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The continuous scaling for fabrication technologies of electronic circuits demands the design of
new and improved simulation techniques for integrated circuits. Therefore, this work shows how
the hypersphere technique can be adapted and applied to trace a multiparameter homotopy. Be-
sides, we present a path-following technique based on circles (evolved from hypersphere), which
is faster, and simpler to be implemented than hypersphere technique. Last, a comparative analysis
between both techniques applied to simulation of circuits with bipolar transistors will be shown.

1. Introduction

The increment of the complexity of circuits influence the scientific progress in the simulation
techniques area for integrated circuits. Also, homotopy techniques have been introduced as
a useful tool in the area of operating point solution for circuits [1–5], due to the Newton-
Raphson (NR)method (widely used)which shows convergence problems [6] like oscillation
and divergence.

2. Multiparameter Homotopy

The first step to formulate a homotopy is to establish the equilibrium equation to be solved;
it is formulated from Kirchhoff laws, being defined as

f(x) = 0, where f : ∈ Rn −→ Rn, (2.1)
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where x represents the electrical variables of the circuit and n is the number of electrical
variables.

Multiparameter homotopies [7–9] are characterized by adding more than one extra
homotopy parameter to the equilibrium equation. When homotopy parameters are adjusted
to zero, the solution for H(·) becomes trivial, and when parameters reach value of one, then
the operating point is located. The multiparameter homotopy function can be represented as

H
(
f(x), λ1, λ2, . . . , λk

)
= 0, (2.2)

where homotopy parameters are λ1, λ2, . . . , λk ∈ [0, 1] and k is the number of homotopy
parameters.

Multiparameter homotopy [7] has been proposed in order to avoid fork bifurcations,
singularities, among other problems that can be encountered with homotopy paths. Besides,
as for the uniparametric [2] and multiparameter homotopies, the tracing technique [10, 11] is
a fundamental tool capable of affecting the convergence, speed, and number of solutions
located. Therefore, it is proposed to apply two tracing techniques for multiparameter
homotopy, both will be described in the following sections.

3. Tracing Techniques

In order to apply tracing techniques described in this paper, a biparametric homotopy based
in Newton’s homotopy method will be used as an example:

H
(
f(x), λ1, λ2

)
= f(x, λ2) − (1 − λ1)f(xi, 0), where H : ∈ Rn+1 × R −→ Rn. (3.1)

With the existence of two parameters (λ1 and λ2), two simultaneous deformations or
transformations are produced: one in function f and another in functionH. When [x, λ1, λ2] =
[xi, 0, 0], then

H
(
f(x), λ1, λ2

)
= f(xi, 0) − f(xi, 0) = 0. (3.2)

Hence, homotopy function is satisfied. Besides, when [λ1, λ2] = [1, 1] becomes

H
(
f(x), λ1, λ2

)
= f(x), (3.3)

so the found solution of H is the solution of the equilibrium equation. Nonetheless, as
function H has two extra variables, it is necessary to add two equations to the system H
in order to be solved using more conventional techniques like NR.



ISRN Applied Mathematics 3

λ2 p3 = [1, 1]

λ1p1 = [0, 0]

p2 = [A, B]

(a)

S1

t0

k1

S0

S2

t1

t2

t3

Homotopy trajectory

k2

(b)

Figure 1: (a) Parametric function. (b)Hypersphere technique.

(1) Equation n + 1

One equation is added to define path λ1 − λ2, which will be named parametric function
M(λ1, λ2). This equation traverses three points [λ1, λ2]: p1 = [0, 0], p2 = [A,B], and p3 = [1, 1].
The proposed equation is

M(λ1, λ2) = −λ1 + (λ2 + (B(−1 +A)/(AB + 1 − 2A)))
(−((−1 + 2A − B)λ2/(AB + 1 − 2A)) + 2(B(−1 +A)/(AB + 1 − 2A)))

,

(3.4)

where p2 is defined by user, as shown in Figure 1(a). The range of values forA and B is [0, 1].

(2) Equation n + 2

Hypersphere equation is added [12]:

S(·) = (x1 − c1)2 + (x2 − c2)2 + · · · + (λ1 − cn+1)
2 + (λ2 − cn+2)

2 − r2, (3.5)

where c is the center of the hypersphere (which adjusts its value each iteration) and r � 1 is
the hypersphere radius (step size).

The summary of the procedures consists in the following steps [12] (see Figure 1(b)).

(1) The first sphere is established S0with center located at t0 = [xi, p1] and the equation
system is solved (3.1), (3.4), and (3.5) using the NR method (setting t0 as an initial
point), locating point t1.

(2) A new hypersphere S1 is created with center at t1.

(3) Using points t0 and t1, it is possible to create a prediction, which touches
hypersphere S1 at point k1; it is used as initial point for the NR method, until
locating point t2 on the homotopy path.
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(4) Steps 2 and 3 are successively repeated (updating hypersphere’s center after each
iteration) until crossing point p3.

(5) Points before and after p3 are used to perform an interpolation [13]. The type
of interpolation employed in this paper is linear multidimensional interpolation,
which produces an approximation xa of solution xs for the equilibrium equation.

(6) Finally, using as initial point xa in the NR method, the precision for the operating
point xs is improved.

It is possible to replace (3.5) for the circle equation, in function of the homotopy parameters:

C(·) = (λ1 − cn+1)
2 + (λ2 − cn+2)

2 − r2, (3.6)

where r � 1. The rest of the steps to implement the numerical continuation are the same as
the hypersphere technique already described.

4. Study Case: Circuit with Bipolar Transistors and a Diode

The following circuit [14] (see Figure 2) contains nine solutions and has become the reference
circuit for the homotopy applied to circuit analysis. Using the system reported by [14],
equilibrium equation is augmented

f(v1, v2, v3, v4, λ2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = 6.103168Is
(
e40v1 − 1

)
λ2 + 4.36634v2 + 2.863168Is

(
e40v2 − 1

) − 12,

f2 = 5.4v1 + 3.58Is
(
e40v1 − 1

)
λ2 + 6.62Is

(
e40v2 − 1

)
+ v3

+ 0.7Is
(
e40v3 − 1

)
+ 0.5Is

(
e40v4 − 1

) − 22,

f3 = 6.103168Is
(
e40v3 − 1

)
+ 2.863168Is

(
e40v4 − 1

)
λ2 + 4.36634v4 − 12,

f4 = v1 + 0.7Is
(
e40v1 − 1

)
λ2 + 0.5Is

(
e40v2 − 1

)
+ 5.4v3

+ 3.58Is
(
e40v3 − 1

)
+ 6.62Is

(
e40v4 − 1

)
λ2 − 20,

(4.1)

where Is = 10−6, [v1, v2, v3, v4] are the voltage drop between base-emitter terminals for each
transistor in the circuit (see Figure 2) and λ2 is the second homotopy parameter. The complete
homotopy formulation can be established by using the following equations:

(i) the augmented equilibrium equation (4.1),

(ii) the homotopy function equation (3.1),

(iii) the parametric function (3.4),

(iv) the hypersphere function (3.5) or circle function (3.6), which depends on the
selected technique.

Table 1 presents in summary the results of performing the tracing of four paths with
different initial points (xi1, xi2, xi3, and xi4), each one. This process was repeated for both
tracing techniques, showing the results in Figures 3(a) and 3(b). Comparing both techniques,
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Figure 2: Chua’s circuit.

Table 1: Relevant points for homotopy simulations.

Hypersphere—Init. point
where [λ1, λ2] = [0, 0] No. Iter Time (Sec) Operating point [v1, v2, v3, v4]

where [λ1, λ2] = [1, 1]

xi1 = [−5, −5, −5, −5] 519 7.70 xs1 = [0.3830, −3.5446, 0.3851, −4.0990]
xi2 = [−1, −2, −1, 0] 202 3.59 xs2 = [0.3869, −4.6321, −0.8002, 0.3775]
xi3 = [−5, −0.5, −5, 0] 216 4.06 xs3 = [−0.5136, 0.3775, −0.9682, 0.3775]
xi4 = [−1, 0, 0, 0] 168 3.13 xs4 = [−1.0510, 0.3775, 0.3845, −3.9542]
Circle—Init. point
where [λ1, λ2] = [0, 0] No. Iter Time (Sec) Operating point [v1, v2, v3, v4]

where [λ1, λ2] = [1, 1]
xi1 = [−5, −5, −5, −5] 48 0.86 xs1 = [0.3830, −3.5446, 0.3851, −4.0990]
xi2 = [−1, −2, −1, 0] 48 0.89 xs2 = [0.3869, −4.6321, −0.8002, 0.3775]
xi3 = [−5, −0.5, −5, 0] 48 0.74 xs4 = [−0.5136, 0.3775, −0.9682, 0.3775]
xi4 = [−1, 0, 0, 0] 48 0.82 xs4 = [−1.0510, 0.3775, 0.3845, −3.9542]

there are two interesting conclusions to be highlighted: first, homotopy paths traced from the
same initial point lead to the same solution; in fact, comparing paths point by point, it can be
observed that it is the same path; second, despite that paths are identical, the circle technique
required a fixed number of iterations (48); those are much less required than using the
hypersphere method. In fact, from Table 1, it can be concluded that, at best (choosing initial
point at xi1), the tracing technique for circles required 8.95 times less CPU time (by using
MAPLE 15 software in an Intel Quad Core i7 processor at 2.6GHz) than the hypersphere
technique. Both tracing techniques employed radius of r = 0.03 and a parametric functionM
with p2 = [0.2, 0.3].



6 ISRN Applied Mathematics

xi1

xi2

xi3

xi4

−4

−5

−3

−2

−1

0

1

10.2 0.4 0.6 0.8

λ1

λ1 = 0 λ1 = 1

xs2

xs1

xs3

xs4

v
2

(a) Hypersphere technique

xi1

xi2

xi3

xi4

−4

−5

−3

−2

−1

0

1

0.2 0.4 0.6 0.8

λ1

v
2

xs2

xs1

xs3

xs4

1

λ1 = 0 λ1 = 1

(b) Circle technique

Figure 3: Homotopy trajectories v2 − λ1.

Circles technique can be modified changing one of the homotopy parameters by an
electrical variable of interest. For instance, the simulation was repeated from initial point xi1,
only changing the circle from (3.6) by

C(v1, λ1) = v2
1 + λ21 − r2, (4.2)
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where v1, r ∈ R. The result was that the homotopy path already known was traced (see
Figure 3(b)) with a total of 191 iterations (locating the same solution at xs1). Also, it is
possible to use one of the two homotopy parameters with more than one electrical variable,
to implement a reduced hypersphere. Therefore, in a forthcoming work the study of circles
technique will be expanded and a possible application to simulate VLSI circuits will also be
discussed.

5. Conclusion

This work showed that it is possible to use the hypersphere technique to tracemultiparameter
homotopies. Besides, a tracing technique derived from hypersphere (circles)was introduced,
which is simpler to program and faster than the hypersphere technique. These results make
the circles technique an attractive tool to trace multiparameter homotopies.
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