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Abstract
A classical realization of the atom–field interaction Hamiltonian, based on the transport of
light in engineered optical waveguide lattices, is theoretically proposed. The optical lattice
enables direct visualization of atom–field dynamics in Fock space.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper, we will show how to model the atom–field
interaction by using diatomic waveguide arrays. We have
recently shown how evanescently coupled waveguides may
be used to emulate coherent, displaced number states [1]
and nonlinear coherent states [2]. Photonic lattices have
also been used for the optical realization of the two-site
Bose–Hubbard model [3] and the classical realization
of two-site Fermi–Hubbard systems [4]. Here, via a
transformation of the atom–field Hamiltonian we will show
that by choosing adequately the initial state of the atom–field
wavefunction, we can arrive at systems of differential
equations that arise in the study of diatomic waveguide arrays,
such that we model in these systems the quantum interaction
between a two-level atom and a quantized field.

2. The quantum interaction

The Hamiltonian for the atom–field interaction is given by (we
set h̄ = 1) [5, 6]

H = ωn̂ +
ω0

2
σz + g(a + a†)(σ+ + σ−), (1)

where ω is the field frequency, ω0 is the atomic transition
frequency and g is the atom–field interaction constant.
The operators a and a† are the annihilation and creation
operators, respectively, with n̂ = a†a the atomic operators
being the usual Pauli spin matrices, with [σ+, σ−] = σz and

[σz, σ±] = ±2σ±. In matrix notation, we can rewrite the
Hamiltonian (1) as

H =

(
ωn̂ + ω0

2 g(a + a†)

g(a + a†) ωn̂ −
ω0
2

)
. (2)

Because this Hamiltonian is equivalent to the on-resonance
ion–laser interaction [7], what we will show for the atom–field
interaction (2) will also be valid for the ion–laser interaction.

Given a Hamiltonian one needs to solve the Schrödinger
equation

i
∂|ψ(t)〉

∂t
= H |ψ(t)〉. (3)

In order to simplify the Hamiltonian (2), we transform
the wavefunction via |ψ(t)〉 = T †

|ψT (t)〉, with the unitary
operator

T =
1

2

(
(−1)n̂ − 1 (−1)n̂ + 1

−(−1)n̂ − 1 1 − (−1)n̂

)
, (4)

such that we obtain the transformed Hamiltonian diagonal in
the atomic basis

HT = T H T †

=

(
ωn̂ + ω0

2 (−1)n̂ − g(a + a†) 0
0 ωn̂ −

ω0
2 (−1)n̂ − g(a + a†)

)
,

(5)

and the Schrödinger equation for the transformed wave
function reads

i
∂|ψT (t)〉

∂t
= H |ψT (t)〉. (6)
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Figure 1. (a) Numerical simulation for a single input excitation for
the lattice parameters g = 0.05, ω = 1 and ω0 = 1, (b) the evolution
of the field in the excitation channel (the blue/red curve is the
real/imaginary part of the field) and (c) the evolution of intensity in
the excitation channel.

Because H and HT are connected by the unitary
transformation (4) they are equivalent; solving one of
them gives the solution for the other. Of course, one also
needs to transform the initial condition

|ψT (0)〉 = T |ψ(0)〉. (7)

We have the following transformations for different initial
conditions, for even number states and atoms in the excited or
ground states:

|ψ
(e,e)
T (0)〉 = T

(
|2n〉

0

)
= −

(
0

|2n〉

)
,

|ψ
(e,g)
T (0)〉 = T

(
0

|2n〉

)
=

(
|2n〉

0

)
,

(8)

and for odd number states and excited or ground states:

|ψ
(o,e)
T (0)〉 = T

(
|2n + 1〉

0

)
= −

(
|2n + 1〉

0

)
, (9)

|ψ
(o,g)
T (0)〉 = T

(
0

|2n + 1〉

)
=

(
0

|2n + 1〉

)
. (10)

The above means that if we start with an atomic ground
state and an even number state we will have as the
transformed initial condition the second equation in (8),
|ψ

(e,g)
T (0)〉 = |e〉|2n〉, and therefore we will need to solve for

the Hamiltonian (see (5))

He = ωn̂ +
ω0

2
(−1)n̂ − g(a + a†). (11)

By writing |ψT (t)〉 =
∑

∞

n=0 En(t)|n〉 and using (10) and (6),
we obtain the system of differential equations

i
dE0

dt
=
ω0

2
E0 − gE1, (12)

i
dEn

dt
=

(
ωn +

ω0

2
(−1)n

)
En − g(

√
nEn−1 +

√
n + 1En+1),

n > 1. (13)

Figure 2. (a) Numerical simulation for a single input excitation for
the lattice parameters g = 0.5, ω = 1 and ω0 = 1, (b) the evolution
of the field in the excitation channel (the blue/red curve is the
real/imaginary part of the field) and (c) the evolution of intensity in
the excitation channel.

3. Waveguide arrays to model the quantum
interaction

Evanescently coupled waveguides [8] have emerged recently
as a promising candidate for the realization of an ideal,
one-dimensional lattice with tunable hopping [1]. We now
show how the system of differential equations given in (11)
and (12) may be produced in waveguide arrays, therefore
modelling the ion laser Hamiltonian. By taking t → −Z we
arrive at the following equation, a differential equation for
propagation in a waveguide array:

i
dE0

dZ
+
ω0

2
E0 − gE1 = 0, (14)

i
dEn

dZ
+
(
ωn +

ω0

2
(−1)n

)
En− g(

√
nEn−1 +

√
n + 1En+1)= 0,

n > 1.

(15)

Because the propagation constant corresponds to the wave
number in a potential well, then, if we change the width
of the potential well, we are also changing the value of
its corresponding wave number. Therefore, the best way to
implement the structures described above is by changing the
width of each waveguide in a descending/ascending fashion
[9]. We solve numerically equations (13) and (14) and plot
in figure 1 how light propagates when it is excited the eighth
waveguide. The parameters used correspond to a solvable case
for equation (1), because when ω,ω0 � g, the rotating wave
approximation (RWA) [10] can be used and we can drop from
Hamiltonian (1) the counter-rotating terms aσ− and a†σ+. In
this case, if we have for instance the initial state

|ψ(0)〉 =

(
0
|8〉

)
= |g〉|8〉, (16)

i.e. the atom in its ground state and the field in a Fock
(number) state |8〉, the field (and the atom, by looking at the
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atomic inversion) will undergo Rabi oscillations because the
only states involved in the interaction are |g〉|8〉 and |7〉|e〉.
This may be observed in figure 1, where it is shown how the
field changes from the eighth to the seventh waveguides. In
the same figure, the evolution of intensity in the excitation
channel plays the role of atomic inversion. In figure 2, we
plot the same quantities, but for ω,ω0 of the same order
as g. In this case, the RWA may not be applied anymore and
the counter-rotating terms play a role: not only the seventh
and eighth waveguides become excited now, but because of
the terms aσ− and a†σ+ more waveguides are involved in
the interaction. This problem, of course, may not be treated
analytically anymore. The oscillations in the evolution of
the intensity in the excitation channel (atomic inversion)
lose their ordered behavior, and no Rabi oscillations may be
observed.

4. Conclusions

We have shown how the interaction of a two-level atom with
a quantized field may be modelled in waveguide arrays. The
transformation (4) has allowed us to divide the Hilbert space
in such a way that the atom is effectively removed from the
interaction. This made it possible to write the Schrödinger

equation for the field states as a system of differential
equations that emulates the one obtained for a semi-infinite
diatomic photonic lattice.
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