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a) hvazquez@uv.mx

Abstract: The continuous scaling for fabrication technologies of
electronic circuits demands the design of new and improved simula-
tion techniques for integrated circuits. Therefore, this work shows a
new double bounded polynomial homotopy based on a polynomial for-
mulation with four solution lines separated by a fixed distance. The
new homotopy scheme presents a bounding between the two internal
solution lines and the symmetry axis, which allows to establish a stop
criterion for the simulation in DC. Besides, the initial and final points
on this new double bounded homotopy can be set arbitrarily. Finally,
mathematical properties for the new homotopy are introduced and ex-
emplified using a benchmark circuit.
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1 Introduction

The task of finding DC operating points is important because this analysis is
the starting point for the rest of common tests regularly done through the cir-
cuit design process (for instance, small-signal analysis). This analysis consists
in finding the solutions for a non-linear algebraic equation system (NAEs)
(equilibrium equation) from the ICs [1]. These NAEs becomes complex due
to the accelerated increase on the density of transistors inside the IC and by
the use of complex models (as result of reducing dimensions of the compo-
nents) causing two phenomena: existence of multiple unexpected operating
points and convergence failures for the Newton-Raphson (NR) method. The
NR method is employed by the majority of integrated circuit simulators. The
reason for the widespread use of the NR method is its quadratic convergence
rate which reduces computing time to complete the simulation. Neverthe-
less, the NR method [2] suffers some convergence issues like: oscillation and
divergence.

Circuit designers face convergence failures for DC analysis, commonly,
using the NR method and back-up methods, thus, as last resort, the modifi-
cation of some parameters for the numerical engine are enforced expecting to
reach convergence. This situation increases design times, thus making the en-
tire design cycle slow and expensive. This situation, by itself, justifies the use
of alternative methods to NR, like homotopy, to locate the operating point.
Nevertheless, there are more reasons to use homotopy methods like the exis-
tence of multiple operating points [3]. This is because, unlike NR, homotopy
is capable to locate multiple operating points. This is important because
there is a chance the designer implements a circuit under the assumption
that certain operating point exist (calculated by the NR method), which, in
fact, is not always physically stablished due to the existence, unnoticed, of
multiple operating points; that is, the DC operating point physically present
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is different. This is translated into malfunctioning of the circuit which could,
in the end; represent high loses for the company in financial terms.

The homotopy method reported by [4] is a highly efficient multiparame-
ter method [5] that locates the operating point for large circuits containing
just MOS transistors. In [6], an excellent revision of globally convergent
probability-one homotopy methods applied to circuit simulation with bipo-
lar transistors is presented. All the homotopy methods [4, 5, 6] described
above have been proved useful to locate one or more operating points that
converge to solutions where the NR method is unable to calculate. Nonethe-
less, such methods lack a formal stop criterion [7]; the stop criterion allows to
complete the simulation with the mathematical certainty that no more solu-
tions are left to be found along the traced homotopy path. On one hand, in
[8], a homotopy method containing a stop criterion is reported, it consists on
creating a boundary for the search space. Nevertheless, such method is only
useful to analyse circuits with bipolar transistors; besides, to program and
use this algorithm, requires deep understanding on the behaviour of multi-
stable circuits [3]. On the other hand, [7, 9] proposed a homotopy with stop
criterion named double bounded homotopy (DBH), which is based on the
manipulation of the homotopy path until it is converted in a closed path;
allowing to establish a formal method to conclude the homotopy simulation.
Besides, DBH homotopy can be applied to a wide spectrum of non-linear cir-
cuits that include bipolar transistors, tunnel diodes, MOS transistors, among
others [9].

This work presents a homotopy function based on the qualitative proper-
ties of the homotopy proposed in [7], it is called double bounded polynomial
homotopy (DBPH). This homotopy is capable to find multiple operating
points in a closed path. Like [7], DBPH homotopy includes symmetry axis
and a formal stop criterion; features that will be described bellow.

2 Double bounded polynomial homotopy with four solution
lines

The double bounded polynomial homotopy with 4 solution lines is defined
by this equation

H(f(x), λ) = λ(λ + a)(λ − a)(λ − 2a)(x − xi)(x − xf ) + C(λ − a/2)2f(x)2, (1)

where λ is the homotopy parameter, f(x) the equilibrium equation [10] of
the circuit, a is a constant that represents separation between solution lines,
xi is the initial point, xf the final point, and C an arbitrary constant.

Based on the previous, homotopy can be expressed in general way as

H(f(x), λ) =

⎧⎪⎨
⎪⎩

f(x∗) = 0 for λ = 0 and x = x∗

(x − xi)(x − xf ) = 0 for λ = a/2
f(x∗) = 0 for λ = a and x = x∗

where x∗ is any solution for f(x), xi and xf are homotopy’s initial and final
points, respectively.
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Fig. 1. Double bounded homotopy with four solution
lines.

This homotopy contains four solution lines (λ = −a, λ = 0, λ = a,
and λ = 2a)(see Fig. 1). Nevertheless, the two solution lines for both ends
are unconnected branches (SB1 and SB4) not used for tracing purposes.
Squaring the function f(x) has the finality to establish an even number of
solutions (or operating points) which precisely produces the bounding and
closes the homotopy path inside the middle region.

Fig. 1 shows how homotopy path starts at A = (xi, a/2) on the symmetry
axis, finds two roots (in region SB3) and finishes when a new crossing through
the symmetry axis at B = (xf , a/2) is detected, which means that tracing for
a symmetrical branch has been completed and fulfilling the stop criterion [9].
The properties for this new homotopy are presented in the following sub-
sections:

2.1 Symmetrical branches
To obtain the branches for the homotopy path, first the equation (1) is re-
formulated as follows

H(f(x), λ) = λ(λ + a)(λ − a)(λ − 2a) + (λ − a/2)2J(x) = 0, (2)

where
J(x) = Cf(x)2

(x−xi)(x−xf ) .

In order to trace the homotopy path [9], the unconnected symmetrical
paths SB1 and SB4 will be ignored because these open branches would make
not possible to apply the stop criterion. Symmetrical branches SB2 (λ2(x))
and SB3 (λ3(x)) shown in Fig. 1 can be derived solving λ from equation (2).
Given the fact that SB2 and SB3 are connected and symmetrical, only one
should be traced to obtain the full path and finalize the simulation. SB3
is chosen as the tracing path, which tangentially touches the solution line
λ = a. Therefore, the symmetrical branch SB2 is

λ2(x) =
a−

√
5 a2−2

√
(J(x)+4 a2)(J(x)+a2)+2 J(x)

2 .
(3)
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The symmetrical branch SB3 is

λ3(x) =
a+

√
5 a2−2

√
(J(x)+4 a2)(J(x)+a2)+2 J(x)

2 .
(4)

To demonstrate that λ2(x) is linked to the solution line λ = 0, the fol-
lowing limit is calculated

lim
f(x)→0

λ2(x) = 0, (5)

where the equilibrium equation f(x) tends to zero when x tends to solution
x∗ as shown in the following limit calculation

lim
x→x∗ f(x) = 0. (6)

Now, to demonstrate that λ3(x) is linked to the solution line λ = a, the
following limit is calculated as

lim
f(x)→0

λ3(x) = a. (7)

This shows that solutions x∗ are placed at λ = a.

2.2 Symmetry axis
The symmetry axis is an important property for the double bounded homo-
topy [7]. In the particular case of the double bounded polynomial homotopy
the symmetry axis is

λsym =
a

2
. (8)

This symmetry axis belong to the symmetry relationship between SB2
and SB3 branches.

As shown in Fig. 1, this relationship must be fulfilled as follows

λ3(x) − λsym = λsym − λ2(x).

Replacing the value for λsym, we obtain

λ3(x) − 0.5a = 0.5a − λ2(x).

Then, replacing λ2(x) and λ3(x) for their respective functions the next
relationship is found

0.5a + 0.5
√

G(x) − 0.5a = 0.5a − 0.5a + 0.5
√

G(x),

where G(x) =
√

5 a2 − 2
√

(J (x) + 4 a2) (J (x) + a2).
Reducing terms

0.5
√

G(x) = 0.5
√

G(x),
0 = 0.

The proof for this equality shows that the homotopy path is symmetrical around
the symmetry axis.
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3 Study case: circuit with bipolar transistors and a diode

In [11], a circuit was resolved using fixed point homotopy. This circuit has 3 oper-
ating points. The Ebers-Moll model is used for all the transistors. The equation for
the model is given as

[
iDE

iDC

]
=

[
1 -0.01

-0.99 1

] [
10−9(e(40vbe) − 1)
10−9(e(40vbc) − 1)

]
.

As for the diode, the model is

id = 10−9(e40u − 1).

First, the equilibrium equation is formulated using the modified nodal anal-
ysis [10] with the result of a system having 14 equations (f1, f2, . . . , f14) and 14
variables (v1, v2, . . . , v13, IE). The circuit is shown in Fig. 2 (a).

Now, applying the DBPH homotopy (a = 1, C = 1), the formulation is expressed
as follows

H1(f1, λ) = λ(λ + 1)(λ − 1)(λ − 2)(v1 + 13)(v1 − 13) + (λ − 0.5)2f2
1 = 0,

H2(f2, λ) = λ(λ + 1)(λ − 1)(λ − 2)(v2 + 13)(v2 − 13) + (λ − 0.5)2f2
2 = 0,

...
H14(f14, λ) = λ(λ + 1)(λ − 1)(λ − 2)(IE + 13)(IE − 13) + (λ − 0.5)2f2

14 = 0.

The initial point for every electrical variable may take the value +13 or −13.
Therefore, there are n2 possible combinations for each initial point (n is the number
of electrical variables). For this simulation the selected initial point (xi1) is shown
in Table I. The supply voltage for the circuit (E) provides 12V, this restricts the
value of the nodal voltages at 12V maximum. Besides, for practical reasons, the test
circuit will not handle currents beyond 13A, therefore, it is valid to assume that the
operating point is within the range of ±13. Hence, choosing the value of ±13 for
the initial point xi1 and final point xf1 is a way to guarantee the chance that the
homotopy path contains all the operating points of the circuit.

Table I. Relevant points.

R.P v1 v2 v3 v4 v5 v6 v7 v8

xi1 +13 -13 +13 -13 -13 -13 -13 -13
xi2 11.99 -15.41 -1.42 -15.04 -127.15 40.22 -1.40 -420.75
S1 12 0.405 0.366 0.685 0.349 6.796 0.070 7.038
S2 12 0.883 0.278 0.590 0.631 0.812 0.315 1.074
S3 12 5.995 0.085 0.368 0.712 0.436 0.390 0.699
xf1 +13 +13 +13 +13 -13 +13 -13 +13
xf2 11.99 0.84 0.83 1.20 -110.90 45.64 -1.40 -420.73

R.P cont. v9 v10 v11 v12 v13 IE λ

xi1 -13 -13 -13 -13 -13 -13 0.5
xi2 -1.71 -1.41 -1.35 -0.34 0.32 -0.03 0.5
S1 11.839 0.4e-5 0.039 0.039 0.321 -0.0085 1
S2 11.647 0.4e-5 0.039 0.039 0.321 -0.0100 1
S3 11.635 0.4e-5 0.039 0.039 0.321 -0.0089 1
xf1 +13 +13 +13 +13 +13 +13 0.5
xf2 -1.71 1.38 -1.35 -0.034 0.32 -0.03 0.5
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Fig. 2. (a) Benchmark circuit. (b) Homotopy path λ−v2

for homotopy DBPH. (c) Zoom to the solutions
of (b). (d) Homotopy path λ − v2 for DBH. (e)
Zoom to the solutions of (d).

The operating points for the benchmark circuit were located using double
bounded polynomial homotopy and double bounded homotopy [7] (using a = 0,
b = 1, C = 1 and D = 1940); resulting that both methods located all three operat-
ing points of the circuit (S1, S2, and S3), shown in Table I. Initial point xi1 for the
double bounded polynomial homotopy was proposed arbitrarily; as for the double
bounde homotopy, it was obtained by numerical solution of the homotopy function
at λ = 0.5. Numerical path following [9] for both homotopies started and ended
at λ = 0.5 (initial step length h = 0.09), nevertheless, double bounded homotopy
needed a total of 10348 iterations to reach the final point at xf2 while the double
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bounded polynomial homotopy only needed 2229 iterations to reach final point at
xf1 . Both final points (xf1 and xf2) can be seen in Table I.

On one hand, Fig. 2 (b) and Fig. 2 (c) shows the homotopy path for variable
v2 using the double bounded polynomial homotopy. On the other hand, Fig. 2 (d)
and Fig. 2 (e) shows the homotopy path for variable v2 using the double bounded
homotopy. It can be seen that both methods locate all three operating points,
having the same order of appearance but different homotopy path. These solutions
are shown in Table I, where S1, and S3 are stable and S2 is unstable.

In Table I it is possible to see that initial point xi1 has arbitrary values of +13
and −13; this obeys that using other sign combinations resulted in convergence of
just one or two solutions. Therefore, the appropriate selection of the initial point
plays an important role on the number of solutions to be found, hereafter a study
about an optimal initial point selection should be performed in a near future.

The homotopy DBPH does not directly interfere with models of electronic de-
vices, so it is not restricted to simulate circuits that may contain bipolar devices,
diodes, tunnel diodes or MOS transistors [9]. In general terms, it can be applied to
circuits containing devices that possess analytic models.

4 Conclusion

The stop criterion for homotopy methods consist, mainly, in two heuristic criteria:
the number of iterations is fixed to a maximum number (arbitrarily number) of in-
tegration steps or the algorithm stops when the homotopy path cross the solution
line. Nevertheless, this kind of stop criterion may end without finding all roots on
the homotopy path. Therefore, a homotopy method with formal stop criterion was
proposed, it is named as double bounded polynomial homotopy. The proposed ho-
motopy shows interesting properties like: it allows the homotopy path to be bounded
between two limits known as solution lines and possess a symmetry axis which al-
lows to implement a stop criterion. The operating points of a benchmark circuit
containing bipolar devices were found using the double bounded polynomial homo-
topy and the double bounded homotopy, comparing results it can be concluded that
the DBPH homotopy has advantages over DBH homotopy like arbitrary initial and
final points, and requires less iterations.
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