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ABSTRACT

An approach for a biometric cryptosystem based on keystroke dynamics and the k-medoids algorithm is proposed. 
The stages that comprise the approach are training enrollment and user verification. The proposed approach is able 
to verify the identity of individuals offline avoiding the use of a centralized database. The approach as reported in 
this paper may be implemented in stand-alone terminals or embedded in password-based systems to increase the 
security. The performance of the proposed approach is assessed using 20 samples of keystroke dynamics from 20 
different users. Simulation results show a false acceptance rate of 2.89% and a false rejection rate of 3.35%. The 
cryptographic key released by the proposed architecture may be used in several potential applications such as user 
login, file encryption or even portable authentication to gain access to virtual private networks.

Keywords:
Biometrics, Cryptography, Keystroke dynamics, K-medoids, Minkowski distance.

1.	 INTRODUCTION

The fusion of biometrics and cryptography offers 
to explode the advantages of these two potentially 
complementary security technologies to create 
highly-secure and flexible architectures. Biometrics is 
about measuring the physical or behavioral unique 
characteristics to identify individuals with a high degree 
of trust whilst cryptography mainly guaranties trusted 
transactions over non-secure networks. The idea of this 
fusion is not new; however, the biometric cryptosystems 
developed so far require a centralized database to store 
the biometric information. This fact has a negative 
impact in the social acceptance of the proposed biometric 
cryptosystems [1,2].

The short history of biometric cryptosystems may be 
summarized with the following detailed survey which 
focuses on researches that extract or derive biometric  
keys [2,3]. Monrose et al. proposed one of the first systems 
which is based on keystroke dynamics [4,5]. They 
combine password and short binary string derived from 
the keystroke characteristics of the individual to create 
a hardened password. However, their system relies on 
an encrypted table which can be stolen either on its way 
to the database or directly from the database. Hao and 
Chan used handwritten signatures [6]. They extracted 43 
signature features, which are quantized into bits to form 
a binary string. They reported 40-bit key entropy with a 
28% false acceptance rate (FAR) and 1.2% false rejection 
rate (FRR). Clancy et al. proposed a similar work based 
on fingerprints [7]. The fingerprint minutiae locations are 

recorded as real points to form a locking set. However, the 
secret key can be derived using polynomial reconstruction. 
Goh and Ngo combined some of the works presented 
before to build a system based on face biometrics [8]. 
Eigen projections are extracted then mixed with random 
strings and quantized into single bits to form a binary 
string. Also, error-correction capabilities are considered 
in the cryptosystem. Hao et al. reported the first practical 
biometric cryptosystem that integrates the iris biometrics 
into cryptographic applications [1]. The proposed 
architecture in this work also avoids the use of a centralized 
database. They explode the error-correction techniques to 
improve the performance of the system. Finally, Garcia-
Baleon and Alarcon-Aquino proposed a bimodal biometric 
cryptosystem based on electrocardiogram and speech 
signals [9]. This work combines most of the techniques 
presented before to create a system that avoids the use 
of a centralized database. It considers a password to 
authenticate the user and a biometric sample to verify the 
identity. However, due to the complexity of the system, it 
is designed to work in devices with high computational 
capabilities. More recently, several works based on 
keystroke dynamics have reported an improvement of 
the FAR and FRR of less than 2% using Gaussian mixture 
models and classifier fusion techniques [10-12]. However, 
these works sometimes need specialized hardware, or the 
proposed algorithms are too complex and time consuming 
that an implementation is not worth. What is more, these 
works are not designed to release a cryptographic key. 
Nonetheless, a brief discussion is presented in the results 
section in order to compare and contrast our results with 
those reported recently.
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Keystroke dynamics can be defined as the timing data 
that describes when a key is pressed or released as a 
user types at the keyboard. The recorded timing data 
can be processed through an algorithm to determine a 
primary timing pattern (PTP) for future verification. 
The PTP may be used to verify the identity of the 
individual. The work reported in this paper considers 
three security factors, namely, a user password, a 
behavioral biometric sample, and a token. It works 
using a 3D random distribution of the biometric data 
that assures also the randomness of the cryptographic 
key released. The 3D pattern is extracted from the 
3D random biometric pattern using the k-medoids 
algorithm tested for different types of distances that 
measure similarity, namely, Manhattan, Euclidean, 
Chebyshev and Minkowski distance. The rest of 
the paper is organized as follows: In Section 2, the 
k-medoids algorithm is described. Section 3 presents the 
Minkowski distance for measuring similarity. Section 
4 presents the keystroke dynamics and shows how the 
PTP is extracted to work with the proposed architecture. 
In Section 5, the design of the proposed architecture is 
explained, whereas in Section 6 simulation results are 
reported. Finally, conclusions are reported in Section 7.

2.	 K-MEDOIDS ALGORITHM

The k-medoids algorithm is a clustering algorithm 
based on the k-means algorithm and the medoid-shift 
algorithm. Both, k-means and k-medoids, algorithms 
break the dataset up into k clusters [13,14]. Also, these 
algorithms attempt to minimize the squared error. The 
squared error can be defined as the distance between 
points labeled to be in a cluster and a point designated 
as the center of that cluster. The k-medoids algorithm 
chooses data points as centers instead of computing the 
centers as the k-means algorithm does. The k-medoids 
algorithm is a partitioning technique of clustering 
that clusters the dataset of n objects into k clusters 
known a priori. The k-medoids algorithm is more 
robust to outliers and noise compared to the k-means  
algorithm [14]. A medoid is defined as that object of 
a cluster whose average dissimilarity to the rest of 
the objects in that cluster is minimal. The partitioning 
around medoids (PAM) algorithm describes a common 
realization of the k-medoid clustering algorithm. The 
PAM algorithm is as follows:
1.	 Arbitrary selection of k objects as medoid points out 

of n data points (n>k)
2.	 Associate each data object in the given dataset to the 

most similar medoid to form clusters. The similarity 
in this step can be computed using distance measure. 
The distance measure is computed for Euclidean, 
Manhattan, Chebyshev, and Minkowski distance

3.	 Randomly select a non-medoid object named R’ for 
each cluster

4.	 Compute the total cost S of swapping the initial 
medoid object to R’

5.	 If S<0, then swap the initial medoid with the new 
one. Otherwise, the initial medoid remains

6.	 Repeat Steps 2 to 5 until there is no change in the 
medoids.

The PAM algorithm is based on an iterative optimization 
process that evaluates the effect of swapping between 
the initial medoid object and the non-medoid object 
randomly selected. The principle of the PAM algorithm 
resides in Step 5. It can be seen that it may require 
trying all objects that are currently not medoids. Thus it 
represents an expensive computational cost, Cost(k(n − 
k)2), in each iteration. The PAM algorithm results in high 
quality clusters, as it may try every possible combination, 
working effectively for small datasets. However, due 
to its computational complexity, it is not practical for 
clustering large datasets [13,14].

3.	 MINKOWSKI DISTANCE

Formally, a similarity function aims at comparing 
two entities of a domain M based on their common 
characteristics. Similarity can be measured in several 
ways depending on the scale of measurement or data 
type. Based on the vector representation, the similarity 
can be calculated using the concept of distance. In this 
paper, we use the Minkowski distance to do so. The 
selection of the Minkowski distance is due to the fact 
that it is easy to implement in software and hardware, 
its computational cost is lower compared with more 
complex distances like Mahalanobis distance, and it fits 
well with the characteristics of the proposed approach 
considering the type of data used. In general, the distance 
dij between any two points, P=(x1,x2,…,xn) and Q=(y1,y2,…
,yn) Œ ¬ n, in n-dimensional space may be calculated by 
the equation given by Minkowski as follows [15]:

d x xi j ik jk
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with k being the index of the coordinates and p 
determining the type of distance. There are three special 
cases of the Minkowski distance: 
•	 p=1: this distance measure is often called city block 

distance, or Manhattan distance.
•	 p=2: the Minkowski distance is reduced to the well-

known Euclidean distance.
•	 p=∞: the Minkowski distance is reduced to the 

Chebyshev distance. In the limiting case of p reaching 
infinity, the resultant equation is as follows:
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4.	 A BEHAVIORAL BIOMETRIC: KEYSTROKE 
DYNAMICS

Keystroke dynamics is defined as the timing data that 
describes when a key is pressed or released as the 
user types at the keyboard. This behavioral biometric 
uses the manner and the rhythm in which a user 
types characters. The keystroke rhythms of a user are 
measured to develop a unique biometric pattern of 
the users typing for future verification. The recorded 
timing data can be processed through an algorithm 
to determine a PTP for future verification. The PTP 
is used to verify or even try to determine the identity 
of the individual who is producing those keystrokes. 
This is often possible because some characteristics of 
keystroke production are as individual as face, iris or 
handwritten signature [1,6,8].

The proposed technique used to extract the PTP considers 
partitioning the acquisition time in time slots. The size of 
the time slot affects directly the FAR and FRR metrics. 
Several experiments performed showed that a size of 150 
ms for the time slot is enough to minimize the FAR and 
FRR metrics as it is shown in Section 6. Figure 1 shows 
an example of the timing data of an individual. In the 
top part, the timing data from the key pressing events is 

shown. The bottom part shows the timing data from the 
key releasing events. As can be seen, the key pressing 
process produces 10 events represented by the bold 
lines. The key releasing process produces 10 events also 
represented by the bold lines. It is important to notice 
that the first key pressed launches the acquisition stage 
and also the timer.

The rest of events are located in the time scale according 
to the value that the timer has when the events take place. 
Figure 1 also depicts that the events can occur at any time 
within a determined time slot; however, the time value 
is rounded to the closest time slot value given in ms. This 
fact assures that the extracted PTP is only comprised 
by a combination of the possible discrete time values 
otherwise the possible time values that the event could 
take are infinite. From now on, the extracted PTP from 
the key pressing events will be referred to as PTPp and 
the extracted PTP from the key releasing events will be 
referred to as PTPr.

5.	 PROPOSED APPROACH

The successful recovering of the random biometric 
key depends upon a correct combination of the user 
password, the behavioral biometric sample and the 

Figure 1: Acquisition stage (a) Key pressing events pattern; (b) Key releasing events pattern.

Alarcon-Aquino V, et al.: Biometric Cryptosystem based on Keystroke Dynamics and K-medoids
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token that stores the user password hash H(pwd), the 
encrypted random distribution vectors, RDVencrypted, used 
to reconstruct the 3D random biometric pattern, and 
the 3D pattern hash H(P). The architecture presented 
here ensures that compromising two factors at most 
will not let the attacker reveal the random biometric 
key. The proposed architecture comprises two stages, 
namely, training-enrollment and user verification. Figure 2 
shows a detailed representation of the architecture. The 
first stage is executed when an individual is enrolled 
for the first time to the biometric cryptosystem. This 
stage produces through a simple training process the 
information needed to verify the user in the second 
stage. The training process uses the keystroke dynamics 
biometric information obtained from the user at his 
enrollment.

The first stage can also be executed each time the random 
biometric key needs to be revoked or renewed for any 
security concern. The second stage, user verification, is 
executed each time the user needs to be identified before 
the biometric cryptosystem. The training–enrollment 
stage consists of the following steps:
1.	 A 10-character password is required to the user. 

The user password pwd is hashed using any hash 
function. The selection of the hash function depends 
on the capabilities and resources of the system where 
the proposed architecture may be implemented. 
The hash result H(pwd) is then directly stored in the 
token.

2.	 The raw timing data is recorded as the user types 
the password. Then, the PTPs are extracted from the 
raw timing data as explained in the previous section 
[see Figure 1]. As a result of the PTP extraction, two 
dataset are obtained, namely, PTPp and PTPr. A 
third dataset is created taking the ASCII values of 
the password characters. Notice that the PTPs may 
vary even when the biometric information comes 

from the same individual. This is due to the fact that 
the user is not allowed to input the chosen password 
or external factors affect his typing. Then, a training 
process is needed to overcome these difficulties. 
The purpose of the training process is to converge 
and generalize the PTPs. The training process is as 
follows: 
•	 The user is required to input ten times the 

10-character password chosen as shown in (3). 
Each time the PTPs are extracted as explained 
previously.
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	 where n=10, number of times that the password 
is required to the user for training purposes; 
m=10, number of characters of the password; 
a=10, number of key pressing events; b=a, 
number of key releasing events. 

•	 The respective 10 PTPs are compared each other 
point by point. It is clear that a PTPp should not 
be compared with a PTPr If the two compared 
points are separated each other for more than four 
time slots when the comparison takes place, that 
timing pattern is automatically discarded, see (4).
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Figure 2: Proposed architecture based on the three security factors scheme.
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	 where t refers to current test and a denotes 
the total number of the tests, i refers to a PTPp 
selected as base for the comparisons; j refers to a 
PTPp other than i that is selected to test whether it 
is four time slots apart or not; λ denotes the size 
of the time slot; ++ indicates that a counter called 
ppass, initially equal to zero, is incremented. This 
counter indicates how many PTPp have passed 
the test; PTPp pass  is a matrix that saves the PTPp 
that has passed the test and is a concatenation 
operator. The training for the PTPr is analogous 
to (4).

•	 If at least six timing patterns survive this 
comparison process, the mean is calculated 
for each point and the result is rounded to the 
nearest time slot value (see (5)). Otherwise, the 
training process must be restarted. Practical 
experiments showed that a user used to type a 
password generates the same PTPs at least 6 out 
of 10 tries.

•	 PTP a

PTP PTP PTP P
P

P P P p

global

pass pass pass

( .. )

( ,:) ( ,:) (

1

1 2
=

+ + +L aass

passP

, :)

� (5)

	 The global PTPr is computed analogously to (5).
•	 The resultant PTPs obtained from this training 

process are considered as the global PTP to be 
used with the proposed approach.

3.	 Three random vectors are generated of 160 values 
each one (see (6)). The formed datasets by the key 
pressing pattern, the key releasing pattern, and the 
ASCII password values are distributed according to 
the generated Random Distribution Vector (RDV), 
which contain pseudorandom values drawn from 
the standard uniform distribution on the open 
interval (0, 10).
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	 where s denotes the number of position the RDVs 
must have. In Section 6 it is shown the choice of 
s=160; rand is a function that returns a vector of s 
random values in the desired interval with a normal 
distribution; ’ is a transpose operation. 

	 Each of the three random vectors corresponds to a 
coordinate in a 3D plane. Figure 3 shows a 3D random 
biometric distribution generated using a specific 
behavioral biometric with a determined random 
distribution vector. The 3D pattern computed is 

formed for the resultant eight points obtained 
by performing the k-medoids algorithm over the 
random distribution of datasets according to (7).
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	 where ASCII is a function that returns the ASCII 
value of each character of the password.

4.	 Once the k-medoids algorithm converges and the 
3D pattern, P, is extracted, the pattern, P, is hashed 
using any hash function and the hash result H(P) is 
also saved into the token.

P=k-medoids(Random Distribution)� (8)

5.	 The RDVs used to construct the 3D random 
biometric pattern are encrypted using a suitable 
encryption algorithm (e.g., AES) depending on the 
capabilities and resources of the system where the 
architecture may be implemented and stored in the 
token (see (9)). The hash result H(pwd+pwd) of the 
concatenation of the user password pwd is used as 
the cryptographic key that the encryption algorithm 
needs to work (see (10)). 

	 RDVencrypted=�encryption Algorithm�  
(RDV, H(pwd+pwd))� (9)

The training–enrollment stage can thus be defined as 
follows:

pwd P RDV T
H pwd
H P

RDVencrypte

, ,
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dd

Ï

Ì
Ô
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Now, we proceed to a detailed description of the user 
verification stage. It must be assumed that the user has 
the token with the three parameters stored in it. The 
verification stage comprises the following steps:

Figure 3: A random distribution of the biometric information 
is shown. The bold line shows the convergence points, 3D 
pattern, after performing the k-medoids algorithm.
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1.	 The user password, pwdsample, is required to the user 
who is claiming the identity. Then the password 
provided for the user is hashed using any hash 
function which must be equal to the one used 
in the training–enrollment stage, H(pwdsample), 
and compared with the hash stored in the token 
H(pwd). If both hashes do not match, the stage ends. 
Otherwise, the stage continues to Step 2.

2.	 To perform decryption over the encrypted RDVs 
stored in the token using as a key the hash result 
of the concatenation of the user password already 
authenticated.

RDV=�encryption Algorithm-1(RDVencrypted,  
H (pwdsample + pwd sample))� (11)

3.	 To extract the PTPs of the keystroke dynamics sample 
presented by the user as described previously.
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4.	 To build the 3D random biometric pattern using as 
datasets the biometric information obtained in Step 
3 and password in Step 1 and as distribution the 
decrypted RDVs obtained in Step 2.

Randon Distributionsample( , , : )
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5.	 To apply the k-medoids algorithm over the 3D 
random biometric pattern built in the previous step 
to extract the 3D pattern.

Psample = kmedoids(Random Distributionsample)� (14)

6.	 The 3D pattern recovered, Psample, in the previous step 
is hashed using the selected hash function, H(Psample) 
and compared to the hash stored in the token H(P). If 
both hashes do not match, the stage ends. Otherwise, 
the stage continues to Step 7.

7.	 The 3D pattern is added to the ASCII values of the 
password of the user. The result is hashed again to obtain 
a random biometric key, k. This is the cryptographic key 
that is released and belongs to the verified user.

ktemp = Psample(0,0,1..8)+ASCII�  
(pwdsample(1,...,m)) k = H(ktemp)� (15)

In Section 6, it is explained why the 3D pattern recovered, 
Psample, does not have the same size of the password and 

its length need to be adjusted as (15) shows. 

The user verification stage can thus be defined as follows:

pwd PTP T ksample sample
user verification, , æ Ææææææ � (16)

Notice that in both the stages (training–enrollment and 
user verification) it is crucial that PTPs, 3D random 
biometric pattern, 3D pattern, and not encrypted RDVs, 
used along the stages must be securely crashed and not 
retained in memory. Also, it is important to remark that 
the architecture gives the flexibility of selecting any hash 
function and encryption algorithm depending on the 
type of system where the architecture may be deployed. 
Nevertheless, the selection of the hash function determines 
the encryption algorithm to be used due to the fact that 
the hash result acts as the key of the encryption algorithm. 
We suggest then to use a hash function of 128-bits at least 
and the appropriate encryption algorithm if the system 
has limited resources. However, if more robust and secure 
architecture is required a 1024-bit hash function and 
encryption algorithm is suggested. Notice that both hash 
function and encryption algorithm determine the final 
length of the key released k by the proposed architecture.

6.	 SIMULATION RESULTS

In this section, the performance results of the architecture 
presented in the previous sections are reported. To 
illustrate the performance of the three security factors 
architecture, a Keystroke Dynamics Database was created. 
This database contains the timing data of 20 different 
users. It was collected 20 raw timing patterns total per user 
without any discretization process. Then, the database 
contains a global total of 400 timing data to be used to 
compute the FAR and FRR metrics and the computational 
cost. Although the k-medoids algorithm presents several 
advantages as resistance to noise and outliers compared 
with other clustering algorithm, it also represents a high 
computational cost, Cost(k(n − k)2), due to the fact that 
it may try every point in the dataset before converging.  
Table 1 summarizes the maximum, minimum and the 
mean number of iterations needed to converge using 
different types of distances. As can be seen, a minimum 
of two iterations are needed to make converge the 3D 
pattern for all distances. However, the Manhattan distance 
is the most effective distance because it needs at most 

Table 1: Iteration comparison of the k-medoids algorithm 
working with different types of distance
Distance p Maximum Minimum Mean
1 4 2 2.39
2 6 2 2.44
3 5 2 2.41
4 5 2 2.43
∞ 6 2 2.49

Alarcon-Aquino V, et al.: Biometric Cryptosystem based on Keystroke Dynamics and K-medoids
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four iterations to converge compared to the six iterations 
that the Euclidean and the Chebyshev distance may need 
or with the five iterations that the Minkowski distance 
evaluated in 3 and 4 may need. Also, the computed mean 
using the Manhattan distance is the closest value to the 
minimum number of iterations which assures that the 
frequency of convergence with two iterations is higher 
compared to the rest of the distances. Then, Manhattan 
distance is the best choice for the architecture proposed 
because it needs less iterations to converge and its 
computational cost, with k=8 and n=160, is considerably 
lower compared to the rest of the tested distances. 

The size of the time slot must be carefully chosen to 
minimize both FAR and FRR. The reason of choosing 
the 150 ms time slot size is due to the fact that this time 
slot minimizes the error metrics when several raw timing 
patterns are compared. It must be clear that there are some 
raw timing patterns associated to an individual which do 
not fulfill with the training criterion and affects directly the 
metrics. Later a new computation of the metrics considering 
the training process shows an improvement of the metrics. 
Table 2 shows that an increment in the size of the time slot 
affects positively the FRR but affects negatively the FAR. An 
improvement in the FAR is produced when the size of the 
time slot remains small; however, under these conditions 
the FRR is affected in a negative way. As can be seen, there 
is compromise between these two metrics. 

According to [16], the best way to choose the value of 
λ which in our case is the size of the time slot is using 
a detection error trade-off (DET) curve. DET curves 
typically plot decision error rates (false reject rate vs. 
false accept rate) against λ values. DET curve is preferred 
over the Receiver Operating Characteristic (ROC) curve 
when it is needed to determine the best suitable value of 
λ known as the decision threshold. Figure 4 shows the 
DET curve build from the data shown in Table 2. The 
DET curve shows that the best compromise between FAR 
and FRR takes place around 150 ms.

It is also considered necessary to explain why the 
k-medoids algorithm uses a universe of 160 points in 
3D and converge only to 8 points. First, it is fair to say 
that the crypto purists are familiarized to think that a 
54-bit string should not be used as key. This number 
is a very conservative theoretical bound; however, no 
design should be below this bound to be considered as 
secure. Then if we think in a hardware implementation 
of the architecture and assume that the 3D pattern really 
acts as salting factor, an attacker only could be interested 
in knowing only the salt value. If each value of the 3D 
pattern P is represented using a byte, then 8 convergence 
points of the 3D pattern, 64-bit string, are good enough 
to accomplish the minimum of security required. 
Figure 5 shows the computational cost of performing 
the k-medoids algorithm considering different sizes of 
the universe with different number of groups. Given 
that we designed the architecture with the minimum 
requirements, the number of groups or convergence 
points chosen is 8. Figure 5 shows that the computational 
cost increases due to increments in the number of groups 
and increments in the number of total points or universe. 
Experimental results show that the best quality groups 

Table 2: Performance of FAR and FRR metrics for different 
time slots
Time slot (ms) FAR (%) FRR (%)
25 2.63 30
50 4.74 15
100 5.26 10
200 10.52 5
300 17.10 5

Figure 4: DET curve with no training process; x-axis, time in 
ms; y-axis, percentage of error in %.
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Figure 5: Computational cost of k-medoids algorithm; 
x-axis, k groups; y-axis, n total points or universe; z-axis, 
computational cost at the current n and k.
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considering only 8 groups and the Manhattan distance 
were given when the size of the universe was 160. This 
selection assures a low computational cost and best 
quality grouping. Maintaining the complexity low is 
important because the architecture as presented here 
can be implemented in both software and hardware. The 
devices in which this architecture could be implemented 
do not need to have high computational capabilities. 
Also, it is important to mention that Figure 5 shows 
the maximum number of needed operations to make a 
3D pattern converge. However, Table 1 shows that the 
number of needed iterations to make the 3D pattern 
converge is quite low. 

Once the architecture is completely designed and the 
training enrollment process has been designed, the 
calculation of FAR and FRR is performed again. In 
training–enrollment stage, it is selected randomly a 
user as a base case, then the 20 timing data samples of 
that user are used in the training process to extract the 
PTPs. Once the PTPs have been extracted as explained 
previously, the proposed architecture generates and 
stores in the token the information needed in the user 
verification stage. The FAR and FRR metrics were 
obtained testing extracted PTPs against the 400 timing 
patterns stored in the Keystroke Dynamics database. 
Given that the database contains 20 timing data per user, 
it may be expected that only the 20 timing data samples 
that corresponds to the user who is claiming the identity 
should be accepted as legitimate in that iteration. The rest, 
380 timing data of other users, should be rejected by the 
proposed architecture. However, the FAR computed after 
testing iteratively the architecture is 2.89%, which shows 
that this percentage of timing data that do not belong 
to the user who claims the identity respectively before 
the proposed architecture were accepted as authentic 
when they were not. Also, the FRR obtained is 3.35%. 
This percentage of timing data that in fact belong to the 
respective user who claims the identity were rejected even 
when they represented accurately a timing data sample 
used to generate the user verification data stored in the 
token. Most of the timing data that affected the metrics is 
related to PTPs that do not fulfill in the training criterion. 
It is important to mention that once the user is accustomed 
to input his password, the probabilities of generating a 
PTP that does not fit in the training criterion diminish 
considerably and thus the FAR and FRR metrics will be 
also less affected. Also, the FAR and FRR reported above 

shown that our proposed training proposed diminish 
considerably the metrics reported in Figure 4 where no 
training process was applied. 

Table 3 shows a summary of some biometric  
cryptosystem’s implementations. References [10-12] are 
not included despite of the good metrics because the 
reported works are not biometric cryptosystems. Even 
though, the works cited above [10-12] and others have 
reported EER of less than 1.5%, it should be clearly noted 
that it is quite hard to make a meaningful comparison 
between our proposed architecture and those works 
that may not be considered as biometric cryptosystem’s 
implementations because conceptually these works 
and our proposed architecture are different. However, 
references [10-12] are a good reference about how our 
metrics must be improved. According to the data shown 
in the table, the FRR of our architecture performs well 
compared with [6,7,9]. In contrast, the FRR compared 
with [1] is still poor. However, it is fair to recall that 
our implementation is not using any error-correction 
technique because it is desired to keep the computational 
cost low. The FAR metric is poor compared with any 
implementation. However, once again it must be 
considered that the architecture was designed to perform 
at the best possible error metrics but with the less resource 
consumption. 

Regarding the key length, the flexibility that provides our 
architecture lets to select the length of the key released 
whilst the other reported works have a defined length 
for the key released. The advantage of our proposed 
architecture is reflected in the capabilities and resources 
of the systems where it may be deployed. If the system 
has low resources and computational capabilities, a 128-
bit combination of hash function–encryption algorithm 
is preferred. However, if the system is quite powerful 
and a high security is required a 1024-bit configuration 
is preferred. 

The best form of performing a security analysis of the 
proposed architecture is assuming that the attacker has 
full access to the information contained in the token 
including the token, perfect knowledge about how the 
information stored in the token is generated, unlimited 
resources not beyond the laws of physics, and a few 
corresponding plaintext and ciphertext pairs where the 
biometric key k may be used. It is quite hard to think 

Table 3: Summary of biometric cryptosystems implementations
Biometrics Author Features Error handling Key length FRR (%) FAR (%)
Signature Hao (2002) [6] 43 dynamics Feature coding 40 28 1.2
Fingerprint Clancy (2003) [7] Minutiae points Reed-Solomon code 69 30 -
Iris Hao (2005) [1] Iris code Concatenated coding 140 0.47 0
ECG and speech García (2009) [9] Wavelet transform Hadamard code 240 10.62 0.127
Proposed approach Time slots, k-medoids Time slot size 128–1024 3.35 2.89
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that an attacker has all the resources and information 
mentioned before; however, an analysis of the possible 
scenarios follows.
(1)	 The attacker has access to a few corresponding 

plaintext and ciphertext pairs where the biometric 
key, k, is used. In this scenario, the attacker could 
ignore the whole biometric cryptosystem and 
focus on deriving the biometric key only using the 
corresponding plaintext and ciphertext pairs. The 
complexity of deriving k depends upon the symmetric 
encryption algorithm used by the application and 
the cryptanalysis technique used by the attacker. 
For example, the most recent and first key recovery 
attack against AES-256 that works for all the keys has 
a complexity of 2119. A similar cryptanalysis has been 
reported against AES-192. However, even though 
these cryptanalysis techniques claims to be able to 
break AES, the authors state that their attacks are still 
mainly of theoretical interest and do not present a 
threat to practical applications using AES [17]. We 
believe that it is easier for an attacker to compromise 
the user password using social engineering, to steal 
the token or even to get the biometrics signal samples 
than breaking an encryption algorithm using the 
most sophisticated cryptanalysis technique.

(2)	 Given that the user password hash H(pwd) is stored 
in the token, the attacker may use the birthday attack 
to find a collision as follows: Given a function H, it 
can be found two different inputs pwd1, pwd2 such 
that H(pwd1) = H(pwd2). Such a pair pwd1; pwd2 
is called a collision. However, finding a collision 
is useless to the attacker because H(pwd1+pwd1) ≠ 
H(pwd2+pwd2). Then, it is required that the attacker 
knows exactly the user password pwd to be able to 
compute H(pwd+pwd). If the attacker is able to get 
pwd, he is able to decrypt the RDVencrypted. However, 
the attacker still needs to compromise the biometric 
keystroke dynamics of the individual to be verified. 
The information provided for the unencrypted RDV 
is useless due to the fact that this vector is generated 
randomly and does not save any information 
regarding the biometric behavioral sample.

There are other possible scenarios not considered here; 
however, the scenarios presented above can be used to 
determine the computational cost needed to derive the 
biometric random key under other scenarios. Notice 
that the attacker could compromise the three factors in 
which the architecture bases its security. However, no 
system can resist an attack when all the factors in which 
the system security is founded have been compromised. 

7.	 CONCLUSIONS

In this paper, we have proposed an approach based on 
the keystroke dynamics and the k-medoids algorithm. 
The proposed approach comprises three security factors, 

namely, user password, behavioral biometric sample, 
and token. It assures that if an attacker compromises at 
most two factors, he is not going to be able to derive the 
random biometric key. The idea behind the three security 
factor architecture reported in this paper is not limited to 
work with the PTP as it is extracted here. The extraction 
technique may be more sophisticated to improve the 
FAR and FRR whilst the rest of the architecture remains 
unchanged. Instead of only considering the key pressing 
pattern and key releasing pattern, it could be added 
other parameters as the total typing time or the tendency 
of using certain keys by the user to make even more 
personal the biometric data. Furthermore, one of the most 
notable advantages of the proposed approach is that it 
is not necessary to maintain a centralized database with 
the biometric information. This fact impacts positively 
in the social acceptance of the biometric cryptosystem. 
The proposed three security factor approach is a very 
secure system because the distribution of the 3D random 
biometric pattern is randomly generated. Also, if an 
attacker could compromise the all three factors, the 
cryptographic key can be easily revoked and renewed 
by executing the training–enrollment stage again with 
a new password. If the user inputs a new password, a 
new timing pattern is then generated. In the case of that 
the attacker could somehow derive the cryptographic 
key, he could compromise the key of that specific user 
but not the keys of a group or a corporation that could 
happen in the case of maintaining a centralized database 
with the biometric information of all users. 

The architecture reported in this paper has several potential 
applications such as user login, file encryption or even 
portable authentication to gain access to virtual private 
networks. This is possible due to the low complexity of 
the architecture. The architecture without considering the 
token can also be easily embedded in the current password-
based systems. The flexibility that provides the block design 
of the architecture gives the chance of changing the hash 
function if there are complains about its use or changing the 
encryption algorithm block if there are security issues about 
its use. This flexibility also reflects how the architecture may 
be deployed in any system independently of the available 
resources. The complexity of the proposed identity 
verification algorithms is minimized without considering 
the hash function–encryption algorithm configuration. 
Then, the designer may choose a light configuration or a 
robust but highly secure configuration selecting 1024-bit 
hash function–encryption algorithm depending on the 
resources available.
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