ (σ+ + σ−)


â − âĎ


. (44)

Although these two models appear to be physically and mathematically quite distinct, they are in fact exactly equivalent.
The easiest way to see this is by rewriting Eq. (42) in a notation where operators acting on the internal ionic levels are
represented explicitly in terms of their matrix elements, as

Hion =

 νn̂ +
δ

2
ΩD̂ (iη)

ΩD̂Ď (iη) νn̂ −
δ

2

 . (45)

Consider now the unitary operator

T =
1

√
2


D̂Ď (β) D̂ (β)
−D̂Ď (β) D̂ (β)


, (46)

where β = iη/2. It is possible to check after some algebra that

Hion = THionT Ď
=

 νn̂ +Ω +
νη2

4
ιην

2


â − âĎ


+
δ

2
ιην

2


â − âĎ


+
δ

2
νn̂ −Ω +

νη2

4

 . (47)

Returning to the usual notation, we obtain

Hion = νn̂ +Ωσz +
ιην

2
(σ+ + σ−)


â − âĎ


+
δ

2
(σ+ + σ−)+

νη2

4
. (48)

Comparing with Eq. (44), it can be seen that this is precisely the Jaynes–Cummings interaction, supplemented by two
additional terms: the first corresponds to an extra static electric field interacting with the atomic dipole, and the second
is just a constant energy shift which can be disregarded. In particular, a purely Jaynes–Cummings form is recovered when
δ = 0, corresponding to a resonant laser–ion interaction in Eq. (42). Of course, in Eq. (48) various parameters in the
Hamiltonian have different meanings than they do in Eq. (42): ν becomes the cavity field frequency ω, 2Ω the atomic
transition frequency ω0, δ the coupling strength with the static field and η the ratio between the Jaynes–Cummings Rabi
frequency 2λ and the cavity frequency ω. In what follows, we shall refer to Eq. (48) as the ‘Jaynes–Cummings picture’ of the
ion-trap Hamiltonian, Eq. (42).

This correspondence is very useful, since it enables one to map interesting properties of each model onto their
counterparts in the other. For instance, it has been recently used to identify the existence of ‘‘super-revivals’’ in the ion–laser
interaction [33], and to discover a means of realizing substantially faster logic gates for quantum information processing in
a linear ion chain [35]. In this paper, we will use it to map eigenstates of one model into those of the other (it is clear that,
if |ψ⟩ is an eigenstate of Hion, then T |ψ⟩ is a corresponding one for Hion). In this regard it is important to point out that,
although Hion and Hion, both describe systems consisting of a two-level atom interacting with a bosonic mode, one should
not identify each of these subsystems with their counterparts after the transformation has been applied. This is due to the
fact that T is an entangling transformation: ion-trap states, where the ion’s internal and vibrational degrees of freedom have
well-defined pure states, can be mapped into entangled atom-cavity states in the corresponding cavity QED system.

3.1.1. Simple ansatz
Let us return now to the ion-trap Hamiltonian, Eq. (42). We will construct an ansatz which allows the determination of

exact eigenstates of this system, provided certain relations are satisfied between the parameters Ω, δ, and η. In order to
motivate our general solution, let us consider first the possibility of finding such a state of the form

|ψ⟩ = |e⟩ (c0 |0⟩ + c1 |1⟩)+ |g⟩ |φ⟩ ≡


c0 |0⟩ + c1 |1⟩

|φ⟩


, (49)
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where again we choose a notationwhere the ionic elements are written out explicitly (e.g.,


|e⟩=1
0


). Let us now seewhether

the eigenvalue equation

Hion |ψ⟩ = E |ψ⟩ , (50)

can be satisfied. Eq. (45) shows that this requires |φ⟩ to be of the form

|φ⟩ = DĎ (iη) (d0 |0⟩ + d1 |1⟩) = d0 |−iη⟩ + d1 |−iη; 1⟩ , (51)

where |−iη⟩ is a coherent state and |α; k⟩ ≡ D̂ (α) |k⟩ is a displaced number state [36]. We thus require

Hion |ψ⟩ =



c0
δ

2
+Ωd0


|0⟩ +


Ωd1 + c1


ν +

δ

2


|1⟩

c0Ω + d0


νn̂ −

δ

2


|−iη⟩ +


c1Ω + d1


νn̂ −

δ

2


|−iη; 1⟩

 . (52)

Now, using the well-known fact that D̂Ď (α) âD̂ (α) = â + α [34], it is easy to show that the displaced number states satisfy
the recursion relation

n̂ |α; k⟩ = (|α|
2
+ k) |α; k⟩ + α

√
k + 1 |α; k + 1⟩ + α∗

√
k |α; k − 1⟩ . (53)

Substituting then Eqs. (49), (52) and (53) into Eq. (50) gives the following eigenstate conditions:

d1 = 0; c0 =
Ω

ν
; c1 =

iην
Ω

; E = ν +
δ

2
, (54)

which hold however only if the parametersΩ, δ, η satisfy the additional constraint
Ω

ν

2

+ η2 = 1 +
δ

ν
. (55)

Under these conditions the stateψ+

ion


= |e⟩


Ω

ν
|0⟩ +

iην
Ω

|1⟩


+ |g⟩ |−iη⟩ (56)

is an (unnormalized) eigenstate of Hion with eigenvalue ν + δ/2. Using operator T̂ we can map this state into an eigenstate
of the generalized JCM model in Eq. (48)ψ+

JCM


= T̂

ψ+

ion


= |−⟩


Ω

ν
|−iη/2⟩ +

iην
Ω

|−iη/2; 1⟩


+ |+⟩ |−iη/2⟩ (57)

where |±⟩ = (|g⟩ ± |e⟩) /
√
2.

Condition (55) means that the ansatz in Eq. (49) does not always succeed, as only two of the three parameters Ω, δ, η
can be chosen independently. In addition, the domain of some of these parameters is not entirely unrestricted; for instance,
it is easily seen that no solution exists when the laser is tuned such that δ < −2ν. Nevertheless, the existence of solutions
satisfying Eq. (49) leads us naturally to seek for other solutions using similar or slightly generalized ansatz. For example, a
second solution can be easily found if we note that the Hamiltonian Hion is invariant under the combined transformations

|e⟩ ↔ |g⟩, δ ↔ −δ, η ↔ −η. (58)

Applying this symmetry transformation also to Eqs. (54) and (55) we can see that, as long as we satisfy the condition
Ω

ν

2

+ η2 = 1 −
δ

ν
, (59)

then ψ−

ion


= |e⟩ |iη⟩ + |g⟩


Ω

ν
|0⟩ −

iην
Ω

|1⟩


(60)

is an eigenstate with eigenvalue ν − δ/2.
Note that, unless δ = 0, conditions (55) and (59) aremutually exclusive. (In the ‘ion-trap’ picture, thismeans that the laser

must be resonant with the ion and in the ‘JCM’ picture, that no static field is applied; i.e., that the Hamiltonian is just the full
JCM). In other words, only in this special case are

ψ+

ion


and

ψ−

ion


simultaneous (in fact, degenerate) eigenstates of Hion. The

reason is that, in this case only, the ion-trap Hamiltonian, Eq. (42), has an extra symmetry: it commutes with the operator
σx exp(iπ âĎâ). This parity-like observable has two eigenvalues ±1, and so the spectrum of Hion is two-fold degenerate (in
the JCM picture, the corresponding symmetry operator is σz exp(iπ âĎâ)). It can be easily checked that neither

ψ+

ion


norψ−

ion


have this symmetry, but simple linear combinations of them do.
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3.1.2. General ansatz
One can easily generalize Eq. (56) to obtain a more general eigenstate for Hion; this general state can be proposed as

|ψ⟩ =
Ω

ν

m+1
n=0

cn |n⟩ |e⟩ +

m
n=0

dn |−iη, n⟩ |g⟩ . (61)

Substituting this proposal in the eigenvalue equation (50), it can be shown that the corresponding eigenvalues are Em =

(m + 1)ν +
δ
2 , that

cn =


1

m + 1 − n
dn; n = 0, 1, 2, . . . ,m

iη
ν2

Ω2

√
m + 1dm; n = m + 1

(62)

and that the dn coefficients satisfy

ε0 −iη
iη ε1 −i

√
2η

0 i
√
2η

. . .
. . .

. . . εm−1 −i
√
mη

i
√
mη εm




d0

...

dm

 = 0⃗ (63)

where

εn = 1 + m − n − η2 +
δ

ν
−

1
1 + m − n

Ω2

ν2
. (64)

Eq. (63) establish the recurrence relations

i

jηdj−1 + εjdj − i


j + 1ηdj+1 = 0, j = 0, 1, 2, . . . ,m − 1 (65)

i
√
mηdm−1 + εmdm = 0

that allow us to calculate all the d coefficients of the eigenvector (61) in terms of d0. The first ones are given by

d1 = −iε0
d0
η

(66)

d2 =

η2 − ε0ε1

 d0
√
2η2

d3 = −i

2η2ε0 + η2ε2 − ε0ε1ε2

 d0
√
6η3

d4 =

3η4 − 3η2ε0ε1 − 2η2ε0ε3 − η2ε2ε3 + ε0ε1ε2ε3

 d0
2
√
6η4

.

Note that the vector of coefficients (d0, . . . , dm) is an eigenvector of this tridiagonalmatrix with zero eigenvalue. This is only
possible if the determinant of thematrix in Eq. (63) is zero, which imposes a constraint onΩ, δ, ν. These imposed conditions
are the generalization of Eq. (55).

It is easy to show that if Ω ≪ ν, η ≪ 1 and δ = −ν all these conditions are satisfied (the matrix in Eq. (63) becomes
diagonal with a zero in the m + 1,m + 1 position), and then we obtain the exact eigenvalues and the exact eigenvectors
without using the rotating wave approximation.

As we already mention, the Hamiltonian is symmetric under the combined transformations {|e⟩ ↔ |g⟩ ; δ ↔ −δ;
η ↔ −η}; this allows us to propose another set of eigenstates as

|ψ⟩ =

m
n=0

dn |iη, n⟩ |e⟩ +
Ω

ν

m+1
n=0

cn |n⟩ |g⟩ , (67)

where now

cn =


1

m + 1 − n
dn; n = 0, 1, 2, . . . ,m

−iη
ν2

Ω2

√
m + 1dm; n = m + 1.

(68)
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The d coefficients satisfy Eq. (63) but with

εn =
δ

ν
+

1
1 + m − n

Ω2

ν2
− 1 − m + n + η2, (69)

and the corresponding eigenvalues are Em = (m + 1)ν −
δ
2 .

In this case all the constraints imposed by Eq. (63) are satisfied ifΩ ≪ ν, η ≪ 1 and δ = ν, and the exact eigenvalues
and the exact eigenvectors are again obtained without using the rotating wave approximation.

3.2. Blue and red sidebands

Processes where simultaneously the internal excitation and the motional quantum numbers are increased (decreased)
are known as blue sideband excitations [37]. When simultaneously the internal excitation is excited (lowered) and the
motional quantum numbers are decreased (increased) are known as the red sideband. We discuss now some properties of
the eigenstates (61) and (67) in order to show that, under certain conditions, namely, low intensity (Ω ≪ ν) and Lamb-
Dicke (η ≪ 1) regimes, eigenstates (61) correspond to the blue side band and the eigenstates (67) correspond to the red
side band. Under these conditions, it is easy to prove that

|ψ0⟩ ≈ iη
ν

Ω
|1⟩|e⟩ + |0⟩|g⟩, (70)

which is an eigenstate of the operator of the form σ+âĎ + σ−â. Thus, when an up ion internal transition takes place
(|g⟩ −→ |e⟩) the vibrational motion acquires an extra phonon (|0⟩ −→ |1⟩). In general, we will have in this approximation

|ψm⟩ ≈ i
√
1 + mη

ν

Ω
dm|m + 1⟩|e⟩ +

m
n=0

dn|n⟩|g⟩ (71)

showing that internal up transitions are accompanied by vibrational up transitions.
In the case of the eigenstates (67), we have the conditions Ω ≪ ν, η ≪ 1 and δ = ν. Under these conditions we can

approximate the eigenstates as

|ψm⟩ ≈

m
n=0

dn|n⟩|e⟩ − i
√
1 + mη

ν

Ω
dm|m⟩|g⟩. (72)

Thus transitions to the lower internal ion states are associated with an increase of vibrational quanta.

3.3. The blue side band and the red side band by means of the intensity

In the resonant case, processes that correspond to the blue side band and the red side band can also be obtained bymeans
of the laser intensity. If we take δ = 0, and consider the Lamb-Dicke limit, the displacement operator can be expanded in
Taylor series and written as

D̂(α) = eαâ
Ď
−α∗ â

≈ 1 + αâĎ − α∗â, (73)

such that the Hamiltonian (45) reads

H = νn̂ +Ωσx −Ωησy

â + âĎ


, (74)

where we have used that σx = σ+ + σ− and σy = −i(σ+ − σ−). By making now a rotation around the Y axis (by means of
the transformation exp(iπ4 σy)), and going to the interaction picture, we get the transformed Hamiltonian

HI = iηΩ

e−it(ν−2Ω)âσ+ − eit(ν−2Ω)σ−âĎ − e−it(ν+2Ω)âσ− + eit(ν+2Ω)σ+âĎ


. (75)

If we take now ν = −2Ω , and we use the rotating wave approximation, the Hamiltonian reduces to

HI = −iηΩ

âσ− − σ+âĎ


(76)

which clearly gives us the blue side band.
To get the red side band, we must take ν = 2Ω and the Hamiltonian we get is

HI = iηΩ

âσ+ − σ−âĎ


(77)

that clearly implies thatwhen the ion goes from the ground internal state to the internal excited state, the vibrationalmotion
losses one phonon and vice versa; i.e., the red sideband.
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4. Solution in different regimes: dispersive Hamiltonians

The ion–laser interaction may be easily solved in the low intensity regime [38–42], but besides the condition that the
laser intensity is much lower than the vibrational frequency, we set the condition that the detuning between the laser and
the atomic transition frequency is an integral multiple of the vibrational frequency. Then some questions arise: Is it possible
not to consider integer multiples of the vibrational frequency? Is it possible to solve for high and middle intensities?

We have shown in Section 3 that it is possible to find solutions for any set of parameters; i.e., in all regimes [43]. However,
the solutions are not general because the set of eigenstates that may be found cannot expand all possible (general) states.

It has been shown already that for low intensities it is possible also to consider the ion micromotion [26], and by using
Ermakov–Lewis invariant methods [30–32] it was possible to linearize the ion–laser Hamiltonian when the micromotion
was included [44]. Here, we follow Zúñiga-Segundo et al. [45] and show how it is possible to solve the ion–laser interaction
in different regimes, including high intensity and medium intensity.

4.1. Different regimes

In Section 3.1,we showed that the ion–laserHamiltonian (45) can be casted in the formgiven by expression (48) bymeans
of the similarity transformation (46). Therefore, we have linearized the ion–laser interaction in an exact way, by means of a
unitary transformation; i.e., both Hamiltonians, Ĥion and Ĥion are equivalent. In the following, we will neglect the term νη2

4
because it only represents a constant shift of all the eigenenergies. Of course, transformation (46) has to be applied to an
initial condition for the internal state of the ion and its vibrational motion wave function. Let us assume that we have the
initial state

|ψ(0)⟩ = |iα⟩|e⟩, (78)

where |iα⟩ is a coherent state, and for simplicity we take α a real number (to avoid extra phases later, but the calculation
may be done for complex α). Then, we have that the initial wave function associated with the transformed Hamiltonian (48)
is

|ψ̃(0)⟩ = T |ψ(0)⟩, (79)

where the transformation T is given in (46). If we write the initial wave function in terms of 2 × 2 matrices, we obtain

|ψ̃(0)⟩ =
1

√
2
ein̂

π
2


D̂Ď(iη/2) D̂(iη/2)

−D̂Ď(iη/2) D̂(iη/2)


|iα⟩

0


=

ein̂
π
2

√
2


|i(α − η/2)⟩

−|i(α − η/2)⟩


. (80)

Thus, we have changed the complicated Hamiltonian (45) by the linear Hamiltonian (48) via a unitary transformation. The
small price we have to pay, is that in the initial wave function the coherent state is displaced and the ion is initially (in the
new frame) in a superposition of ground and excited states.

4.2. Medium intensity regime (MIR)

We already considered this case, when we analyzed in Section 3.3 the blue and red side bands by means of the intensity.
In this case, the vibrational frequency is of the order of twice the field intensity (Rabi frequency).We also consider the Lamb-
Dicke regime; i.e., η ≪ 1. For simplicity, wewill set δ = 0 to show the different possibilities we have now. However, it is not
difficult to produce effective Hamiltonians also in the off-resonance case. In this case, the Hamiltonian (48) may be casted
into (77) which is a Hamiltonian that has been extensively studied [18,22]; therefore, we will not addmore here, except the
fact that for themedium intensity regime the Hamiltonian (45) may be exactly expressed as a JCMHamiltonian via a unitary
transformation and the rotating wave approximation, without extra approximations.

4.3. Low and high intensity regimes

In the case of the low intensity regime (LIR) the solution has been known already for several years [16,17]; however, we
will treat it with some details in Section 5. Here, we will show a different method that is also valid for the high intensity
regime (HIR). Just for the matter of qualitative analysis, let us take δ = 0. Consider now Ω ≪ ν (LIR) or Ω ≫ ν (HIR) in
Eq. (48). As this Hamiltonian for δ = 0 is equivalent to the atom-field interaction, we can borrow knowledge from such an
interaction: we know that when the field and atomic transition frequencies are very different (in our case, it is translated
in the equation |ν − 2Ω| ≪ ην/2, that may happen in either of both regimes, HIR or LIR), atom and field stop to exchange
energy and we obtain a dispersive Hamiltonian [46]. The same happens in the ion–laser interaction, and via a small rotation
approach [47], we will be able to cast Hamiltonian (48) as an effective (dispersive) Hamiltonian.

By transforming the Hamiltonian (48) with the unitary operators

Û1 = eξ1(â
Ďσ̂+−âσ̂−), Û2 = eξ2(âσ̂+−âĎσ̂−); (81)
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Fig. 5. Plot of Pe(t) as a function of t for k = 0, ν = 1, Ω = 0.2 and η = 0.1. The vibrational motion of the ion is considered to be in a coherent state,
|α|

2
= 4 and the ion in its excited state. Solid line represents the numerical (exact) solution, dashed line the solution from Section 3 and the dot-dashed

line the solution for the dispersive Hamiltonian.

i.e.,

Ĥeff = Û2Û1ĤionÛ
Ď
1 Û

Ď
2 (82)

with ξ1, ξ2 ≪ 1, using

ξ1 =
ην

2(ν + 2Ω)
ξ2 =

ην

2(2Ω − ν)
, (83)

and remaining up to first order in the expansion eξABe−ξA
= B+ ξ [A, B] +

ξ2

2! [A, [A, B]] + · · · ≈ B+ ξ [A, B] [47], we get the
effective Hamiltonian

Ĥeff = νâĎâ +Ωσ̂z − χionσ̂z


âĎâ +

1
2


+
δ

2
(σ+ + σ−)+

κ

2
σ̂z

âĎ + â


, (84)

that for δ = 0 is known as the dispersive Hamiltonian. Note that, just as in the atom-field case, there is no need to transform
the (already transformed) initial state (80) as a small rotation has been applied. We can see that in fact ξ1, ξ2 ≪ 1 either
in the LIR (in this case we have also to consider η ≪ 1) or in the HIR (no constrain for η), which justifies completely the
approximation for the above Hamiltonian. For the resonant case, δ = 0, it becomes diagonal and we can solve it in an easy
way.

In Fig. 5, we show a plot for the probability to find the ion in its excited state

Pe(t) = ⟨ψ(0)|T̂ Ď exp(itĤeff)T̂ |e⟩⟨e|T̂ Ď exp(−itĤeff)T̂ |ψ(0)⟩ (85)

as a function of time for k = 0, ν = 1,Ω = 0.2 and η = 0.1. The vibrational motion of the ion is considered to be a coherent
state |α|

2
= 4, and the internal state of the ion is excited. The three curves in the figure correspond to the exact numerical

solution (solid line), the solution from Hamiltonian (45) (dashed line) and the solution for the dispersive Hamiltonian (84).
We can see excellent agreement among the three plots for the LIR. Now, for the HIR in Fig. 6, we show a plot also of Pe(t) as a
function of time for the exact numerical solution (solid line) and our solution from this section (dashed line), but now with
the parameters for k = 0, Ω = 1, ν = 0.2, and η = 0.1. Again, it may be noticed the excellent agreement between both
curves. We should stress that there is no other analytical solution to compare with, as ours is the first analytical solution in
this regime (also in the medium intensity regime).

The new interaction constants in the effective Hamiltonian (84) have the forms

χion =
2η2ν2Ω
4Ω2 − ν2

, κ =
δην2

4Ω2 − ν2
. (86)

In the resonant case and high intensity regime,Ω ≫ ν, it is easy to show that

χion → χhigh
=

2η2ν2

4Ω
1

1 −
ν2

4Ω2

≈
η2ν2

2Ω
, (87)

while in the low intensity regime,Ω ≪ ν, we will have the same Hamiltonian, but χ will change to

χion → χlow = −2η2Ω
1

1 −
4Ω2

ν2

≈ −2η2Ω. (88)
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Fig. 6. Plot of Pe(t) as a function of t for k = 0, Ω = 1, ν = 0.2 and η = 0.1. The vibrational motion of the ion is considered to be in a coherent state,
|α|

2
= 4 and the ion in its excited state. Solid line represents the numerical (exact) solution, dashed line the solution for the dispersive Hamiltonian.

If in Eq. (84) we take the detuning δ different from zero, we could get the usual blue and red side-bands interactions (see
for instance Ref. [42]). This is done by choosing the value δ = ±ν. The only case in which we can obtain such regimes is the
low intensity case, where one can perform the rotating wave approximation to the Hamiltonian (84), which agrees with the
usual procedure for obtaining such blue and red side-band regimes. The high intensity case, Ω ≫ ν, does not allow such
side-bands because in the Hamiltonian (84) the interaction constants multiplying the different terms may be of the same
order.

5. Low intensity regime

If we consider that theHamiltonian (38) corresponds to thewave function |ξ(t)⟩, the Schrödinger equation can bewritten
as

i
∂

∂t
|ξ⟩ = H|ξ⟩. (89)

Let us examine the transformation to a rotating frame of frequency ω, by means of the unitary transformation

T (t) = exp

i
ω

2
σz t

. (90)

Applying the transformation T , the wave function |ξ(t)⟩ transforms into the wave function |φ(t)⟩; i.e.,

T (t)|ξ(t)⟩ = |φ(t)⟩, (91)

and the Hamiltonian transforms into

HT = i
∂T (t)
∂t

T Ď(t)+ T (t)HT Ď(t). (92)

Writing the position operator x̂ in terms of the ladder operators, expressions (39) and (40), using the Baker–Hausdorff
formula [26,48], and the commutators of the Pauli matrices (41), the explicit transformed Hamiltonian is

HT = νn̂ + ν
k
2
σz + λE0


eiη(â

Ď
+â)σ+ + H.C.


(93)

where η is the Lamb-Dicke parameter. The quantity

kν = ω21 − ω (94)

is the detuning between the planewave frequency and the transition frequency of the ion; in otherwords,we are considering
that the detuning is a multiple integer of the vibrational frequency of the ion.

We need now to factorize the exponential in the Hamiltonian (93). As [â, [â, âĎ]] = 0, and [âĎ, [â, âĎ]] = 0, we can use
the Baker–Hausdorff formula, and write

e−iη(â+âĎ)
= e−η2/2e−iηâĎe−iηâ. (95)

Expanding in Taylor series the exponentials that contains the operators, and substituting in the Hamiltonian (93), we obtain

HT = νn̂ + ν
k
2
σz + λE0e−η2/2


σ−

∞
n,m=0

(−iη)n+m

n!m!
(âĎ)nâm + H.C.


. (96)
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We go now to the interaction picture, using the transformation

Tfree = exp

it

νn̂ +

kν
2
σz


. (97)

We apply this transformation, using the following two commutators,

[â, f (â, âĎ)] =
∂ f
∂ âĎ

(98)

and

[âĎ, f (â, âĎ)] = −
∂ f
∂ â
, (99)

and we obtain

Hint = Ωe−η2/2


σ−

∞
n,m=0

(−iη)n+m

n!m!
(âĎ)nâme−i(n−m−k)νt

+ H.C.


, (100)

whereΩ = λE0 is the exchange energy frequency of the internal and vibrational states, called Rabi frequency.
The interaction Hamiltonian (100) has a diversity of contributions, each contribution oscillates with a frequency that is a

multiple integer of ν.We apply now the rotatingwave approximation; as the Schrödinger equation is a first order differential
equation in time, we have to integrate it once with respect to time; this integration brings the sum and the difference of
the frequencies to the denominator. The terms changing slowly will dominate over the terms changing very fast; so the
contribution to the Hamiltonian of those fast terms is neglected, and only the slowly changing terms are kept. In this case,
the terms that do not rotate quickly are those whose exponent satisfies the relation n−m = k, and as we already explained,
are those terms that we will keep. This approximation is valid for

Ω ≪ ν. (101)

AsΩ is proportional to the amplitude of the laser electric field, from (101) it is clear that this approximation is valid for low
intensity. We have then,

Hint = Ωe−η2/2


σ−

∞
m=0

(−iη)2m+k

(m + k)!m!
(âĎ)k(âĎ)mâm + H.C.


. (102)

Using now the fact that the number states is a complete set,

I =

∞
n=0

|n⟩⟨n|, (103)

where I is the identity operator, we can write

(âĎ)mâm = (âĎ)mâm
∞
j=0

|j⟩⟨j| =
n̂!

(n̂ − m)!

∞
j=0

|j⟩⟨j| =
n̂!

(n̂ − m)!
, (104)

that substituted in the Hamiltonian (102), gives us

Hint = Ωe−η2/2


σ−(âĎ)k(−iη)k

∞
m=0

(−iη)2m

(m + k)!m!

n̂!
(n̂ − m)!

+ H.C.


. (105)

Using the explicit expression for the associated Laguerre polynomials [50,51],

L(α)n (x) =

n
i=0

(−1)i
(n + α)!

(n − i)!(α + i)!
xi

i!
,

we can write

Hint = Ωe−η2/2

σ−(âĎ)k(−iη)k

n̂!
(n̂ + k)!

L(k)n̂ (η
2)+ H.C.


. (106)

We will consider now processes where only one phonon is exchanged; that means that we must take k = 1 in the
Hamiltonian (106). We will consider also that the oscillation amplitude of the ion is much smaller than the laser frequency;
that is, η ≪ 1, or in other words, we suppose the Lamb-Dicke regime.With these two considerations, the Hamiltonian (106)
reduces to (the subscript jc stands for Jaynes–Cummings)

Hjc = −iηΩ(âĎσ− − âσ+). (107)
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Fig. 7. (a) A Jaynes–Cummings Hamiltonian implies the ascent (descent) of one ion vibrational quantum, and at the same time, the transition from
an excited (ground) internal state to the ground (excited) state. (b) An anti-Jaynes–Cummings Hamiltonian annihilate (creates) one quantum from the
vibrational motion and transfers the ion internally from the excited (ground) state to the ground (excited) state.

In agreement with the considerations made above, the Hamiltonian (107) describes emission and absorption of one
vibrational excitation, when the atommakes electronic transitions. The first term represents the absorption of a vibrational
excitation and the transition of the ion from the excited state to the ground state. The second term represents the inverse
process; the ion goes from the ground state to the excited state, annihilating one phonon, and the vibrational state decays
in one quanta.

All this can be clearly seen, if we apply the Hamiltonian (107) to the correct states. In the first case, we have to apply the
Hamiltonian to the state |n⟩|e⟩, which represents n vibrational quanta and the ion in the excited state |e⟩; we get,

Hjc|n⟩|e⟩ ∝ |n + 1⟩|g⟩; (108)

which is the state with n + 1 vibrational quanta, and the ion in the ground state. In the second case, the state is given by
|n + 1⟩|g⟩, and when we apply the Hamiltonian we obtain

Hjc|n + 1⟩|g⟩ ∝ |n⟩|e⟩; (109)

that is the state with n vibrational quanta, and the ion in the excited state.
We can repeat all the above procedures now when the laser frequency is greater than that of the transition

kν = ω − ω21, (110)

and obtain the Hamiltonian (clearly now, the subscript ajc stands for anti-Jaynes–Cummings)

Hajc = −iηΩ(âσ− − âĎσ+). (111)

In the first term, we have the annihilation of one quanta from the vibrational motion and the ion internal transition
from the excited state to the ground state. In the second term, we have the creation of one vibrational quanta and the
internal excitation of the ion from the ground state to the excited state. In Fig. 7, we explain why this Hamiltonian is anti-
Jaynes–Cummings type.

Applying the anti-Jaynes–Cummings Hamiltonian to the adequate states, the previous comments can be easily
understood. If we apply the Hamiltonian (111) to the state |n⟩|e⟩, we get

Hajc|n⟩|e⟩ = |n − 1⟩|g⟩, (112)

and if we apply it to the state |n − 1⟩|g⟩, we get

Hajc|n − 1⟩|g⟩ = |n⟩|e⟩. (113)

From the point of view of the trapped ion, all this means that we can take it to its lowest energy vibrational state, alternating
successively, and as many times as necessary, the detuning between the frequency of the plane wave and the internal
frequency of the ion. Again, we can illustrate all this by applying the correct Hamiltonian to the adequate state. For that
let us consider a vibrational state |n⟩ and the ground internal state; if we apply the Hamiltonian (107), we get

Hjc|n⟩|g⟩ = |n − 1⟩|e⟩. (114)

We apply now the Hamiltonian (111), obtaining

Hajc|n − 1⟩|e⟩ = |n − 2⟩|g⟩, (115)

and the ion has lost two quanta of vibrational energy. Repeating successively this procedure, we can arrive to the state |0⟩|g⟩.
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Fig. 8. Plot of the atomic inversion,W (t) = P2 − P1 , the probability to find the ion in its excited state minus the probability to find it in the ground state,
for an ion initially in its excited state and the vibrational state in a coherent state, with α = 5.

5.1. Adding vibrational quanta

We now show how to generate nonclassical vibrational states in the low intensity regime. From Eq. (102) with k = 2,
we note that if the Lamb-Dicke parameter is much less than one, η ≪ 1, we can remain to the lowest order in the sum, such
that we obtain the so-called two-phonon Hamiltonian

HI = ϵ[σ−â2 + σ+âĎ2], (116)

with ϵ = −Ω/2. For the study of the dynamics of interest, we need the time evolution described by the Hamiltonian
(116). The advantage of the interactions of Jaynes–Cummings type consists in the fact that the Hamiltonian can easily be
diagonalized, and using the same procedure that was already used, it is possible to show that

ÛI(t) =


m=0,1

|m⟩|g⟩⟨m|⟨g| +

∞
n=0


cos


1
2
Ωnt


(|n + 2⟩|g⟩⟨n + 2|⟨g| + |n⟩|e⟩⟨n|⟨e|)

− i sin

1
2
Ωnt


(|n + 2⟩|g⟩⟨n|⟨e| + |n⟩|e⟩⟨n + 2|⟨g|)


. (117)

The quantityΩn is the two-phonon Rabi frequency which is given by

Ωn = 2ϵ

(n + 1)(n + 2). (118)

Using these results, the time evolution of the quantum state in the interaction picture is easily derived for arbitrarily chosen
initial conditions. We have

|Ψ (t)⟩ = ÛI(t)|Ψ (0)⟩. (119)

If we consider as initial state the ion in its excited state |e⟩ and the vibrational state a coherent state, we can find the atomic
inversion, (that we recall that it is defined as the probability to find the ion in its excited state minus the probability to find
it in the ground state). Using (117) and (119), we get

W (t) = exp

−|α|

2 ∞
n=0

|α|
2n

n!
cos(2Ωnt). (120)

We plot this function in Fig. 8 as a function of the scaled time τ = ϵt . The interaction gives rise to a quasi-regular evolution
of the atomic inversion, unlike the case of one phonon resonance. This can be used for several purposes, among them, to add
excitations to the vibrational state. In Fig. 8, it can be seen that if initially the ion is in its excited state |e⟩, after an interaction
time τ = π/ϵ the ion ends up in its ground state |g⟩, giving all its energy to the vibrational state by adding two vibrational
quanta. Moreover, the effect of having the ion in its excited state and after an interaction time having it in the ground state
is shared by all vibrational states, not only when it is prepared in a coherent state. To illustrate this fact, we show in Fig. 9
the atomic inversion for a thermal distribution

ρ(0) =

∞
n=0

n̄n

(n̄ + 1)n+1
|n⟩⟨n|, (121)

with n̄ the average number of thermal phonons.
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Fig. 9. Plot of the atomic inversion,W (t) = P2 − P1 , the probability to find the ion in its excited state minus the probability to find it in the ground state,
for an ion initially in its excited state and the vibrational state in a thermal distribution with n̄ = 2.

Consider again the initial state

|Ψ (0)⟩ = |α⟩|e⟩. (122)

Combining Eqs. (117) and (121), and using a compact operator representation of the Jaynes–Cummings dynamics, we arrive
at

|Ψ (t)⟩ = cos

ϵt

â2(âĎ)2


|α⟩|e⟩ − i(V̂ Ď)2 sin


ϵt

â2(âĎ)2


|α⟩|g⟩. (123)

In order to derive illustrative analytical results, in the following we will apply the approximation
â2(âĎ)2 ≈ n̂ +

3
2
; (124)

although this approximation represents a Taylor-series expansion for large eigenvalues n of the operator n̂, the error is
already small for small n-values. For example, for n = 1 the relative error is only 0.02.

Based on this approximation, one may simplify Eq. (123) as

|Ψ (t)⟩ ≈ cos[λt(n̂ + 3/2)] |α⟩|2⟩ − i(V̂ Ď)2 sin[λt(n̂ + 3/2)] |α⟩|1⟩. (125)

Choosing a particular interaction time t = τ , according to

τ = π/λ, (126)

we obtain for the vibrational state vector

|Ψ
(1)
+ (τ )⟩v ≈ i(V̂ Ď)2| − α⟩, (127)

where we have introduced the subscript ‘‘v’’ (vibrational) to note that we are not taking into account anymore the state |g⟩.
Moreover, the subscript ‘‘+’’ and the superscript ‘‘(k)’’ are used to indicate the process of adding (two) vibrational quanta
and the number of such interactions, respectively.

The quantum state (127) may serve as the initial state for a second interaction with an ion that is prepared in the same
manner as the first one. For the same interaction time, t = τ , after the second interaction (that is completed at time 2τ ),
the vibrational state is

|Ψ
(2)
+ (τ )⟩v = −(V̂ Ď)4|α⟩. (128)

By repeating the process k times, one finally obtains for the quantum state, at the time tk, after completing k interactions,

|Ψ
(k)
+ (τ )⟩v = ik(V̂ Ď)2k|(−1)kα⟩. (129)

After many interactions, the state |Ψ
(k)
+ (τ )⟩v exhibits a strong sub-Poissonian character, because while one is adding two

excitations per interaction, at the same time one is keeping the width of the distribution constant.
The excitation distribution P (k)n , after k interactions, is easily found to be related to the number statistics P (0)n of the initial

state |α⟩ via

P (k)n = P (0)n−2k. (130)

This result clearly shows that the number statistics is only shifted but retains its form.
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Fig. 10. Subtracted phase distribution for an initial coherent state α = 45 and (a) k = 0, (b) k = 900, (c) k = 1000 and (d) k = 1012.

One way of studying the properties of the states being generated is through the Mandel Q -parameter [52], which is
defined by

Q =


n̂2

−

n̂
2

n̂
 − 1, (131)

and where

if Q


> 0, super Poissonian distribution
= 0, Poissonian distribution (coherent state)
< 0, sub-Poissonian
= −1, number state.

(132)

In this case the Mandel Q -parameter is given by

Q =
|α|

2

|α|2 + 2k
− 1, (133)

and as the number of interactions increases, the Mandel Q -parameter approaches the value −1; i.e., the state acquires
maximum sub-Poissonian character. The sub-Poissonian effect of the vibrational wave function becomes more significant
with increasing number of interactions.

5.2. Subtracting vibrational quanta

It is straightforward to show that, opposite to the case in which we add two phonons per interaction by initially having
the ion in its excited state, two phonons may be removed per interaction by initially having the ion in its ground state.
We therefore expect that instead of squeezing the phonon number distribution (giving a sub-Poissonian character to the
distribution), in the case in which we subtract phonons, it should be broadened; however, the conjugate variable to the
number operator, i.e., the phase operator [49] should have less fluctuations; a squeezing of the phase distribution then will
happen. It is not difficult to show that the phonon distribution when we subtract two phonons per interaction will be given
by [12]

P (k)n = P (0)n+2k, (134)

from which we can calculate the phase distribution plotted in Fig. 10 for several number of interactions.

5.3. Filtering specific superpositions of number states

If instead of one laser, we assume two lasers driving the ion, the first tuned to the jth lower sideband and the second
tuned to themth lower sideband, we may write E(−)(x̂, t) as

E(−)(x̂, t) = Eje−i(kj x̂−ω21+jν)t
+ Eme−i(km x̂−ω21+mν)t , (135)
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where if m = 0, it would correspond to the driving field being on resonance with the electronic transition. The position
operator x̂may be written as before,

ksx̂ = ηs(â + âĎ), (136)

where ks, s = j,m are the wave vectors of the driving fields and

ηs = 2π


⟨0|∆x̂2|0⟩
λs

(137)

are the Lamb-Dicke parameters with s = j,m.
In the resolved sideband limit, the vibrational frequency ν is much larger than other characteristic frequencies, and the

interaction of the ion with the two lasers can be treated separately using a nonlinear Hamiltonian [16]. The Hamiltonian
(106) in the interaction picture can then be written as

ĤI = σ+


Ωje−

η2j
2

n̂!(iη)j

(n̂ + j)!
L(j)n̂ (η

2
j )â

j
+Ωme−

η2m
2

n̂!(iη)m

(n̂ + m)!
L(m)n̂ (η2m)â

m


+ H.C., (138)

where L(k)n̂ (η
2
k) are the operator-valued associated Laguerre polynomials, theΩ ’s are the Rabi frequencies and n̂ = âĎâ. The

master equation which describes this system can be written as

∂ρ̂

∂t
= −i[ĤI, ρ̂] +

Γ

2


2σ+

ˆ̃ρσ− − σz ρ̂ − ρ̂σz


(139)

where the last term describes spontaneous emission with energy relaxation rate Γ , and

ˆ̃ρ =
1
2

 1

−1
dsW (s)eisηE x̂ρ̂e−isηE x̂ (140)

accounts for changes of the vibrational energy because of spontaneous emission. Here ηE is the Lamb-Dicke parameter
corresponding to the field (135) andW (s) is the angular distribution of spontaneous emission [16].

The steady-state solution to Eq. (139) is obtained by setting ∂ρ̂/∂t = 0, and may be written as

ρ̂s = |ψs⟩|g⟩⟨ψs|⟨g|, (141)

where |g⟩ is the electronic ground state and |ψs⟩ is the vibrational steady-state of the ion, given by
Ωje

−η2j /2
n̂!(iηj)j

(n̂ + j)!
L(j)n̂ (η

2
j )â

j
+Ωme−η2k/2

n̂!(iηm)m

(n̂ + m)!
L(m)n̂ (η2m)â

m


|ψs⟩ = 0. (142)

For simplicity, we will concentrate in the j = 1 andm = 0 case (single number state spacing) for which Eq. (142) is written
as 

iΩ1η1e−η21/2
L(1)n̂ (η

2
1)

n̂ + 1
â +Ω0e−η20/2Ln̂(η20)


|ψs⟩ = 0. (143)

Note that ĤI|1⟩|ψs⟩ = 0, so that ion and laser have stopped to interact, which occurs when the ion stops to fluoresce. For
the j = 1 and k = 0 case, and assuming L(1)k (η

2
1) ≠ 0 and Lk(η20) ≠ 0 for all k, one generates nonlinear coherent states [14].

However, by setting a value to one of the Lamb-Dicke parameters such that, for instance,

Lq(η20) = 0, (144)

for some integer q, we obtain that, by writing |ψs⟩ in the number state representation,

|ψs(η0)⟩ =
1
N0

q
n=0

C (0)n |n⟩, (145)

(the argument of ψs denotes the condition we apply; i.e., in Eq. (145), the condition is on η0) where

C (0)n =


−
Ω0e−η20/2

Ω1e−η21/2

n

(n!)1/2
n−1
m=0

Lm(η20)
L1m(η

2
1)
,

C (0)0 = 1, (146)
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and

N2
0 =

q
n=0

|C (0)n |
2 (147)

is the normalization constant.
If instead of condition (144), we choose

L(1)p (η
2
1) = 0, (148)

we obtain the wave function

|ψs(η1)⟩ =
1
N1

∞
n=p+1

C (1)n |n⟩, (149)

where now

C (1)n =


−
Ω0e−η20/2

Ω1e−η21/2

n−p−1
n!

(p + 1)!

n−1
m=p+1

Lm(η20)
L1m(η

2
1)
,

C (1)p+1 = 1, (150)

and

N2
1 =

∞
n=p+1

|C (1)n |
2. (151)

Combining both conditions, (144) and (148), one would obtain for q > p,

|ψs(η0, η1)⟩ =
1
N01

q
n=p+1

C (1)n |n⟩, (152)

with

N2
01 =

q
n=p+1

|C (1)n |
2. (153)

In this way, by setting the conditions (144), (148) or both, we can engineer states in the following three zones of the Hilbert
space: (a) from |0⟩ to |q⟩, (b) from |p+ 1⟩ to |∞⟩, or (c) from |p+ 1⟩ to |q⟩. In the later case, by setting q = p+ 1, generation
of the number state |q⟩ is achieved.

We should remark that by selecting further apart sidebands one would obtain a different spacing in Eqs. (145), (149)
and (152). For instance, by choosing j = 2 and k = 0 one would obtain only even or odd number states in those equations
(depending in this case on initial conditions, andW (s), the angular distribution of spontaneous emission). Also, it should be
noticed that one can use the parameters j = m + 1 and k = m (with m ≠ 0) (in the single number state spacing case) to
extend the possibilities of choosing Lamb-Dicke parameters. Lamb-Dicke parameters of the order of one (or less) are needed
(for conditions (10) and (12)), which can be achieved by varying the geometry of the lasers. For example, by setting η0 = 1,
we have L1(η20 = 1) = 0, and therefore we obtain the qubit

|ψs(η0 = 1)⟩ =
1

1 + |
Ω0
Ω1

|2eη
2
1−1


|0⟩ −

Ω0e−1/2

Ω1e−η21/2
|1⟩


, (154)

where by changing the Rabi frequencies, one has control of the amplitudes. Finally, note that we could have also chosen to
drive the qth upper sideband instead of the kth lower sideband in Eq. (135) with basically the same results.

5.4. N00N states

Nonclassical states have attracted a great deal of attention in recent years, among them are (a) macroscopic quantum
superpositions of quasiclassical coherent states with different mean phases or amplitudes [53,54], (b) squeezed states
[55,31], (c) the particularly important limit of extreme squeezing; i.e., Fock or number states, and more recently, (d)
nonclassical states of combined photon pairs also called N00N states [56,57]. It is well known that these multiphoton
entangled states can be used to obtain high-precision phase measurements, becoming more and more advantageous as
the number of photons grows. Many applications in quantum imaging, quantum information and quantum metrology [58]
depend on the availability of entangled photon pairs because entanglement is a distinctive feature of quantum mechanics
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Fig. 11. Possible situations we can have if we filter number states with the proposals of this section.

that lies at the core of many new applications. These maximally path-entangled multiphoton states may be written in the
form

|N00N⟩a,b =
1

√
2
(|N⟩a |0⟩b + |0⟩a |N⟩b) . (155)

It has been pointed out that N00N states manifest unique coherence properties by showing that they exhibit a periodic
transition between spatially bunched and antibunched states when undergo Bloch oscillations. The period of the
bunching/antibunching oscillation is N times faster than the period of the oscillation of the photon density [59].

The greatestN for whichN00N states have been produced isN = 5 [56]. Most schemes to generate this class of states are
either for optical [56,57] or microwave [60] fields. In this contribution, we would like to analyze the possibility to generate
them in ions [39–43], i.e., N00N states of their vibrational motion. We will show that they may be generated with N = 8.
(See Fig. 11.)

5.4.1. Ion vibrating in two dimensions
We consider an ion in a two-dimensional Paul trap [61], and we assume that the ion is driven by a plane wave

E(−)(x̂, ŷ, t) = E0e−i(kx x̂+ky ŷ+ω)t , (156)

with kj, j = x, y the wavevectors of the driving field. The Hamiltonian has the form

H = νxâĎx âx + νyâĎy ây +
ω21

2
σ̂z +Ωx


e−i


ηx

âx+âĎx


+ωt


σ̂+ + H.C.


+Ωy


e−i


ηy

ây+âĎy


+ωt


σ̂+ + H.C.


. (157)

where we have defined the Lamb-Dicke parameters

ηx = 2π


x⟨0|∆x̂2|0⟩x

λx
, ηy = 2π


y⟨0|∆ŷ2|0⟩y

λy
, (158)

and redefined the ladder operators according to

kxx̂ = ηx(ax + aĎx), kandŷ = ηy(ay + aĎy). (159)

In the resolved sideband limit, the vibrational frequencies νx and νy are much larger than other characteristic frequencies
and the interaction of the ion with the two lasers can be treated separately using a nonlinear Hamiltonian [16,17].
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We consider that the ion is trapped in the x-axis, i.e.,Ωx ≠ 0 andΩy = 0; then

Hx = νxâĎx âx +
ω21

2
σ̂z +Ωx


e−i


ηx

âx+âĎx


+ωt


σ̂+ + H.C.


. (160)

We write ω21 = ω + δ, where δ is the detuning, to obtain

Hx = νxâĎx âx +
(ω + δ)

2
σ̂z +Ωx


e−i


ηx

âx+âĎx


+ωt


σ̂+ + H.C.


. (161)

We transform the Hamiltonian to a frame rotating at ω frequency by means of the transformation

T = e−i ωt2 σz , (162)

and we get

Hx = νxâĎx âx +
δ

2
σ̂z +Ωx


e−i


ηx

âx+âĎx


σ̂+ + ei


ηx

âx+âĎx


σ̂−


. (163)

Using the Baker–Hausdorff formula [48], and expanding the exponentials in Taylor series, we cast the Hamiltonian to

Hx = νxâĎx âx +
δ

2
σ̂z +Ωx


e−

η2x
2

n,m

(−iηx)n

n!
(−iηx)m

m!
âĎnx âmx σ̂+ + H.C.


. (164)

Going now to the interaction picture,

HIx = Ωx


e−

η2x
2

n,m

(−iηx)n

n!
(−iηx)m

m!
âĎnx âmx σ̂+eiνxt(n−m+k)

+ H.C.


. (165)

We consider now the low-intensity regime; i.e.,Ωx ≪ νx, and we apply the rotating wave approximation, to get

HIx = Ωx


e−

η2x
2 (−iηx)k

∞
n=0

(−ηx)
2n

n! (k + n)!
âĎnx âk+n

x σ̂+ + H.C.


, (166)

by substituting âĎnx ânx =
n̂!

(n̂−n)!
, multiplying by (n̂+k)!

(n̂+k)!
, and rearranging terms

HIx = Ωx


e−

η2x
2 (−iηx)k

n̂!
n̂ + k


!
Lkn̂

η2x

âkxσ̂+ + H.C.


, (167)

where we have identified Lkn̂

η2x


=
n̂

n=0
(−1)n(η2x)

n

n!
(n̂+k)!

(n+k)!(n̂−n)!
, with the associated Laguerre polynomials; so that finally

HIx = Ωx

f kx

n̂

âkxσ̂+ + âĎkx f ∗k

x


n̂

σ̂−


, (168)

where

f kx

n̂


= e−
η2x
2 (−iηx)k

n̂!
n̂ + k


!
Lkn̂

η2x

. (169)

We write the Hamiltonian, given by expression (168), in the following matrix form

HIx =


0 Ωxf kx


n̂

âkx

ΩxâĎkx f ∗k
x


n̂


0


, (170)

which, by using the Susskind–Glogower phase operator [62], we can be written as

HIx =


1 0
0 V̂ Ďk

x


H1x


1 0
0 V̂ k

x


(171)

where we have introduced and defined

H1x =

 0 Ωxf kx

n̂


âkx â
Ďk
x

Ωxf ∗k
x


n̂


âkx â
Ďk
x 0

 . (172)
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The evolution operator for this last transformed Hamiltonian, U1x = e−iH1xt , may be calculated easily. For this we need

H2m
1x =

Ω
2m
x

f kx n̂2m âkx â
Ďk
x

2m

0

0 Ω2m
x

f kx n̂2m âkx â
Ďk
x

2m

 , (173)

and

H2m+1
1x =


0 Ω2m+1

x

f kx n̂2m+1 f ∗k
x


n̂
f kx n̂


âkx â
Ďk
x

2m+1

Ω2m+1
x

f kx n̂2m+1 f ∗k
x


n̂
f kx n̂


âkx â
Ďk
x

2m+1

0

 . (174)

Then

U1x (t) =


m

(−it)2m

(2m)!
H2m

1x +


m

(−it)2m+1

(2m + 1)!
H2m+1

1x , (175)

and therefore

UIx (t) =

 cos

Ωxt

f kx n̂âkx â
Ďk
x


−i (−i)k sin


Ωxt

f kx n̂âkx â
Ďk
x


V̂ k
x

−iV̂ Ďk
x (i)k sin


Ωxt

f kx n̂âkx â
Ďk
x


V̂ Ďk
x cos


Ωxt

f kx n̂âkx â
Ďk
x


V̂ k
x

 . (176)

Finally, as

âkx â

Ď
x
k =


(n̂+k)!

n̂! , we can write

UIx(t) =


cos


Ωxt

f kx n̂

(n̂ + k)!

n̂!


(−i)k+1 sin


Ωxt

f kx n̂

(n̂ + k)!

n̂!


V̂ k
x

−(i)k+1V̂ Ďk

x sin


Ωxt

f kx n̂

(n̂ + k)!

n̂!


V̂ Ďk

x cos


Ωxt

f kx n̂

(n̂ + k)!

n̂!


V̂ k
x

 . (177)

Now, we consider as initial state of the ion a number state |n⟩ for the vibrational motion and the excited state |e⟩ for the
internal states; i.e.,

|ψ (0)⟩ =


|n⟩
0


. (178)

The probability, after the time t , of finding the ion in its internal excited state is then

Pe (t) =

∞
m=0

⟨e|⟨m|ψ(t)⟩⟨ψ(t)|m⟩|e⟩ = cos2

Ωxt

f kx (n)

(n̂ + k)!

n̂!


. (179)

It is clear that after a time

t0 =
π

2
1

Ωx
f kx (n)


n!

(n + k)!
(180)

the probability to find the ion in its internal excited state is 0. So at that time the ion is in its internal ground state with
probability 1. This situation is obviously repeated periodically; every 2j + 1, j = 0, 1, 2, . . . times t0, the ion will be in its
ground state. We plot in Fig. 12, the probability for the case when k = 4 and the ionic vibration is initially in a number state
with n = 4. As can be seen from Hamiltonian (168), when the probability of finding the ion in the excited state goes to
zero, the ion is giving four phonons to the vibrational motion. Now, if we consider the ion initially in its ground state, the
probability to find it in the ground state at the same time t0 is also zero. In this case the ion removes four phonons of the
vibrational motion.

If we consider now that the ion is trapped in the y-axis; i.e., Ωy ≠ 0 and Ωx = 0, we get exactly the same expressions
and the same results with the variable y instead of x.
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Fig. 12. The probability, after the time τ , of finding the ion in its internal excited state when initially the ion was in its excited state and the ionic vibration
was a number state with n = 4 and ηx = 0.1.

5.4.2. Generation of N00N states
By starting with the ion in the excited state and the vibrational state in the vacuum state, i.e., |0⟩x|0⟩y, if we set ηy = 0,

after the time τp when the probability to find the ion in its excited state is zero (meaning that the ion, by passing from its
excited to its ground state, gives 4 phonons to the vibrational motion), we can generate the state |4⟩x|0⟩y. Repeating this
procedure (with the ion reset again to the excited state, via a rotation), but nowwith ηx = 0, four phonons are added to the
y-vibrational motion, generating the two-dimensional state |4⟩x|4⟩y.

Therefore, if we consider the ion initially in a superposition of ground and excited states, and the |4⟩x|4⟩y vibrational
state; i.e.,

|ψinit⟩ =
1

√
2
(|e⟩ + |g⟩)|4⟩x|4⟩y, (181)

for ηy = 0 and t0, the state generated is

|ψηy=0⟩ =
i

√
2
(|e⟩|0⟩x + |g⟩|8⟩x)|4⟩y. (182)

Now, we consider this state as initial state for the next interaction with ηx = 0 and still the interaction time τp, to produce

|ψηx=0⟩ = −
1

√
2
(|e⟩|0⟩x|8⟩y + |g⟩|8⟩x|0⟩y). (183)

Next, the ion is rotated via a classical field (an on-resonance interaction) such that the state

|ψR⟩ = −
1
2


|e⟩(|0⟩x|8⟩y − |8⟩x|0⟩y)+ |g⟩(|0⟩x|8⟩y + |8⟩x|0⟩y)


(184)

is obtained. Finally by measuring the ion in its excited state we produce the N00N state

|N00Ne⟩ =
1

√
2
(|0⟩x|8⟩y − |8⟩x|0⟩y), (185)

and if the ion is measured in the ground state, also a N00N state is produced:

|N00Ng⟩ =
1

√
2
(|0⟩x|8⟩y + |8⟩x|0⟩y). (186)

5.5. Measuring squeezing

In this section, we have shown how to generate nonclassical states of the vibrational motion of the ion. The question
arises: Can wemeasure nonclassical features in this interaction? Here we propose a method to measure squeezing. In order
to achieve this we need to be able to measure quantities like

⟨X̂⟩ = ⟨â⟩ + c.c., ⟨X̂2
⟩ = ⟨â2⟩ + ⟨[âĎ]2⟩ + 2⟨n̂⟩ + 1. (187)

Below we will show how it is possible to measure such quantities by utilizing an atom as a measuring device. Consider the
Hamiltonian (109), which in matrix form may be written as

H = −iηΩ(âĎσ̂− − σ̂+â) = −iηΩ

0 −â
âĎ 0


. (188)
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We can re-write Hamiltonian (188) with the help of Susskind–Glogower operators [62] as

H = −iηΩR


0 −


n̂ + 1

n̂ + 1 0


RĎ, (189)

where

R =


1 0
0 V̂ Ď


(190)

with V̂ =
1

√
n̂+1

â. Note that RĎR = 1, but RRĎ ≠ 1. This allows us to write the evolution operator as

U(t) = R


cos(ηΩt


n̂ + 1) − sin(ηΩt


n̂ + 1)

sin(ηΩt

n̂ + 1) cos(ηΩt


n̂ + 1)


RĎ. (191)

We are neglecting a term |0⟩⟨0| in the above evolution operator (in the element ‘‘2, 2’’), that however will not affect the
measurement of squeezing as we will consider the ion in the excited state. We consider the vibrational wave function in an
unknown state, such that the initial state of the system is |ψ(0)⟩ = |e⟩|ψv(0)⟩; the average of the operator σ̂+ is given by

⟨σ̂+⟩ = ⟨ψv(0)| cos

ηΩt


n̂ + 1


V̂ Ď sin


ηΩt


n̂ + 1


|ψv(0)⟩

=
1
2
⟨ψv(0)|V̂ Ď


sin[ηΩt∆̂+(n̂)] − sin[ηΩt∆̂−(n̂)]


|ψv(0)⟩, (192)

where

∆̂+(n̂) =


n̂ + 2 +


n̂ + 1, ∆̂−(n̂) =


n̂ + 2 −


n̂ + 1. (193)

By integrating (193) by using a Fresnel integral [51]
∞

0
dTT sin(T 2/A) sin(BT ) =

AB
4


πA
2


cos

AB2

4
+ sin

AB2

4


, (194)

such that (with ηΩt = T )
∞

0
dTT sin(T 2/A)⟨σ̂+⟩ = −

i
2
⟨ψF (0)|V̂ Ď(γ̂1 − γ̂2)|ψF (0)⟩ (195)

with

γ̂
(1)
1 =

A∆̂+(n̂)
4


πA
2


cos


A∆̂2

+
(n̂)

4


+ sin


A∆̂2

+
(n̂)

4


(196)

and

γ̂
(1)
2 =

A∆̂−(n̂)
4


πA
2


cos


A∆̂2

−
(n̂)

4


+ sin


A∆̂2

−
(n̂)

4


. (197)

Now we use the approximation [63,64]

(n̂ + 2)(n̂ + 1) ≈ n̂ + 3/2 that is valid for large photon numbers; we then can

write ∆̂2
+
(n̂) ≈ 4n̂ + 6 and ∆̂2

−
(n̂) ≈ 0. By setting A = 4π , we obtain

γ̂
(1)
1 ≈


n̂ + 2 +


n̂ + 1


π cos


(4n̂ + 6)π


=

√
2π2∆̂+(n̂) (198)

and

γ̂
(1)
2 ≈

√
2π2∆̂−(n̂), (199)

so that the integral transform (195) becomes
∞

0
dTT sin(T 2/A)⟨σ̂+⟩ =

√
2π2

⟨ψv(0)|V̂ Ď

n̂ + 1|ψv(0)⟩

=
√
2π2

⟨ψv(0)|âĎ|ψv(0)⟩. (200)
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To measure ⟨ψF (0)|[âĎ]2|ψF (0)⟩ a two-phonon transition is necessary; in this case

H2 = λ(2)R̂2


0


(n̂ + 1)(n̂ + 2)

(n̂ + 1)(n̂ + 2) 0


[RĎ]2, (201)

where λ(2) is the interaction constant in the two-phonon case. One can find the evolution operator that will be given by an
expression similar to (191), just changing

√
n̂ + 1 →


(n̂ + 1)(n̂ + 2), V̂ → V̂ 2 and V̂ Ď

→ [V̂ Ď
]
2. It is then easy to calculate

the average of σ̂ (2)+ , which is given by

⟨σ̂
(2)
+ ⟩ = −i⟨ψF (0)| cos


λ(2)t


(n̂ + 1)(n̂ + 2)


[V̂ Ď

]
2 sin


λ(2)t


(n̂ + 1)(n̂ + 2)


|ψF (0)⟩

= −
i
2
⟨ψF (0)|[V̂ Ď

]
2

sin[λt δ̂+(n̂)] − sin[λt δ̂−(n̂)]


|ψF (0)⟩ (202)

with

δ̂+(n̂) =


(n̂ + 4)(n̂ + 3)+


(n̂ + 2)(n̂ + 1) ≈ 2n̂ + 5, (203)

and

δ̂−(n̂) =


(n̂ + 4)(n̂ + 3)−


(n̂ + 2)(n̂ + 1) ≈ 2. (204)

Again by (Fresnel) integration of the above expression
∞

0
dTT sin(T 2/A)⟨σ̂ (2)+ ⟩ = −i4π2

⟨ψF (0)|[V̂ Ď
]
2(γ̂

(2)
1 − γ̂

(2)
2 )|ψF (0)⟩ (205)

with

γ̂
(2)
1 =

Aδ̂+(n̂)
4


πA
2


cos


Aδ̂2

+
(n̂)
4


+ sin


Aδ̂2

+
(n̂)
4


(206)

and

γ̂
(2)
2 =

Aδ̂−(n̂)
4


πA
2


cos


Aδ̂2

−
(n̂)
4


+ sin


Aδ̂2

−
(n̂)
4


. (207)

By choosing the value A = 8π , we obtain
∞

0
dTT sin(T 2/8π)⟨σ̂ (2)+ ⟩ = −i8π4

⟨ψF (0)|[V̂ Ď
]
2

(n̂ + 1)(n̂ + 1)|ψF (0)⟩

= −i8π4
⟨[âĎ]2⟩. (208)

Therefore, squeezing may be measured via this scheme.

6. Ion–laser interaction in a trap with time-dependent frequency

In this section, we study the problem of an ion trapped with a frequency that depends on time and interacting with a
laser beam [65,66]. Using unitary transformations, we show that this system is equivalent to a system formed by a two level
subsystem with time dependent parameters interacting with a quantized field. The procedure to build the Hamiltonian for
this case is exactly the same as that in the time independent frequency case (Section 3), but we have to keep in mind that
now the frequency is time dependent.

The Hamiltonian is

H =
1
2


p2 + ν2(t)x2


+

1
2
ω21σz + λ


E(−)(x,t)σ− + H.C.


, (209)

and then the Schrödinger equation can be written as

i
∂

∂t
|ξ(t)⟩ = H|ξ(t)⟩. (210)

To solve the problem, we make the transformation

|φ(t)⟩ = TSD(t)|ξ(t)⟩, (211)
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where

TSD(t) = exp


i ln

ρ(t)

√
ν0

(xp + px)

2


exp


−iρ̇(t)x2

2ρ(t)


, (212)

and we have also the Ermakov equation

d2ρ
dt2

+ ν2(t)ρ =
1
ρ3
, (213)

as an auxiliary equation. We apply the unitary transformation (212) to the Hamiltonian (209); i.e., we must calculate the
expression

HSD = i
∂TDS(t)
∂t

TSDĎ(t)+ TSD(t)HTSDĎ(t). (214)

We find,

HSD =
1

2ν0ρ2(t)
(p2 + ν20x

2)+
1
2
ω21σz +Ω


exp


−i

kρ(t)

√
ν0x2 − ωt


σ− + H.C.


, (215)

withΩ = λE0, the Rabi frequency.
Using the Ermakov invariant, the time dependence of the trap has been factorized; the time dependence is implicit in

ρ(t). We now go to a frame rotating at frequency ω, by means of the unitary transformation

Tω(t) = exp


i
2
ωtσz


. (216)

The Hamiltonian is transformed to

Hω =
1

2ν0ρ2(t)
(p2 + ν20x

2)+
1
2
(ω21 − ω)σz +Ω(t)


exp


−i(â + âĎ)η(t)


σ− + H.C.


. (217)

Denoting the detuning frequency between the laser and the ion by δ = ω21 − ω, and the characteristic frequency of the
time dependent harmonic oscillator by

ω̃(t) =
1

ρ2(t)
, (218)

we get

Hω = ω̃(t)(n̂ + 1/2)+
δ

2
σz +Ω(t)


exp


−i(â + âĎ)η(t)


σ− + H.C.


. (219)

The time dependent Lamb-Dicke parameter is

η(t) = η0ρ(t)
√
ν0, (220)

with

η0 = k


1

2ν0
, (221)

where k is the wave vector of the laser beam. Comparing with the Hamiltonian (93), the Hamiltonian (219) is equivalent,
but with all the parameters depending on time.

6.1. Exact linearization of the system

We call linearization of the system the process to reduce the exponent of the ladder operators â and âĎ to the first power,
without using approximations. To this end, we make the transformation

|φR⟩ = R(t)|φω⟩, (222)

where R(t) is given by

R(t) = exp

−
π

4
(σ+ − σ−)


exp


−i
η(t)
2
(â + âĎ)σz


. (223)
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Fig. 13. Trap’s time dependent frequency as a train of steps.

Transforming the Hamiltonian, we get

HR = ν0n̂ +Ωσz +


δ

2
+ i


âβ(t)− âĎβ∗(t)


(σ+ + σ−) (224)

with

β(t) =
η(t)ω̃

2
−

iη̇(t)
2
. (225)

The term ω̃(t)/2 has not been considered, because it is only a phase, and when the observable mean values are taken, it
disappears.

With the transformation (223) we have achieved our goal: linearize the Hamiltonian without any type of approximation.
The rotating wave approximation is not used, and this leaves open the possibility to consider different intensity regimes. No
assumption has been made about the Lamb-Dicke parameter η(t). It is also valid for any type of detuning and for any time
dependence of the frequency of the trap.

It is also important to remark that we have not imposed any condition in the time dependence of the frequency of the
trap; in principle, this frequency can assume any temporal form. For a Paul trap, the more general form is

ν2(t) = a − 2q cos 2t, (226)

and the Hamiltonian (224) is the ion–laser interaction with micromotion included. Also, this Hamiltonian gives us the
freedom to consider arbitrary time dependent frequencies. For instance, if we consider a sudden change in the trap
frequency, we would generate squeezed states for the vibrational wave function.

6.2. Squeezed states by changing the trap’s frequency

If we consider no interaction with a laser, i.e., Ω = 0, the Hamiltonian for the ion with an arbitrary (trap) frequency is
simply [67]

H =
1
2


p2 + ω2(t)x2


(227)

and we have seen that the transformation (212) produces the Hamiltonian

H =
1

2ρ2(t)


p2 + x2


(228)

which is in an integrable form. If we consider the vibrational motion state to be in a coherent state, |α⟩, then the evolved
wave function reads

|ψ(t)⟩ = e−iÎ
 t
0 ω̃(τ )dτ T Ď

SD(t)TSD(0)|α⟩ (229)

where

Î =
1
2


x2

ρ2
+ (ρp − ρ̇x)2


(230)

is the so-called Lewis–Ermakov invariant. If we consider ν(t) to have the form as in Fig. 13, we can solve numerically the
Ermakov equation, and obtain the auxiliary function,ρ, whichweplot in Fig. 14; note thatwewill have a series ofmaximums
and minimums. Because the transformation T Ď

SD(t) depends on ρ, we can analyze from this figure the form in which the
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Fig. 14. Solution for the Ermakov equation for a time dependent frequency as shown in Fig. 13.

vibrational wave function is modified. Note from (212) that the second factor involves the derivative of ρ, which for the
maximums and minimums is zero, making this exponential equal to one. Therefore, transformation (212) may be written
for such times as

TSD(tM) = exp


i ln

ρ(tM)

√
ν0

(xp + px)

2


; (231)

i.e., a squeeze operator. Because TSD(0) = 1 for this formof the time dependent frequency, if initiallywe startwith a coherent
state, squeezed states will be produced at times tM .

7. Nonlinear coherent states and their modeling in photonic lattices

Nonlinear coherent states [68,69]may be generated in ion traps [14] and in thisway realization of a quantum-mechanical
counterpart of nonlinear optics has been achieved. For an appropriate laser-beam propagation geometry which affects only
the dynamics in one vibrational mode of frequency ν, in the rotating-wave approximation, the Hamiltonian describing the
effect of the Raman laser drive on the dynamics of the vibrational mode is given by Wallentowitz and Vogel [13]

H =
Ω

2
ĝk(n̂)(iηa)k + H.C., (232)

with ⟨n|ĝk(n̂)|n⟩ =
n!

(n+k)! L
(k)
n (η

2)e−η2/2. If we consider the initial vibrational wave function to be in the vacuum state, after
application of the evolution operator to this initial condition, a nonlinear coherent state is obtained. If we write the solution
for the above Hamiltonian in the form

|ψ(t)⟩ =

∞
n=0

un(t)|n⟩, (233)

and insert it into the Schrödinger equation, we obtain the following semi-infinite system of differential equations for the
amplitudes un(t) (for k = 1)

i
du0(t)
dt

=
Ω

2
f1(1)u1. (234)

and

i
dun(t)
dt

=
Ω

2


g1(n)

√
nun−1 + g1(n + 1)

√
n + 1un+1


, n > 0 (235)

This system may be modeled in classical optics by light propagation in optical lattices as evanescently coupled waveguides
have emerged as a promising candidate for the realization of an ideal, one-dimensional lattice with tunable hopping
[70,71]. The system of differential equations given in (234) and (235) may be produced in a setup of waveguide arrays
as the one in Fig. 15, thereby modeling the ion–laser Hamiltonian (232).
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Fig. 15. A semi-infinite waveguide array where fk = g1(k)
√
k is the corresponding coupling constant.

8. Conclusions

We have studied the ion–laser interaction, producing solutions that do not require too many approximations and
allowing to reach ranges of parameters, such as Lamb-Dicke, detuning and intensity, not reached before. Exact linearization
in the case of timedependent frequencyhas been shownbyusing Ermakov–Lewis invariantmethods. In the case inwhich the
frequency is considered constant, we have shown that it is possible to find exact eigenstates, access blue and red sidebands
(a) in the low intensity regime without considering the rotating wave approximation and (b) in the on resonant case, by
adjusting the intensity to half the trap’s frequency, i.e., solely by intensity manipulation. We have also shown how a special
class of nonclassical states, namely, N00N states may be produced in these systems and how the ion–laser interactions may
be mimicked by a particular evanescent coupling of waveguides.
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