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Exact solution of the ion-laser interaction in all regimes
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We show that in the trapped ion-laser interaction all the
regimes may be considered analytically. We may solve not
only for different laser intensities, but also away from res-
onance and from the Lamb-Dicke regime. It is found a dis-
persive Hamiltonian for the high intensity regime, that,
being diagonal, its evolution operator may be easily calcu-
lated.

1 Introduction

The ion-laser interaction may be easily solved in the low
intensity regime (LIR) [1–7], but besides the condition
that the laser intensity is much lower than the vibrational
frequency, we set the condition that the detuning be-
tween the laser and the atomic transition frequency is an
integer multiple of the vibrational frequency. Then some
questions arise: Is it possible not to consider integer mul-
tiples of the vibrational frequency? Is it possible to solve
for high and middle intensities?

Indeed, it is possible to find solutions for any set of
parameters, i.e. in all regimes [8], however the solutions
are not general because the set of eigenstates that may be
found can not expand all possible (general) states.

It has been shown already that for low intensities it
is possible also to consider the ion micromotion [9], and
by using Ermakov-Lewis invariant methods [10] it was
possible to linearize the ion-laser Hamiltonian when the
micromotion was included [11]. Here we would like to
show how it is possible to solve the interaction in differ-
ent regimes, including high intensity and medium inten-
sity. the method allows also not to consider multiple inte-
gers of the vibrational frequency.

2 Ion-laser interaction

The Hamiltonian for the ion-laser dipole interaction,
with no approximations can be written as (we set ħ= 1)

Ĥ = νn̂ + ωa

2
σ̂z +Ω (σ̂++ σ̂−)

×
(
e[iη(a+a†)−ωL t] +e−i [η(a+a†)−ωL t]

)
, (1)

where ν is the harmonic trapping frequency, ωa is the
atomic transition frequency, ωL is the field frequency, Ω
the (real) Rabi frequency of the ion-laser coupling and
η the Lamb-Dicke parameter. The operators a† and a
are the creation and annihilation operators for the vibra-
tional motion of the ion, and the σ’s are the Pauli spin
operators.

By doing the transformation T̂ |ψ〉 with T̂ =
exp(−i ωa+δ

2 σ̂z t ) and performing the optical rotating wave
approximation (RWA) [12] we arrive at the well-known
Hamiltonian

Ĥion = νn̂+ δ

2
σ̂z +Ω

(
σ̂+D̂(iη)+ σ̂−D̂†(iη)

)
, (2)

where D̂(iη) = eiη(a+a†) is the Glauber displacement op-
erator [13], and δ=ωa −ωL the laser-ion detuning.

2.1 Low intensity regime

The low intensity regime is the well-known regime, where
several effects like multi-phonon transitions, Jaynes-
Cummings (JC) and anti-JC interactions may be engi-
neered. To solve this regime, we follow first the tradi-
tional approach. We start by using the Baker-Hausdorff

formula [14] to factor the displacement operators in
Eq. (2) into a product of exponentials and consider δ =
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kν, i.e. an integer multiple of ν with k = 0,±1,±2, . . ., we
then obtain

Ĥion = νn̂+ kν

2
σ̂z +Ωe−η

2/2

×
(
σ̂+eiηa†

eiηa + σ̂−e−iηa†
e−iηa

)
. (3)

Now we expand the exponentials of the annihilation and
creation operators in Taylor series and get rid off the free
Hamiltonians via a transformation to the interaction pic-
ture to obtain the Hamiltonian

ĤI =Ωe−η
2/2

×
(
σ̂−

∞∑
n,m=0

(−iη)n+m

n!m!
a†n ameiνt(n−m+k) +H .c

)
. (4)

We use the fact that are in the LIR, ν� Ω and make the
RWA, i.e. we only keep time independent terms in the
above Hamiltonian to end up with

ĤI =Ωe−η
2/2

(
a†k (−iη)kσ̂−

n̂!

(n̂ +k)!
L(k)

n̂ (η2)+H .c

)
, (5)

with L(k)
n̂ (x) the associated Laguerre polynomials of order

(operator) n̂ = a†a. The Hamiltonian above is now readily
solvable, so that we may find easily the evolution opera-
tor, ÛI = exp(−i ĤI t ), associated to it.

3 Other regimes

Although the atom-field and ion-laser interactions ap-
pear to be physically and mathematically quite distinct,
they are in fact exactly equivalent. This may be verified
when we try to solve the Schrödinger equation (SE)

i
d |ψ(t )〉

d t
= Ĥion|ψ(t )〉, (6)

we can perform the transformation |ψ(t )〉 = R†|ψ̃(t )〉,
with

R̂ = ei n̂ π
2 e

π
4 (σ̂+−σ̂−)e−i η

2 (â+â†)σ̂z (7)

such that Ĥ ion = R̂ ĤionR̂†

Ĥ ion = νn̂ +Ωσ̂z + ην

2
(σ̂++ σ̂−)

(
â + â†

)

+δ

2
(σ̂++ σ̂−)+ νη2

4
, (8)

and the SE for the transformed Hamiltonian reads

i
d |ψ̃(t )〉

d t
= Ĥ ion|ψ̃(t )〉. (9)

Therefore we have linearized the ion-laser interaction
in an exact way, this by means of a unitary transforma-
tion, i.e. both Hamiltonians, Ĥion and Ĥ ion are equiva-

lent. In the following we will neglect the term νη2

4 because
it only represents a constant shift of all the eigenenergies.

Of course, transformation (7) has to be applied to an
initial condition for the internal state of the ion and its
vibrational motion wavefunction. Let us assume that we
have the initial state

|ψ(0)〉 = |iα〉|e〉, (10)

where |iα〉 is a coherent state, and for simplicity we take
α a real number (to avoid extra phases later, but the cal-
culation may be done for complex α). Then we have that
the initial wave function associated with the transformed
Hamiltonian (8) is

|ψ̃(0)〉 =R |ψ(0)〉. (11)

If we write the initial wave function in terms of 2×2 ma-
trices we obtain

|ψ̃(0)〉 = 1�
2

ei n̂ π
2

(
D̂†(iη/2) D̂(iη/2)

−D̂†(iη/2) D̂(iη/2)

)(
|iα〉

0

)

= 1�
2

(
|− (α−η/2)〉
−|− (α−η/2)〉

)
, (12)

this is, we have changed the complicated Hamiltonian (2)
by the linear Hamiltonian (8) via a unitary transforma-
tion. The small prize we have to pay, is that in the initial
wave function the coherent state is displaced and the ion
is initially (in the new frame) in a superposition of ground
and excited states.

3.1 Medium intensity regime (MIR)

We now consider the case where the vibrational fre-
quency is of the order of (twice) the field intensity (Rabi
frequency). We also consider the Lamb-Dicke regime, i.e.
η � 1. For simplicity we will set δ = 0 to show the dif-
ferent possibilities we have now. However it is not dif-
ficult to produce effective Hamiltonians also in the off-
resonance case. In this case the Hamiltonian (8) may be
casted into

ĤM I R = νn̂ +Ωσ̂z + ην

2

(
σ̂+â ++â†σ̂−

)
(13)

which is a Hamiltonian that has been extensively stud-
ied [15, 16], therefore, we will not add more here, except
the fact that for the medium intensity regime the Hamil-
tonian (2) may be exactly expressed as a JCM Hamilto-
nian via a unitary transformation and the RWA (for η� 1,
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i.e., in the Lamb-Dicke regime), without extra approxima-
tions.

3.2 Low and high intensity regimes (HIR)

We have shown in Sect. 2 how to solve the LIR case. The
solution for this case has been known for several years
[17, 18]. Here we will show a different method that is also
valid for the HIR.

Just for the matter of qualitative analysis, let us take
δ= 0. Consider nowΩ� ν (LIR) or Ω� ν (HIR) in Eq. (8).
As this Hamiltonian for δ = 0 is equivalent to the atom-
field interaction, we can borrow knowledge from such in-
teraction: we know that when the field and atomic transi-
tion frequencies are very different (in our case, it is trans-
lated in the equation |ν−2Ω| � ην/2, that may happen
in either of both regimes, HIR or LIR) atom and field stop
to exchange energy and we obtain a dispersive Hamilto-
nian [19]. The same happens in the ion-laser interaction,
and via an small rotation approach [20], we will be able
to cast Hamiltonian (8) as an effective (dispersive) Hamil-
tonian.

By transforming the Hamiltonian (8) with the unitary
operators

Û1 = eξ1(â†σ̂+−âσ̂−), Û2 = eξ2(âσ̂+−â†σ̂−), (14)

i.e.

Ĥeff = Û1Û2Ĥ ionÛ †
1Û †

2 (15)

with ξ1,ξ2 � 1, we can remain up to first order in the ex-

pansion [20] eξABe−ξA = B +ξ[A,B ]+ ξ2

2! [A, [A,B ]]+ . . . ≈
B +ξ[A,B ] and obtain the effective Hamiltonian

Ĥeff = νâ†â +Ωσ̂z −χionσ̂z

×
(

â†â + 1

2

)
+ δ

2
(σ++σ−)+ κ

2
σ̂z

(
â† + â

)
, (16)

that for δ= 0 is known as the dispersive Hamiltonian.
We have used

ξ1 =
ην

2(ν+2Ω)
, ξ2 =

ην

2(2Ω−ν)
. (17)

Note that, just as in the atom-field case, there is no
need to transform the (already transformed) initial state
(12) as an small rotation has been applied. We can
see that in fact ξ1,ξ2 � 1 either in the LIR (in this
case we have also to consider η � 1) or in the HIR
(no constrain for η), which justifies completely the ap-
proximation for the above Hamiltonian. For the reso-
nant case, δ = 0, it becomes diagonal and we can solve
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Figure 1 (online color at: www.ann-phys.org) Plot of Pe (t ) as a
function of t for k = 0, ν = 1, Ω = 0.2 and η = 0.1. The vibra-
tional motion of the ion is considered to be in a coherent state,
|α|2 = 4 and the ion in its excited state. Solid line represents the
numerical (exact) solution, dashed line the solution from Sect. 2
and the dot-dashed line the solution for the dispersive Hamilto-
nian of Sect. 3.

it in an easy way. In Fig. 1 we show a plot for the
probability to find the ion in its excited state, Pe (t ) =
〈ψ(0)|R̂† exp(i tĤeff)R̂|e〉〈e|R̂† exp(−i tĤeff)R̂|ψ(0)〉 as a
function of time for k = 0, ν = 1, Ω = 0.2 and η = 0.1.
The vibrational motion of the ion is considered to be in
a coherent state, |α|2 = 4 and the ion in its excited state.
The three curves in the figure correspond to the exact
numerical solution (solid line), the solution form Hamil-
tonian (5) (dashed line) and the solution for the disper-
sive Hamiltonian (16). We can see excellent agreement
among the three plots for the LIR. Now, for the HIR in
Fig. 2 we show a plot also of Pe (t ) as a function of time,
but now with the parameters for k = 0, Ω = 1, ν = 0.2
and η = 0.1, for the exact numerical solution (solid line)
and our solution from this section (dashed line). Again
it may be noticed an excellent agreement between both
curves. The neglected terms in the dispersive Hamilto-
nian obtained from an small rotation approach seem not
to play any role in both figures. We should stress that
there is no other analytical solution to compare with, as
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Figure 2 (online color at: www.ann-phys.org) Plot of Pe (t ) as a
function of t for k = 0, Ω = 1, ν = 0.2 and η = 0.1. The vibra-
tional motion of the ion is considered to be in a coherent state,
|α|2 = 4 and the ion in its excited state. Solid line represents the
numerical (exact) solution, dashed line the solution for the disper-
sive Hamiltonian of Sect. 3.

ours is the first analytical solution in this regime (also in
the medium regime). The new interaction constants in
the effective Hamiltonian (16) have the form

χion = 2η2ν2Ω

4Ω2 −ν2 , κ= δην2

4Ω2 −ν2 . (18)

In the resonant case and high intensity regime, Ω� ν,
it is easy to show that

χion → χhigh = 2η2ν2

4Ω

1

1− ν2

4Ω2

≈ η2ν2

2Ω
. (19)

while in the low intensity regime, Ω� ν, we will have the
same Hamiltonian but χ will change to

χion → χlow =−2η2Ω
1

1− 4Ω2

ν2

≈−2η2Ω (20)

If in Eq. (16) we take the detuning δ different from
zero, we could get the usual blue and red side-bands in-
teractions (see for instance [7]). This is done by choosing
the value δ = ±ν. The only case in which we can obtain
such regimes is the low intensity case, where one can per-
form the RWA to the Hamiltonian (16), which agrees with

the usual procedure for obtaining such blue and red side-
band regimes. The high intensity case, Ω � ν does not
allow such side-bands because in the Hamiltonian (16)
the interaction constants multiplying the different terms
may be of the same order.

4 Exact numerical analysis

The numerical propagation of phase-space function is
carried out by split-operator method, which, when
εΔt � 1 (ε being the relevant frequency depending if we
are in the LIR or HIR case) approximates the propagator
exp(−iΔt Ĥ) in the form [21]:

exp(−iΔt Ĥ) ≈ exp

(
−i

Δt

2
n̂

)
exp

(−iΔt B̂
)

exp

(
−i

Δt

2
n̂

)
,

(21)

where B̂ = δσ̂z /2+Ω
[
σ̂+D̂(iη)+ σ̂−D̂†(iη)

]
. The first and

third terms in the right-hand side are the expression for
the harmonic oscillator propagator; the middle term may
be written as

Û = exp(−iΔtB̂) =
(

U11 U12

U21 U22

)
, (22)

with

U11 = cosΛΩΔt − i
δ

2Λ
sinΛΩΔt ,

U22 = cosΛΩΔt + i
δ

2Λ
sinΛΩΔt ,

(23)

U12 =− i

Λ
exp[iη(â+ â†)]sinΛΩΔt ,

U21 =− i

Λ
exp[−iη(â+ â†)]sinΛΩΔt ,

where Λ=
�

1+δ2/4. It is worth mentioning that the nu-
merical method based on split-operator method, makes
use of Fast Fourier Transform routine, the specific details
are shown in reference [21].

5 Conclusions

We have shown that it is possible to solve analytically
the ion-laser Hamiltonian in different intensity regimes,
from low to high. For the MIR we have casted the ion
laser Hamiltonian into a JCM Hamiltonian (for the on-
resonant case) that allows easy solution. For the HIR we
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have found a dispersive Hamiltonian, which, being diag-
onal, it is direct to solve. We have found excellent agree-
ment between the exact (numerical) solutions and our
proposed solutions.
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