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Abstract

Nowadays, computational power is being used in various activities of human life.

New computing paradigms such as the Internet of Things, wireless sensor networks,

ubiquitous computing, and ambient intelligence make use of computing power to

improve the quality of human life. Devices used in these new computing paradigms

do not work in isolation, they communicate with each other or with the Internet to

offer services. Also, it is expected that a large number of small devices are connected

to the Internet in the near future.

Since a wide range of applications require that devices store, transmit and receive

sensitive information, it is necessary to provide security services so that attackers

do not compromise data and devices. Security services required by applications are

confidentiality, authentication, integrity, and non-repudiation. These security services

can be provided through cryptography.

Cryptography is divided in two areas: symmetric cryptography (or private key

cryptography) and asymmetric cryptography (or public key cryptography, PKC). In

private key cryptography, the sender and the receiver must agree to use specific

information (key) to encrypt and decrypt messages. Public key cryptography proposes

to use a pair of keys for each user, one public and the other one private. The public key

can be known by anyone and can be used to encrypt a message for the owner of the

key pair, which can decrypt the message with his private key, which presumably only

he knows. Public key cryptography provides the four aforementioned security services,

while private key cryptography only provides the confidentiality service. The main

disadvantage with public key cryptography is that it requires a more considerable

amount of computational power than private key cryptography, this is because it bases

its security on mathematical problems defined in groups and finite fields. The core

and most time consuming operations in any PKC system are the ones related to group

and finite field operations (multiplication, inversion and exponentiation). Therefore,

both types of cryptography are commonly used together, for example, public key
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cryptography can be used to perform a key exchange that is subsequently used in a

private key cryptography system.

Unlike traditional devices such as servers, personal computers, laptops, smart-

phones, etc., devices used in ubiquitous computing paradigms commonly are resource-

constrained devices in terms of memory, computational power, and power consump-

tion. Consequently, the processing time (in the order of seconds) of software im-

plementations of public key cryptography in these devices is unacceptable for some

applications. Therefore, specialized hardware is required to accelerate the most de-

manding (computationally) operations of public key cryptography. Works proposed in

the literature accelerate public key cryptography operations at the expense of a large

amount of hardware resources often not available in devices with limited resources

commonly used in wireless sensor networks or the Internet of Things.

Being group and finite field arithmetic the bottleneck in PKC, this thesis research

proposes new hardware finite field operators implementations for PKC realizations

on resource-constrained devices. As a key distinctive approach, hardware operators

are realizations on novel algorithms that performs the group and field operation in a

digit-by-digit fashion. In this approach, the operands and the partial results are divided

into digits and processed one digit at a time, similar to a software implementation, but

making use of the parallelism and the resources available in hardware. The proposed

operators have been developed for reconfigurable hardware Field-Programmable Gate

Array (FPGA).

The contributions of this thesis are: i) Novel algorithm for Montgomery multipli-

cation, ii) Novel algorithm for binary field F2m multiplication, iii) Compact hardware

architectures for multiplication in the prime field Fp and binary field F2m , iv com-

pact hardware exponentiation in the prime field Fp and in the additive group of

elliptic curves E(F2m). A hardware-software co-design of two of the most represen-

tative schemes in PKC, key exchange and digital signature, was done to evaluate

the proposed operators which require fewer hardware resources than state of the art

works reported in the literature. The obtained results establish an area-performance

trade-off that helps to choose the most appropriate hardware architecture to accelerate

operations required in public key cryptography in resource-constrained devices.
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Resumen

Actualmente el poder computacional esta siendo utilizado en diversas actividades

de la vida humana. Nuevos paradigmas de computación como el Internet de las

cosas, redes de sensores inalámbricos, computo ubicuo, y ambientes inteligentes hacen

uso del poder computacional para mejorar la calidad de la vida de la humanidad.

Los dispositivos usados en estos nuevos paradigmas de computación no trabajan

aisladamente, se comunican entre ellos o con Internet para poder ofrecer sus servicios.

Además, se espera que una gran cantidad de dispositivos estén conectados a Internet

en el futuro próximo.

Ya que en gran cantidad de aplicaciones se requiere que los dispositivos almacenen,

transmitan y reciban información sensible es necesario proveer servicios de seguridad

para que los atacantes no comprometan los datos o los dispositivos. Los servicios de

seguridad que requieren las aplicaciones informáticas son: confidencialidad, auten-

ticación, integridad y no-repudio. Estos servicios de seguridad pueden proveerse a

través de la criptografı́a.

La criptografı́a se divide en dos áreas: criptografı́a simétrica (o de llave privada)

y criptografı́a asimétrica (o de llave pública). En la criptografı́a de llave privada el

emisor y el receptor deben ponerse de acuerdo en usar cierta información (llave) para

cifrar y descifrar mensajes. La criptografı́a de lleve pública propone usar un par de

llaves para cada usuario, una pública y otra privada. La llave pública la puede conocer

cualquiera y la pueden usar para cifrar un mensaje para el dueño del par de llaves,

el cual puede descifrar el mensaje con su llave privada, que presumiblemente solo él

conoce. La criptografı́a de llave pública provee los cuatro servicios de seguridad antes

mencionados, mientras que la criptografı́a de llave privada solo provee el servicio

de confidencialidad. La principal desventaja con la criptografı́a de llave pública es

que requiere mayor cantidad de poder computacional que la criptografı́a de llave

privada, esto se debe a que basa su seguridad en problemas matemáticos definidos

en grupos y campos finitos. Las operaciones base y más demandantes en tiempo
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en cualquier sistema de criptografı́a de llave pública son operaciones aritméticas en

grupos y campos finitos (multiplicación, inversión y exponenciación). Por lo cual,

comúnmente se utilizan los dos tipos de criptografı́a en conjunto, por ejemplo, se

puede usar la criptografı́a de llave pública para realizar un intercambio de llave que

posteriormente es usada en un sistema de criptografı́a de llave privada.

A diferencia de los dispositivos tradicionales como servidores, computadoras per-

sonales, computadoras portátiles, teléfonos inteligentes, etc., los dispositivos utilizados

en los paradigmas de computación ubicua comúnmente tienen recursos limitados en

cuanto a memoria, poder computacional y consumo de energı́a. Esto ocasiona que el

tiempo de procesamiento (en el orden de segundos) de implementaciones en software

de la criptografı́a de llave pública sea inaceptable para algunas aplicaciones. Por lo

cual se requiere de hardware especializado para acelerar las operaciones computa-

cionalmente más demandantes de la criptografı́a de llave pública. Trabajos propuestos

en la literatura aceleran las operaciones de criptografı́a de llave pública a costa de

gran cantidad de recursos hardware muchas veces no disponibles en dispositivos con

recursos limitados comúnmente usados en redes de sensores inalámbricos o Internet

de las cosas.

Siendo la aritmética en grupos y campos finitos el cuello de botella de la criptografı́a

de llave pública, este trabajo de investigación propone nuevos operadores hardware en

campos finitos para la realización de criptografı́a de llave pública en dispositivos con

recursos limitados. Como un enfoque distintivo clave, los operadores hardware son

implementaciones de algoritmos que ejecutan operaciones en grupos y campos con un

enfoque dı́gito a dı́gito. En este enfoque los operandos y los resultados parciales son

divididos en dı́gitos y procesados un dı́gito a la vez, similar a una implementación en

software, pero haciendo uso del paralelismo y los recursos disponibles en hardware.

Los operadores propuestos han sido desarrollados para hardware reconfigurable

Field-Programmable Gate Array (FPGA).

Las aportaciones de esta tesis son: i) Algoritmo novedoso para la multiplicación

Montgomery, ii) Algoritmo novedoso para la multiplicación en el campo binario F2m ,

iii) Arquitecturas hardware compactas para la multiplicación en el campo primo Fp y

el campo binario F2m , iv Implementación hardware compacta para la exponenciación

en el campo primo Fp y en el grupo aditivo de curvas elı́pticas E(F2m). Un co-diseño

hardware-software de los esquemas de criptografı́a de llave pública más representa-

tivos, intercambio de llaves y firma digital, fueron implementados para evaluar los

operadores propuestos, los cuales requieren menor cantidad de recursos hardware

que los trabajos reportados en el estado del arte. Los resultados obtenidos establecen
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un compromiso área-desempeño que ayudan a elegir la arquitectura hardware más

adecuada para acelerar las operaciones que se requieren en la criptografı́a de llave

pública en dispositivos con recursos limitados.

Lightweight finite field operators for public key cryptography on

resource-constrained devices
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Chapter 1

Introduction

This chapter presents an introduction to the field of study. It describes the new

computing paradigms such as the Internet of Things (IoT), Ambient Intelligence (AmI),

and ubiquitous computing as well as their security threats. Furthermore, it presents

the context in which the research problem arises, the specific and general aims of

this research and a summary of the main contributions achieved in this dissertation.

Finally, it is presented the organization of this dissertation at the end of the chapter.

1.1 Pervasive computing, constrained devices and

security threats

At the beginning of the computer era, computers were enormous and very expensive.

At that time, computers were scarce and owned only by big enterprises or educational

institutions. Computer resources had to be shared among many users, motivating the

creation of distribute computing mechanisms [5].

In the next step in computers evolution, a group of people could connect to the

same computer to work simultaneously. Computers became popular, there were more

computers than before, and some of them were interconnected, often in a wired way.

However, in the 1980s the Personal Computer (PC) revolution changed the world [5].

The development of the microprocessor caused that personal computers were cheap

enough thus accessible to ordinary people.

Today, due to the progress in technology for high integration of circuits and systems,

people have a variety of computational resources at their disposal unlike some few

decades ago. Not only PCs as initially thought ideated are available for users. Now,

people often have some mobile devices like cell phones, tablets, etc., see Figure 1.1.

Furthermore, computational resources often are embedded in familiar objects such

as cars, TV’s, refrigerators, washing machines, etc. Also, these new computational
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Pervasive computing, constrained devices and

security threats
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Many users Single computer
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Figure 1.1: User-computational device relation. a) In the past, scarce computers were used by
many people, b) In the 1980s it was possible that each user poses its own computer,
c) Nowadays, several low-cost computers are available for a single user in the form
of personal and familiar objects.

resources often are interconnected wirelessly.

As it was envisioned by Weiser [6], the computational power is spread today in

all aspects of the human life with new paradigms of Pervasive/Ubiquitous comput-

ing [6, 7], Internet of Things (IoT) [8] and Ambient Intelligence (AmI) [9]. Pervasive

Computing also referred sometimes as Ubiquitous Computing, deals with the idea of

making computing power available anyplace, anytime in a uniform way so that it may

be exploited for meeting challenges faced by society [10]. In the same way, Ambient

Intelligence has been defined as a potential future in which people will be surrounded

by intelligent objects and in which the environment will recognize the presence of

persons and will respond to it in an undetectable manner [11].

Pervasive applications are in many fields such as military, scientist, medicine, econ-
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Introduction 3

omy, agriculture, etc. New computing paradigms offer a lot of benefits by customizing

the environment to meet people needs. Some pervasive computing applications are

Smart home, Health monitoring, Health assistance, Smart transportation, Smart hos-

pitals, etc [9]. For example, in smart livings, sensors as small computing devices are

distributed in the environment to collect data and create a context-aware application.

Computing platforms, i.e., pervasive computing devices, have generally limited

computing capabilities if compared with traditional desktop or server machines.

Some typical computing devices in pervasive applications include Radio-frequency

identification (RFID) tags, wireless sensors, and smart cards, see Figure 1.2.

Almost all devices used in pervasive applications are resource constrained devices

concerning memory, computational power, and energy consumption. Additionally to

the computational load that these devices face due to end user application, computation

and communication overhead is added if a security layer is required.

  

Figure 1.2: Pervasive computing devices in cyber-physical systems.

However, a critical point for development and practical realization of previously

mentioned applications, is concerned with data and communication links security.

In the new computing paradigms, battery-driven devices are commonly deployed in

unfriendly or risk areas. As a result of this, devices become easy-targets of attacks

compared to home and enterprise computers systems [12]. Because devices are

physically accessible, they are vulnerable to many attacks. Cyber-physical systems

create new classes of risks resulting from their interaction between cyberspace and

the physical world. For example, Linux.Darlloz worm was discovered in 2013 by

Symantec researchers. The worm was able to propagate to IoT devices such as home

routers, TV set-top boxes, security cameras, printers, and industrial control systems.

Lightweight finite field operators for public key cryptography on
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In January 2014, a variant of the worm was found to include a cryptocurrency mining

tool. Another real-life example is the IoT botnet built from Mirai malware that in

September 2016 was responsive for a 600-Gbps attack targeting Brian Krebs’s security

blog [13].

Some of the most common security attacks on ubiquitous computing environ-

ments are [14]: man-in-the-middle attack, illegal connection attack, capturing sensitive

data, stealing an intermediary device, data manipulation, impersonating and insiders.

Despite a large number of existing attacks, often, security-related components are

absent in end-user pervasive applications, or are added as an afterthought as an extra

feature [15].

1.2 Data security with public key cryptography

Typically, an end-user pervasive application uses several small computing devices or

nodes that establish communication with each other, and interactions between them

and other systems. Since nodes could store and transmit sensitive information, it is

necessary to provide them with security services of confidentiality, authentication,

integrity, and non-repudiation (security services are defined in Section 2).

As an example, consider the graphical view (Figure 1.3) of a set of networked

mobile computing devices in pervasive computing (i.e., a military Wireless Sensor

Network (WSN) or a Body Area Network (BAN)). A security layer to protect the

sensitive information transmitted under this scenario should guarantee that:

1. Nodes are correctly authenticated each other.

2. Integrity of transmitted data between two nodes is guaranteed. That is, it will be

perceived if data is maliciously modified.

3. All transmitted data between two nodes is confidential.

From an origination point, information may pass through several nodes before

arriving at the final destination. For example, communicating data from A to E in

Figure 1.3 requires that information goes through path A-C-D-E. Regardless of the

information pass through nodes C and D, data must be only revealed in an under-

standable form to E (confidentiality), and E can verify that the received information

comes from A (authenticity) without suffering any modification during transmission

(integrity). Once E receives the information, A cannot deny it was the node which

initiated the communication (non-repudiation).
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The previous security services allow thwarting some common attacks to the model

shown in Figure 4. Some of them include:

1. Interception, when an unauthorized node listens and access in plain form the

information that passes between A and E, see Figure 1.4.

2. Interruption, when an intruder node breaks the communication between two

nodes, see Figure 1.5.

3. False node, involves the addition of a node by an adversary and causes the

injection of malicious data [16], see Figure 1.5.

4. Modification, when a malicious node catches a message and change it. It adds

wrong data (about receiver, sender or information itself) or deletes some packets.

The message becomes corrupted [17].

5. Fabrication, when a malfunctioning node will generate inaccurate data that could

expose sensor network integrity [16].

A

Sender

B

C

D E

Reciever

F

G

H

Posible
attacker

Posible
attacker

Figure 1.3: Communication in a Wireless Sensor Network.

The guarantee of security services has been extensively studied, and many secure

and effective mechanisms are used today to protect computing systems and their assets.

Most of these known security solutions are based on cryptography, either symmetric

(private key cryptography) or asymmetric (public key cryptography). Symmetric Key

Cryptography (SKC) only provides confidentiality service, while Public Key Cryptog-

raphy (PKC) provides confidentiality, authentication, integrity, and non-repudiation
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Figure 1.4: Intruder node in a Wireless Sensor Network.
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Figure 1.5: Intruder node breaks the communication between two nodes in a Wireless Sensor
Network.
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services. SKC and PKC have been widely implemented in servers, routers, personal

computers, etc. However, in the next section, challenges to implement a PKC algorithm

in resource-constrained devices and in envisioned IoT applications are drawn.

1.3 Challenges of public key cryptography in constrained en-

vironments

It is known that public key cryptography algorithms are 100-1000 slowly than private

key algorithms [1, 18]. In addition, PKC algorithms require most resources than SKC

algorithms. In practice, both of them are used in conjunction: a public key algorithm is

used to securely establish a private key between two parties, and then that key is used

by a symmetric cipher to encrypt and protect all data exchange between two parties.

PKC is slower than SKC since PKC is based on mathematical problems defined

over algebraic structures where elements are large (i.e, of hundreds or thousands bits).

Under these structures, i.e., finite fields, an encryption operation demands thousands

of arithmetic operations, such as inversion, multiplication, exponentiation, squaring

and addition. That is why, most of the known solutions for information security based

on cryptography fail to be used in pervasive computing applications, the main reasons

are:

1. PKC operations are very costly. A typical software implementation of public

key cryptosystems (e.g., RSA) with a key length of 1024-bits in mobile devices

demands more than 22 seconds and consumes above 726 mWs [19]. Furthermore,

it is known that the most critical operation in the Rivest–Shamir–Adleman (RSA)

cryptosystem, modular exponentiation, is the most time-consuming operation,

requiring more than 20 seconds of the total computation in low-resource de-

vices [20].

2. PKC requires a considerable amount of memory space for storing parameters and

temporary results in the computation. For example, the MICAz mote only has

4KB RAM, which is the total space for data and program stack. Since operands in

1024-bit RSA are mostly 128 8-bit integers, subroutines, to support the underlying

arithmetic (i.e., field multiplication, modular reduction, etc.) have to reserve a

considerable amount of memory space for storing temporary results [20].

3. A typical hardware implementation of public key cryptography algorithms is

focused on high-speed computation and often is not aware of energy and memory

Lightweight finite field operators for public key cryptography on
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requirements. However, using these solutions in pervasive application devices is

not possible, due to the high area resources and power consumption.

As it has been pointed out, PKC algorithms can provide security services demanded

in IoT applications, but they must be carefully implemented in that domain due to the

scarce computational resources. During that implementation phase, the main challenge

is to efficiently design the underlying arithmetic modules. The next section give a

brief introduction to the arithmetic required in PKC, and particularly, it introduces the

concept of finite field operators.

1.4 Finite field operators in public key cryptography

A PKC based solution for providing security services can be viewed in several layers,

such as it is shown in Figure 1.6. The security protocols used to guarantee confiden-

tiality, integrity and authentication in pervasive computing applications rely on PKC

schemes (encryption/decryption, digital signatures). These schemes are implemented

as a series of finite field operations. In this thesis, a finite field operator is referred as a

module (either in hardware or software) to execute one finite field operation. Finite

Fields are algebraic structures built over the group concept. A group is a nonempty

set of elements G together with a binary operation over G that satisfies the properties

of: Closure, Associativity, Identity and Inverse element [21]. Security of most known

PKC relies on the group structure. Finite Fields have a finite number of elements

n = pm. This number of elements is a prime power pm. When m = 1, finite fields

are namely the prime field, and is denoted as Fp. Another interesting finite field

for cryptographic applications is the binary field commonly represented as F2m . An

extended description for group and finite field es presented in Chapter 2.

According to Figure 1.6, finite field arithmetic is an essential aspect for public key

cryptography deployment. For example, in the RSA cryptosystem, the most critical

and costly operation is modular exponentiation over prime field Fp. Usually, numbers

in the RSA cryptosystem are 1024-4096 bits in size. Another example is elliptic curve

cryptography where arithmetic operations are performed over elements of 163-571

bits in size, according to the National Institute of Standards and Technology (NIST)

government use recommendations [22]. Modular exponentiation with big numbers is

computationally expensive, hence the motivation to speed up its computation with

customized hardware. A modular exponentiation required in a RSA implementation

with an exponent with 1024-bits in size may require up 2048 modular multiplications

with algorithms such as binary exponentiation.
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Pervasive computing applications:
military, smart home, E-commerce, healt monitoring, etc.

Security protocols

Security services: Confidentiality, Authentication, Integrity, Nonrepudiation

Public key cryptography:
RSA, DSA, ECC.

Private key cryptography:
AES, 3-DES, RC4, etc.

Finite field operations: add, multiplications, exponentiations, inverse, etc.
Group operations: multiplications, additions, etc.

Layer 4

Layer 3

Layer 2

Layer 1

Figure 1.6: A Hierarchical Layer Model for Information Security Applications.

In the context of elliptic curve cryptography, the most used operation is point addi-

tion and point multiplication. However, since elliptic curves used in cryptography are

defined over finite fields Fp and F2m , required operations are additions/subtraction,

square, inversion, and multiplication in the corresponding field.

Finite field operations in RSA and Elliptic Curve Cryptography (ECC) are high and

are the most time-consuming operations in those PKC cryptosystems. In consequence,

in the literature, several works have proposed different approaches to construct finite

field hardware accelerators but mainly motivated to achieve faster computations at

the cost of higher hardware resources. Even at present, motivation remains on finding

the most appropriate architecture for this operation depending on the context of

application and underlying computing platforms.

In the context of pervasive computing, hardware implementations are restricted to

use few hardware resources. So, it is necessary to keep hardware resources as low as

possible and achieve a better performance than software implementations.

In the literature, the main aim of known hardware solutions is to provide high

levels of security, without considering requirements of resource-constrained devices. A

new field called lightweight cryptography (LWC) is an emerging research field, and

focuses on designing schemes for devices with constrained capabilities [23]. So, the

security in pervasive computing paradigms is where the research problem of this thesis

work arise.

Lightweight finite field operators for public key cryptography on
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1.5 Research problem

In recent times, it is evident that new paradigms of Pervasive/Ubiquitous computing,

Internet of Things (IoT), Ambient Intelligence (AmI), Wearable computing, etc., are

a reality. These paradigms spread the computational power in the form of little-

interconnected computing devices to all aspect of human life.

However, the lack of security in these domains is a real threat when these devices

acquire, store, process and communicate sensitive information. High integration of

pervasive computing applications in people’s life, as for example in health applica-

tions, demands effective and practical security mechanisms to ensure confidentiality,

authentication, integrity, and non-repudiation. Particularly, these security services can

be provided by Public Key Cryptography (PKC) (e.g., RSA and ECC cryptosystems).

However, since PKC algorithms rely on number theory, efficient operations in the un-

derlying algebraic structures of PKC are demanded. These operations are considered

computationally expensive since they are computed over large integers (163-4096 bits).

For practical realizations of PKC-based protocols and security schemes, specialized

hardware for finite field operators is desired, but in the context of pervasive computing

applications, to develop such hardware architectures is challenging, the main reasons

are:

• PKC algorithms based on abstract algebraic structures defined over large a set of

numbers, with order around 2163 to 24096 or either greater.

• A PKC scheme demands thousands of arithmetic operations such as inversion,

multiplication, exponentiation, squaring and addition in algebraic structures, as

groups and finite fields.

• PKC-based security solution requires more energy, memory or computing power

than the one available in pervasive applications.

• Timing requirements of security solutions are usually achieved through hardware

support. However, current hardware architectures for PKC have been designed

to achieve high speed without considering the limited computing capabilities of

the target devices.

The main approaches for hardware implementations of PKC have focused on

speeding up the underlying finite field operations at the expense of high amounts of

hardware resources. The implementation of PKC-based security solutions in resource-

constrained devices using a straightforward approach is not viable.
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The problem addressed in this research work is the design and implementation of

efficient finite field operators for PKC that can be viable to operate in the domain of

computing-constrained applications, as the ones found in Pervasive Computing, IoT

and AmI. On one side, a PKC-based security layer implemented solely in software

on a computing constrained device will induce a high computing overhead that will

increase energy waste, a precious resource in Pervasive Computing applications. Addi-

tionally, a software-based solution for security could not meet timing requirements as

underlying finite field operations are highly time-consuming. On other side, available

approaches to build hardware accelerators for PKC are not viable in the context of

Pervasive applications, because the primary design goal has been to achieve the fastest

implementation at the cost of higher computing hardware resources.

1.6 Hypothesis

The digit-digit approach for hardware implementations of finite field operators in

FPGAs requires less hardware area than other processing approaches. These hardware

architectures for finite field operators would allow compact hardware implementations

of PKC based security layer well suited for low-resources devices, such as the ones

commonly found in pervasive computing applications. The proposed hardware archi-

tectures must outperform execution time of state of the art software implementations

while using reduced area resources than other implementation approaches.

1.7 Research objectives

The objectives that guide this thesis work are presented in this section. The general

objective is presented first, following with the specific objectives.

1.7.1 General objective

The general objective of this research work is:

• To develop novel algorithms for arithmetic operations in finite fields and their cor-

responding compact hardware architectures (finite field operators) well suited to

implement public key cryptographic algorithms (e.g., RSA and ECC) in resource-

constrained devices.

1.7.2 Specific objectives

To achieve the general objective, the following specific objectives are proposed:

Lightweight finite field operators for public key cryptography on
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• To identify finite field operators that make up most critical basic building blocks

in public key cryptosystems.

• To propose algorithms for finite field arithmetic used in public key cryptography

that can yield compact hardware implementations.

• To define the most appropriate approach for designing compact hardware archi-

tectures for the proposed algorithms for finite field operators.

1.8 Methodology

Design and implementation of lightweight hardware for finite field operators for PKC

is a complex task because there are several algorithms for arithmetic operations and

a considerable number of possibilities to their hardware implementations. So, it is

necessary to consider, evaluate and select the most adequate. The main design goal in

this work is a low area hardware architecture design that leads to obtain low energy

consumption.

General strategy

In order to achieve the proposed objectives of this thesis, the following methodology

is proposed:

1. State of the art revision.

(a) Elaborate a critical study of reported public key cryptography algorithms

for RSA and ECC, and their underlying arithmetic.

(b) Study of finite field operators in Fp: multiplication and exponentiation.

(c) Study of finite field operators in F2m : multiplication.

(d) Study of Elliptic Curves operators E(F2m).

(e) Select adequate finite field algorithms for lightweight hardware implemen-

tation.

2. Lightweight hardware architecture design.

(a) Define lightweight hardware/software architectures over selected operators.

(b) Apply digital design techniques (pipelining, critical path reduction) to

improve efficiency of the hardware architectures and reduce the amount of

used hardware resources.
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(c) Generate test vectors.

(d) Describe lightweight hardware modules and perform hardware simulations.

Hardware architectures will be described in VHDL and implemented in

FPGAs according to the Xilinx design flow shown in Figure 1.7.

(e) Explore the space design (full-parallel, digit-serial, bit-serial, digit-digit,

systolic arrays).

(f) Evaluate the proposed architectures with test vectors.

3. Hardware-software co-design and evaluation.

(a) Develop a hardware-software co-design of proposed lightweight architec-

tures for finite field operators required in RSA and ECC.

(b) Evaluate algorithms and lightweight hardware from full implementation of

a PKC security protocol (i.e., authentication in sensor networks).

(c) Report the obtained results.

Design verification

Behavioral
simulation

Functional
simulation

Static timming
analysis

Timming
simulation

In-circuit
verification

Design
entry

Design
synthesis

Design
implementation

Device
programming

Figure 1.7: FPGA design flow.
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1.9 Thesis outline

This thesis document is composed of six chapters divided into several sections and

subsections. Following an Introduction, theoretical basis that supports this research

are presented in Chapter 2 (Preliminaries). Chapter 3 (State of the Art) presents a

review of state of the art works for hardware architectures in FPGAs for finite field

operators over Fp and F2m . The proposed finite field operators for Fp and F2m are

presented in chapter 4 (Proposed lightweight finite field operators). Chapter 5 presents

and discuss obtained results, while conclusion are given in Chapter 6. Test vectors

for finite field operator in Fp, F2m , RSA digital signature and ECC key interchange

protocol are presented in Appendices.
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Chapter 2

Preliminaries

In this chapter, PKC basics needed to frame the research context of this proposal

dissertation is presented. PKC algorithms are presented highlighting the importance

of efficient realization of finite field operators for deploying high-level security mecha-

nisms in pervasive computing applications.

2.1 Public key cryptography (PKC)

Public key cryptography allows to implement confidentiality through encryption (see

Figure 2.1), and integrity, authentication, and non-repudiation by means of the digital

signature concept (see Figure 2.2).

Confidentiality

Confidentiality in the context of information security is about protecting information

from disclosure to unauthorized parties. Encryption is the conventional technique

used in cryptography to ensure information confidentiality. The goal of encryption

is to ensure that only authorized parties (in possession of a private key) can read,

view or use the information. In public key cryptography, each user has a pair of keys

(Kpub, Kpriv), the first one called the public key, and the other the private key. The

public key is available to all, while the private key is kept secret. So, assuming that

entity A wants to send a message to entity B, A uses the public key from B (BKpub) to

encrypt the message. In this way, the message can be sent over an insecure channel,

with certainty that nobody can read the message. Only user B who knows the private

key can decrypt the message with BKpriv. If someone tries to decrypt the message

ciphered other than BKpriv, decryption algorithm’s output should be unreadable [24].
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Figure 2.1: Public key cryptography.

Integrity

Hash function only provides data integrity. As it can be seen in Figure 2.2, sender

uses a key and an algorithm to sign the information and thus ensure its integrity.

Consequently, using a validation key and a validation algorithm, any other entity can

verify the authenticity of the signature over the information. If the information is

modified, the validation process fails, revealing that the integrity of information has

been violated [25].

Authentication (and Nonrepudiation)

As explained in previous security service, once information has been signed, receptor

can ensure that the sender is originator of the message only if signature is correctly

verified, this guarantees authentication. Furthermore, the sender can not deny message

origin. Thus, non-repudiation service is also ensured [25].
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Sender
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Entity A Entity B

Digital
Signature
Algorithm Plain
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AlgorithmSigned

Message
Signed
Message

Insecure 
Channel

Figure 2.2: Digital signature.
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Formal definition of PKC

The formal definition of a PKC scheme is:

Definition 1 Let k ∈ N be a security parameter. A PKC encryption scheme is defined
by the following spaces (all depending of security parameter k) and algorithms [26].

Mk space of all possible messages;

PKk space of all possible public keys;

SKk space of all possible private keys;

Ck space of all possible ciphertexts;

KeyGen a randomised algorithm that takes a security parameter k, runs in expected

polynomial-time (i.e., O(kc) bit operations for some constant c ∈ N) and

outputs {pk, sk} pair with pk ∈ PKk and sk ∈ SKk;

Encrypt a randomised algorithm that takes as input m ∈Mk and pk, runs in

expected polynomial-time (i.e., O(kc) bit operations for some constant

c ∈ N) and outputs a ciphertext c ∈ Ck;

Decrypt an algorithm (not usually randomised) that takes c ∈ Ck and sk,

runs in polynomial-time and outputs either m ∈Mk or

invalid ciphertext symbol ⊥.

It is required that Decrypt( Encrypt(m,pk), sk) = m if (pk, sk) is a matching key

pair.

Diffie and Hellman [27] proposed the realization of Public Key Cryptosystem using

one-way functions and trapdoor information. A one-way function is an invertible

function that is easy to compute, but its inverse is difficult to compute [28]. In this

context, difficult means (informally) that any algorithm that attempts to compute the

inverse will take a lot of time, e.g., the age of the universe. With trapdoor information,

computation of one-way function inverse is considered easy to perform, see Figure 2.3.

Two of the most popular public key cryptography schemes are RSA and ECC, which

are explained later.

The discrete logarithm problem (DLP), elliptic curve discrete logarithm problem

(ECDLP) and the integer factorization problem are the mathematical problems used

as one-way trapdoor functions in today known public key cryptography algorithms.

These mathematical problems and their basis are explained in the next sections.
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Domain Range
Easy to compute

f

Hard to compute

f−1

f−1 with trapdoor information

Easy to compute

Figure 2.3: One-way trapdoor function.

2.1.1 Groups and cyclic groups

Public key cryptosystems rely on the hardness of some mathematical problems, defined

over abstract algebraic structures such as groups and finite fields. Generally, a PKC

system implementation is mainly related to arithmetic operations defined in those

abstract algebraic structures. This section presents the main concepts of groups and

finite fields related to cryptography applications, as well as the definition of the discrete

logarithm problem.

Definition 2 A group is a set of elements G together with a binary operation �. Properties
that a group obeys are shown in Figure 2.4.

Group

1. Closure: • If a, b ∈ G, then a � b ∈ G.

2. Associativity: • a � (b � c) = (a � b) � c for all a, b, c ∈ G.

3. Identity element: • ∃e ∈ G such that a � e = e � a = a for all a ∈ G.

4. Inverse element: • ∀a ∈ G, ∃y ∈ G such that a � y = y � a = e.

Figure 2.4: Group properties.

A group G is said to be an abelian (or commutative) group if:

a � b = b � a, for all a,b ∈ G

A group G is said to be finite if it contains only finitely number of elements.

Otherwise, it is said that the group G is infinite. The group G is of order n if it
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contains exactly n elements. In the context of public key cryptography, finite groups

are commonly used.

As examples:

1. The pair {Z,+} is an abelian group in which the identity element is 0, and inverse

of a ∈ Z is −a.

2. The pair {R+,×} is an abelian group in which the identity element is 1 and

inverse of a ∈ R+ is a−1.

A typical operation in groups structures is to apply the group operation of an

element “g” with itself n times. Let g be an element of a group G, and let n be a

positive integer. Then gn means that the operation � is applied to g, n times:

gn = g � g � · · · � g︸ ︷︷ ︸
n times

(2.1)

For some groups, notation ng is commonly used to detonate that the group

operation is applied n times to g, but this is just a matter of notation.

Definition 3 Let {G, �} be a group, and let H be a nonempty subset of G such that [29]:

• ∀a,b ∈ H, a ∗ b ∈ H

• ∀a ∈ H, a−1 ∈ H

Then H is called a subgroup of G.

H is itself a group using exactly the same binary operation to that in the larger

(“supergroup”) G.

As example:

1. Let {G, �} be a group, let m > 0 be an integer, and define

H = {gm|g ∈ G}. (2.2)

Then H is a subgroup of G.

Finite cyclic groups

Let {G, �} be a finite group, and let a ∈ G. The set {am|m ∈ Z} form a subgroup.

This subgroup is called subgroup generated by a, and is commonly denoted by [29].

< a >= {e,a,a2,a3, ...}. (2.3)
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e, an, a2n, · · ·

a, an+1, a2n+1 · · ·

a2, an+2, a2n+2, · · ·

· · ·

· · ·

· · ·

· · ·

an−1, a2n−1, · · ·

Figure 2.5: A finite cyclic group generated by a.

Then elements {e,a,a2,a3, · · · ,an, · · · } cannot be all different for m > n. The

smaller positive integer n such that an = e is called the order of a. If n is the order of

a, then the finite group generated by a is:

< a >= {e,a,a2,a3, · · · ,an−1}. (2.4)

A graphical representation of a cyclic group generated by the element a is shown

in figure 2.5.

2.1.2 Finite fields (Fq) as groups construction

Definition 4 A field is a set F with two operations + and× satisfying the following properties:

• F is an Abelian group under + with identity element 0 (zero).

• F∗ (the nonzero elements of F) form an Abelian group under ×, with identity element 1.

• × distributes over +, i.e., a× (b+ c) = a× b+ a× c for any a,b, c ∈ F.

The number of elements in a field is called the order of the field. If the field has a

finite number of elements, then it is called a finite field, otherwise it is called an infinite

field. Infinite fields include real numbers, rational numbers, complex numbers, etc. A

Finite field denoted as Fq is usually referred as a Galois Field denoted as GF(q). A

Finite field of order q exists if and only if q is the power of a prime. Furthermore, if q

is the power of a prime number, the finite field of order q is unique. Finite fields are of

special interest for cryptographic applications since they are used in most widely used

cryptosystems RSA and ECC. In next section, the finite field Fp is presented.
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2.1.3 The prime field Fp and the multiplicative group F∗p

Before describing the finite field Fp, it is required to give some useful definitions.

If a is an integer and n is a positive integer, we define a mod n to be the remainder

when a is divided by n. The integer n is called the modulus [21].

Definition 5 Two numbers a and b are congruent modulo n (written a ≡ b mod n) if
a− b is a multiple of n. The integer n is called the modulus of the congruence and is assumed
to be positive.

Let be a an integer with a < n, multiplicative inverse of a mod n is the number

a−1 such that a× a−1 ≡ 1 mod n. It is well studied that a has a unique multiplicative

inverse modn if and only if gcd(a,n) = 1 [30]. If n is a prime number p then all

numbers a < p have a multiplicative inverse since gcd(a,p) = 1 for all a.

Definition 6 Set Z/nZ is defined as the set of integers modulo n [28]:

Z/nZ = {0, 1, 2, . . . ,n− 1}. (2.5)

It is possible to add and multiply Z/nZ elements as integers and then divide the

result by n and take the remainder in order to obtain an element in Z/nZ [28].

Table 2.1: Multiplication modulo 5.

x 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Table 2.2: Addition modulo 5.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Tables 2.1 and 2.2 illustrate addition and multiplication modulo 5 over Z/5Z.

Element a ∈ Z/nZ has inverse modulo n if and only if gcd(a, n) = 1. Numbers

that have inverses are called units. Set of all units is denoted by:

(Z/nZ)∗ = {a ∈ Z/nZ|gcd(a,m) = 1} (2.6)

= {a ∈ Z/nZ|a has inverse modulo n} (2.7)

The set (Z/nZ)∗ is called group of units modulo n [28]. When n = p is a primer

number, all numbers 0 < a < p− 1 are relative primes to p and belong to the set

(Z/pZ)∗.

As example:

Lightweight finite field operators for public key cryptography on

resource-constrained devices



22 Public key cryptography (PKC)

• The group of units modulo 7 is:

(Z/7Z)∗ = {1, 2, 3, 4, 5, 6} (2.8)

• But, if n is not a prime number, there are elements that do not belong to (Z/nZ)∗.

For example, the group of units modulo 24 is:

(Z/24Z)∗ = {1, 5, 7, 11, 13, 17, 19, 23} (2.9)

The quantity of elements in the group of units Z/nZ is essential for some public

key cryptosystems. The function that computes the quantity of units elements in

Z/nZ is:

Definition 7 Euler’s phi function is the function φ(n) defined by the rule:

φ(n) = #(Z/nZ)∗ = #{0 6 a < n|gcd(a,n) = 1}. (2.10)

Division in Z/nZ can be a problem, since it is possible divide by a in Z/nZ only if

gcd(a,n) = 1. However, if n = p is a prime number, then it is possible divide by every

non-zero element in (Z/pZ)∗. If zero is removed from Z/pZ, remaining elements are

units and closed under multiplication. Then, if p is prime, the set Z/pZ of integers

modulo p together with addition, subtraction, multiplication and division rules, is an

example of a field.

In fact, if p is prime, then the set Z/pZ is a field. The field Z/pZ of integers modulo

p has only finite elements. It is a finite field, and it is often denoted as Fp, GF(p) or

Zp. In the rest of this document, the multiplicative group will be denoted as F∗p and

the prime finite field will be denoted as Fp.

Definition 8 Let p be a prime number. Then there exists an element g ∈ F∗p whose powers
give every element of F∗p [28].

F∗p =
{
1,g,g2,g3, . . . ,gp−2.

}
(2.11)

Element or elements with this property are called primitive roots or generators of F∗p.
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2.1.4 Discrete Logarithm Problem in multiplicative groups (DLP-F∗p)

The Discrete Logarithm Problem (DLP) is defined as:

Definition 9 Let G be a finite group with group operation denoted by ?. The Discrete
logarithm problem is to determine, for any two given elements g and h in G, an integer x
satisfying [28]:

g ? g ? g ? . . . g︸ ︷︷ ︸
x times

= h (2.12)

The discrete logarithm problem for the multiplicative F∗p

The DLP for the multiplicative group is defined as:

Definition 10 Let g be a primitive root for F∗p and let h be a non-zero element of F∗p. The
Discrete Logarithm Problem (DLP) in F∗p is the problem of finding an exponent x such
that [31, 28]:

gx ≡ h mod p. (2.13)

It is believed that the discrete logarithm problem is hard to solve [32]. However,

there is no proof of this statement. There are works that try to solve the discrete

logarithm problem in an efficient way, but no one has succeeded, for example [33, 34].

2.1.5 DLP-Fp∗ based cryptosystems (DH, RSA, RSA-Digital Signature)

In this section, cryptosystems based in multiplicative group F∗p are presented.

Diffie-Hellman (DH)

The dilemma of interchanging a key over an insecure channel was resolved by Diffie-

Hellam (DH) key exchange algorithm [27]. The key interchange between parts can be

used in some other private key cryptosystem such as AES or 3DES. As a traditional

example, Alice and Bob want to interchange a key over an insecure channel that is

monitored by Eve. Eve can read all the information that Alice and Bob interchange.

Diffie and Hellman, in a brilliant insight, proposed that discrete logarithm problem

difficulty over F∗p provides a possible solution.

First, Alice and Bob need to agree on a prime number p and a non-zero primitive

root g. Values p and g are made of public knowledge by Alice and Bob, so Eve knowns

them. Second step is that Alice chooses a secret a that she does not reveal to anyone,
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and Bob must do the same, choosing a secret b that he does not reveal to anyone. Now,

Bob and Alice can compute:

A ≡ ga mod p︸ ︷︷ ︸
Alice’s computation

and B ≡ gb mod p︸ ︷︷ ︸
Bob’s computation

(2.14)

In the next step, Alice sends A to Bob, and Bob sends B to Alice. The values A and

B are sent over an insecure channel, so Eve knowns these values. Finally, Alice and

Bob use their secret values to compute:

A ′ ≡ Ba mod p︸ ︷︷ ︸
Alice’s computation

and B ′ ≡ Ab mod p︸ ︷︷ ︸
Bob’s computation

(2.15)

The values computed by Alice and Bob are the same, since:

A ′ ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ B ′ mod p (2.16)

The common value A ′ = B ′ is the secret key exchanged. If Eve wants to know that

secret key she needs to solve the Discrete Logarithm Problem (DLP) [28].

RSA

The RSA public key cryptosystem was developed in 1977 [35]. RSA is named after its

(public) inventors, Ron Rivest, Adi Shamir, and Leonard Adleman. This algorithm is

used to encryp/decrypt a message as well as to implement digital signatures. Security

of RSA is based on solving the integer factorization problem. Table 2.3 summarizes

main process in the RSA cryptosystem.

The security of RSA depends on the following dichotomy [28].

Setup. Let p and q be large primes, let N = pq, and let e and c be integers.

Problem. Solve the congruence xe ≡ c mod N for the variable x.

Easy. Bob, who knows p and q values, can easily solve for x.

Hard. Eve, who does not know p and q values, cannot easily find x.

Dichotomy. Solving xe ≡ c mod N is easy for a person who possesses certain extra

information, but it is apparently hard for all other people.

Security of RSA algorithm is based on the problem of factoring large numbers. If

it is possible to factor N, then it is possible to use p and q to compute d. Knowing d
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Table 2.3: RSA public key cryptosystem.

Bob Alice

Key Creation

Choose secret primes p and q.

Choose encryption exponent e

with gcd(e, (p− 1)(q− 1)) = 1

Publish N = pq and e.

Encryption

Choose plaintext m.

Use Bob’s public key (N, e)

to compute c ≡ me mod N.

Send ciphertext c to Bob.

Decryption

Compute d satisfying

ed ≡ 1 mod (p− 1)(q− 1).

Compute m ′ ≡ cd mod N,

Then m ′ equals the plaintext m.

is computationally equivalent to factoring N. Integer factorization has been a topic

of research for hundreds of years. Nowadays, for enough large numbers, there is still

missing a polynomial time algorithm that can factor a large number into its two prime

factors.

RSA digital signature

RSA encryption and RSA digital signature schemes have been described in [35]. In

this section the RSA digital signature scheme is presented. Examples presented here

are in the context of embedded devices, so FPGAs are used as entities instead of using

Bob and Alice as in the previous examples.

A sensor node implemented with an FPGA needs to send a message to a server

in the network, implemented with an FPGA too. In this example we call them FPGA

Sensor and FPGA Server. FPGA sensor sends a message to FPGA server, but how can

FPGA server verify that FPGA sensor is who send the message? The answer is with

RSA digital signature scheme [35]. The FPGA sensor must publish a parameter N

that is the product of the to secret primes p and q. A verification exponent v must be

published too for FPGA sensor. Since the FPGA sensor knows factorization of N it can
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solve the congruence:

sv ≡ 1(mod(p− 1)(q− 1)). (2.17)

So s is FPGA sensor’s signing exponent and v is its verification exponent.

If D is a digital message to be signed D need to be encoded as an integer in the

range 1 < D < N and FPGA sensor can compute S signature of D document.

S ≡ Ds mod N. (2.18)

So, the FPGA server can validate S signature of digital message D by computing:

Sv ≡ Dsv ≡ D mod N (2.19)

Table 2.4 resume steps to create the public and private keys for RSA digital signature

explained previously.

Table 2.4: FPGA sensor key creation

1 • Choose secret primes p and q.

2 • Choose verification exponent v

gcd(v(p− 1)(q− 1)) = 1

3 • Compute s

sv ≡ 1(mod(p− 1)(q− 1))

4 • Publish N = pq and v

Figure 2.6 shows a graphical view of an RSA digital signature in which the sensor

FPGA create a digital signature S using its signing exponent s for the digital message

D and send them to the FPGA server. The FPGA server uses the FPGA sensor’s

verification exponent v and the digital signature S to obtained the verification value V .

If V and D are the same, the FPGA server can assure that the FPGA sensor signed the

digital document D.

2.1.6 The role of finite field operators in DLP-F∗p based cryptosystems

Finite field arithmetic is the basis of public key cryptosystems such as Diffie-Hellman,

RSA, ElGamal, RSA digital signature, etc. The principal operation in the DLP-F∗p
based cryptosystems is the modular exponentiation, and due to the significant size

numbers (1024-4096 bits) used in these public key cryptosystems, this operation is

costly. There have been different approaches to implement modular exponentiation for
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A

Sensor FPGA

B

C

D E

Server FPGA

F

G

H

S ≡ Ds mod N

SignatureD S

V ≡ Sv mod N

Verification

S

If V = D the
signature S

is valid

V

D, S

D, S
D, S

Figure 2.6: RSA digital signature scheme. D = Document, s = signing exponent, S = signature,
v = verification exponent, V = Verification

public key cryptosystems. Finite field operators have been proposed in software and

hardware. However, a typical software finite field operator for modular exponentiation

in 8-bit microprocessors takes 20 seconds approximately [36]. Consequently, in time

restricted applications it commonly uses custom hardware to accelerate its computation.

Design and implementation for finite field operators is a crucial task when public key

cryptosystems are deployed.

2.2 Curve based Cryptography: a case of PKC

Curve based cryptography has become increasingly popular in the research community

in recent years [37]. The most popular curve based cryptography is Elliptic Curve

Cryptography (ECC) and most recently Hyperelliptic Curve Cryptosystems (HECC).

The use of elliptic curves for cryptography was independently proposed by Miller [38]

and Koblitz [39]. ECC is commonly used for key exchange over an insecure channel

and for digital signatures [37]. Furthermore, ECC has become the preferred public key

cryptosystem for applications where resource-constrained devices are used. Mainly

because ECC uses relatively short operand length compared to other public key

cryptosystems such as RSA. In this section a brief introduction to elliptic curves is

presented; for a more detailed study in ECC the reader can consult [28, 40].
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The set of solutions (points) to an equation of the form:

Y2 = X3 +AX+B (2.20)

is called an elliptic curve E [28]. Graphical representation of two different elliptic

curves are shown in Figure 2.7.

Two points P and Q of an elliptic curve E can be ”added” to produce a third point

R ∈ E. Figure 2.7 shows the ”addition” operation of two points in an elliptic curve

over real numbers. Geometry is the most natural to describe the addition operation of

points P,Q ∈ E on elliptic curves (see Figure 2.7):

• Adding P and Q when P 6= Q.

A line L that intersect P and Q can be drawn. The line L intersects E in a third

point R ′. The point R that is a reflect of R ′ through x-axis is the sum R = P+Q.

• Adding P and Q when P = Q.

If P = Q then the addition is called a ”double”, and is computed as follow: the

line L can be computed as the tangent line to E at the point P. Then, L intersect E

at P and another point R ′, so P+ P sum is R point that reflects R ′ through x-axis,

R = P+ P.

• Adding P and Q when Q = P ′.

If L is the line that intersect P and P ′ then L do not intersect E in a third point.

The solution has been create an extra point O that lives at “infinity”[28]. Point O

does not exist in XY-plane, but it is pretended that it lies on every vertical line.

So, it is possible to add P+ P ′ = O, furthermore, P+O = O+ P = P.

For two distinct points, P = (xP,yP) and Q = (xQ,yQ) belong to an elliptic curve

E , with P 6= −Q, the slope of the line L that joins them is ∆ = (yQ − yP)/(xQ − xP).

There is exactly one other point where L intersects the elliptic curve, and is the negative

of P and Q sum. After some algebraic manipulation, sum R = P +Q is expressed

as [21]:

• When P 6= Q:

Elliptic curves point addition:

R = (xR,yR) = (2.21a)

xR = ∆2 − xP − xQ (2.21b)

yR = −yP +∆(xP − xR) (2.21c)
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x
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y2 = x3 − 2x+ 2

p• p?•

p+ p•

y2 = x3 − 2x

x

y
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q•

•p ∗ q

•p+ q

Figure 2.7: Graphical view of point double/addition in elliptic curves.

• When P = Q: P+Q = P+ P = 2P = R. When yP 6= 0 , R is:

Elliptic curves point double:

R = (xR,yR) = (2.22a)

xR =

(
3x2p + a

2Yp

)2
− 2xp (2.22b)

yR =

(
3x2p + a

2Yp

)
(xp − xR) − yP (2.22c)

Scalar point multiplication Q = kP is the main operation in ECC. Q is computed

by k-times point addition operation [41]:

Q = kP = P+ P+ · · ·+ P︸ ︷︷ ︸
k−times

. (2.23)

2.2.1 Additive group of elliptic curve points

Let E be an elliptic curve. Then addition law on E has the following properties [28]:

Lightweight finite field operators for public key cryptography on

resource-constrained devices



30 Curve based Cryptography: a case of PKC

• Identity. P+O = O+ P = P, for all P ∈ E.

• Inverse. P+ (−P) = O, for all P ∈ E.

• Associative (P+Q) + R = P+ (Q+ R) for all P,Q,R ∈ E
• Commutative P+Q = Q+ P for all P,Q ∈ E

In other words, points of an elliptic curve E together with the addition law form an

Abelian group.

2.2.2 Elliptic curves over a finite field (E(Fq))

Elliptic curves are defined over a field K. In the previous section, ”addition” operations

were presented for elliptic curves over real numbers, which show a graphical view

of the addition points in an elliptic curve. However, for practical cryptographic

applications, elliptic curves are defined over a finite field Fq, q = pm. When m = 1,

finite field Fp is known as the prime field. When p = 2 the finite field F2m is known

as the binary field. Prime field Fp and binary field are commonly used for ECC

applications.

2.2.3 Elliptic curves over prime field (E(Fp))

Elliptic curves over finite fields Fqm are used in real applications. In this section,

elliptic curves over prime field Fp are presented.

Definition 11 Let p > 3 be a prime. An elliptic curve over Fp is the set of solutions for next
equation [28]:

E : Y2 = X3 +AX+B with A,B ∈ Fp satisfying 4A3 + 27B2 6= 0. (2.24)

The set of points on E with coordinates in Fp is the set:

E(Fp) = {(x,y)|x,y ∈ Fp satisfy y2 = x3 +Ax+B}∪ {O} (2.25)

When elliptic curves are defined over finite fields, they have only finite points, and

they are hard to draw in a geometrical way. Figure 2.8 show a comparison of two

elliptic curves, first in real numbers R and second in prime field Fp.

Point addition and double formulas can geometrically be derived as with elliptic

curves over real numbers R, that leads to a field of mathematics called algebraic geom-

etry. However, for practical purposes, explicit formulas generated for real numbers are
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y2 = x3 − 2x+ 1 over F89

Figure 2.8: Elliptic curve over real numbers and over the prime field.

used but realizing all operations in finite field Fp. Next rules determine elliptic curve

point addition over E(Fp). For all points P,Q ∈ E:

1. P+O = P.

2. If P = (xp,yp) then −P = (xp,−yp), and P+ (−P) = O.

3. If P = (xp,yp) and Q = (xq,yq) with P 6= −Q, then R = P +Q = (xr,yr) is

defined by the following rules.

xr = (λ2 − xp − xq) mod p

yr = (λ(xp − xr) − yp) mod p

Where:

λ =


(
yq−yp
xq−xp

) mod p if P 6= Q

(
3x2p+a

2yp
) mod p if P = Q

2.2.4 Elliptic curves over binary field (E(F2m))

Elliptic curves over binary fields are the set of solutions of an equation of the form:

E : Y2 +XY = X3 +AX2 +B. (2.26)

For a binary curve defined over F2k , variables and coefficients all take on values in

F2k and calculations are performed over F2k . Rules for addition of elliptic curves over

F2k are determinated by the following formulas. For all points P,Q ∈ E(F2k):
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1. P+O = P.

2. If P = (xp,yp) then −P = (xp, xp + yp), and P+ (−P) = O.

3. If P = (xp,yp) and Q = (xq,yq) with P 6= −Q and P 6= Q, then R = P +Q =

(xr,yr) is defined by following rules.

xr = λ2 + λ+ xp + xq + a

yr = λ(xp + xr) + xr + y+ p

Where:

λ =
yq + yp
xq + xp

4. If P = (xp,yp) then R = 2P = (xr,yr) is determined by the following rules:

xr = λ2 + λ+ a

yr = x2p + (λ+ 1)xr

2.2.5 Discrete Logarithm Problem in additive elliptic curve groups (DLP-
E(Fq))

The discrete logarithm problem was defined in an alternative group by Miller and

Koblitz [39, 42] in the mids 80s. The new group was formed by points of an elliptic

curve, defined over a finite field.

Definition 12 Let E be an elliptic curve (over a finite field), and let P and Q be points with
P,Q ∈ E. The Elliptic Curve Discrete Logarithm Problem (ECDLP) is the problem of
finding an integer n such that Q = nP [28]. n is called the elliptic discrete logarithm of Q
with respect to P.

Some times, n is denoted by:

n = logp(Q). (2.27)

There may be points P,Q ∈ E such that Q is not a multiple of P. In this case,

logp(Q) is not defined. So for practical applications P generally is a generator of E, so,

the discrete logarithm of Q always exists.
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Table 2.5: Elliptic curves cryptography, ElGamal encryption and decryption

Public Parameter Creation

A trusted party chooses and publishes a (large) prime p, an elliptic

curve E over Fp , and a point P in E(Fp).

Bob Alice

Key Creation

Chooses a private key nB.

Computes QB = nBP in E(Fp).

Publishes public key QB.

Encryption

Chooses plain text M ∈ E(Fp).

Chooses an ephemeral key k.

Uses Bob’s public key QB to

compute C1 = kP ∈ E(Fp).

and C2 =M+ kQB ∈ E(Fp).

Sends cipher text (C1,C2)

to Alice.

Decryption

Computes C2−nBC1 ∈ E(Fp).

As nBC1 = nB(kP) = K(nBP) = kQB,

this quantity is equal to M.

2.2.6 DLP-E(Fq) based cryptosystems (Elliptic curve cryptography - ECC)

Elliptic Curve Cryptography can be used in some cryptosystems such as Elliptic

ElGamal and Elliptic Curves Diffie-Hellman key exchange [28] which are explained in

this section

2.2.7 Elliptic curves ElGamal public key cryptosystem

ElGamal is a cryptosystem based on the discrete logarithm problem. Table 2.5 shows

ElGamal version for Elliptic Curves.

2.2.8 ECDH key exchange

As in RSA digital signature scheme, examples presented here are in the context of

embedded devices, so FPGAs are used as entities instead of using Bob and Alice as in
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the previous example.

An elliptic curve E(F2m) and a particular point P must be agreed between FPGA

sensor and FPGA server before to realize the Elliptic Curve Diffie-Hellman (ECDH)

key exchange. Then FPGA sensor and FPGA server select a secret integer each says

nA and nB respectively. So they can compute the scalar multiplication over E(F2m)

QA = nAP︸ ︷︷ ︸
FPGASensor

and QB = nBP︸ ︷︷ ︸
FPGAServer

(2.28)

and exchange QA and QB values. FPGA sensor then compute nAQB value with

its secret integer nA while FPGA server compute nBQA value with its secret integer

nB. Now they have a shared secret value

nAQB = (nAnB)P = nBQA. (2.29)

A graphical view of ECDH scheme in a sensor network is presented in Figure 2.9.

The shared secret key can be used in symmetric encryption schemes such as AES or

3DES.

A

FPGA sensor

E

C

D B

FPGA server

F

G

H

Sensor Precomputation
Choose a secret integer nA

Computes QA = nAP point

Server Precomputation
Choose a secret integer nB

Computes QB = nBP point

QA

QA QA

QB

QB
QB

Computes point nAQB

Computes point nBQA

A trusted party chooses and publish an elliptic curve E(F2m),
and a point P ∈ E(F2m)

FPGA sensor and FPGA server shared secret key value is:
nAQB = nA(nBP ) = nB(nAP ) = nBQA

Figure 2.9: Elliptic Curve Diffie-Hellman key exchange protocol.
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Table 2.6: Required finite field operations in point addition and point double in elliptic curves
cryptography.

Finite field operation Point addition Point double

Multiplication 2 4

Addition 6 1

Subtraction 6 4

Inversion 1 1

Square 1 2

Table 2.7: Finite field operations required in a point multiplication in elliptic curve cryptogra-
phy over Fp with 256-bits in size.

Finite field operation Required operations

Multiplication 1536

Addition 256

Subtraction 2560

Inversion 512

Square 768

In both algorithms, ECDH and ECC ElGamal, the main and most costly operation

is scalar multiplication. This operation is performed using a series of underlying

group and finite field operations (e.g., sums, inversions, squaring, multiplications, and

exponentiation over Fp or F2m).

2.2.9 Finite field operators role in DLP-E(Fq) based cryptosystems

In elliptic curve cryptosystems, the most costly operation is the scalar multiplication.

Scalar multiplication is achieved by performing addition, multiplication, squaring and

inversion in the finite field Fq.

According to formulas presented in section 2.2.3 for elliptic curves over prime

field Fp, required operations for point addition and point double in elliptic curves are

shown in Table 2.6.

Using conventional exponentiation algorithms such as binary exponentiation or

Montgomery powering ladder [43], a point multiplications in an elliptic curve with

256 bit in size may require up 256 point additions and 256 point doubling. However,

required operations for computing a point multiplications in an elliptic curve with 256

bits in size are shown in Table 2.7.
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As it can be seen in Tables 2.6 and 2.7, the required finite field operations in

ECC are high, and are the most time-consuming operations in those ECC public key

cryptosystems. As a consequence, in the literature, several works have proposed

different approaches to construct finite field hardware accelerators but mainly moti-

vated to achieve faster computations at the cost of higher hardware resources. Even at

present, motivation remains to find the most appropriate architecture for this operation

depending on the context of application and the underlying computing platforms.

In the context of pervasive computing, hardware implementations are restricted to

use few hardware resources. So, it is necessary to keep the use of hardware as low as

possible and achieve a better performance than software implementations.

The main aim of known hardware solutions is to provide high levels of secu-

rity, without considering requirements of resource-constrained devices. A new field

called lightweight cryptography (LWC) is an emerging research field, and focuses on

designing schemes for devices with constrained capabilities [23].

2.3 Finite field operators as key elements in PKC realizations

for constrained environments

Finite field operators are of high relevance for public key cryptography implementa-

tions since they are the main components in which algorithms efficiency is sustained.

Since PKC algorithms operate over large numbers, underlying finite field operations

are very costly. Consequently, finite field operators have been widely studied to im-

prove performance of PKC implementations. Software implementations try to improve

clock cycles required in finite field arithmetic or reduce the necessary memory space in

which operands, partial results, and lookup tables are stored. Another aim of software

implementations is to reduce required memory access to operands and partial results.

However, for some applications, software finite field operators are not fast enough to

meet time requirements, especially when resource-constrained devices are used, for

example, 8-bit processors. In those cases, hardware finite field operators are required.

Traditionally, design and implementation of hardware modules for embedded

systems have been carried by Application Specific Integrated Circuits (ASICs), since it

provides high performance and/or low power budget that many systems require (at

the expenses of long and difficult design cycles) [44].

However, for hardware realization of finite field operator, Field-Programable Gate

Arrays FPGAs could be preferred because of flexibility, low cost, fast time to market,

and long-term maintenance [45]. Particularly for cryptographic applications, FPGAs
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have the advantage of reconfiguration or reprogramming whenever a new security

requirement is necessary or when an algorithm must be adapted to support higher

security levels [46]. Today FPGAs are not only used as rapid prototyping devices but

as final products [47].

Next section presents a summary of the finite field operators required for cryptog-

raphy applications.

2.3.1 Multiplication, inversion and squaring operators in Fq

Basic operations for public key cryptography are multiplications, inversion and squar-

ing. For cryptosystems based in the discrete logarithm problem over Fp∗ the basic

operation is multiplication over Fp. Besides, elliptic curve cryptography can be accom-

plished in prime field Fp or in binary field F2m . For ECC cryptography multiplication,

inversion and squaring operations are required, either in prime field Fp or binary field

F2m depending on the field on which curves are defined.

Multiplication over Fp

Multiplication in Fq with q = p is of great relevance for cryptography algorithms

based in the discrete logarithm problem over Fp such as RSA, ElGamal, Digital

Signature Algorithm (DSA), among others. Fp multiplication is computed as a×
b mod p. Multiplication in Fp is commonly accomplished in one of the following

approaches [30]:

• First multiply, then divide.

• Multiplication steps and reduction are interleaved.

• Brickell’s method.

• Montgomery method.

Depending on needs implementation and the target device it is possible to select

one or another approach. Montgomery method replaces division operation by addi-

tions, subtraction, and siftings. However, Montgomery method requires to transform

operands to a Montgomery representation; when only a multiplication is required the

Montgomery method seems to be more inefficient than other approaches. However,

when several multiplications are needed in a continuous way Montgomery method

only requires operands transformations at start and end of all multiplications. For

hardware realizations, division seems to be a very costly operation. Thus, Montgomery
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method is a very attractive approach for multiplication over Fp that serves as an engine

for F∗p exponentiation.

Addition over F2m

Addition of A,B ∈ F2m elements is a straightforward operation. Thus, its computa-

tional complexity is usually neglected [30]. Addition in F2m is commonly accomplished

by the xor operation of coefficients of polynomials A and B.

Squaring over F2m

Squaring an element A in F2m is a linear operation since it is only required to

insert 0 ′s between consecutive elements of A as shown in figure 2.10.

Am−1 Am · · · A1 A0

0 Am−1 0 Am 0 · · · 0 A1 0 A0

Figure 2.10: Square of the element A ∈ F2m .

So, square elements in F2m is an easy task. However, it is required to reduce

the square polynomial. NIST has proposed finite fields generated by trinomials and

pentanomials, and corresponding fast reduction algorithms which are faster than

generic reduction algorithms and do not have storage overheads [40].

Multiplication over F2m

Multiplication over F2m is a fundamental operation in elliptic curve cryptography.

This operation is widely studied and analyzed since is the core of arithmetic required

in ECC.

It is well known that a F2m finite field could be defined using an irreducible

polynomial: F(x) = xm + fm−1x
m−1 + · · ·+ f2x2 + f1x+ 1 where fi ∈ F2m for 0 6

i 6 m [48]. If α is a root of F(x) then an element A ∈ F2m could be represented in

polynomial basis as A(α) =
∑m−1
i=0 aiα

i, ai ∈ F2. Thus, multiplication of A,B ∈ F2m

elements is accomplished by a polynomial multiplication of A and B elements with

coefficients in F2 following a polynomial reduction by irreducible polynomial F(x).

Traditionally, the hardware implementations of multiplication over F2m have been

accomplished in one of the following [49]:
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• Full-parallel, A and B operands’ coefficients are processed in parallel with achiev-

ing a very high throughput but at the price of high circuit area consumption.

• Bit-serial, a single bit of the multiplier A is processed at a time, while the

coefficients of the multiplicand B are processed in parallel. If the operand A has

m bits, multiplication takes m steps to be computed.

• Digit-serial, the main idea is to process d coefficients of A multiplier at each

time, while multiplicand B is processed in parallel. If d = 1 a Bit-serial approach

is achieved. However, the parameter d allows a trade-off between area and

performances.

Hardware finite field operators for multiplication over F2m have used a variety of

techniques to improve throughput or reduce area resources.

Inversion

Among finite field arithmetic operations used in public key cryptography: addition,

subtraction, multiplication, and inversion of non zero elements, inversion is the most

time-consuming operation [30]. The inverse of a non-zero element a ∈ F2m is defined

as the unique element a−1 ∈ F2m such that aa−1 = 1 [30]. In the literature several

algorithms have been proposed to compute the multiplicative inverse of an element

a ∈ F2m , most of them are based on the extended Euclidean algorithm or in the

Fermat’s Little Theorem (FLT).

Inversion operation is mainly used in ECC operations. However, some algorithms

use different point coordinates to avoid inversion operations. In this case, only it is

required to compute the inversion of one element at the coordinates transformation.

As conclusions, finite field multiplication is the most used critical operation in both

of them, prime field Fp and binary field F2m . Therefore, finite fields multiplication

algorithms and implementations are widely studied in the research community since

DLP public key cryptosystems performance depends directly on this operation.

2.3.2 Exponentiation operator in F∗q

Exponentiation operation in F∗q is the main operation in some public key cryptosystems

such as RSA, DH, and ElGamal. As F∗p is a subset of the finite field Fp, it is common

to refer to exponentiation in F∗p or Fp indistinctly.

Exponentiation in Fp is defined as the operation ge mod p. g is an integer, with

0 6 g < p, and e is an arbitrary positive integer. The basic method for exponentiation
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by multiplying g by itself e− 1 times is inefficient. So, faster algorithms have been

proposed to compute ge mod p [50], for example:

• Binary method: This method scans exponent bits either from left to right or from

right to left. At each step, a square operation is computed, and depending on

the scanned bit value a subsequent multiplication can be performed.

• m-ary method: The generalized form of the binary method can scan bits of the

exponent: two at a time (quaternary method), three at a time (the octal method),

etc., more generally, logm at a time (the m-ary method). This method is based

on m-ary expansion of the exponent. Digits of e are scanned, then squaring and

subsequent multiplications are computed accordingly [51].

• Sliding window techniques: In the m ary method the exponent is decomposed in

d-bit words. Probability of a d-word being zero is equal to 2−d, assuming that 0

and 1 bits are produced with equal probability. The sliding window algorithms

provide a compromise by allowing zero and nonzero words of variable length;

this strategy aims to increase the average number of zero words while using

relatively large values of d.

• Montgomery Powering Ladder (MPL): This method scan exponent bits, and

in each step performs a square and a multiplication. The main advantages of

MPL are that it does not have conditional jumps nor extra operations, as in other

approaches, which makes it resistant to certain kind of side-channel attacks, such

as the Simple Power Analysis (SPA) attack [52].

Modular exponentiation is the critical operation in PKC. However, modular expo-

nentiation is computed by a large number of multiplications. So, modular exponentia-

tion and modular multiplications are the underlying operations for discrete logarithm

problem (in multiplicative group F∗p) based cryptography.

2.3.3 Exponentiation (scalar multiplication) operator in E(Fq)

Point multiplication or scalar multiplication is the operation to compute kP, where k is

an integer and P is a point on an elliptic curve E defined over a field Fq [40]. This

operation dominates the execution time of curved based public key cryptography.

There is a wide range of approaches to compute this operation. Furthermore, the study

of algorithms and implementations of this operation is a very active research area.

Some of the algorithms used to compute scalar multiplications are [40]:
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• Binary method: This is the additive version of the binary method for exponentia-

tion. Scalar bits are scanned either from left to right or from right to left, and at

each step, a point double is computed and depending on the scanned bit value,

a subsequent point addition can be performed. Assuming that 0 and 1 bits of

the exponent are produced with equal probability, it is expected that the binary

algorithm executes approximately m/2 point additions and m point doubles.

• Non-adjacent form (NAF): This method is expected to compute approximately

m/3 point additions and m point double. To achieve this, a signed digit repre-

sentation of the exponent k is used, k =
∑l−1
i=0 ki2

i where ki ∈ {0,±1}. NAF is

a particularly useful signed digit representation. A NAF of a positive integer

k is an expression k =
∑l−1
i=0 ki2

i where ki ∈ {0,±1}, kl−1 6= 0 and no two

consecutive digits ki are nonzero. NAF length is l [40].

• Montgomery method: Julio López and Ricardo Dahab [53] proposed an algorithm

to compute scalar multiplication based in Montgomery idea [54]. In this method,

scalar bits are scanned, and the algorithm performs a point addition and a point

double at each step. Compared to the binary method that requires m/2 point

additions and m point double, Montgomery method required m point additions

and m point double at each step. However, operations uniformity makes this

algorithm resistant to certain power analysis attacks, since there is no conditions

or extra operations.

Since scalar multiplication is the main operation in ECC several approaches have

been proposed to speed up this operation. This section presented some of the most

representative algorithms that compute the general operation of scalar multiplication.

However, an approach for computing scalar multiplication when a fixed point is

required have been proposed too, for example, Fixed-base windowing methods and

Fixed-base comb methods [40]. However, this work is focussed on scalar multiplication

in a general way, and not for a fixed point.

2.4 Summary

A brief mathematics background for public key cryptography has been presented in

this chapter. Firstly, central concepts such as groups, finite fields, and the discrete

logarithm problem were presented as a basis for the public key cryptography. Secondly,

public key cryptosystems such as RSA, ElGamal, and ECDH were described to analyze

underlying operations required in each of them. Finally, importance of finite field
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operators was presented, as well as different approaches proposed by the research

community to improve each of these operations.

The next chapter gives a detailed state of the art study of the most relevant finite

field operators studied in this section.
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Chapter 3

State of the art

As it was stated in Chapter 1, operations in groups and finite fields are critical for

public key cryptography. In Chapter 2, it also was pointed out that critical finite field

and group operations for public key cryptography are multiplication in Fp and F2m ,

and exponentiation in multiplicative group F∗p and in additive elliptic curve group

E(F2m). Therefore, this chapter surveys previous works and main techniques used to

construct finite field operators for public key cryptography.

Firstly, an introduction to hardware finite field operators is presented. Secondly,

hardware finite field multipliers over Fp are presented, followed by exponentiation

over F∗p. Next, multipliers over F2m are surveyed. Finally, related works for hardware

implementation in FPGAs for exponentiation over elliptic curves E(F2m) are presented.

3.1 Finite field operators in hardware

Finite field operators have been implemented both in hardware and software. Tra-

ditionally, pure software implementations of public key cryptography are attractive

when flexibility is required, for example, when changes in parameters, key size or other

parameters need to change frequently. However, execution time for software implemen-

tations is higher than hardware implementations. Some resource-constrained devices

bring small processors (4-bit, 8 bit or 16-bit), and public key software implementation

in these platforms do not meet time requirements for critical applications. Hardware

architectures are required to speed up critical operations (finite field arithmetic) for

public key cryptography. Application Specific Integrated Circuits (ASICs) have been

the leading platform for hardware implementations of public key cryptography. The

main drawback with ASICs is that changes to the hardware are not possible. Field

Programmable Gate Array’s (FPGAs) offers hardware reconfigurable which can be

used to speed up the critical tasks, but with the flexibility that if requirements change,
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the hardware can be reconfigured. Since cryptography requirements change depending

on the application, FPGAs are commonly used as target technology.

This chapter is focused on hardware techniques implementations of finite field

operators in FPGAs. The main design goal for hardware designers is high throughput

or reduced area. On the one hand, high throughput designs are necessary for some

operations that work with great amount of data, and commonly require a considerable

amount of hardware resources. On the other hand, hardware designs optimized for

a small amount of hardware are necessary for small resources constrained devices.

Although there are different technologies for finite field operators implementations,

such as ASICs, this research project is concerned mainly in hardware finite field

operators in reconfigurable computing platforms: Field Programmable Gate Array’s

(FPGAs). therefore, state of the art review is related on this technology. The metric

used for size comparison in hardware architectures is slices.

3.2 Hardware architectures for the multiplication operator over

Fp

Exponentiation over Fp with large numbers is commonly accomplished by repeated

multiplications over Fp, which is an operation that consumes a considerable amount

of time in general purpose processors. Consequently, hardware finite field operators

have been studied to speed up multiplication over Fp.

One of the most used algorithm to accomplish multiplication over Fp is the

Montgomery algorithm since it replaces trial division by a series of additions and

divisions by a power of two that can be easily implemented in hardware devices [55].

Several techniques have been developed to reduce hardware resources and/or

speed up the Montgomery computation. One of them is the use of Carry Save

Adders (CSA) in partial operations to reduce the critical path in carry propagation

additions [56, 57, 58]. The primary challenge in the Montgomery multiplier with

CSA is the number format conversion from CSA to binary representation. Another

common technique for implement the Montgomery algorithm is the use of systolic

arrays such as in [59, 60, 61]. Systolic arrays help to improve computation time since

many Process Elements (PE) works in parallel. However, systolic arrays commonly

require a significant amount of hardware resources depending on the number of PE.

High radix design (digit-serial) commonly improves the bit-serial implementations

since a group of bits are processed at a time at the cost of extra hardware resources.

Because of this, small hardware architectures commonly uses bit-serial implementation
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or high radix with small digit size (i.e. 2 and 4 bits digit sizes). Another technique used

to reduce hardware resources and speed-up partial multiplications is the Karatsuba

algorithm [62, 63].

In [64] several algorithms are presented to implement the Montgomery multiplica-

tion, mainly in software. Algorithms are proposed according to whether multiplication

and reduction steps are separated or integrated, and how operands are processed, in

operand scanning one loop moves through it one word at a time, while in the prod-

uct scanning the loop moves through partial product results. In Separated Operand

Scanning (SOS) product and reduction steps are separated, so in multiplication steps,

size of partial result is double of the multiplicands. In Coarsely Integrated Operand

Scanning (CIOS), multiplication and reduction steps are interleaved, so in each step,

partial results are reduced and extra storage resources are not required. Other algo-

rithms were proposed in [64] i.e. Finely Integrated Operand Scanning (FIOS), Finely

Integrated Product Scanning (FIPS) and Coarsely Integrated Hybrid Scanning (CIHS).

However, CIOS version of Montgomery algorithm operates faster than these other

algorithms.

CIOS version of the Montgomery algorithm [64] was implemented for a low-cost

FPGA Spartan 3 of Xilinx in [59] in a systolic array version. Operands are processed in

words of radix R which determines the bit length of partial multipliers. The number of

PE can be adjusted to meet area vs performance trade-off.

When bit-serial or digit-serial approaches of the Montgomery algorithm are imple-

mented long operands are used in the intermediate results, addition delay of these

operands is a crucial aspect since carry propagation requires a considerable amount of

time when operands get bigger. Carry-save representation of operands and CSA have

been used to reduce the critical path in the Montgomery algorithm [58, 57].

In [57] it is proposed a Montgomery multiplier that uses CSA in order to avoid

carry propagation, and carry-skip addition is used to reduce time conversion of the

carry save representation to the binary representation. Walter proposes to avoid final

subtraction in the Montgomery algorithm at the cost of one extra iteration in the main

loop [4], see Algorithm 3. However, since addition is very efficient with CSA and an

efficient carry-skip circuit is used to convert partial operands, in [57] it is used the

original Montgomery algorithm. This Fp multiplier is developed in a digit-serial and

bit-serial approach, presenting results for digit size of 1 (bit-serial), 2, 4, and 8 bits, and

operand sizes of 512, 1024, and 2048 bits. Furthermore, the digit-serial Montgomery

multiplier from [57] is used to construct an exponentiation Fp module (discussed in

the next section).
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In [58], CSA architecture for implementing the Montgomery algorithm is used.

The carry save adders are used in the main loop of Algorithm 3 to avoid large

carry propagation of partial results during the stage of the computation. The main

characteristic of the Montgomery multiplier presented in [58] is that the same datapath

that computes the partial result of the main iteration of the Montgomery algorithm

is used to convert the final results from CSA representation to binary representation.

Different to other works that require additional logic to realize the conversion [65],

the Montgomery multiplier architecture presented in [58] requires a small number of

hardware resources.

In [58, 57], CSA is used to improve the critical path in the Montgomery multipli-

cation algorithm. It is well suited for bit-serial architectures since the critical path

is improve at the cost of a small amount of logic for CSA. High-radix (digit-serial)

implementations can be used to improve latency at the cost of area results as in [57].

In [66], it is proposed the use of a canonical operands representation, where an integer

is expressed in canonical form as XCR = (xn−1, xn−2, · · · , x0) where xi ∈ {−1, 0, 1}.

The main advantage of the canonical form is that the Hamming weight of an n bit

integer is n/3. To take advantage of the canonical representation, in [66] it is proposed

an expansion of an n-bit integer as XSD = (zn−1,zn−2,··· ,z0). Each zi includes a number

of consecutive zero bits that can be followed by a nonzero digit (1 or -1). With this

expansion, each partial multiplication can compute a digit (zi) that can be all zeros

or one followed by zeros, than can be easily computed with only one CSA and shift

operations. The main drawback with the proposed expansion in [66] is the clock cycles

and hardware resources required to realize operands conversions, first to canonical rep-

resentation, and next to the proposed expansion. Furthermore, digits size is variable,

so for different operands the Montgomery algorithm has different execution time.

In [63] the Karatsuba algorithm for partial multiplications in the Montgomery

algorithm is used. A 256 bits Montgomery multiplier is presented. The Karatsuba

algorithm is used in a recursive way down to partition operands to 32 bits where four

embedded multipliers (DSP) units are used to accomplish partial results. Although a

high throughput is achieved with a small number of slices, the Montgomery multiplier

presented in [63] require a significant amount of Digital Signal Processing (DSP), 108

(not at disposal for some low-cost FPGAs).

Another used technique for large integer multiplication is the use of the Karatsuba-

Offman algorithm. This algorithm reduces the overall running time of the multipli-

cation of two N-digits integer to O(Nlog23), as compared to O(N2) in the traditional

multiplication algorithm. In [62] Karatsuba-Offman algorithm is used to speed up
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Table 3.1: Approaches taken in hardware finite field operator Fp multiplier.

Ref. size Target Algorithm Approach Slices Time

[59] 1020 Spartan 3 Montgomery (CIOS) Systolic Array 1553 7.62 µs

[57] (d=2) 1024 Virtex 5 Montgomery Digit-serial (CSA) 12323 (LUTs) 1339 ns

[58] 1024 Virtex 2 Montgomery (CSA) New CSA Conversion 4512 9021 ns

[66] 1024 Virtex 5 Montgomery High Radix with CSA 6105 0.883 µs

[63] 256 Virtex 6 Montgomery Karatsuba 19362 (LUTs) (108

DSPs)
328 ns

[62] 1024 Virtez 7 Montgomery Karatsuba 235 34.45 µs

[67] 256 Virtex 6 Interleave multiplication bit-serial 3900 (LUTs) 1.3 µs

the Montgomery algorithm. The advantage of the Montgomery multiplier presented

in [62] is operands processing in a digit-digit fashion, but since the Karatsuba-Offman

algorithm is recursive, in [62] a digit size of 16 bits is used to take advantage of DSP

units in the FPGA, and a significant amount of DSP units are required to implement

the Karatsuba-Offman multipliers.

Other recent works for hardware finite field Fp multipliers on FPGAs have pro-

posed the use of the classical interleaved multiplication technique in bit-serial or digit

serial approach. [67] presents the bit-serial and digit-serial Fp multiplier, a× b mod p,

using the interleaved multiplication algorithm where each bit in b is tested at a time,

and the main loop only requires multiplication by two and additions modulo p. The

digit-serial Fp multiplier presented in [67] occupies 26% more FPGA LookUp Ta-

ble (LUT)s than the bit-serial implementation. Since many if conditions are used in the

main loop of the algorithm, the execution time is not constant for all operands.

Table 3.1 summarizes state of the art works for hardware finite field multiplication

over Fp. The most compact design in state of the art is the work presented in [62] which

uses Montgomery and Karatsuba algorithms. Furthermore, that design processes

operands digit by digit in a pipeline fashion. Montgomery implementations with

Carry Save Addition is commonly used to speed up operation frequency since it is

not required a carry propagation for additions. However, CSA require extra hardware

logic for CSA modules. Moreover, High-Radix CSA help to reduce latency since many

bits are processed at a time, but they require a considerable amount of hardware

resources, as in [57] and [66].
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3.3 Hardware architectures for exponentiation operator over

F∗p

Exponentiation in F∗p is commonly accomplished by repeating multiplications over Fp

which is a considerable time-consuming operation. Exponentiation over F∗p directly

depends on the efficiency of multiplication over Fp and how many multiplications

are required. For a detailed description of exponentiation over F∗p algorithms, the

reader could refer to [68]. The most used algorithms for exponentiation over F∗p are

the binary method (Least Significant Bit (LSB) and Most Significant Bit (MSB) also

known as Right to Left (R2L) and Left to Right (L2R)) and the Montgomery Powering

Ladder (MPL). The MPL algorithm is very attractive for hardware implementations

for F∗p exponentiation since it is a constant time algorithm resistant to certain side-

channel attacks such as Simple Power Analysis (SPA). Furthermore, in each iteration

of the main loop of Algorithm 6, there are not data dependency which allows two

multipliers to execute in parallel. Table 3.2 resumes most relevant works of Fp

hardware exponentiator architectures.

In [59] it is presented a hardware finite field operator for exponentiation over Fp

that use the MPL algorithm. There are no details of its implementation but it uses

the Montgomery CIOS algorithm to perform partial multiplications implemented in

a systolic array where the number of PEs can be configured according to a trade-off

area/speed. Block RAMs are used to store input values, partial multiplication results,

and final exponentiation result.

In [66], Fp exponentiation algorithms R2L and L2R are used. Since [66] uses an

integer expansion of operands, it was required to modify algorithms R2L and L2R,

mainly for conversion of the number format representations with pre-computation and

post-computation before and after the main loop. The R2L algorithm is implemented

with two partial multipliers while the L2R only requires one, saving hardware resources

at the cost of lower latency.

Sutter et al. [57] present the implementation of R2L and L2R exponentiation algo-

rithms. The partial multiplier is a Montgomery CSA version in bit serial and digit-serial

versions. In [57] at each iteration of R2L and L2R algorithms, operands are converted

from CSA representation to binary representation with a carry-skip addition. R2L

implementation require two partial Montgomery CSA multipliers which can compute

products in parallel.

In [66] a hardware finite field exponentiator over Fp is deployed which makes

use of L2R and R2L exponentiator algorithms. These algorithms were modified to
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Table 3.2: Hardware approaches for finite field exponentiation over Fp.

Ref. size Target Algorithm Approach Slices Time

[59] 1020 Spartan 3 MPL Systolic Array 3899 7.95 ms

[57] (d=1) 1024 Virtex 5 R2L Bit-serial (CSA) 8242 FF/ 11330

LUTs
2.98 ms

[57] (d=2) 1024 Virtex 5 R2L Digit-serial (CSA) 8243 FF/ 15427

LUTs
2.03 ms

[57] (d=2) 1024 Virtex 5 L2R Digit-serial (CSA) 13387 FF/ 27750

LUTs
2.03 ms

[66] 1024 Virtex 5 R2L High Radix with CSA 6776 1.37 ms

[66] 1024 Virtex 5 L2R High Radix with CSA 12716 0.92 ms

[62] 1024 Virtez 7 R2L Karatsuba 3046 0.54 ms

[69] 1024 Virtez 5 MPL Common-multiplicand 3218 3.18 ms

make use of the Montgomery multiplier with signed-digit representation and integer

expansion proposed in [66]. The main advantage of this architecture is using integer

expansion with variable digit sizes in which zeros follow a one, or digits with many

zero values are processed.

A hardware finite field operator for exponentiation over Fp is presented in [62]

which makes use of R2L binary exponentiation algorithm to exploit parallelism between

partial multiplications, since there is no data dependency unlike with L2R binary

exponentiation algorithm. The main characteristic of Fp exponentiator presented

in [62] is the use of the Montgomery algorithm for partial multiplications which

in turn makes use of the Karatsuba algorithm for partial multiplications to reduce

hardware resources.

In [69], it is presented a hardware finite field exponentiator over Fp that com-

putes partial multiplications by common-multiplicand Montgomery algorithm. The

common-multiplicand Montgomery algorithm was introduced in [70] for software

implementations. This algorithm is based in the observation that in the binary expo-

nentiation algorithm (same for MPL) there are required a square and a multiplication

that share one operand (for example A× B and A×A). The basic idea is that the

common part of the partial Montgomery multiplications (A× B and A×A) can be

computed once rather than twice. In [69] the algorithm was modified to take advantage

of hardware implementations for FPGAs.

In this section the most relevant state of the art works for hardware finite field

exponentiation over Fp were presented. The binary exponentiation algorithm (L2R

and R2L) and the Montgomery Powering Ladder (MPL) are the milestone algorithms

for finite field exponentiation. Hardware designs in the state of the art only modify

these algorithms (L2R, R2L, MPL) to adopt respective partial multipliers and to make
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some pre and post computations like the input operands representation in CSA form

or integer expansion [66].

3.4 Hardware architectures for the multiplication operator over

F2m

A finite field of characteristic two is denoted as F2m . Elements of F2m can be repre-

sented using a polynomial basis [71] (i.e.
∑m−1
i=0 aix

i,ai ∈ {0, 1}). In this representation

a F2m element can be expressed by m binary bits which is advantageous for hardware

implementations. Multiplication over F2m is one of the main operations used for

public key cryptography.

There are three main families of algorithms to compute A(x)B(x) mod F(x) (being

F(x) a degree-m monic irreducible polynomial over Fp, where p is a prime): full

parallel, bit-serial, and digit-serial [72]. The Full parallel approach requires a consider-

able amount of hardware resources. Bit-serial approach has been the most compact

implementation. Digit-serial approach allows a trade-off between computation time

and circuit area. The most widely used algorithms to perform multiplication over

F2m are the Most Significant Element first (MSE) and the Least Significant Element

first (LSE). Both of them have been used in bit-serial or digit-serial approach.

In multiplication over F2m partial results need to be reduced. Bertoni et al. [73] pre-

sented an easy way to perform modulo reduction when partial results have coefficients

with powers greeter than m− 1 (e.g. am). They presented algorithms to compute

F(q) multiplications. Furthermore, practical implementations for F(3m) and F(2m)

are presented.

Beuchat et al. [72] surveyed some of the most representative F2m implementations

using MSE and LSE algorithms (including implementations presented in [73]). For

MSE algorithm bit-serial and digit-serial algorithms are presented. Digit-serial imple-

mentations require dm/De iterations using m− 1-degree partial results [74]. However,

in [75] it is proposed m+D− 1-degree partial results to improve computation per-

formance at the cost of one extra iteration, requiring m + 1 iterations to compute

multiplication over F2m . For LSE algorithm, bit-serial and digit-serial algorithms are

presented. Digit-serial algorithm proposed in [73] require m+ 1 iterations and keeps

m+D− 1-degree partial results to improve computation performance. Beuchat [72]

conclude that MSE first approach requires less hardware and offers higher throughput

than LSE first. Furthermore, MSE algorithms are almost always more efficient than

LSE first algorithms.
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Table 3.3: Hardware approaches for multiplication over F2m .

Ref. Field Target Algorithm Approach Slices Time (ns)

[72] F(2233) Spartan 3 MSE Digit-serial 3458 58.0

[72] F(2233) Spartan 3 LSE Digit-serial 3504 62.0

[72] F(2409) Spartan 3 MSE Digit-serial 5406 153.0

[76] F(2233) Virtex 6 Schoolbook method Digit-serial 1643 (LUTs) 802.4

[71](d=1) F(2233) Virtex 5 LSE Digit-serial 714 (LUTs) 415.0

[71](d=16) F(2233) Virtex 5 LSE Digit-serial 2351 (LUTs) 35.0

[79] F(2233) Spartan 3 MSE Digit-digit 406 219.0

[80] F(2163) Virtex II M-I algorithm Systolic Array 1399

In [76] is presented a multiplier over F2m . As main characteristic multiplication

and reduction steps are performed separately. It is stated that for a finite field

generated by irreducible polynomials F(x) defined in standards (NIST [22]), reduction

can be performed by a set of xor operations [40, 77]. In [76] is considered only the

multiplication step, implemented in a digit-serial approach. A digit-size of 16 is

proposed since in most cases 16-bit words give better results. However, the approach of

multiplication and next reduction gives a partial result of doubling the operands size.

For example, the operands used in [76] are of 233-bits, and the partial multiplication

gives a result of 264-bits, which requires standard logic to be stored.

In [71] a elliptic curve point multiplication architecture over F2m is presented. Since

multiplication over F2m is the underlying operation of elliptic curves, in [71] is used

a LSE digit-serial multiplier [78] to improve the performance of multiplication over

F2m . However, a digit size of one bit (bit-serial) is the most compact version of the

multiplier presented in [71].

In [79] is presented a digit-digit multiplier over F2m based in MSE algorithm.

Operands, modulus and partial results are partitioned in digits and processed one digit

at a time. The main advantage compared to digit-serial or bit-serial implementations

is that operands and partial results can be stored in Block RAM (BRAM)s instead of in

shift registers which saves standard logic (slices).

Another approach to compute the multiplication over F2m is to perform multi-

plication and inversion using the architectural structure of an inversion architecture.

Multiplication can be computed without an increase in hardware resources. In [80] it

is proposed a systolic hardware architecture to compute multiplication/inversion in

the same hardware. Furthermore, an arithmetic unit is constructed that can perform

all F2m arithmetic operations required in elliptic curve cryptography.

Table 3.3 summarize the most relevant works for multiplication over F2m , the main

used algorithms, and area/time results.

Lightweight finite field operators for public key cryptography on

resource-constrained devices



52 Hardware architectures for the scalar multiplication over E(F2m)

3.5 Hardware architectures for the scalar multiplication over

E(F2m)

The most time consuming operation in Elliptic Curve Cryptography is the exponentia-

tion over E(F2m) also known as scalar multiplication or point multiplication. Efficiency

of exponentiation over E(F2m) directly depends on the selected parameters: finite field,

curve, coordinate system, multiplication algorithm over the field, inversion algorithm

over the field, and exponentiation algorithm. This section presents the state of the art

works most relevant for ECC arithmetic.

In [1] is proposed a lightweight hardware architecture for elliptic curve point

multiplication over E(F2m). The architecture is composed by three main modules:

control unit, arithmetic unit, and memory bank unit. In turn the arithmetic unit consists

of components: multiplication block, squared block, and addition block. Addition

and square over F2m operations are computed full parallel, totally combinational.

However, multiplication over F2m is computed via the bit serial approach using MSE

algorithm. The bit-serial approach is commonly used for low area requirements. The

memory bank consists of six registers, three of them are shift registers required in

the multiplication block, since one bit of one operand is required at a time whilst

the other is required full parallel. The control block is in charge of starting one of

the arithmetic modules, and enable/disable shift registers and write registers. The

architecture presented in [1] uses affine coordinates, and the Itoh-Tsuji algorithm to

compute field inversion over F2m . The lightweight hardware architecture presented

in [1] reports results in ASICs platforms. This architecture was reimplemented for

FPGAs in this thesis research for comparisons. Figure 3.1 shows the lightweight

hardware architecture for scalar multiplication over E(F2m).

In [81] is presented an area-efficient hardware architecture for scalar multiplication

over E(F2m) in FPGAs. These architecture consists of blocks: addition, multiplication

and square block for field F2m arithmetic, memory bank, and control module. The

memory bank consists of eight shift registers which can be required in full parallel

or one bit at a time. The multiplication block is implemented with the digit-serial

approach using the MSE algorithm, and requires several pipeline stages and so tem-

porary registers incrementing hardware resources. Projective coordinates are used to

avoid the inversion operation in the main loop of the Montgomery algorithm for scalar

multiplication. The required operations in the Montgomery algorithm were carefully

schedule to take advantage of the arithmetic modules. The inversion operation over

F2m is computed using the Itoh-Tsuji algorithm.
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four multiplications in each iteration. The algorithm

also lets us compute each iteration without requiring

extra temporary memory locations, thus reducing

area.

ECC processor design. The overall design appears

in Figure 2. The three units—GF(2m) addition; GF(2m)

multiplication, implemented as an MSB-first (most-

significant-bit) multiplier; and GF(2m) squaring—are

closely interconnected inside a single arithmetic unit

sharing the common input data bus A. The adder

needs an additional data bus B for the second operand,

and the multiplier requires a single-bit bi signal for the

multiplicand. The operands are stored in the memory

as registers (some of them as cyclic registers) with the

output being selected for A, B, and bi using

multiplexers with control signals (Asel, Bsel, and bi_sel)

from the controller. All the operand registers are

connected in parallel to data bus C, with the

appropriate register being loaded on the basis of the

controller load signal Cld_reg.

Inversion, as described, requires no additional

hardware apart from the preexisting multiplying unit

and squaring unit, with some additional control

circuitry to enable loading the proper variables to

the appropriate unit.

The implementation was synthesized for a custom

ASIC design using AMI Semiconductor 0.35-micron

CMOS technology. The designs have a total area

ranging from 10 K GEs for a 113-bit field for short-term

security to 18 K GEs for a 193-bit field for medium-term

security applications. This implementation shows that

an extremely small-area implementation of an ECC

processor is possible in affine coordinates. Table 3

shows the ECC processor’s total area in GEs and

latency in clock cycles for a single scalar multiplica-

tion and compares them with those of other imple-

mentations.9-12

Hardware-software codesign for ECC

An ECC coprocessor, as we’ve defined it, can be

small; it can also be prohibitively expensive for many

pervasive applications and can be capable of perfor-

mance that those applications don’t need. Hardware

assistance in the form of instruction set extensions

(ISEs) is more favorable in such situations because the

cost of extra hardware is quite low compared with that

of a coprocessor. Here, we present an efficient ISE

implementation for ECC that is a tightly coupled

hardware and software codesign. As a first step, we

used a software-only ECC implementation to identify

the functional elements and code segments that would
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Figure 2. Area-optimized GF(2m) elliptic-curve cryptography (ECC) processor.

Design and Test of ICs for Secure Embedded Computing

IEEE Design & Test of Computers

Figure 3.1: Lightweight hardware architecture for scalar multiplication over E(F2m) presented
in [1].

In [82] is proposed a hardware architecture for elliptic curve point multiplication

over F2m for resource constrained devices. Same as the previous state of the art works,

the main blocks are: adder, squarer, and inversion modules for arithmetic over F2m ,

control unit and register unit. However, the control unit is subdivided in: projective to

affine controller, doubling controller, addition controller and a finite state machine.

Most of the state of the art hardware architectures implement blocks for: addition,

square, multiplication, control unit, and memory bank. However, in [2] is proposed

to use a hardware-software co-design where only arithmetic blocks are implemented

in hardware modules: addition, square and multiplication. The control unit that is in

charge to start arithmetic modules and control the scalar multiplication algorithm is

implemented in a PicoBlaze processor which is in charge of the storage of elements

too. Figure 3.2 shows the hardware-software co-design proposed in [2].

In [71] is presented a hardware architecture for scalar multiplication over E(F2m).

Projective coordinates are used to avoid trial division field. The Montgomery ladder

point multiplication algorithm is used. However, partial field operations (addition,

square, multiplication, inversion) were schedule to take advantage of three partial

multipliers and one inversion module. Multiplication over F2m is achieved by the

digit-serial MSE algorithm. Division (inversions) is computed in digit-serial approach

too. Two inversions are required in the Montgomery ladder algorithm, at the end of

the main loop, however, the inversion module compute one inversion whiles the main
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Figure 3.2: Hardware-software co-design for scalar multiplication over E(F2m) proposed in [2].

loop is executed, and at the end of the loop only one inversion is required.

In [83] is presented a hardware architecture to compute scalar multiplication over

E(F2m). These hardware architecture uses affine coordinates together with the left-to-

right binary method for scalar multiplication. In each iteration it is required a point

double and point addition, the architecture implements two modules, one for point

double and other for point addition. Each module is composed of the arithmetic sub

modules: addition, inversion, multiplication and squarer. So, each point operation can

be computed in parallel. The field multiplication over F2m is achieved by the MSE

algorithm. Addition is accomplished by xor operation. The field inversion over F2m is

computed by a modified version of the Euclidean algorithm [84]. A control unit is in

charge of orchestrating the field operations required for the binary method for scalar

multiplication.

In [85] is presented a hardware architecture for scalar multiplication over E(F2m).

The main characteristic in this hardware architecture is the use of a bit-parallel Karat-

suba multiplier for the field multiplication over F2m . The Itoh-Tsuji algorithm is used

for field inversion. For scalar multiplication is used the left-to-right binary algorithm

with a signed representation of the scalar. Square and addition were implemented com-

binationally. Since bit-parallel Karatsuba multipliers require a considerable amount of

time to compute the operation, a three and four pipeline stage were analyzed to reduce

the critical path. Four stage pipeline strategy was the best according to area/speed.

Most of the state of the art works presented in this section use the bit-serial or

digit-serial approach to implement hardware finite field operators. However, hardware

resources required in these approaches depend directly on the operands size (around
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Table 3.4: Hardware approaches for exponentiation over E(F2m).

Ref. Field Target Mult. Algorithm Approach Slices Time

[1] F(2193) ASIC MSE Digit-serial 17723 GE 41.70 ms

[71] F(2233) Virtex 5 MSE Digit-serial 6487 19.89 µs

[81] F(2233) Virtex 7 MSE Digit-serial 2647 16.01 µs

[82] F(2163) Spartan 3 LSE Bit-serial 3383 2.23 ms

[2] F(2193) Spartan 3 Comba wxw Digit-serial 473 125.00 ms

[83] F(2233) Kintex 7 MSE Bit-serial 3016 2.66 ms

[85] F(2163) Virtex 5 Karatsuba Bit-parallel 3789 10.00 µs

233-2048 bits). The bit-serial approach requires small amount of hardware resources

compared to the digit-serial or full-parallel approach, but for large operands even

bit-serial state of the art hardware implementations require a considerable amount

of hardware resources (slices). Some recent works are proposing to use a digit-

digit approach, for example [62] and [3]. The main drawback with the Montgomery

multiplier presented in [3] is the use of shift registers to store partial results, and

for [62] is to fit the digit sizes to FPGAs embedded DSP multipliers. Another technique

to reduce hardware resources in digital design is the use of microprogramming where

control signals are stored in memory (commonly computed in software) avoiding

hardware resources for a complex control unit. So, this research follows the digit-digit

computation approach and makes use of multipliers and memory blocks embedded in

most of the FPGAs. Since memory blocks are bigger than operands, it is proposed to

used part of memory blocks to store control signal avoiding logic to compute them.

The Karatsuba method is a promising algorithm to compute partial multiplications,

similar to [62], but in this research Karatsuba algorithm is proposed for compute the

F2m partial multiplications.

3.6 Summary

This chapter presented the most relevant state of the art approaches to compute

finite field operations for public key cryptography: multiplication over Fp and F2m ,

and exponentation over Fp and elliptic curves over F2m . The main approach for

multiplication over finite fields Fp and F2m are the bit-serial and digit-serial. The

bit-serial approach is commonly used when low area is required, and most of the state

of the art work with this requirement use it. The next chapter presents the proposed

finite field operators with a small area foot print, that it is expected to be used in

resource constrained devices.
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Chapter 4

Proposed lightweight finite field operators

This chapter presents the novel finite field operators proposed in this thesis. According

to the literature review, the critical arithmetic operations are multiplication in the

finite fields Fp and F2m , and exponentiation in the multiplicative group F∗p and in the

additive elliptic curve group E(F2m). All the finite field operators and exponentiation

designs described in this chapter are designed having low area as main design goal.

All designs and its validations are done using FPGA as underlying technology.

It is proposed to use a digit-digit computing approach commonly used in software

implementation [86], but taking advantages of hardware platforms. With the novel

finite field operators (multiplication over Fp and F2m , and exponentiation over F∗p and

E(F2m)) it is expected to enable some PKC schemes (i.e, RSA and ECC) in resource-

constrained devices.

To begin with, the digit-digit approach for operand scanning and processing is

presented. After that, it is presented the proposed finite field operators for multiplica-

tion over Fp followed by exponentiator over F∗p. Then, it is presented the finite field

operators for multiplication over F2m . Finally, details are given about the finite field

operator for scalar multiplication over E(F2m).

4.1 Digit-digit computation approach

Given A,B ∈ Fq, each one of n bits in length, it is possible to represent them as:

A = an−1,an−2,an−3, · · · ,a0. ai ∈ {0, 1} (4.1)

B = bn−1,bn−2,bn−3, · · · ,b0. bi ∈ {0, 1} (4.2)

However, it is possible to represents elements of a finite field as digits (set of bits)
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of size k. For example, A can be represented by d digits of k bits, d = dn/ke:

A = Ad−1,Ad−2,Ad−3, · · · ,A0. (4.3)

Either in the prime field or the binary field design and implementation of hardware

architectures for multiplication in finite fields has commonly followed one of the next

approaches:

• Full parallel: Both operands are processed fully in one step, or if pipelined in

a few steps. This kind of approach is the fastest of the designs. However, since

the operands are numbers with 163-4096 bits in size this kind of architecture

requires a considerable amount of hardware resources. Possibly, this hardware

architecture will not be able to fit in low-cost FPGAs. Figure 4.1 shows a graphical

view of the computation of a finite field multiplication in full parallel hardware

architecture.

×
A×B

an−1 an−2 · · · a1 a0 bn−1 bn−2 · · · b1 b0

cn−1 cn−2 · · · c1 c0

Big amount of
hardware resources for
multiplication and reduction

All bit accesed
in parallel

Figure 4.1: Graphical view of a full parallel multiplier.

• Digit-serial: Finite field multiplier can be implemented in different ways accord-

ing to the available resources. Digit-serial multipliers [87] allow implementations

with speed, area, and power consumption trade-offs. In this approach, several

coefficients of B are processed at the same time, while all the coefficients of the

operand A are processed in parallel. The digit size k defines the number of

coefficients of B that are processed in parallel. The use of small digits results in

hardware architectures with a small footprint in the area, but big digit size result

in faster hardware architectures at the cost of most hardware resources. Figure 4.2

shows a graphical view of the computation of a finite field multiplication in a

digit-serial approach.

• Bit-serial: Bit serial is a particular configuration of the digit-serial where the digit

size is one bit.
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×
A×B

an−1 an−2 · · · a1 a0 Bn−1 Bn−2 · · · B1 B0

cn−1 cn−2 · · · c1 c0

Moderate amount of
hardware resources
(depending of digit size)

Each digit accesed
at a time

Figure 4.2: Graphical view of a digit-serial multiplier. One digit of B is processed at a time. In
this step the digit B1 is processed.

×
A×B

an−1 an−2 · · · a1 a0 bn−1 bn−2 · · · b1 b0

cn−1 cn−2 · · · c1 c0

Lower amount of
logic resources

Each bit accesed
at a time

Figure 4.3: Graphical view of a bit-serial multiplier. One bit of B is processed at a time. In this
step the bit b1 is processed.
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In this work, digit-digit computation approach is studied. Similar to digit-serial,

digit-digit approach allows exploring designs with area/performance trade offs.

In the digit-digit approach, all operands (multiplier, multiplicand, and modulus)

and partial results are partitioned into digits and processed iteratively. Furthermore,

the final result is delivered in a digit fashion too, which allows to use it as input

in a new operation. By varying digit size, it is possible to find configurations that

meet requirements of resources, throughput or efficiency. The digit-digit approach

is commonly used to implement algorithms for general processors (software) since

general processors usually work in words of 8, 16, 32 or 64 bits. However, digit-digit

hardware implementations can take advantage of some hardware design techniques

such as pipeline or processing operands in a parallel way.

In the next section new compact finite field operators over Fp, F2m , F∗p and E(F2m)

are presented. The primary goal for the compact finite field operators is to reduce

the required hardware resources instead of achieving high throughput computations.

However, it is expected that in spite of the low area resources in the hardware design

the throughput will be higher than achieved with software implementations in general

purpose processors.

As main distinctions, compact hardware architectures proposed in this research:

• Have low area as main design goal instead of high performance,

• Implement a datapath based on the digit size instead of the operands size,

• The same datapath could be used to compute modular exponentiation for dif-

ferent operand sizes (scalability) since datapath is based on digit size, not in

operand size,

• Efficiency (area-time) is not lost even using fewer area resources.

4.2 Compact digit-digit Montgomery multiplication in Fp

This section presents design and implementation of hardware architectures for multi-

plication over Fp. These architectures aim at reducing hardware resources compared

to designs presented in state of the art works.

In this work, the Montgomery multiplication algorithm is used to compute multipli-

cation over Fp since it avoids division operations by computing some extra additions,

subtractions and shifts operations. Division operation is a costly operation for hard-

ware implementations that require a large amount of hardware resources and time
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of computation. So, the Montgomery method is an alternative that is friendly for

hardware implementations of multiplication over Fp.

Montgomery multiplication

The Montgomery Multiplication Algorithm (MMA) [55] listed in Algorithm 1 has been

used as a foundation for several implementations of modular multiplication. Given

two numbers A,B ∈ Fp, they are first transformed to the Montgomery domain by

doing A ′ = A× R mod p and B ′ = B× R mod p. A ′ and B ′ are called Montgomery

numbers. MMA uses A ′,B ′ together with a number R such that gcd(p,R) = 1. Here,

p is an N-bit integer number with 2N−1 6 p < 2N. It is common to use R = 2N.

Based on this fact, it is possible to compute numbers R−1 and p ′ using the identity

R× R−1 + p× p ′ = 1, with 0 < R−1 < p and 0 < p ′ < R, using methods such as the

extended Euclidean Algorithm. The Montgomery product is defined as A ′ ×B ′ × R−1
mod p.

Algorithm 1 Montgomery multiplication algorithm (MMA)

Require: Integers A ′,B ′, R = 2N, and p a N-bit prime number.

Ensure: A ′ ×B ′ × R−1 mod p

1: t← A ′ ×B ′
2: q← (t mod R)× p ′ mod R

3: u← (t+ qp)/R

4: if u > p then

5: u← u− p

6: end if

7: return u;

The transformation of A to A ′ and viceversa can be done using the MMA algorithm,

since A ′ = MMA(A,R2), and A = MMA(A ′, 1). Thus, one modular multiplication

A×B mod p in Fp requires to compute the next four MMA multiplications:

A ′ = MMA(A,R2)

B ′ = MMA(B,R2)

Z ′ = MMA(A ′,B ′)

C = MMA(Z ′, 1).

Additional operations for number conversion, together with the additional com-

putation of p ′, make the Montgomery method inefficient for computing a single
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multiplication in Fp if compared with traditional multiplication algorithms.

However, the Montgomery algorithm is significantly faster when many consecutive

multiplications are required, such as in a Fp exponentiation. In this case, domain

conversion is needed only at the beginning and at the end of the cumulative multipli-

cations. Exponentiation over Fp is the primary operation for cryptographic algorithms

based on the discrete logarithm problem over F∗p, so, the Montgomery multiplication

algorithm seems to be adequate for this type of applications.

Proposed digit-digit Fp multiplication algorithm

To a better understanding of the algorithms and architectures presented in this section,

notation used from here on is shown in Table 4.1.

Table 4.1: Notation.

Symbol Description

N Operand size in bits = log2P

n Total k-bit digits of operands = dn/ke
p The modulus defining Fp

X, Y,A Elements in Fp

β Radix β = 2k

p ′ Precomputed value, p ′ = −p−1 mod β

Zi The ith digit of element Z ∈ Fp

X<i> Value of X at iteration i

Let X, Y be numbers in Fp. Using radix β = 2k, digit-based representation of X, Y

is defined as in Eq. 4.4.

X =

n−1∑
i=0

Xiβ
i, Y =

n−1∑
i=0

Yiβ
i (4.4)

(4.5)

Xi, Yi ∈ {0, 1, . . . ,β− 2,β− 1}

Lets define MMD(X, Y,p) as the function that computes the Montgomery product

of X, Y, processing them internally in a digit-by-digit fashion.

Some works in the literature have studied and proposed a hardware module for

the Montgomery algorithm using a digit-digit approach. One of the most recent is

reported in [3], and could well serve as the MMD function. Although the multiplier
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presented in [3] was developed to be used in cryptography operations such as in

RSA cryptosystems, the multiplier as it is could not be useful for constructing a

hardware architecture for some exponentiation algorithm such as the MPL, or binary

exponentiation. The main reasons are:

• The multiplier in [3] does not take into account that the result of the multiplication

is used again as one of the input operands, as it is required in the exponentiation

algorithms. The internal and external dataflow in the multiplier should be

redesigned to avoid additional and redundant storage.

• In [3], the partial results at each iteration i are stored in a shift register, not in

a memory. Thus, additional latency would be required to move the content of

the shift register to memory if the partial result is required in future operations,

such as in exponentiation in Fp.

The first step in the proposed design methodology was to redesign the Mont-

gomery hardware architecture in [3] in order to have a useful MMD module based

on the Montgomery multiplier able to allow compact hardware architecture for Fp

exponentiation.

Proposed hardware architecture for digit-digit Fp multiplication

Algorithm 2 was presented in [3] for iterative computation of a Montgomery product.

In that algorithm, the product is obtained one digit at a time per clock cycle, stored and

obtained from a shift register A that shifts k-bits (one digit) to the right at a time. This

shift register represents variable A in Algorithm 2 that stores partial multiplications at

each iteration i.

On one hand, the Montgomery multiplier in Algorithm 2 delivers the result in a

shift register. On the other hand, input operands for the multiplier reside in memory

blocks. This is the main inconvenient when using Algorithm 2 as a building block for

Fp exponentiation architecture, because the multiplication result at iteration i (stored

in a shift register) must be the input data to the multiplier at iteration i+ 1 (and must

reside in a memory block). A shift register–memory block interface would be needed

to solve this problem, of course with the associated cost of additional resources and

increased latency.

In this research work, Algorithm 2 and its corresponding datapath were redesigned

in such a way that the product and partial results in A reside in a memory block.

The main changes in the dataflow include the control for the read/write operations
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Algorithm 2 Iterative digit-digit MMA algorithm presented in [3]

Require: X=
∑n−1
i=0 Xiβ

i, Y=
∑n−1
i=0 Yiβ

i, p=
∑n−1
i=0 piβ

i,
1: 0 < X, Y < 2× p, R = βn, with p ′ = −p−1 mod β

Ensure: A=
∑n−1
i=0 aiβ

i=X× Y × R−1 mod p
2: A← 0;
3: for i← 0 to n− 1 do
4: c<0> ← 0

5: for j← 0 to n− 1 do
6: s<j> ← [A0 +Xj × Yi]
7: if j = 0 then
8: q<i> ← (s<j> × p ′) mod β
9: end if

10: r<j> ← q<i> × pj
11: {c<j+1>, t<j>}← s<j> + r<j> + c<j>

12: A← SHR(A)
13: An−1 ← t<j>

14: end for
15: A← SHR(A)
16: An−1 ← c<n>

17: end for
18: return A;

over A in lines 5, 11, 12, 14 and 15 in Algorithm 2. With these changes, the partial

Montgomery multiplication at the end of iteration i can be now treated as an input

operand at iteration i+ 1 by multiplexing data ports in the corresponding memory

blocks, thus avoiding the introduction of more logic and time overhead.

Algorithm 2 is based on the Montgomery algorithm proposed by C. Walter [4],

Algorithm 3. From a sequential computing approach, lines 3 and 4 of Algorithm 3

could be performed by the set of operations described in Eq. 4.6. Once q<i> has

been computed, partial multiplications t1 = X× Yi and t4 = q<i> × p, and addition

t5 = A<i> + t1 could be performed in a digit by digit fashion. That is, for each

iteration i in Algorithm 3, A<i+1> is computed by processing iteratively digits Xj, Aj,

and pj from X, A<i>, and p respectively, thus computing a digit j of A<i+1> at a time

(see Fig. 4.4).

t1 = X× Yi
t2 = A0 +X0 × Yi

q<i> = t2 × p ′ mod β

t4 = q
<i> × p

t5 = A
<i> + t1 + t4

A<i+1> = t5/β

(4.6)
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x

x

t1

t4

k-bitk-bitk-bitk-bitk-bit . . . A<i>

k-bitk-bitk-bitk-bitk-bitk-bit . . . t5 = A<i> + t1 + t4

k-bit k-bit X0Yi

k-bitk-bit X1Yiβ
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2

. . .

k-bitk-bit Xn−1Yiβ
n−1

k-bit k-bit q<i>p0
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k-bitk-bit q<i>pn−1β
n−1

k-bitk-bitk-bitk-bitk-bit . . . A<i+1> = t5/β

Figure 4.4: A<i+1> computation in a digit by digit approach.

Algorithm 3 Iterative Montgomery Multiplication [4]

Require: Integer X and Y, with 0 6 X, Y < 2× p, R = βn+1 with gcd(p,β) = 1, and p ′ =
−p−1 mod β

Ensure: A = X× Y × R−1 mod p =
∑n
i=0Aiβ

i

1: A← 0;
2: for i← 0 to n do
3: q<i> ← (A0 +X0 × Yi)× p ′ mod β
4: A<i+1> ← ([A<i> +X× Yi] + q<i> × p)/β
5: end for
6: return An;

Lightweight finite field operators for public key cryptography on

resource-constrained devices



66 Compact digit-digit Montgomery multiplication in Fp

Fig. 4.4 shows digit by digit operations for computing A<i+1> iteratively. At the

beginning of iteration i, q<i> is computed. Then, each digit of A<i+1> is obtained at

each next clock cycle j. Note that the first digit (always equal to zero) will be discarded

at the end of iteration i when the operation t5/β executes. So, digits of A<i+1> must

be stored in the corresponding output memory starting from iteration j = 1.

Algorithm 4 reflects modifications to Algorithm 2 needed for computing a digit-

digit Montgomery multiplication, well suited to be used in the proposed Fp exponen-

tiator.

Algorithm 4 New iterative Montgomery Multiplication algorithm

Require: X=
∑n−1
i=0 Xiβ

i, Y=
∑n−1
i=0 Yiβ

i, p=
∑n−1
i=0 piβ

i,
1: 0 < X, Y < 2× p,R = βn with p ′ = −p−1 mod β

Ensure: A =
∑n−1
i=0 aiβ

i = X× Y × R−1 mod p
2: A← 0;
3: for i← 0 to n− 1 do
4: c<0> ← 0

5: for j← 0 to n− 1 do
6: s<j> ← [Aj +Xj × Yi]
7: if j = 0 then
8: q<i> ← (s<j> × p ′) mod β
9: end if

10: r<j> ← q<i> × pj
11: {c<j+1>, t<j>}← s<j> + r<j> + c<j>

12: if j > 0 then
13: Aj−1 ← t<j>

14: end if
15: end for
16: An−1 ← c<n>

17: end for
18: return A;

The inner loop of Algorithm 4 requires n clock cycles. One clock cycle is needed

at the beginning to compute q<i>. One clock cycle at the end of the inner loop is

necessary to store the last carry, c<n>, in memory A, as explained previously. So, the

computing of q<i> (i > 0) and the writing of c<n> can occur during the same clock

cycle. Additionally, the output of each memory bank can be pipelined to reduce the

critical path at the cost of an extra cycle in the latency. If this is done, the total latency

of the hardware module for MMD implementing Algorithm 4 requires n(n+ 1) + 4

clock cycles.
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Figure 4.5 shows the dataflow for read and write operations over A memory.

Two counters are used to address each digit in A memory, addWrA for writing and

addRdA for reading. j value for any of these counters indicates reading or writing of

Aj digit.

wr enable

Clock

addRdA 0 1 2 3 n− 1 X 0 1 2 3 n− 1 X 0

Aj A0 A1 A2 An−2 An−1 X A0 A1 A2 An−2 An−1 X

data to write in A t0 t1 t2 tn−2 tn−1 Cn t0 t1 t2 tn−2 tn−1 Cn

addWrA 0 1 n− 3 n− 2 n− 1 X 0 1 n− 3 n− 2 n− 1

inner for

outer for

inner for

outer for

Figure 4.5: Dataflow in variable A acording to algorithm 4

The proposed hardware architecture for digit-by-digit Montgomery multiplication

is shown in Fig. 4.6. In that figure, module for implementing MMD function has

three k× k multipliers, four internal registers, and two 2k-bit adders. q<i>, which is

computed only at the first j-iteration, depends of p ′ and t2. Once q<i> is computed,

t1 and t4 could be computed in parallel. Finally, partial results are added to obtain

A<i+1>. A control module orchestrates dataflow from and to memory blocks.

Control Module

In order to analyze the impact of control logic module in entire hardware architecture

for Fp multiplier, two implementation options were followed: the first one is based on

Finite State Machine (FSM) and the second one was a microcode approach.

Control module for the Montgomery multiplier implemented with an FSM only

depends on the actual state. FSM is mainly constructed with counters, comparators,

and registers. An FSM implementation requires a considerable amount of standard

logic to implement all these components together with the logic to enable or disable

control signals in those components depending on current state. Contrary, a micropro-

gramming approach stores necessary signals in a memory, and only logic to read these

instructions are needed as well as a memory block to store the microprogram.

Suppose that operand has size = 1024 and digit size is k = 16, so there are

1024/16 = 64 digits per operands, all of them sequentially accessed. Since latency in

Montgomery multiplier is 64 ∗ 65+ 4 = 4162, a Montgomery multiplication, for this
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Figure 4.6: New digit-digit Montgomery multiplier architecture (Algorithm 4), memory and
result reside in memory blocks.
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Table 4.2: Microcode for the control module.

addr-x addr-p addrA wrA rst-cj load-qi mux-cj to store

0 3f 3b 1 0 0 0 0x00ffb8

0 0 3c 1 0 0 0 0x0003c8

1 0 3d 1 0 0 0 0x0103d8

2 1 3e 1 1 1 0 0x0207ee

3 2 3f 1 1 0 1 0x030bfd

4 3 3f 0 0 0 0 0x040ff0

5 4 0 1 0 0 0 0x051008
...

...
...

...
...

...
...

...

3e 3d 39 1 0 0 0 0x3ef798

3f 3e 3a 1 0 0 0 0x3ffba8

example, takes 4162 cycles. Note that at each i iteration of Algorithm 4, control signals

are identical. Consequently, it is possible to store only signals for one iteration and

read them many times. In previous example, it is required to store only 65 control

signals and read them 64 times. Microcode for architecture in Figure 4.6 is presented

in Table 4.2. Address of Bram-y memory is used as index to count how many times

the microcode is read. We propose to use the block memory that stores operand P to

store the microcode, and use a dual port memory; one port to read operand P and

other to read the microcode.

4.2.1 A variant of the digit-digit Montgomery implementation

Montgomery algorithm takes advantage of the radix β = 2k to make reduction step

easy for hardware implementations since division and modulus operation for a power

of two are cheaper in hardware. However, when digit size grows, for example from 32

to 64 bits, hardware resources required for the hardware architecture grown very fast.

So, in this section, it is proposed a variant digit size for the Montgomery multiplication.

In this way, the datapath can process operands in different digit size which made

hardware implementation resources grow slower than if the same digit size is used for

the two operands.

The proposed approach to accomplish a Montgomery multiplication with a general

digit-digit approach is to use two digit sizes, one for X and another for Y. In this way

the numbers X and Y could be represented in a different base β = 2k:
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X =

nx−1∑
i=0

xiβ
i
x Y =

ny−1∑
i=0

yiβ
i
y (4.7)

Whit this representation, it is assumed that X is nx digits in size, and Y is ny digits

in size. Furthermore, the digits size for X is kx-bits, and ky-bits for Y. Consequently,

the partial multiplication x× yi could be implemented in digit-digit fashion with

different digit sizes for X and Y. It is is assumed that the digit size kx > ky.

Partial results to calculate A could be implemented in this new digit-digit size

with two different digit sizes. Operand X, P, and A are partitioned in nx digits of

kx-bits in size. The Y value is partitioned in ny digits of ky-bits in size. With this

new configuration, A result can be computed in this new digit-digit approach, see

Figure 4.7.

t1

t4

kx-bitkx-bitkx-bitkx-bit

kx-bitkx-bitkx-bitkx-bit

kx-bitkx-bitkx-bitkx-bit

kx-bit

. . . A<i>

. . . t5 = A<i> + t4 + t5

. . . A<i+1> = t5/βy

ky-bit kx-bit X0Yi

ky-bit kx-bit X1Yiβx

ky-bit kx-bit X2Yiβ
2
x

. . . . . .

ky-bit kx-bit Xxn−1Yiβ
xn−1
x

ky-bit kx-bit q<i>p0

ky-bit kx-bit q<i>p1βx

ky-bit kx-bit q<i>p2β
2
x

. . . . . .

ky-bit kx-bit q<i>pxn−1β
xn−1
x

Figure 4.7: A<i+1> computation using different digit sizes for X and Y.

New variant digit-digit approach makes possible to calculate new partial result A

in an iterative way using digits of kx-bits in size, and having a carry of ky-bits in the

partial multiplications. In each clock cycle, a digit result of A is computed. At the end

of each iteration, one digit of ky bits is discarded. This can be achieved do not writing
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the first ky bits of the first computed digit A0, see Figure 4.7. So, at each iteration,

there are required to compute two partial values t to write one digit of the new value

of A<i+1>.

Algorithm 5 Montgomery digit-digit multiplication with different digit size.

Require: X =
∑xn−1
i=0 Xiβ

i
x , Y =

∑yn−1
i=0 Yiβ

i
y, p =

∑xn−1
i=0 piβ

i
x

Require: 0 < X, Y < 2 ∗M,R = βxnx , gcd(M,R) = 1, and M ′ = −M−1 mod βy
Ensure: A =

∑xn−1
i=0 Aiβ

i
x = X× Y × R−1 mod M

1: A← 0;

2: for i← 0 to yn− 1 do

3: c<0> ← 0

4: for j← 0 to xn− 1 do

5: s<j> ← [Aj +Xj ∗ Yi]
6: if j = 0 then

7: q<i> ← (s<j> ∗ p ′) mod βy
8: end if

9: r<j> ← q<i> ∗ pj
10: {c<j+1>, t<j>}← s<j> + r<j> + c<j>

11: if j > 0 then

12: Aj−1 ← t<j>(yk− 1 downto 0)||t<j−1>(xk− 1 downto yk)

13: end if

14: end for

15: Axn−1 ← c<xn>||t<xn−1>(xk− 1 downto yk)

16: return A

17: end for

The proposed algorithm for the alternative digit-digit approach is shown in Algo-

rithm 5, and the proposed hardware architecture that implements this algorithm is

presented in Figure 4.8. Since in the finite field exponentiation implementations it is

desirable that operands and partial results will be stored in memory blocks with the

same word-size, in this approach it is used digit size xk as memory word. However,

the reading of memory BRAM-Y requires an extra component to reduce the operand

to the digit size yk as can be seen in Figure 4.8.
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Figure 4.8: Montgomery multiplier digit-digit different digit size approach.

4.3 Compact exponentiation in F∗p

In this section, it is described the proposed finite field operator for the F∗p exponentiator.

The main goal of this hardware architecture is to reduce the required hardware

resources compared to state of the art F∗p exponentiators. To reduce the hardware

required it is proposed to implement the exponentiator in a digit-digit approach

making use of the Montgomery multiplier proposed in the previous section.

The finite field Fp with p a prime number is defined as the set of integers

{0, 1, . . . ,p− 1} together with operations of addition and multiplication modulo p [21].

Exponentiation in Fp is defined as ge mod p with g ∈ Fp and e ∈ N. The basic

method for exponentiation by multiplying g by itself e− 1 times is totally inefficient. So,

faster algorithms have been proposed to compute ge, one of the most used nowadays

is the Montgomery Powering Ladder method [88].

The MPL algorithm was originally proposed as a way to speed up the scalar

multiplication in the elliptic curve domain [88]. Later, Joe and Yen [43] extended its

scope to execute exponentiation in an abelian group. The main advantages of MPL are

that it does not have conditional jumps nor extra operations, as in other approaches,

which makes it resistant to certain kind of side-channel attacks, such as the Simple

Power Analysis (SPA) attack [52]. The MPL method for GF(p) exponentiation is listed

in Algorithm 6. It is assumed that the exponent e is L bits in size, and ei is the ith bit

of e.

The crucial operation in the MPL algorithm is Fp multiplication. One of the most

used algorithms for efficient multiplication in Fp is the Montgomery method [55]. This

algorithm employs only simple addition, subtraction and shifts operations to avoid

INAOE Computer Science Department



Proposed lightweight finite field operators 73

Algorithm 6 MPL method for exponentiation in GF(p)

Require: g ∈ GF(p), e = (eL−1, · · · , e0)2 ∈N and p a prime number defining GF(p)

Ensure: ge mod p
1: R0← 1; R1← g;
2: for i = L− 1 downto 0 do
3: if ei = 1 then
4: R0← R0× R1 mod p;
5: R1← R1× R1 mod p;
6: else
7: R0← R0× R0 mod p;
8: R1← R1× R0 mod p;
9: end if

10: end for
11: return R0;

trial division by modulus p, which is very expensive in hardware implementations.

Lets define MMD(X, Y,p) as the function that computes the Montgomery product

of X, Y, processing them internally in a digit-by-digit fashion. With previous notation,

Algorithm 6 can be described as Algorithm 7, where exponentiation operation ge mod

p is computed using digit-by-digit processing. In that algorithm, it is assumed that

both g and ge are in the Montgomery domain. The exponent e is expressed in the

same way than in Algorithm 6, but ’1’ must be treated as a Montgomery number, that

is, it must be transformed to 1× 2N mod p.

Algorithm 7 Digit-digit MPL algorithm

Require: e = (eL−1, · · · , e0)2, g =
∑n−1
i=0 giβ

i, p
Ensure: C =

∑n−1
i=0 Ciβ

i = (ge)× R mod p
1: X← 1× 2N mod p;
2: Y ← g;
3: for i = L− 1 downto 0 do
4: if ei == 1 then
5: X←MMD0(X, Y,p);
6: Y ←MMD1(Y, Y,p);
7: else
8: X←MMD0(X,X,p);
9: Y ←MMD1(Y,X,p);

10: end if
11: end for
12: return X;
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A direct hardware implementation of Algorithm 7 requires two modules for the

MMD function, say MMD0 and MMD1, which can work in parallel at each iteration.

The main advantage of Algorithm 7 is that the k-bit digits of operands X and Y can be

stored in n× k memory blocks, so the hardware realization of the MMD function does

not require internal logic to store its operands.

However, note that in Algorithm 7 partial result at iteration i become the input data

at iteration i+ 1. That is, operands’ digits are used and overwritten during the same

iteration. So, the main challenge to implement Algorithm 7 without using additional

and redundant storage for operands is to design a control logic that correctly parses,

accesses and reuses operands’ digits directly from block memories.

The critical component in Algorithm 7 is the embedded Montgomery multiplier.

The Montgomery digit-digit multiplier developed in the previous section could be

ideally used as the MMD0 and MMD1 modules required in Algorithm 7.

Hardware architecture for MPL

The hardware module for MMD in Fig. 4.6 is used to construct the hardware architec-

ture for the MPL algorithm. Inputs of MMD module are the digits Xj, Yi, pj, p ′, and

Aj digits of the partial multiplication A<i>.

Consider ei = 1 in execution of Algorithm 7. Y operand is two inputs to the MMD
multiplier at line 6. Thus, digits from Y are read at the outer (Yi) and at the inner loop

(Yj) of Algorithm 4. The same applies to X when ei = 0. Therefore, we considered

dual port memories when designing the MPL architecture to store and access digits

from X and Y to execute Algorithm 7.

The MMD hardware module in Fig. 4.6 now delivers multiplication result to a

memory, and that memory becomes in one Montgomery Multiplier operand at the next

iteration. Instead of moving all the content of the memory assigned to A<i+1> to one

of the input memories assigned to X or Y, our approach is to define a strategy to switch

the role of memories: at one time behaving as an input operand (with read operations)

and at another time behaving as the multiplication result (with write operations).

In this context, a total of four memories are required: BRam-XX, BRam-YY, BRam-X,

and BRam-Y. At the beginning of Algorithm 7, g and ‘1’ are loaded into BRam-X and

BRam-Y respectively, and BRam-XX and BRam-YY play the role of write memories. In

the next iteration, memories change their role, so BRam-XX and BRam-YY are input

operands and BRam-X and BRam-Y are now write memories to store the multiplication

result in the next iteration. This process continues until all bits of the exponent are

processed.
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Figure 4.9: Digit-digit Montgomery Powering Ladder architecture (Algorithm 7).

The hardware architecture for the MPL algorithm is shown in Fig. 4.9. The main

blocks, denoted by MMD0 and MMD1, are digit-by-digit Montgomery multipliers

executing Algorithm 4. Input ports for these modules are current input operands

at iteration i and output port corresponds to the resulting multiplication delivered

digit-by-digit. Other signals such as p ′, p and Aj for MMD shown in Fig. 4.6 have

been omitted for clarity.

A control unit manages the entire dataflow and stimulates memory blocks for

reading and writing. As it was commented before, dual-port memories are used to

access two digits at a time from an operand, respectively addressed by outer and inner

loops in Algorithm 4. These two ports are indicated in block memories of Fig. 4.9 as ‘a’

and ‘b’.

The proposed hardware architecture presented in Fig. 4.9 takes advantage of

available embedded BRAMs in commercial FPGAs. Exponent e, modulus p, and four

temporary variables BRam-X, BRam-Y, BRam-XX and BRam-YY were mapped to FPGA

BRAMs. e exponent and p modulus were mapped to single port BRams since only one

word per cycle is required. However, the other operands were mapped to dual-port

BRAMs to read from and write to the memory during the same clock cycle. Since

all the operands are stored in independent BRAMs, they can be accessed in parallel
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without memory bottlenecks. Nevertheless, in digit-digit multiplication approach, only

one digit (word) per clock cycle is computed at a time, thus increasing latency, see

Algorithm 4.

Although reusing of memories saves FPGA resources, the control unit to appro-

priately stimulate these memories (to read and write digits of operands and partial

results) gets more complex. Each memory port requires signals for data input/output,

read/write addresses, enable/disable signals, among others. The control unit is in

charge of all these signals for orchestrating the algorithm execution and the data flow.

FPGA families have a different number of embedded BRAMs, with a maximum

word size. When the word size is bigger than the one allowed, multiple BRAMs

are combined to create a single larger Random-access memory (RAM). That can

increase memory traffic, area and access time due to interconnections between BRAMs.

Because of that, in this work, only word sizes (digit size) of 4, 8, 16, 32, and 64 were

implemented.

A relevant aspect of hardware architectures for cryptography applications is their

resistance to side-channel attacks. In order to reveal certain secret information when

a hardware module performs an encryption/decryption operation, an attacker can

perform an analysis of the power dissipation, the electromagnetic radiation, or the

operating time of internal operations while the hardware module executes. The Simple

Power Analysis (SPA) and Differential Power Analysis (DPA) proposed by Kocher [89]

are two of the best-known attacks. However, constant time algorithms are resistant to

certain side-channel attacks. A broad study about side-channel attacks is presented

in [90]. Our proposed Algorithm 4 is a constant time algorithm as the MPL algorithm

is. So the proposed algorithms favor the creation of hardware architecture resistant to

some side-channel attacks such as SPA.

4.4 Operators over F2m

In this section, it is presented a compact hardware architecture for multiplication over

F2m . The target of the proposed design is resource-constrained devices, so small area

is preferable to high-speed approaches. The proposed architecture can be used as a

building block for elliptic curve cryptography implementations in resource-constrained

devices.
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Multiplication over F2m .

Multiplication over F2m is one of the main operations in Elliptic Curve Cryptography

(ECC) over F2m . The Most Significant Element first (MSE) and Least Significant

Element first (LSE) are commonly used algorithms to compute multiplications over

F2m . The MSE and LSE are digit-serial algorithms. Hardware implementations

of LSE multiplication algorithm require more hardware resources than hardware

implementations of MSE first algorithms [72]. However, in this thesis project, a novel

digit-digit F2m multiplier algorithm based on MSE algorithm has been proposed. The

proposed algorithm uses a digit-digit approach that compared with the traditional

approach allows smaller architectures. The main advantage of the proposed algorithm

is that all partial operations are computed with digits, which leads to more compact

implementations than algorithms that work with full operands.

It is well known that a F2m finite field could be defined using an irreducible

polynomial: F(x) = xm + fm−1x
m−1 + · · ·+ f2x2 + f1x+ 1 where fi ∈ F2m for 0 6

i 6 m [48]. If α is a root of F(x) then an element A ∈ F2m could be represented in

polynomial basis as A(α) =
∑m−1
i=0 aiα

i, ai ∈ F2. Furthermore, since α is a root of

F(x):

F(α) = αm +

m−1∑
i=0

fiα
i = 0 (4.8)

αm = −

m−1∑
i=0

fiα
i =

m−1∑
i=0

(−fi)α
i =

m−1∑
i=0

fiα
i (4.9)

According to [73], all elements αm+i ∈ A, i > 0 can be reduced using Equation 4.9.

This work follows the convention that A,B,C ∈ F2m , being A the multiplicand,

B the multiplier and C = A× B mod F(α). Elements A and B are represented by

polynomials:

A =

m−1∑
i=0

aiα
i, B =

m−1∑
i=0

biα
i, ai,bi ∈ F2m , for 0 6 i < m (4.10)

C element is given by:

C = A×B mod F(α) =

m−1∑
i=0

m−1∑
j=0

aibi

 mod F(α) =
m−1∑
i=0

ciα
i (4.11)

To perform reduction in the partial product A×B, a polynomial of degree 2m− 2,

is not practical due to a 2m− 2 bits register to store the partial result require hardware

resources that can be saved. In this work an iterative reduction it is presented.
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An element B ∈ F2m can also be represented as a sum of w = dm/de polynomials

(digits) each of d coefficients in F2 [79].

B =

m−1∑
i=0

biα
i =

w−1∑
i=0

Biα
id, where Bi =

d−1∑
j=0

bid+jα
j (4.12)

So, multiplication C = A×B mod F(x) can be expressed as:

C = A×B mod F(x)

=

(
A×

w−1∑
i=0

Biα
di

)
mod F(α) (4.13)

Modulus operation is distributive [48]. So, equation 4.13 can be rewritten as:

C =

w−1∑
i=0

(ABiα
di mod F(α)) (4.14)

= AB0 mod F(α) +

AB1α
d mod F(α) +

AB2α
2d mod F(α) +

...

ABw−1α
(w−1)d mod F(α)

At each iteration partial product P<i>(α) = ABi, a polynomial of degree d +

m− 2, must be reduced modF(α). Parsing elements of B from left to right (MSE), C

computation at iteration i, 0 6 i 6 w− 1, is determined by recurrence:

C<0> = 0 (4.15)

C<i+1> = αd(C<i> mod F(α)) + P<w−1−i>(α) (4.16)

Where polynomial αd(C<i> mod F(α)) is at most of degree d+ k− 1, while P<i>

is of degree (d+ k− 2). After w iterations C<w−1>, a polynomial of degree d+ k− 1,

needs reduction. So, it is required an extra iteration with B−1 = 0. In this case

P<−1> = 0, and C<w> = αd(C<w−1> mod F(x)) is the result. The final result is

C<w>/αd, that can be computed only discarded the digit C<w>0 .

Degree of C<i> from Equation 4.16 is at most (d +m − 1). So, it is required

to reduce elements αj of C<i>, m − 1 < j 6 d +m − 1. Equation 4.9 can be
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applied to achieve reduction of C<i>. When F(x) is a trinomial or pentanomial,

αm =
∑m−1
i=0 fiα

i = g(α) a polynomial of degree g with g < m. Elements αm+t with

t 6 m− 1− g can be reduced using equivalence αm+t mod F(α) = g(α)αt. With this

considerations, reduction in equation 4.16, C<i> mod F(α), can be defined as:

C<i> mod F(α) =

m−1∑
i=0

ciα
i +

(
m−1+d∑
i=m

ciα
i

)
mod F(α)

=

m−1∑
i=0

ciα
i +

(
d−1∑
i=0

cm+iα
ig(α)

)
mod F(α)

= C<i>m (x) +C<i>d (x)× g(x) (4.17)

C<i> is partitioned in two polynomials C<i>m (x) and C<i>d (x) of degree m− 1

and d respectively. The partial multiplication C<i>d × g(x) will not require modular

reduction if d+ g < m. So, using 4.17 in 4.16 it is obtained:

C<i+1> = αd(C<i>m +C<i>d × g(x)) + P<w−1−i> (4.18)

4.5 Compact digit-digit F2m multiplication

In this section it is presented an iterative way to compute equation 4.18 in an iterative

digit by digit way, and the corresponding hardware compact architecture. The polyno-

mial C<i>m , g(x) and A can be represented in w = dm/de digits. Since the Bi degree

is d− 1, P<i> computation can be achieved iteratively, taken digit Bi and iterating

through A digits:

P<i>(x) = A(x)×Bi(x)

=

u−1∑
j=0

Ajα
jd ×Bi(x)

=

u−1∑
j=0

(Aj ×Bi)αjd

=

u−1∑
j=0

P<i>j αjd (4.19)

And, αD(C<i>m (x) +C<i>d (x)× g(x)) in equation 4.18 can be rewritten as:
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αD(C<i>m (x) +C<i>d (x)× g(x)) =

w−1∑
j−0

C<i>j αjd+d +C<i>d (x)×
w−1∑
j=0

Gjα
jd+d

=

w−1∑
j=0

(C<i>j +C<i>d (x)×Gj)αjd+d

=

w−1∑
j=0

R<i>j αjd+d (4.20)

Once P<i> and R<i> are processed in an iterative way one digit at a time, equa-

tion 4.18 can be rewritten as:

C<i+1> =

w−1∑
j−0

(R<i>j αjd+d + P<i>j αjd) (4.21)

At each iteration, values P<i>j and R<i>j can be computed in a parallel way.

Furthermore, to be clearer in the computations in operations, P<i>j and R<i>j αd can be

added to form a variable S<i>j . New variable S<i>j is d+ d+ d bits in size as shown

in Figure 4.10.

d-bitsd-bits

d-bitsd-bits

d-bitsd-bits

d-bitsd-bits

d-bitsd-bits

d-bitsd-bits

P<i>
j αjd

P<i>
j+1 α

(j+1)d

R<i>
j αjd+d

R<i>
j+1 α

(j+1)d+d

. . . . . .

+d-bitsd-bitsd-bitsS<i>
j

Figure 4.10: Computation of Pj and Rj.

Now at each iteration it is possible to compute a new value S<i>j , and a new digit

of C<i+1> as shown in Figure 4.11.

At the end of each iteration i, it is required to store the new value of C<i>d .

With all these considerations the proposed algorithm for computing multiplication

over F2m is presented in Algorithm 8.

Three different hardware architecture will be presented to compute multiplication

over F2m according to Equation 4.16, Figure 4.11, and Algorithm 8.

4.5.1 Hardware architecture 1 (Compact implementation)

According to Figures 4.10 and 4.11 Equation 4.9 can be computed in an iterative

way. Hardware architecture 1 is a straightforward implementation of Algorithm 8.
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Figure 4.11: Partial computation of S<i>j .

Algorithm 8 Digit-digit F2m multiplier algorithm.

Require: A,B, F ∈ F2m . A =
∑w−1
i=0 aiα

iD . B =
∑w−1
i=0 biα

iD

1: cD← 0

2: for i← 0 to w+ 1 do
3: carry← 0

4: s← 0

5: for j← 0 to w do
6: Pi ← bdigits−i × aj+1
7: Rj ← cj + cD× fj+1
8: s← Pi+ (Rj << d) + carry

9: cj ← s[d− 1 downto 0]
10: carry← s >> d

11: end for
12: cD← s >> bitsLastDigit

13: end for
14: cw ← carry

15: return c . c = A×B mod F . c =
∑w−1
i=0 ciα

iD

Figure 4.12 shows the proposed hardware architecture. In this architecture there

are required two d× d partial multipliers, one 2d+ d adder, one 2d+ 3d adder, one

d-register to store C<i>d , and one 2d register to store the partial carry.

The main components are two partial multipliers which required a considerable

amount of hardware resources.

4.5.2 Hardware architecture 2 (Karatsuba version)

The second hardware architecture was implemented similar to architecture 1, but

implementing partial d× d multipliers with the Karatsuba algorithm. In this approach

the d-bits operands are partitioned in two d/2 operands and three d/2× d/2 partial
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Figure 4.12: Hardware architecture 1.

multiplications are required. This approach can be used to compute partial d/2× d/2
multiplications in a recursive way. In this work, we use a case base of 4× 4 multipliers.

When a d× d multiplication is required, operands are partitioned and the Karatsuba

method is used in a recursive way, but when a d× d, with d = 4 is required the

multiplier is implemented as architecture 1.

4.5.3 Hardware architecture 3 (One partial multiplier version)

The main components in architectures 1 and 2 are partial multipliers which require

more than 50% of hardware resources for the F2m multiplier. This section presents a

hardware architecture that only requires one partial d× d multiplier when a trinomial

is used.

Table 4.3 shows polynomials recommended by National Institute of Standards and

Technology (NIST). There are two trinomials and three pentanomials. If the trinomial

m = 233 recommended by NIST is used polynomial g(x) = x74 + 1 is required for the

reduction step. So, if d = 74 (digit size) is used, when a digit j of g(x) (Gj) is read, only

the two first digits will have a value of 1, when j > 1 digit Gj will be always 0. In this

case, partial multiplier that compute C<i>d (x)×Gj always compute a multiplication of

the form (C<i>d (x)× 1) or (C<i>d (x)× 0) which can be implemented only with a ‘and’
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Table 4.3: NIST recommended irreducible polynomials for binary fields.

m Polynomial

571 z571 + z10 + z5 + z2+ 1

409 z409 + z87 + 1

283 z283 + z12 + z7 + z5 + 1

233 z233 + z74 + 1

163 z163 + z7 + z6 + z3 + 1

gate. In conclusion, when a trinomial of form xm + xk + 1 is used, it is possible define

the digit size d = k. In this case, partial multiplier that compute C<i>d (x)×Gj can be

implemented using only a multiplexer as is shown in Figure 4.13

When a digit size d < k is used, first partial multiplication C<i>d (x)×Gj will be

C<i>d (x)× 1 = C<i>d (x). It is required to calculate the digit in which bit k is stored,

and in which position in the digit. So, when the digit that store the bit k is processed,

it could be computed only shifting the value of C<i>d (x). All others digits Gj are zero.

Thus, it is not required to compute the partial multiplications nor to store the value of

the full reduction polynomial.

4.6 Compact exponentiation in E(F2m)

Elliptic Curve Cryptography (ECC) has been called to be the next generation cryptog-

raphy ideal for resource-constrained devices [39, 91]. The main operation in ECC is

the scalar multiplication Q = kP where k is a private key, Q is a public key, and P is a

base point on an elliptic curve E. The private key k is very difficult to compute from

knowledge of P and Q.

For cryptography applications, it is very important to select the correct parameters

for ECC implementations. The main parameters to consider are the finite field, elliptic

curves, coordinates system, and scalar multiplication algorithm. In this thesis research

the next parameters were chosen:

Finite field: In this work the binary field F2m is selected due to it is well suited for

hardware implementations since it is carry free [91]. Furthermore, the binary

field allows simplified squared arithmetic.

Elliptic Curves: Elliptic curves 233 and 409 recommended by NIST were selected since

a compact multiplier over F2m for finite fields generated by trinomials has been
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Figure 4.13: Hardware architecture 3.

proposed. For that, it is proposed to take advantage of this multiplier to be used

as a basic building block for the ECC implementation.

Coordinates: Projective coordinates were selected since they reduce the number of

inversions over F2m compared to affine coordinates when computing point

addition in the elliptic curve.

kP algorithm: The Montgomery algorithm for elliptic curves, proposed by López-

Dahab [53], (Algorithm 9) was used due to:

• It allows saving resources since point addition/double do not consider y

coordinate.

• The field inversion operation is only required for coordinate conversion at

the end of the main loop since projective coordinates are used.

• It is a constant time algorithm resistant to some side channels attacks such

as Simple Power Analysis (SPA).

The point addition (Madd), point double (Mdouble), and conversion coordinates

(Mxy) functions used in the Montgomery algorithm 9 are shown in Algorithms 10, 11

and 12.
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Algorithm 9 Montgomery Scalar Multiplication

Require: k > 0

Require: P = (x,y) ∈ E(F2m)

1: if k = 0 or x = 0 then

2: return (0, 0).

3: end if

4: P1(X1,Z1)← (x, 1)

5: P2(X2,Z2)← (x4 + b, x2)

6: for i from l− 2 downto 0 do

7: if ki = 1 then

8: P1 = Madd(P1,P2)

9: P2 = Mdouble(P2)

10: else

11: P2 = Madd(P2,P1)

12: P1 = Mdouble(P1)

13: end if

14: end for

15: return Q = Mxy(P1,P2,P) . Q = kP

Algorithm 10 Add Algorithm

1: procedure Madd(P1(X1,Z1),P2(X2,Z2),P(x,y))

2: Z3 ← (X1Z2 +X2Z1)
2

3: X3 ← xZ3 +X1X2Z1Z2

4: return P3(X3,Z3) . P3 = P1 + P2

5: end procedure

Algorithm 11 Doubling Algorithm

1: procedure Mdouble(P1(X1,Z1))

2: Z2 ← X21Z
2
1

3: X2 ← X41 + bZ
4
1

4: return P2(X2,Z2) . P2 = 2P1

5: end procedure
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Algorithm 12 Coordinates conversion projective-affine.

1: procedure Gxy(P1(X1,Z1),P2(X2,Z2),P(x,y))

2: xq ← X1Z
−1
1

3: Yint ← (X1 + xZ1)(X2 + xZ2) + (x2 + y)Z1Z2

4: yq ← (x+ xq)Yint(xZ1Z2)
−1 + y

5: return Q(xq,yq)

6: end procedure

It is proposed to compute operations according to the schedule shown in Figure 4.15:

Variables TAi and TDi are temporary. This schedule has been carefully selected not to

overwrite temporary values that will be needed later. It is proposed to use two memory

blocks to store one elliptic curve point P(X, Y). So, at each iteration of algorithm 9,

there are required two elliptic curve points P1 and P2. Furthermore, it is required

to store partial results in temporary memories, since it is not possible overwriting

operands memories because they are required in next operations. So, it is proposed to

use two temporary points (4 memory blocks), shown in Figure 4.14.

X1 Z1

P1

TA4 TA3

TA6

X2 Z2

P2

TD4 TD3

TD7

X11 Z11

TA1 TA2

TA7 TA5

X22 Z22

TD2 TD1

TD6 TD5

Figure 4.14: Memory blocks for partial result operations.

As it can be seen in Figure 4.15, there are required to compute some square

operations in F2m . It has been presented in Subsection 2.3.1 that the square operation

of an element A ∈ F2m can be accomplished by inserting 0’s between consecutive

elements of A. So, only a reduction step is required to accomplish the square. For

example, Algorithm 13 is the proposed algorithm for fast reduction proposed by NIST

for the irreducible polynomial f(z) = z233 + z74 + 1 [40], and commonly used for

reduction after the square operation.
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Figure 4.15: Schedule for the point addition and point double operations in the context of
elliptic curves.

Algorithm 13 Fast reduction modulo f(z) = z233 + z74 + 1 (With W = 32)

Require: A binary polynomial c(z) of degree at most 464.

Ensure: c(z) mod f(z).

1: for i← 15 downto 8 do . Reduce C[i]z32i modulo f(z)

2: T ← C[i].

3: C[i− 8]← C[i− 8]⊕ (T << 23).

4: C[i− 7]← C[i− 7]⊕ (T << 9).

5: C[i− 5]← C[i− 5]⊕ (T << 1).

6: C[i− 4]← C[i− 4]⊕ (T << 31).

7: end for

8: T ← C[7] >> 9. . Extract bits 9-31 of C[7]

9: C[0]← C[0]⊕ T .

10: C[2]← C[2]⊕ (T << 10).

11: C[3]← C[3]⊕ (T >> 22).

12: C[7]← C[7]&0x1FF. . Clear the reduced bits of C[7]

13: return (C[7],C[6],C[5],C[4],C[3],C[2],C[1],C[0]).
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T = C[15]
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+

T � 31

+

Figure 4.16: Graphical view of the fast reduction Algorithm 13.
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In Figure 4.16, it is shown a graphical view of Algorithm 13. The fast reduction

algorithm allows executing four digits computations in parallel, for example when

T = C[15] it is possible to compute values of C[11], C[10], C[8] and C[9] which is

very attractive if all the required digits are available. However, in the digit-digit

approach that is proposed in this thesis, the fast reduction algorithm requires a

significant amount of memory readings and writings. For example, one iteration of for

loop (line 1) in Algorithm 13 requires one clock cycle for reading each of the values

T ,C[i− 8],C[i− 7],C[i− 5] and C[i− 4]. Furthermore, one extra clock cycle for writing

each of the computed values C[i− 8],C[i− 7],C[i− 5] and C[i− 4] is required. A total

of 9 clock cycles at each iteration of the for loop are required. If an operand size of

233 bits with digit size of 32 bits are used, then the for loop in Algorithm 13 requires

9 ∗ 8 = 72 clock cycles in a digit-digit computation. However, the proposed hardware

architecture for multiplication in F2m with the same operand and digit sizes (233, 32)

requires 8 ∗ 9 = 72 clock cycles too. So, for the aims of this research, it is possible

to use the same multiplier as the square operator, since the implementation of the

fast reduction algorithm requires additional logic that can be saved reusing the same

multiplier.

At each iteration of Algorithm 9, there are required to compute a point addition

(Madd) and a point double (Mdouble) operations. So, according to Figure 4.15 it is

possible to compute Madd and Mdouble operations in a parallel way since there is

no data dependency. However, two F2m multipliers are required. Furthermore, it

is possible to compute Madd and Mdouble operations with only one adder. Madd

operation requires 5 field multiplications while Mdouble requires 6. Mdouble only

requires the adder after 6 field multiplications, at this time, Madd operation will finish

leaving the adder free to be used for Mdouble operation. The general view of the ECC

scalar multiplier is shown in Figure 4.17.

ECC GF(2m) scalar multiplier.

GF(2m) Adder

GF(2m) Multiplier

GF(2m) Multiplier

Bank of memories Control

Figure 4.17: General view of the ECC scalar multiplier architecture (Algorithm 9).
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4.7 Summary

In this section, the design and implementation of the proposed finite field operators

were presented. The main aim of the operators was to reduce the hardware resources

for hardware implementations. All proposed operators use the digit-digit approach

to reduce hardware resources. A Montgomery multiplier was developed with the

digit-digit approach, and then a Montgomery Powering Ladder Fp exponentiator

was implemented with two Montgomery multipliers that work in parallel. A F2m

multiplier based in the MSE algorithm was designed using the digit-digit approach.

Three versions of F2m multipliers were developed: a direct implementation of the

proposed digit-digit algorithm, a Karatsuba version, and the last one require only one

partial multiplier in finite fields generated by trinomials. This multiplier was used to

implement a scalar multiplier over E(F2m) in the context of elliptic curves, in which

only two digit-digit multipliers and one digit-digit adder are required. In the next

section, there are presented the implementation results in FPGAs of the proposed finite

field operators presented in this section.
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Chapter 5

Implementation and Results

This chapter presents results obtained in this research. First, it presents tools used for

experimentation and evaluation metrics. Next, it describes digit and operands size

used in the proposed operators. Following, results of proposed arithmetic operators

are presented: operators in fields Fp and F2m ; and operators in groups F∗p and

E(F2m). After, comparison with state of the art works is presented. Finally, the chapter

presents the design of a hardware/software co-design that was developed for in-circuit

verification of all designs proposed in this dissertation. Hw/sw co-design implements

the Elliptic Curve Diffie-Hellman (ECDH) key exchange and RSA digital signature

protocols that make use of the proposed field and group operators, which validates

and give evidence of the practical use of the operators developed in this work.

5.1 Tools and evaluation metrics

In this research work, all proposed architectures for field and group operators were

described in VHDL. However, software implementations were done for test vectors

generation used in the verification phase. Test vectors were used in both simulation

and in-circuit verification.

The design flow used in this work and shown in Figure 1.7 was automated, allowing

to produce different hardware architectures under different configurations (operand

size, digit size, optimization criteria, etc).

FPGAs were used as computing platforms to prototype all hardware architectures

developed in this doctoral research. These devices permit to explore area/performance

trade-offs as well as to evaluate designs and compare them against related works in the

literature. FPGAs also allow exploring trade-offs between area and processing speed.

The software tools used to assist all design, implementation and validation phases are:

• Simulation: Model Technology ModelSim ALTERA STARTER EDITION vsim

91
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10.3d Simulator 2014.10 Oct 7 2014.

• Synthesis and implementation: Vivado v2016.1 (64-bit) and ISE 14.7 from Xilinx.

• FPGA platform:

– Virtex 7 and Virtex 5 from Xilinx.

– MicroZed low-cost development board based on the Xilinx Zynq R©-7000 All

Programmable SoC.

• Test vectors:

– Fp: test vectors created with the BigInteger library from Java (JDK 8u181).

– F2m and E(F2m): test vectors created with the Number Theory Library

(NTL) for C++ (NTL 9.7.0).

• Software implementations of the RSA Digital Signature and ECDH: implemented

in software in the MicroZed Board under Linux with the MIRALC library for

comparisons.

The primary metric to evaluate the compactness of the architectures is the number of

slices. This allows comparing the size of two architectures. Another metric of interest

is the throughput, that measures the number of bits that a hardware architecture

process for time unit (see its definition in Equation 5.2). This metric allows comparing

speed/performance of architectures. The last metric used in this work is efficiency, that

shows the number of bits processed by area unit (slice). The efficiency is calculated

with equation 5.1.

efficiency =
throughput

slices
(bps/slice) (5.1)

throughput =
Frecuency× num. bits

num. clock cycles
(bits/s) (5.2)

The proposed hardware architectures were implemented in different FPGAs. Virtex

5 and Virtex 7 were used to compare the proposed hardware architectures with most

of the state of the art works. The MicroZed board (a low-cost development board

based on the Xilinx Zynq R©-7000 All Programmable SoC) was used to implement

arithmetic operators and hw/sw co-design. The MicroZed board is a state of the

art FPGA commonly used in industrial IoT applications. The Zynq-7000 system

integrates the software programmability of an ARM R©-based processor (Cortex9) with
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the hardware programmability of an FPGA Artix 7, which enable the flexibility of

software application with the advantage of the high speed custom hardware design in

the FPGA Artix 7.

5.2 Area performance trade-off approach

In this work, it is followed one of the approaches in the literature when implementing

hardware architectures in FPGAs, the use of embedded IP cores such as DSP and

BRAM modules. This is generally done to reduce the amount of standard logic of the

FPGA, leaving more resources to implement other parts of the security protocol or the

application. Also, this implementation approach allows incrementing the operational

frequency and thus improving execution time and throughput.

Design and implementation of cryptography hardware architectures in FPGAs

depend on the efficient use of architectural features provided in the targeted FPGA.

The Xilinx FPGAs used in this work have embedded cores DSPs and BRAMs which

have been employed to reduce the standard logic usage of the proposed designs.

Similar building blocks can also be found in other Xilinx FPGA families such as in the

Virtex, Spartan, Kintex, Artix, etc, as well as in the Stratix II and Cyclone II devices of

Intel’s FPGAs. So, the proposed implementation technique can be adapted to other

FPGAs with similar features.

5.3 Compact FPGA operators in Fp

The implementation results for the Montgomery multiplier (Figure 4.6) in the Virtex-7

FPGA are shown in Figure 5.1. The scalability of the proposed multiplier is confirmed

with the area results shown in Figure 5.1a, where it is observed that the size of

the operands do not greatly affect the number of slices as the digits do. The best

configurations in terms of area usage are for {k = 8, s = 256}, {k = 4, s = 512} and

{k = 8, s = 1024}. When k > 16, the area increases considerably, possibly due to the

interconnections between the Configurable Logic Block (CLB)s.

The operands size also does not affect the multiplier frequency, but the digit size

does, as it is shown in Figure 5.1b. This mainly happens because of multipliers

complexity and other components in the datapath increase as the digits get bigger,

which also increase the critical path in the circuit. A larger operand size will require

more digits to process, increasing the latency but not affecting the word size in the

datapath or the complexity of internal hardware modules (adders and multipliers).

However, if a greater digit size is used, latency is reduced. This reduction comes with
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Figure 5.1: Implementation results of the Montgomery multiplier (Figure 4.6) in the Virtex-7 FPGA.

an increasing in the throughput, as Figure 5.1c reveals. The best result is obtained for

k = 64, with a throughput of 311.48 Mbps for an operand size of 1024. Figure 5.1d

reveals that the best efficient Fp multiplier operator obtained is with a digit size k = 16

for an operand size of 512 or 1024 bits. When the operand size is 2048 bits, the most

efficient multiplier is the one using k = 64.

Microprogramming approach

The compact Fp multiplier was implemented with the proposed microprogramming

approach proposed in Section 4.2. In this approach, datapath and control logic

(FSM and microprogramming) modules of the Fp multiplier were independently

implemented obtaining the results shown in Tables 5.1 and 5.2, respectively.
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Table 5.1: Implementation results for the datapath block (1024 bits operand size).

Digit size Slices BRams DSP Freq. (MHz)

16 16 0 4 232.61

32 66 0 11 135.64

64 230 0 33 97.66

Table 5.2: Implementation results for the control block, using the microprogramming and FSM
approaches (1024 bits operand size).

Digit size Slices BRams DSP Freq. (MHz)

16 8 0 0 447.42

32 9 0 0 490.67

64 9 0 0 397.93

16 (FSM) 34 0 0 227.58

32 (FSM) 20 0 0 339.21

64 (FSM) 15 0 0 398.40

Most of the logic in the datapath are multipliers and adders which are implemented

by embedded DSP modules. Contrary to the datapath, the hardware resources for the

control unit decrease with bigger digits in the FSM approach, but in the micropro-

gramming approach, the resources do not vary. Table 5.2 shows the advantage of using

a microprogramming approach. Since all the control signals are stored in a memory

block, it is not required to generate the control signals; they only need to be read from

the memory block which significantly increases the maximum frequency of operation.

Variable digit-digit Fp multiplier.

In the digit-digit Fp multiplier with the same digit size for all the operands and partial

results, the required hardware resources in the FPGAs grow very fast when bigger

digit sizes are used. For example, a Fp multiplier with 1024 bits operand size with a

digit size of 32 bits require 80 slices, and with the same operand size but a digit size of

64 need 237 slices. This experiment tries to fit the gap between two digit sizes using a

different digit size for the operands. In this section it is presented the obtained results

for the Fp multiplier with a variable digit-digit approach presented in Section 4.2.1

Figure 5.2 shows implementation results of the Fp multiplication architecture with

different digit sizes for the operands X, Y and P. Operand size of 1024 bits was used in

this experiments. Digit sizes expressed in the form x-y indicates that x is the digit size
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of the operand X and y the one of the operand Y:

• 4-4, 4-8, 4-16, 4-32, 4-64.

• 8-8, 8-16, 8-32, 8-64.

• 16-16, 16-32, 16-64.

• 32-32, 32-64.

For digit sizes: {4, 8, 16, 32} the best results were obtained when using a multiplier

with the same digit size. However, for 32-64 configuration it is possible fitting the

gap between 32-32 and 64-64 results with an efficiency similar to 64-64. The Fp

multiplier requires 80 and 237 slices with a digit size of 32 and 64 bits respectively.

32-64 configuration requires 137 slices which is not possible to obtain using the same

digit sizes.

These results give evidence that using variable digit architectures can be attractive

when the hardware resources disposal is not enough for a digit-digit size k1 but

they are excessive for a digit size k2. For example, a hardware designer that have at

his disposal 150 slices could not implement a 1024 Fp multiplier with a 64-64 digit

configuration since that would requires 237 slices. However, if it is implemented with

a 32-32 digit size configuration it is just only requires 80 slices, and almost 70 slices

will be wasted in nothing. If the designer had at his disposal the variable digit-digit

version of the multiplier, he could use the 32-64 configuration that requires 137 slices

only with a throughput of 176 Mbps instead of the 99 Mbps achieved with the 32-32

configuration.

5.4 Compact FPGA exponentiation in F∗p

MPL exponentiator results

The implementation results for the Montgomery Powering Ladder (MPL) architecture

are shown in Figure 5.3. It can be observed that the complexity of the MPL architecture

strongly depends on the underlying Fp multiplier. For digit sizes from 2 to 16, the

area resources remain less than 110 slices. However, the amount of area resources

increases considerably when k = 32 and k = 64. In the same way, the clock frequency

remains over 180 MHz when k 6 16 but degrades considerably when k = 32 and

k = 64, in consequence of greater delays due to using larger area. Throughput is

considerably reduced, in the order of Kbps, achieving its best for greater digit sizes. In
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Figure 5.2: Implementation results of the Fp multiplier with different digit sizes (figure 4.8) in the Virtex-7 FPGA
for 1024 bits operand size.
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terms of efficiency, considerably better implementations are obtained for greater digit

sizes: the best results are for k > 16. When k 6 16 the partial multiplications fit in a

single DSP module, but when k > 16 partial multiplications in the datapath require

several interconnected DSP modules, which increases the number of slices required

for interconnection and decreases the frequency.
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Figure 5.3: Implementation results for the F∗p exponentiator (MPL) architecture for a Virtex-7 Xilinx FPGA.

5.5 Compact FPGA operators in F2m

Figure 5.4 shows the place and route results for the three F2m multiplier architectures

for the Virtex 7 Xilinx FPGA. These results consider the datapath and control module.

Memory blocks are not part of the architectures and thus not considered in the results.
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The hardware resources used by architecture v1 and architecture v2 are very similar

for smaller digit size (2, 8, 16), but for digit sizes of 32 and 64, architecture v2 required

few hardware resources. For example:

• Operand size: 233

– Digit size: 32

∗ v1 : 408 slices.

∗ v2 : 363 slices.

– Digit size: 64

∗ v1 : 1520 slices.

∗ v2 : 1343 slices.

• Operand size: 409

– Digit size: 32

∗ v1: 413 slices.

∗ v2: 371 slices.

– Digit size: 64

∗ v1: 1417 slices.

∗ v2: 1061 slices.

Are reduction is due to the implementation of the Karatsuba partial multipliers.

For small digit sizes (2, 8, 16) the saved standard logic due to the Karatsuba approach

is not noticeable because interconnections between partial multipliers have a cost

similar to the one saved. However, for digits size of 32 and 64 the saved logic due to

the Karatsuba approach is higher than the one used for interconnecting the partial

multiplier, so it is reflected in the final area resources shown in Figure 5.4.

In the hardware architecture v3 it is eliminated one partial multiplier (see Fig-

ure 4.13), which lead to an area reduction compared to architectures v1 and v2.

Furthermore, the frequency is considerably better in architecture v3, mainly for digit

size of 32 and 64. This is due to the elimination of one partial multiplier too. As a conse-

quence, architecture v3 achieve a higher Throughput and Efficiency than architectures

v1 and v2.

The obtained results are shown in Figure 5.4 for operand size of 233 and 409. Area

results for the implementation of the bit serial multipliers are very low, and very

similar to the results obtained for the proposed digit-digit multiplier for digit sizes of 8
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Figure 5.4: Implementation results for the F2m multiplier architecture in the Virtex-7 Xilinx FPGA.
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and 16. However, storage resource for operands and final results are not considered in

the hardware designs. For the bit serial approach, there will be required some registers

to store operands and partial results while for the proposed hardware architecture

there will be necessary BRAMs which not consume standard logic. So, the saved slices

will be reflected in higher layers of the operands such as the ECC point multiplication.

The efficiency for the proposed hardware architecture is very similar than the obtained

in the bit-serial approach.

5.6 Compact FPGA E(F2m) exponentiator

This section presents the obtained results for the E(F2m) exponentiator. The proposed

E(F2m) exponentiator uses the F2m multiplier v3 presented in section 4.5.3 which

takes advantage of the binary finite fields generated by irreducible trinomials such as

the NIST recommended polynomials 233 and 409, see Table 4.3.

For a fair comparison, one of the smaller bit serial F2m exponentiator [91] was

implemented. The bit-serial F2m exponentiator [91] takes advantage of the bit serial

Most Significant Bit approach for the field multiplication F2m , the sum operation is

achieved by the xor operand, the square operation in F2m is performed in two steps,

first an expansion with interleaved 0’s, then reducing the double-sized result with the

reduction polynomial, and the inversion operation is performed with the Itoh-Tsujii

algorithm [92].

Figure 5.5 shows the implementation results for the proposed E(F2m) exponen-

tiator (scalar multiplier) for the elliptic curves k-233 and k-409 recommended by

NIST. Furthermore, it shows the implementation results for the E(F2m) bit serial

reimplementation proposed in [91] for the Elliptic Curve k-233 recommended by NIST.

Figure 5.5a shows the are results for the proposed hardware architecture and the bit

serial implementation. It is observed that the proposed approach requires a smaller

amount of standard logic (slices) in the FPGAs for digit size 4, 8, and 16. For digit size

32 and 64 the required slices are higher than the compact E(F2m) bit-serial implemen-

tation. According to Figure 5.5b the E(F2m) bit-serial approach achieves an operation

frequency of almost 200 MHz, and the maximum frequency in the E(F2m) digit-digit

approach depends on the digit size. For example, for a digit size of 4 bits is higher than

200 MHz, but as the size of the digit increases the frequency of operation will decrease,

for a digit size of 32 the maximum frequency achieved is 115 MHz for operand size of

233 and 112 MHz for an operand size of 409 bits. The F2m partial multipliers mainly

determine the maximum frequency. For the E(F2m) bit-serial approach only and gates
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are required, so higher frequency is achieved. In the digit-digit approach, the partial

multipliers of digits determine the maximum frequency, and as the digit size grows

the partial multipliers require a more significant period to generate the partial result.

The throughput achieved with the E(F2m) bit-serial approach is of 56 kbps. For

the proposed E(F2m) digit-digit approach the digit size 4 and 8 achieve a throughput

of 7 and 28 kbps respectively. However, the proposed E(F2m) digit-digit with digit

size 16 achieves a throughput of 85 kbps, higher than the E(F2m) bit-serial approach.

Figure 5.5 shows the efficiency results of the proposed hardware architectures. The

E(F2m) bit-serial implementation achieves an efficiency of 0.069 kbps/slice very similar

than the proposed E(F2m) digit-digit implementation with a digit size of 8 bits (0.064

kbps), but requires fewer hardware resources (slices). However, the proposed E(F2m)

digit-digit implementation with a digit size of 16 achieves higher efficiency than

the E(F2m) bit serial, and requires fewer hardware resources. The E(F2m) bit-serial

architecture requires 862 slices and achieve an efficiency of 0.069 kbps, while the

digit-digit hardware architecture with a digit size of 16 needs 626 slices and achieves

an efficiency of 0.132 kbps, almost the double than the bit-serial approach with fewer

hardware resources.

In this section, there have been presented implementation results for all the pro-

posed finite field operators. In the next section, a comparison with state of the art is

presented.

5.7 Comparisons

This section presents a comparison of the proposed finite field operators with the state

of the art works for FPGAs platforms. Firstly, in some cases it is very complex to

provide a fair comparison since there are works that report their results in different

platforms, or with distinct parameters than the one used in this research. However,

the provided comparison is as fairly as possible according to the platform device and

parameters used.

The obtained results shown in previous sections for finite field multipliers over Fp

and F2m , and for group operations over F∗p and elliptic curves E(F2m) are compared

with state of the art works in the literature. In the case of elliptic curves scalar

multiplication, a bit serial approach has been implemented and evaluated to fairly

compare the proposed digit-digit finite field operator with a well-known bit-serial

implementation in the same device and under the same conditions.
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Figure 5.5: Implementation results for the E(F2m) scalar multiplier in the Zynq-7000 Xilinx FPGA.
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5.7.1 Fp multiplication

This section presents a comparison for the proposed Fp multiplier. Table 5.3 shows

some of the most representative works for multiplication over Fp. Most of the works

present their results in different technologies, for example, Xilinx FPGAs: Virtex 2,

Virtex 5, or the Spartan Family. However, this thesis research project tries to make the

comparison as fair as possible.

Table 5.3: Implementaciones compactas del algoritmo Montgomery.

Work bits FPGA slices Frec. Throughput Efficiencia
(MHz) (Mbps) (Mbps/slices)

prop. (Micro) 1024 (k=16) Virtex 7 26 226.75 55.76 2.145
prop. (Micro) 1024 (k=32) Virtex 7 70 118.72 114.96 1.638

prop. (FSM) 1024 (k=16) Virtex 7 30 200.68 49.35 1.645
prop. (FSM) 1024 (k=32) Virtex 7 80 103.49 99.98 1.250

prop. (FSM) 2048 (k=16) Virtex 7 39 200.40 24.85 0.637

[57] 1024 (D-4) Virtex 5 5702 222.22 868.50 0.152

[57] 2048 (D-2) Virtex 5 6837 390.62 777.3 0.113

[3] 1024 (k=16) xc5vlx50 94 102.42 24.45 0.260

[59] 1020 Spartan-3E500 1553 119 133.80 0.086

[93] 1024 (k=64) Virtex 5 219 237.52 242.66 1.108
[94] 1024 Virtex II V2-600 3390 121 117.00 0.035

[58] 1024 XC2V3000 4512 114.2 113.40 0.025

In [57] it is presented a Montgomery multiplier that takes advantage of the Carry

Save Adders (CSA) technique to improve the critical datapath in the partial operations.

Furthermore, this multiplier uses a digit-serial approach to an area-speed trade-off.

Different digit sizes were analyzed in [57] with the Virtex 2 and Virtex 5 FPGAs.

When using the Virtex 5 FPGA, the multiplier presented in [57] achieved a high

throughput (868 Mbps) at the cost of high area resources (5702), 219 times bigger than

the multiplier proposed in this research. Furthermore, in this research, an efficiency

of 2.145 Mbps/slice is achieved 14 times better than the multiplier presented in [57]

(0.152 Mbps) for operand size of 1024. For a 2048 bit operand size, the Fp multiplier

presented in [57] requires 6837 slices achieving an efficiency of 0.113 Mbps, the Fp

multiplier proposed in this research is five times more efficient than the proposed

in [57] and require only 39 slices.

In [59] is presented a RSA implementation, which require a Fp exponentiation and

a Fp multiplier. For the Fp multiplication, it is used the Montgomery algorithm, specif-

ically, the CIOS versions proposed in [64] using the Spartan 3 FPGA as implementation

platform, the Montgomery multiplier presented in [59] require 1553 slices.

In [93] it is presented a digit-digit multiplier with a similar approach that this thesis.
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However, due to the microprogramming technique and the pipeline registers used, the

proposed hardware architecture outperforms the results obtained in [93] regarding

area and efficiency. For example, the Montgomery multiplier presented in [93] require

2019 slices for a digit size of 64, and achieve an efficiency of 1.108 Mbps/slice.

The works presented in [94, 58] are reported in an old Xilinx FPGA the Virtex

II, that a direct comparison with state of the art FPGAs (Virtex 5, Virtex 7 or Zynq

7000) is unfairly. It is easy to see that the proposed architectures in this thesis research

achieve a better efficiency with an small amount of hardware resources than the works

reported in [94, 58]. However this works are presented in Table 5.3 as a basis reference.

According to Table 5.3 the proposed Montgomery multiplier is one of the most

compact finite field hardware operators with an efficiency similar to or better than

others reported in the literature. This Montgomery multiplier has been used in this

thesis research as a main component for Fp exponentiation.

5.7.2 Fp exponentiation

In this section, a comparison of state of the art Fp hardware exponentiation (Mont-

gomery Powering Ladder (MPL), Most Significant Bit (MSB), Least Significant Bit (LSB))

is presented. Table 5.4 shows some of the most significant state of the art works for

exponentiation in Fp. It should be noted that a fair comparison is difficult due to

the different technologies and implementation strategies used. It is not possible to

compare all the works with the same metric since not all the designs exploit the FPGAs

embedded blocks. However a comparison as fair as possible according to area (slices),

throughput (kbps) and efficiency (kbps/slice) is presented.

It is remarked here the importance of using the embedded FPGA resources, mainly

for efficiency improvement and power saving [95]. The comparison shown in Table 5.4

is in terms of the standard logic (slices) since the goal of the proposed design is

compactness. Although a fair comparison against [57, 69, 66] is not possible using

slices as a metric, it can be done in terms throughput and efficiency. Since [62, 59] also

use FPGA embedded resources, a fairer comparison against those works is possible.

The hardware module for MPL implemented in [59] uses the CIOS Montgomery

algorithm as Fp multiplier. The number of slices is 3899 plus 16 BRAMs, completing

an exponentiation in 7.95 ms in a Spartan 3E. Compared to [59], using the same FPGA

and operand size of 1024, our design with k = 16 is more compact (one-tenth the

size), occupying only 375 slices. For k = 32, our design still remains with a lower area

(one-fourth the size), using 900 slices. In terms of efficiency, our design is also better

than [59], improving the efficiency by 48% (with k = 16) and 72% (with k = 32).
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Table 5.4: Results and comparison for a 1024-bit exponentiation.

Work Alg. Op.Size FPGA Area BRAMs DSPs Freq avg Cyc avg T Thrg Efficiency
(bits) (slices) (MHz) (x 1000) (ms) (Kbps) (kbps/slice)

our.(k=16) MPL 1024 Z-7010 109 3 6 106.38 4265 40.10 25.535 0.234

our.(k=32) MPL 1024 Z-7010 249 5 22 68.49 1087 15.76 64.49 0.258

[59] MPL 1024 Spartan3E 3899 16 20 119.05 946 7.95 128.84 0.033

our.(k=16) MPL 1024 Spartan3E 375 6 6 77.16 4265 55.29 18.521 0.049
our.(k=32) MPL 1024 Spartan3E 900 6 22 54.59 1087 19.93 51.387 0.057

[57](k=2) MSB 1024 Virtex-5 7303 - - 384.62 529 1.38 744.60 0.102

[57](k=4) LSB 1024 Virtex-5 6217 - - 222.11 397 1.79 572.50 0.092

[57](k=2) LSB 1024 Virtex-5 4060 - - 384.62 793 2.03 503.60 0.124

[69] MPL 1024 Virtex-5 3218 - - 346.02 1097 3.18 322.01 0.100

[66] LSB 1024 Virtex-5 6776 - - 401 - 1.37 747.4 0.110

[66] MSB 1024 Virtex-5 12716 - - 401 - 0.92 1113 0.087

our(k=16) MPL 1024 Virtex-5 160 6 8 190.84 4265 22.35 45.809 0.286
our(k=32) MPL 1024 Virtex-5 266 6 22 73.91 1087 14.71 69.605 0.262
[62](k=16) LSB 512 Virtex-7 343 - 14 458 - 1.23 416.26 1.214

our(k=16) MPL 512 Virtex-7 91 6 8 193.12 543 2.82 181.85 1.998
[62](k=32) LSB 1024 Virtex-7 1060 - 26 485 - 2.33 439.48 0.415

our(k=64) MPL 1024 Virtex-7 574 10 66 80.21 284 3.55 288.55 0.503
[62](k=64) LSB 2048 Virtex-7 3558 - 54 399 - 5.68 360.56 0.101

our(k=64) MPL 2048 Virtex-7 602 10 66 81.11 2174 26.82 76.37 0.127

The results reported in [57] are among the fastest in the literature, but the FPGA

area resources (Virtex-5) consumed are too high, 4060 slices, with an execution time of

2.03 ms. Our design is more efficient than the MPL hardware module reported in [57].

For 1024-bit operands, our design with k = 16 has an efficiency of 0.286 kbps/slice

twice the one achieved by the best version reported in [57].

The hardware module for Fp exponentiation reported in [69] for a Virtex-5 FPGA

uses 3218 slices, with a throughput of 322.01 kbps and an efficiency of 0.100 kbps/slice.

Our design with k = 16 uses only 10% of the resources reported in [69] with a better

efficiency of 0.286 kbps/slice (more than double).

Our results with the Virtex-5 FPGA can be compared with those of [66]. The best

efficiency reported in [66] is 0.110 kbps/slice using an area of 6776 slices. In contrast,

our proposed architecture for the same device achieves an efficiency of 0.286 kbps/slice

using only 160 slices.

One of the most compact modular exponentiation architecture for FPGAs reported

to date is the one presented in [62] for a Xilinx FPGA, using the binary algorithm for

Fp exponentiation and Montgomery and Karatsuba algorithms for field multiplication.

Our design outperforms [62] in terms of efficiency, due to the significant savings in

area resources. For a 1024-bit modulus, our design uses half the slices with a better
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efficiency of 0.503 kbps/slice, and for a 2048-bit modulus, our design is one-sixth

the size, as well as having a better efficiency: 0.127 kbps/slice. [62] exploits 17-bit

multipliers and 48-bit adder units in DSP blocks to compute the multiplication of

high radix integers. The smaller digit size used there is 16, which fits the embedded

multipliers in the Xilinx FPGAs.

The results obtained show that the proposed Fp exponentiation architecture is

smaller than the state of the art in terms of slices, while the number of DSPs and

memory blocks required is similar to or less than other works reported in the literature.

Table 5.5 shows the power estimation generated with Xilinx Power Analyzer (XPA).

Dynamic Powers refers to the quantity and specific use of each resource, and it is

considered signals toggling and capacitive loads charging and discharging. So, designs

with higher required resources, as well as designs with higher clock frequency will

consume more power. Also, big digits require more hardware resources, and as a

result, more power consumption. So, in low power devices, it is preferably smaller

hardware architectures. On the other hand, quiescent power (also called static power)

is not affected by the activity of the design. For example, in Table 5.5 quiescent power

is the same for all configurations. When small digits are used, BRAMs consume most

of the power. However, when bigger digits are used, signals and DSPs require similar

power than BRAMs.

Table 5.5: Supply power (W) of the MPL architecture.

Size k Clocks Logic Signals BRAMs DSPs IOs Dynamic Quiescent Total

1024 8 0.005 0.003 0.008 0.021 0.006 0.007 0.049 0.178 0.227

1024 16 0.007 0.004 0.012 0.017 0.008 0.013 0.061 0.178 0.239

1024 64 0.006 0.015 0.032 0.036 0.023 0.021 0.132 0.178 0.311

2048 16 0.007 0.004 0.015 0.021 0.008 0.013 0.069 0.178 0.247

2048 64 0.006 0.014 0.029 0.036 0.023 0.021 0.128 0.178 0.307

Although a high throughput is not the aim of the exponentiation architecture

proposed in the present thesis research, it is worth noting that the throughput achieved

by our design is better than representative software implementations, as is shown

in Table 5.6. For example, our proposed architecture in Virtex-7 is 600 times faster

than the timing achieved in [96], which is aimed at Wireless Sensor Network (WSN)

applications.

The MSP430 and ATmega128 are two processors commonly used for sensor network

research. The proposed design in the Zynq-7010 is 190x faster than the MSP430

implementation, and 697x faster than the ATmega128 implementation. This comparison
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Table 5.6: Fp exponentiation in software vs. proposed Fp exponentiation compact hardware
architecture.

Ref. Imp. Time

[97] MSP430 @ 8MHz ≈ 3 s

[86] ATmega128 8MHz 10.99 s

[36] WSN Software 22.03 s

our(k=64) Virtex-7 3.55 ms

our(k=32) Virtex-5 14.71 ms

our(k=32) Zynq-Z7010 15.76 ms

Table 5.7: State of the art works for finite field hardware operators over F2m .

Work FPGA Size Ciclos Slices FF LUTS Frecuencia Throughput Eficiencia
(mbps) (mbps/slice)

Prop (v3,k=16) s3 233 240 137 62 246 223.36 216.84 1.58

Prop (v3,k=32) s3 233 72 423 94 816 241.13 780.35 1.84

Prop (v3,k=16) s3 409 702 140 62 252 218.00 127.01 0.90

Prop (v3,k=32) s3 409 702 434 107 818 241.89 543.60 1.25

Prop (v3,k=16) v7 233 240 82 62 153 638.16 619.54 7.55
Prop (v3,k=16) v7 409 702 85 62 170 663.13 386.35 4.54
[71](g=1) v5 233 233 178(aprox.) 710 714 561.79 561.79 3.15

[71](g=16) v5 233 15 587(aprox.) 705 2351 423.72 6581.78 11.21
[71](g=1) v5 409 409 310(aprox.) 1240 1244 549.45 549.45 3.15

[71](g=1) v5 571 571 432(aprox.) 1727 1731 540.54 540.54 1.25

[76](k=16) v6 233 1643 410(aprox) x 1643 338 47.93 0.82

[76](k=16) v6 409 452 806(aprox) x 3224 414 374.61 0.46

[72](D=64, d=233) s3 233 10 3458 x x 172.41 4017.2 1.2

[79](D=64, d=8) s3 233 80 406 x x 363.76 1059.47 2.60

is only provided to show that the proposed architecture is faster than the software

implementations, and to show the proposed hardware accelerates the multiplication

and exponentiation in prime fields even using fewer area resources that other hardware

implementations in the literature.

5.7.3 F2m multiplication

This section presents a comparison of state of the art finite field multipliers over F2m .

Table 5.7 shows some of the most significant works on hardware architectures for

multiplication over F2m in FPGAs.

Sutter et al., [71] present the design and implementation of an elliptic curve point

multiplication over the binary field F2m . To improve elliptic curve point multiplication

a finite field multiplier over F2m is studied and analyzed. So, a digit-serial multiplier
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is presented in [71] for different digit sizes: 1 (bit-serial), 2, 4, 8, 16, 24, and 32,

and operand size of 163, 233, 409 and 571, which are used in recommended finite

fields proposed by NIST. In [71] the results are reported in registers and LookUp

Table (LUT)s, since a slice contains 4 LUTs an approximation has been made to a

fair comparison assuming full utilization of LUTs and slices. The smaller multipliers

proposed by [71] is the bit serial (d = 1). So, compared to our proposed hardware

architecture for an operand size of 233 the bit serial implementation in [71] require

178 slices, while the proposed in this work require 21 (d=4). For a digit size d = 16,

the proposed multiplier requires 82 slices achieving an efficiency of 7.55 Mbps/slice.

In [71] as the digit size get bigger a better efficiency is achieved at the cost of more

hardware resources. For example, the digit-serial with (d = 16) achieve an efficiency of

11.21 Mbps/slice (assuming full utilization of slices and LUTs which is not commonly

achieved). However, with the digit-serial implementation, the smaller architecture

proposed in [71] is for (d = 1) requiring 178 slices, and the hardware resources cannot

be lower.

In [76] is presented a digit-serial multiplier over F2m , with digit sizes 16 and 32.

Area results presented in [76] are in LUTs, since in this work it is used the slices metric,

slices where approximated according to the specification that 1 slice is conformed by 4

LUTs. For a digit size of 16 the multiplier over F2m proposed in this thesis achieves an

efficiency of 1.58 Mbps/slice and requires 137 slices. The most compact architecture

reported in [76] for an operand size of 233 bits requires 410 slices (almost three times

the proposed in this thesis) and achieves an efficiency of 0.82 Mbps/slice (nearly

half of the proposed in this thesis). And for an operand size of 409 the multiplier

reported in [76] require 806 slices (9 times the proposed in this thesis, 82) and achieve

an efficiency of 0.49 Mbps/slice (the achieved in this thesis is 7.55, 16 times better

than [76]).

The F2m multipliers proposed in this thesis research were implemented in the

old FPGA Spartan 3 for comparison with the works reported in [72, 79]. Compared

with the F2m multiplier proposed in [72], the multiplier proposed in this thesis

research is 25 times smaller and 1.3 more efficient. In [79] is proposed a digit-digit

hardware multiplier over F2m . Compared to the F2m multiplier proposed in this thesis

research the reported one in [79] achieves a high efficiency 2.60 Mbps/slice against

1.84 Mbps/slices achieved in this thesis research. Both architectures are compact and

process the operands and partial results in a digit fashion. However, in [79] only is

reported the required slices for the datapath without taking in to account the necessary

logic to the control module to address memory blocks. The main difference in this
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thesis research compared to [79] is the elimination of one of the partial multipliers in

the datapath (Figure 4.13) which reduces hardware resources.

5.7.4 E(F2m) scalar multiplication

This section presents a comparison of state of the art finite field scalar multipliers over

E(F2m). Table 5.8 shows the most significant state of the art work results for scalar

multipliers over E(F2m) in FPGAs.

Table 5.8: State of the art works for finite field hardware operator over E(F2m).

Work FPGA Size Cycles Slices Frequency Throughput Efficiency
(MHz) (kbps) (kbps/slice)

Prop. (k=8) z7000 233 1553782 442 190.04 28.49 0.064

Prop. (k=16) z7000 233 408547 626 149.20 85.09 0.136

Prop. (k=32) z7000 233 128820 1170 135.31 244.75 0.209
Prop. (k=8) z7000 409 7504232 453 190.94 10.40 0.023

Prop. (k=16) z7000 409 1926426 653 154.44 32.78 0.050

Prop. (k=32) z7000 409 511493 1183 132.59 106.02 0.090

[71](g=16,d=2) v5 233 8193 3939 263.15 7483.69 1.899
[71](g=8, d=1) v5 409 45513 5395 181.81 1633.82 0.030

[83] k7 233 679776 3016 255.66 87.63 0.029

[83] k7 283 1395312 4625 251.98 51.10 0.011

[81] v7 233 5929 2647 370.00 14540.39 5.498
[81] v7 409 10354 6888 316.00 12482.51 1.812
[85] v5 163 1396 3513 147.00 17.16 0.004

The results presented in [71] are proposed for a digit-serial approach for multipli-

cation and inversion over F2m , and square and addition over E(F2m) are computed

fully combinational in only one clock cycle. In [71] the digit size for the digit-serial

F2m multiplication is represented by g and for inversion by d. So, the comparisons

with [71] is with the smaller digit size reported. For the digit size 233 the scalar multi-

plier presented in [71] requires 3939 slices achieving an efficiency of 1.899 kbps/slice.

Compared to the proposed scalar multiplier in this work, the results presented in [71]

are almost ten times better according to efficiency. However, the designs proposed in

this work are smaller than the reported in [71], for example, for a digit size of 8, 16,

and 32 the required area is 442, 626 and 1170 slices respectively. Furthermore, for an

operand size of 409 bits, the required hardware results grow very fast compared to the

233 bits in the results reported in [71]. Compared to the proposed scalar multiplier

over E(F2m) in this work for operand size of 409 bits, the proposed design requires

only 445 slices while the reported in [71] require 5395. Moreover, the design proposed

in this work for a digit size of 409 bits achieves an efficiency of 0.50 and 0.90 kbps/slice

INAOE Computer Science Department



Implementation and Results 111

for a digit size of 16 and 32 respectively, while in [71] the efficiency for a digit size of

409 is 0.30 kbps/slice.

In [83] it is presented a hardware architecture for elliptic curve scalar multiplication

over E(F2m) implemented for the NIST-recommended binary fields F2233 and F2283 .

Table 5.8 shows that the scalar multiplier hardware architecture presented in [83]

requires 3016 and 4625 slices for the operand size 233 and 283 respectively. Compared

with the scalar multiplier proposed in this thesis research for operand size of 233 the

scalar multiplier presented in [83] requires 6.8 times more slices. Furthermore, in [83]

an efficiency of 0.029 Mbps/slice is achieved whilst in this thesis research is achieved

an efficiency of 0.064 Mbps/slice (2.2 times better than the one achieved in [83]). The

proposed scalar multiplier for 283 bits operand size was not implemented as in [83].

However, It was implemented for 409 bits operand size, and is 10 times smaller than

the one proposed in [83] for 283 bits operand size achieving an efficiency of 0.023

Mbps/slice, twice the one achieved in [83] (0.011 Mbps/slice).

In [81] it is presented a throughput/area-efficient elliptic curve scalar point mul-

tiplier processor that use the Lopez-Dahab Montgomery algorithm. The hardware

presented in [81] was implemented for all the five NIST-recommended binary fields.

However for comparison reasons Table 5.8 shows the results presented in [81] for the

binary fields F2233 and F2409 . The scalar multiplier over E(F2m) presented in [81]

for an operand size of 233 requires 2647 slices and achieves an efficiency of 5.498

kbps/slice, 26 times better than the efficiency results achieved in this research (0.209).

And, for an operand size of 409, the hardware architecture presented in [81] required

6888 slices and achieved an efficiency of 1.812 kbps/size, 20 times better than the

efficiency (0.090 kbps/slice) achieved with the proposed scalar multiplier. However,

even though the results presented in [81] regarding to higher efficiency, the area results

(slices) are smaller in the scalar multiplier proposed in this research. Furthermore,

for an operand size of 409 bits, the are results presented in [81] grows significantly,

from 2647 to 6888 slices for 233 and 409 bits operand size respectively. The area results

(slices) for the proposed scalar multiplier depend on the digit size, not in the operand

size. So, for operand size of 233 or 409 is almost the same area resources required as

can be seen in Figure 5.5.

In [85] it is presented a scalar multiplier over the binary fields F2163 that requires

3789 slices and achieve an efficiency of 0.004 kbps/slice. Compared with the proposed

scalar multiplier, the scalar multiplier presented in [85] requires seven times hardware

resources with low efficiency.

Even though the results presented in [81] achieve an efficiency superior to the
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achieved in work, the proposed scalar multiplier is smaller than all the state of the art

hardware architectures. These results give evidence that the proposed design could

be used as a small, high-performance hardware accelerator for security in embedded

systems getting high speed than the one achieve with a general purpose processor

(software implementations).

5.8 In-circuit verification of FPGA finite field operators

This section describes an in-circuit verification approach for the proposed finite field

operators Fp exponentiator, and E(F2m) scalar multiplier, by means of a hardware-

software co-design. Under this context, the finite field operators are used as a co-

processor commanded by a general purpose processor via a bus interface. The finite

field operator for exponentiation over Fp has been evaluated in a hardware-software

co-design for the RSA digital signature, and the finite field operator for scalar multipli-

cation over E(F2m) has been evaluated in the Elliptic Curve Diffie-Hellman (ECDH)

key exchange.

The software used for carried out the hardware-software co-design was:

• Simulation: Model Technology ModelSim Altera vsim 10.3d Simulator 2014.10

Oct 7 2014.

• Synthesis and implementation in: Vivado v2016.1 (64-bit) from Xilinx.

• Implementation platform: MicroZed low-cost development board based on the

Xilinx Zynq R©-7000 All Programmable SoC which combines ARM dual-core

Cortex-A9 MPCore processing system (PS) and 28 nm Xilinx programmable logic

(PL) in a single device.

• Fp Test vectors : BigInteger Java library.

• E(F2m) Test vectors: C++ Number Theory Library (NTL).

• Software implementations of the RSA Digital Signature and ECDH key exchange

were implemented in pure software in the MicroZed Board under Linux with

the MIRALC library for comparisons.

5.8.1 HW/SW co-design for operators over Fp

The finite field operator for exponentiation in Fp was evaluated in a hardware-software

co-design using the RSA digital signature presented in section 2.1.5. The main opera-
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Figure 5.6: Hardware-software co-design for exponentiation over Fp.

tion in the RSA digital signature is the exponentiation over Fp. This operation is used

to sign a document D with a private parameter s and public parameter N:

S ≡ Ds mod N. (5.3)

The exponentiation over Fp is the operation used to verify the validity of a digital

signature too:

V ≡ Sv mod N (5.4)

So, in this hardware-software co-design, the exponentiation over Fp is accelerated

through a hardware design. Figure 5.6 shows a general view of the proposed hardware-

software co-design. The Fp module is implemented according to the proposed MPL

exponentiator presented in Section 4.3.

Table 5.9 shows the obtained results for the MPL exponentiator module architecture

implemented in the MicroZed FPGA. Table 5.10 shows the implementation results of

the full hardware-software co-design in the MicroZed. Furthermore, a full software

implementation of the RSA digital signature was implemented in the Cortex A9 of

the MicroZed FPGA using the MIRACL library. The processing time of the two

implementations, full software and the hardware-software co-design, are presented in

Table 5.10.

The software implementation with the MIRACL library requires 490 ms to achieve

a digital sign/verification scheme with the RSA digital signature algorithm. However,
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Table 5.9: Implementation results for MPL exponentiation over Fp in the MicroZed.

Size k d Area Freq. Throughput Efficiency Time
(slice) (MHz) (kbps) (kbps/slice) (ms)

1024 32 32 318 90.9 85.42 0.268 11.98

Table 5.10: Implementation results for the RSA digital signature hw-sw co-design in the
MicroZed.

Size k Area Freq. Time MIRACL TIME

(slices) (MHz) (ms) (ms)

1024 32 530 81.5 26.2033 490

with the proposed compact hardware architecture the required time is 26.20 ms, that

is 18 times less. The finite field operator for Fp exponentiation (MPL) only requires

318 slices which is almost the 7.22% of the disposal slices. This 7% of the slices in the

FPGAs can be used to provide speed in the security of an IoT application while clearly

another 92% can be used the implement other requirements of the application.

The parameters and test vector of the hardware-software co-design for the RSA

digital signature algorithm are shown in Appendix A.1.

5.8.2 HW/SW co-design for operators over E(F2m)

The finite field operator for scalar multiplication over E(F2m) was evaluated in a

hardware-software co-design using the Diffie-Hellman key exchange Elliptic Curve

version presented in Section 2.2.8. In the ECDH key exchange the parties, for example,

an FPGA server and an FPGA sensor, agree on an elliptic curve E(F2m) and a point

P ∈ E(F2m). Then the parties select a secret integer each, for example, nA and nB.

And, using the scalar multiplication over E(F2m) they compute the values.

QA = nAP︸ ︷︷ ︸
SensorFPGA

and QB = nBP︸ ︷︷ ︸
ServerFPGA

(5.5)

The values QA = QB is the shared secret key exchange between the FPGA server

and the sensor.

In elliptic curve cryptosystems, the main operation is the scalar multiplication

as in the Elliptic Curve Diffie-Hellman key exchange. So, in this hardware software

co-design, the scalar multiplication over E(F2m) is implemented directly in hardware

to accelerate the computation. Figure 5.7 shows the proposed hardware-software co-

design for the scalar multiplier over E(F2m). The E(F2m) scalar multiplier module is
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Figure 5.7: Hardware-software co-design for E(F2m) scalar multiplier.

Table 5.11: Scalar multiplier over E(GF(2m) ) implementation results in the MicroZed board.

Size k digits Area Freq. Throughput Efficiency Time

(slcies) (MHz) (kbps) (kbps/slice) (ms)

233 32 8 1619 62.5 115.146 0.071 2.024

implemented according to the proposed hardware architecture presented in Section 4.6.

Implementation results for this module implementation in the MicroZed board

are shown in Table 5.11. The scalar multiplier module requires 1619 slices for a digit

size of 32 bits, achieving a throughput of 115.146 kbps and an efficiency of 0.071

(kbps/slice). Table 5.12 shows the implementation results for the hardware-software

co-design for the ECDH in the MicroZed board. In Table 5.12 results for the software

implementation with the MIRACL library are presented too. The hardware-software

co-design requires 1809 slices running a maximum frequency of 62.5 (MHz). The

proposed hardware-software co-design requires 4.13 ms to compute an Elliptic Curve

Diffie Hellman key exchange. The pure software implementation in the MicroZed

with the MIRACL library requires 70 ms for projective coordinates and 200 ms for

affine coordinates. The proposed hardware-software co-design is 17 times faster than

the pure software implementation. However, the proposed scalar multiplier module

requires 36% of the slices resources in the MicroZed, leaving 66% of the slices for

others application requirements.
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Table 5.12: ECDH hw-sw co-design implementation results.

Size k Area Freq. Time MIRACL TIME Proj MIRACL TIME Aff

(slices) (MHz) (ms) (ms) (ms)

233 32 1809 62.5 4.1352 70 200

5.9 Summary

In this section obtained results for the finite field operators discussed in Chapter 4 have

been presented. Furthermore, a comparison of the proposed finite field operators with

state of the art works has been discussed. The evaluation of the finite field operators

has been carried out with the MicroZed board, a target used in Industrial Internet of

Things applications. Software implementations have been presented in the MicroZed

and compared with the hardware-software co-design shows a considerable speed up of

the RSA Digital Signature and Elliptic Curves Diffie-Hellman key exchange algorithm.

The proposed finite field operators require less hardware are resources than state

of the art hardware architectures. For example, for 1024 bits exponentiation in the

prime field Fp, the proposed hardware finite field operator requires 574 slices only

and achieves and efficiency of 0.503 kbps (k=64), the 54% of slice and the 121% of

efficiency of the hardware architecture reported in [62] (one of the most compact works

reported in the literature). For 233 bits scalar multiplication in elliptic curves over

E(F2m), the proposed hardware operator requires 1170 slices and achieves a efficiency

of 0.209 kbps, the 44% of slices reported in [81]. However, the E(F2m) operator

proposed in this research achieves 26% of the efficiency achieved in [81]. Despite

the proposed operator for scalar multiplication in elliptic curves E(F2m) have lower

efficiency than the hardware architecture implementations presented in the state of the

art, the proposed operators improve the execution time of software implementations,

such as the MIRACL library. For example, for a RSA digital signature a software

implementation with the MIRACL library in the MicroZed board require 4090 ms for

RSA digital signature and 70 ms for ECDH key exchange while using the proposed

hardware operator Fp requires 26.2 ms and 4.1 ms respectively.

In view of the experimental results, it can be concluded that the digit-digit approach

allows more compact hardware implementations than implementations with other ap-

proaches such as bit-serial and digit-serial, and outperforms software implementations.

The presented results give evidence that the initial hypothesis proposed in chapter 1 is

correct.

In the next section, the conclusions of this thesis research and new directions for
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this project is presented.
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Chapter 6

Conclusions and directions

This research work presented the design and implementation of hardware finite field

operators for public key cryptography on resource-constrained devices. The studied

operators are multiplication in finite fields Fp and F2m , and exponentiation in the

multiplicative group F∗p and the additive elliptic curve group E(F2m). Different from

most of the state of the art works that implement hardware finite field operators for

high speed, this works is focused on compact implementations.

Algorithms for multiplications in finite field Fp and F2m were adapted to imple-

ment this operation with a small area footprint compared to state of the art works.

Furthermore, in spite of a reduction of hardware resources, the proposed multipliers

achieve better performance than software counterparts. FPGAs is the technology used

to implement the proposed hardware finite field operators. To validate the proposed

operators, a hardware-software co-design was implemented in a small FPGA targeted

for Industrial Internet of Things, the MicroZed. The RSA digital signature and El-

liptic Curve Diffie-Hellman (ECDH) algorithms were used to evaluate the proposed

finite field and group operators in the hardware-software co-design. Despite the few

hardware resources required for the implementation compared with state of the art

works, the proposed co-design achieves a better throughput compared with software

implementations.

The proposed hardware architectures would allow implementing security services

(confidentiality, authentication, integrity and non-repudiation) in IoT applications with

a small amount of hardware where time execution is crucial. For example, a vehicular

network (also known as VANETs) will contribute to safer and more efficient roads by

providing timely information to drivers and specific authorities that are concerned by

enabling vehicles to communicate with each other via Inter-Vehicle Communication

(IVC) as well as with roadside base stations via Roadside-to-Vehicle Communication

(RVC).
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6.1 Summary of contributions

The main contributions achieved in this thesis research are:

• Novel digit-digit Montgomery multiplier algorithm.

• Novel digit-digit F2m multiplier algorithm.

• Compact finite field hardware operators for:

– Proposed Montgomery multiplier algorithm.

– Proposed multiplication over F2m .

– Montgomery Powering Ladder exponentiation algorithm over Fp.

– Elliptic curve Montgomery scalar multiplier algorithm.

• Hardware-software co-design for:

– RSA Digital Signature algorithm.

– Elliptic Curve Diffie-Hellman key exchange algorithm.

The proposed hardware finite field operators require fewer hardware resources

(slices) in FPGAs compared with state of the art works. For example, for 1024 bits

operand size with a digit size k = 32 the proposed hardware exponentiation operator in

prime field Fp requires 318 slices, that is only a third of the 1060 slices reported in [62],

and for 233 bits with a digit size k = 32 the proposed hardware scalar multiplier over

E(F2m) requires 1619 slices only the 61% of the 2647 slices required in the hardware

architecture reported in [81].

Furthermore, these operators achieve higher throughput than software implementa-

tions and can be used by a hardware designer to speed up cryptography requirements

with only a few hardware resources in FPGAs. For example, for a RSA digital signature

a hardware-software co-design requires 530 slices in the MicroZed board, and the

digital signature is accelerated from 490 ms (MIRACL software implementation) to

26.20 ms (proposed finite field operator). For a ECDH key exchange a hardware-

software co-design requires 1809 slices, and the key exchange is accelerated from 70

ms (MIRACL software implementation) to 4.13 ms (proposed finite field operator).

Also, the proposed operators can handle several levels of security (key size) with

almost the same hardware resources, since hardware resources required for operators

depends on the selected digit size instead of the operand size (key size). In the case of

the exponentiation in Fp using the digit size k = 32 the proposed hardware operator
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for 512, 1024 and 2048 requires 236, 228 and 246 slices respectively. Although different

key sizes are used the hardware architecture requires similar hardware resources since

area depends on the digit size not on the operand size (key length).

6.2 Publications

As contributions of this thesis research the obtained results have been published in:

• International conferences:

– [98] L. Rodriguez-Flores, M. Morales-Sandoval, R. Cumplido, C. Feregrino-

Uribe, and I. Algredo-Badillo, “A compact FPGA-based microcoded copro-

cessor for exponentiation in asymmetric encryption,” in 2017 IEEE 8th Latin
American Symposium on Circuits Systems (LASCAS), pp. 1–4, Feb 2017

• Scientific journals:

– [99] L. Rodrı́guez-Flores, M. Morales-Sandoval, R. Cumplido, C. Feregrino-

Uribe, and I. Algredo-Badillo, “Compact FPGA hardware architecture for

public key encryption in embedded devices,” PLOS ONE, vol. 13, pp. 1–21,

01 2018

6.3 Future work

As future work, hardware resources required to implement the control module for

the scalar multiplier for elliptic curves can be reduced using a microprogramming

approach, similar to the one used in the proposed Montgomery Powering Ladder

exponentiation [98]. In some cases, it is required to use RSA and ECC for ubiquitous

applications, and configure the FPGA to execute both public key cryptosystems would

require a considerable amount of hardware resources. So, for future work partial

reconfiguration would be implemented, where the part in common of both algorithms

(inputs and output) could be configured first, and the FPGA could be partially re-

configured according to the required public key cryptosystem (RSA or ECC) using

the same hardware resources. Further, frequency performance can be improved in

the digit-digit Elliptic Curve Cryptosystem, a possible solution could be to explore

a pipeline architecture for the Karatsuba algorithm in the partial F2m , and using a

microprogramming approach for the control module.
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Test vectors

A.1 RSA digital signature scheme

A.2 Elliptic Curve Diffie-Hellam key exchange
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Table A.1: Selected parameters for in-circuit verification of the RSA digital signature scheme.

1 • Secret primes p and q.

p (511) = 54699124233055685670947947738586021226842372549617478800

93981997316855161742613466358995126733325429931110509592

017447931679634071960799533767695972929567

q (511) = 46399781129366036477866066853347593568040904374283743232

97913574251805543834158080534230794320862369480602413257

682993057259495834558466289466966270656683

2 Verification exponent v with gcd(v(p− 1)(q− 1)) = 1

v (1022)= 24842630657630933692153930174494504168208729663090072346

28644562892066697221531011819944927836324104220791732928

69391336520795952206739228468337553432089191588884046166

43757936250147414348562274910404911990360379431735629333

37045797234359697175141270152975302041971531841927816407

9066372475875467946693544121

3 Compute s with sv ≡ 1(mod(p− 1)(q− 1))

s (1020) = 62765973093949287328340398515079213832984159661363425182

45053565366137742299828910753833423164941887611417572791

67733432735806279075605945270535335650450897220169733574

55114275230244065420296003322681061065835965088031203825

13798664696130702854073375191020798250847114165984317272

887598238756454530180074073

4 Publish N = pq and v

N (1022) = 25380273923817856767776324175553267009287218956570881213

69769219905967092070282224591259533213764094561352053324

24299752267406828996442625322046626635572832252597935271

32851378471651232073097066748093086793505220032280049586

48254852572620113757679319999480436182568662653391705578

4771496072975769296396846261

v (1022)= 24842630657630933692153930174494504168208729663090072346

28644562892066697221531011819944927836324104220791732928

69391336520795952206739228468337553432089191588884046166

43757936250147414348562274910404911990360379431735629333

37045797234359697175141270152975302041971531841927816407

9066372475875467946693544121
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Table A.2: Test vectors for the RSA digital signature

1 • Digital message D

D (1020) =

10307425231265961556136514276105894445243088601908305193

47316753401154575376812404053192841158192051108383367762

00412270726878050305996391682303716434755513263970388209

54189106006583833312699750286045932938080351218584634263

82611337662752535881686865120567940094788901028903617205

0556163158589402581205778343

2 • Signature S ≡ Ds mod N

S (1020) =

98940149870191660527538733636088097297667771100393523982

69912948582504387395830546632051856168117130059698458457

20192813711393488137459758402048483718168482652880095401

40395102496397686912529731004626827289874908090268602007

10658335528373893882083607795130184143784343765932355311

566265725320881480735183798

Table A.3: Test vectors for the RSA digital signature verification

1 • Digital message D

D (1020) =

10307425231265961556136514276105894445243088601908305193

47316753401154575376812404053192841158192051108383367762

00412270726878050305996391682303716434755513263970388209

54189106006583833312699750286045932938080351218584634263

82611337662752535881686865120567940094788901028903617205

0556163158589402581205778343

2 • Verification V ≡ Sv mod N

V (1020) =

10307425231265961556136514276105894445243088601908305193

47316753401154575376812404053192841158192051108383367762

00412270726878050305996391682303716434755513263970388209

54189106006583833312699750286045932938080351218584634263

82611337662752535881686865120567940094788901028903617205

0556163158589402581205778343
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Table A.4: Test vector for ECDH in the hw-sw co-design (hexadecimal base)

Public • Base point P = (GX,GY)

Gx = 00000172 32ba853a 7e731af1 29f22ff4

149563a4 19c26bf5 0a4c9d6e efad6126

Gy = 000001db 537dece8 19b7f70f 555a67c4

27a8cd9b f18aeb9b 56e0c110 56fae6a3

Sensor • Chose a secret integer nA
nA = 00000080 00000000 00000000 00000000

00069d5b b915bcd4 6efb1ad5 f173abcb

• Compute the point QA = nAP

QAx = 00000111 2DBC0A61 3B981F29 128690DD

072BA010 63991B08 FC5706B6 BAA234FA

QAy = 00000007 CD042450 6011DD2F 130EEE07

C2AFC012 4FE4FA6E C2C2980B 8B235C0C

• Alice send QA(QAx,QAy) to Bob.

Server • Chose a secret integer nB
nB = 00000080 00000000 00000000 00000000

00069d5b b915bcd4 6efb1ad5 f173abdb

• Compute the point QB = nBP

QBx = 000000C1 27A0AAB6 AE3AE1E4 206B5483

0E8D1DAC C79AD742 ED00E8FD 6C9849E6

QBy = 00000018 7E3AA562 86523706 DFD281A5

BDBAB72A 3B2FC40B 9D78C787 FC847465

• Bob send QB(QBx,QBy) to Alice

Sensor • Alice compute the point R = nAQB

Rx = 000001A1 7DBD1F69 608A8B7B 9E3833A7

0E538175 7F843622 F07765FE E79FAF4D

Ry = 00000033 76EA5CD0 ABD23067 BBE71A7B

608F84D5 98A38DD7 F8E60ECC 48C5763D

Server • Bob compute the point R = nBQA

Rx = 000001A1 7DBD1F69 608A8B7B 9E3833A7

0E538175 7F843622 F07765FE E79FAF4D

Ry = 00000033 76EA5CD0 ABD23067 BBE71A7B

608F84D5 98A38DD7 F8E60ECC 48C5763D
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List of Acronyms

IoT Internet of Things

AmI Ambient Intelligence

PC Personal Computer

RFID Radio-frequency identification

WSN Wireless Sensor Network

BAN Body Area Network

SKC Symmetric Key Cryptography

PKC Public Key Cryptography

ECC Elliptic Curve Cryptography

DH Diffie-Hellam

ECDH Elliptic Curve Diffie-Hellam

RSA Rivest–Shamir–Adleman

ECC Elliptic Curve Cryptography

RAM Random-access memory

NIST National Institute of Standards and Technology

LWC lightweight cryptography

FPGA Field-Programmable Gate Array

HECC Hyperelliptic Curve Cryptosystems
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DLP Discrete Logarithm Problem

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDH Elliptic Curve Diffie-Hellman

ASICs Application Specific Integrated Circuits

DSA Digital Signature Algorithm

FLT Fermat’s Little Theorem

MPL Montgomery Powering Ladder

NAF Non-adjacent form

CSA Carry Save Adders

PE Process Elements

SOS Separated Operand Scanning

CIOS Coarsely Integrated Operand Scanning

FIOS Finely Integrated Operand Scanning

FIPS Finely Integrated Product Scanning

CIHS Coarsely Integrated Hybrid Scanning

CIHS Coarsely Integrated Hybrid Scanning

DSP Digital Signal Processing

LUT LookUp Table

LSB Least Significant Bit

MSB Most Significant Bit

L2R Left to Right

R2L Right to Left

MSE Most Significant Element first

LSE Least Significant Element first
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BRAM Block RAM

MMA Montgomery Multiplication Algorithm

FSM Finite State Machine

SPA Simple Power Analysis

DPA Differential Power Analysis

CLB Configurable Logic Block

XPA Xilinx Power Analyzer
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