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We demonstrate that single-photon as well as biphoton revivals are possible in a new class of dynamic optical
systems—the so-called Glauber-Fock oscillator lattices. In these arrays, both Bloch-like oscillations and dynamic
delocalization can occur which can be described in closed form. The bunching and antibunching response of
path-entangled photons can be pre-engineered in such coupled optical arrangements, and the emulation of
fermionic behavior in this family of lattices is also considered. We elucidate these effects via pertinent examples.
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I. INTRODUCTION

The prospect of manipulating and engineering quantum
states has become an issue of great importance within the
framework of quantum information and computation [1,2].
Along these lines, several physical settings have been envi-
sioned as viable avenues to achieve this goal. Among them,
one may mention trapped-ion arrangements and optical lattices
as well as spin systems and quantum dots [3,4]. While the list of
such possibilities keeps increasing with time, quantum optics
has so far provided a versatile platform where such ideas can
be experimentally realized and tested. As previously indicated,
in optics, quantum information processing can be achieved
entirely linearly, using simple passive components like beam
splitters and phase shifters along with standard photodetectors
and single-photon sources [5]. In this same optical realm,
quantum entanglement can arise as a natural byproduct of pho-
ton interactions—a clear manifestation of their particle-wave
duality. Perhaps, nowhere is this process more apparent than in
the so-called Hong-Ou-Mandel two-photon interference effect
[6]. In this latter configuration, photon entanglement is made
possible via quantum interference—afforded after scattering
from a beam splitter. Lately, optical arrays of evanescently
coupled waveguides have been suggested as a possible route
toward the implementation of multiport systems with moldable
quantum dynamics [7]. The flexibility offered by such compact
and often miniaturized optical N × N configurations is made
possible by the exceptional control achievable these days
in microfabrication techniques [8,9]. In this regard, Bloch
oscillations of NOON and W entangled states as well as
quantum random walks have been theoretically considered and
observed in such arrays [10–12]. In addition, the evolution of
quantum correlations in both periodic and random (Anderson)
lattices has also been investigated [13–15]. The possibility
of classically emulating Jaynes-Cummings systems on such
lattices has also recently been proposed [16]. The question
naturally arises as to whether such multiport array systems can
be utilized as a means to manipulate quantum states of light.

*Corresponding author: aleija@creol.ucf.edu

In this paper we investigate the propagation dynamics
of nonclassical light in a new class of dynamic photonic
systems—the so-called Glauber-Fock oscillator lattices. We
demonstrate that Bloch-like revivals and dynamic delocaliza-
tion effects can naturally occur in spite of the fact that the
structure itself is semi-infinite and not periodic. Interestingly,
these interactions can be described in closed form, from
where one can analytically deduce the turning points of these
quantum oscillations. More importantly, the bunching and
antibunching response of path-entangled biphotons can be pre-
engineered in such coupled optical arrangements. Emulating
fermionic dynamics in such arrangements are also considered
and compared to those expected from bosonic systems in these
same arrays. Finally, the possibility of experimentally realizing
such Glauber-Fock oscillator lattices is discussed.

II. SINGLE-PHOTON DYNAMICS IN GLAUBER-FOCK
OSCILLATOR LATTICES

We begin our analysis by considering a semi-infinite
Glauber-Fock oscillator array consisting of evanescently cou-
pled waveguides. In this arrangement the coupling coefficients
among neighboring channels vary with the square root of the
site index (i.e., Ck,k+1 ∝ √

k + 1) [9]. For generality, we also
allow this coupling to depend on the propagation distance in
this lattice, in which case Ck,k+1 ∝ f (Z)

√
k + 1 where f (Z)

is an arbitrary real function. In addition, we also assume that
the propagation constant (local eigenvalue) of each waveguide
element varies linearly with the site position. In essence, in this
arrangement the refractive index is linearly increasing—in a
way analogous to that of an externally biased crystal in solid
state physics. Starting from these premises, one can show that,
in this class of arrays, the Heisenberg equation of motion for
the creation operator of a single photon in waveguide mode k

is given by

i
da

†
k

dZ
− f (Z)(

√
k + 1a

†
k+1 +

√
ka

†
k−1) − λka

†
k = 0. (1)

In the above equation, Z represents the normalized prop-
agation distance given by Z = κ1z, where κ1 stands for the
coupling coefficient between sites 0 and 1, and λ is a real con-
stant associated with the strength of the aforementioned linear
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index change among adjacent sites. We emphasize that, unlike
standard infinite Bloch oscillator arrays [17–19], the proposed
structure is semi-infinite and asymmetric (e.g., the waveguides
are no longer equidistant). As we will see later, these additional
degrees of freedom may enable one to observe Bloch-like os-
cillations even in the neighborhood of the array boundary (k =
0). This is in contra-distinction to the well-known Dunlap-
Kenkre system, the only other integrable oscillator lattice [17].

In general, the quantum dynamics in this Glauber-Fock
oscillator array can be described through the evolution matrix
T relating the input-output states; that is,

a
†
k(0) =

∞∑
n=0

T ∗
k,n(Z)a†

n(Z). (2)

In Eq. (2), T ∗
k,n(Z) represents the Hermitian conjugate of the

(k,n) element of the T matrix or unitary transformation. We
would like to emphasize that, in the present case, the evolution
matrix cannot be simply obtained from exp(−iZH ) since the
Hamiltonian of the problem is Z (or time) dependent [20]. Yet,
in spite of this complexity, one can show that the evolution
elements T ∗

k,n of the system can be obtained in closed form
(see appendix for details). Starting from Eq. (1), one can show
that these elements are given by

Tk,n =
⎧⎨
⎩

√
n!
k! e

ABk−neDnLk−n
n (�) , n � k√

k!
n!e

ACn−keDkLn−k
k (�) , n � k,

(3)

where � = exp(−iλZ) exp(−D)|B|2, and

D(Z) = e−iλZ − 1,

B(Z) = −i

∫ Z

0
e−iλZ′

f (Z′)dZ′,

C(Z) = −ie−iλZ

∫ Z

0
eiλZ′

f (Z′)dZ′,

A(Z) = −
∫ Z

0

[ ∫ Z′′

0
eiλZ′

f (Z′)dZ′
]
f (Z′′)e−iλZ′′

dZ′′.

In Eqs. (3) Lm
n (x) represents the associated Laguerre poly-

nomials. In addition, Eqs. (3) imply that
∑∞

n=0 |Tk,n|2 = 1, in
agreement with the fact that T is itself a unitary transformation.
In order to gain insight into the quantum dynamics in this class
of arrays, let us first consider the case where only a single
photon is launched into the kth waveguide element. We begin
by analyzing here the simplest possible scenario where the
Hamiltonian of the system is Z independent, thus f (Z) = κ0,
where κ0 is a real constant. Thus, the evolution matrix elements
are given by

Tk,n =
⎧⎨
⎩

√
n!
k! e

(δ+Dn) [�]k−n Lk−n
n (�) , n � k√

k!
n!e

(δ+Dk) [�]n−k Ln−k
k (�) , n � k,

(4)

where

δ = (
κ2

0 /λ2
)
[iλZ + exp(−iλZ) − 1)],

� = [κ0D(Z)/λ],

D(Z) = [exp(−iλZ) − 1],

� = {
2κ0[1 − cos(λZ)]/λ2} exp(iλZ) exp(D).

FIG. 1. (Color online) Bloch-like oscillation for a single photon
propagating through Glauber-Fock oscillator lattices. The red arrow
indicates the site where the photon is being launched. The lattice
parameters used are κ0 = 1, and λ = 1/2, λ = 4/5 for (a) and (b),
respectively.

In this case the probability of finding this single photon at
waveguide site n when launched at k, can be obtained from
Pn,k(Z) = 〈a†

nan〉 = |Tk,n|2. Equations (4) clearly indicate that
the associated probability distribution exhibits revivals at
regular intervals, for example, at Z = 2πs/λ (with s being an
integer). At these revival points, for single-photon excitation,
all the Tk,n coefficients of Eq. (4) vanish except for n = k; that
is, the probability collapses into the initial waveguide site k.
Figure 1 depicts this process for such a Glauber-Fock oscillator
array for two different values of λ. These side views clearly
show the previously mentioned collapse and revivals of the
probability at Z = 2πs/λ irrespective of the site where the
photon was initially coupled. In all cases, these Bloch-like
oscillations occur and the photon does not escape into the
bulk region—toward the right. This in spite of the fact that the
optical potential linearly increases and the waveguide elements
get physically closer toward higher values of n. We note
that, unlike standard Bloch oscillations occurring in periodic
lattices [17–19], in this system the dynamics are asymmetric.
This broken symmetry is a result of the semi-infinite nature of
this particular array.

We now focus our attention on the case where the coupling
coefficients are Z dependent; that is, when the Glauber-Fock
oscillator is dynamic. For illustration purposes we consider
the periodic variation: f (Z) = κ0 + ε cos(	Z), where κ0 is
a constant, ε is a coupling modulation amplitude, and 	

stands for the modulation frequency along the propagation
direction. In this dynamic environment, when a single photon
is launched into the k site, the probability will periodically
“collapse” into the initial waveguide at exactly the first zero

FIG. 2. (Color online) Evolution of the probability distributions
for single photons propagating through this Glauber-Fock oscillator
lattices with λ = 1 and 	 = 3/4 for (a), and 	 = 2/3 for (b).
Dashed lines show the evolution of |B(Z)|2 along Z, predicting the
corresponding revival distance at 8π and 6π , respectively.
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FIG. 3. (Color online) Theoretical evolution of the probability
of having one photon at waveguide n when launched at channel 0,
Pn,0(Z) = 〈a†

nan〉, under the resonance condition.

Ẑ of the function |B(Z)|2. For the particular example exam-
ined here these revivals occur when the ratio 	/λ = P/Q

is a rational number, and P and Q are relatively prime
integers. This condition is necessary for the two oscillatory
processes independently occurring in this array to lock together
synchronously. From here one can deduce that Ẑ = 2Pπ/	 .
This behavior is explicitly illustrated in Fig. 2 for κ0 = 1,
λ = 1, and ε = 0.2 for the cases 	 = 3/4, 2/3, in (a) and (b),
respectively. The dashed lines, on the other hand, represent the
evolution of the |B(Z)|2 function which dictates the period of
oscillations. Note that exact revivals do not occur if the ratio
	/λ is irrational. On the other hand, at the resonance 	 = λ,
dynamic delocalization occurs. In this regime |B(Z)|2 ∝ Z,
and hence a drift motion is induced toward higher site indices
[21]. Therefore, no pure oscillatory behavior is possible at
resonance. This delocalization process at resonance is depicted
in Fig. 3, where it is shown that the probability of finding
the photon among the waveguides gradually shifts toward the
upper side of the array oscillator.

III. QUANTUM OSCILLATIONS OF CORRELATED AND
ANTICORRELATED PHOTON PAIRS

We next consider the quantum dynamics of an entangled
pair of photons, launched either spatially correlated or anti-
correlated into this class of Glauber-Fock oscillator arrays. As
we will see, this new class of photonic lattices can tailor the
bunching and antibunching behavior of path-entangled bipho-
tons (spatially extended state). Conceptually, photon pairs
(biphotons) with correlated positions will couple into the same
waveguide (within a certain excitation window W ; i.e., a set of
waveguides where the photons can be launched) with an equal
probability. In this regime, the corresponding input state is
written as |ψC〉 = √

1/2W [(a†
f )2 + (a†

f +1)2 + · · · + (a†
l )2]|0〉.

Throughout our paper, f and l will represent the first and last
waveguide site, respectively, within the excitation window.
This input state can be generated by placing the waveguide
array immediately after a type-I collinear degenerate narrow-
band spontaneous parametric down conversion (SPDC) thin-
crystal source [22]. On the other hand, an entangled pair
of photons with anticorrelated positions corresponds to the
physical situation where the photon pair is always coupled to
waveguides on opposite sides of the excitation window W—
again with equal probability. Thus, the input state is written
as |ψA〉 = √

2/W [a†
f a

†
l + a

†
f +1a

†
l−1 + · · · + a

†
Ra

†
R′ ]|0〉, where

W is even and (R,R′) represent the floor and ceiling integers,

respectively, of the quantity (l + f )/2. In order to obtain
the correlation between the array modes, we analyze at the
output the coincidence rate at waveguides p and q, which is
given by �p,q ≡ 〈a†

pa
†
qaqap〉. In this case one can show that,

for correlated inputs |ψC〉, the correlation map is described
by �p,q = (1/W )|∑l

k=f Tp,kTq,k|2, whereas for anticorrelated

|ψA〉 it becomes �p,q = (1/W )|∑W−1
k=0 Tp,f +kTq,l−k|2. In or-

der to demonstrate these effects and for comparison purposes,
we will always assume here that W = 10 with the excitation
contained between (f,l) = (0,9).

The evolution of the correlation map �p,q as a function
of distance when f (Z) = 1 and λ = 0.5 is then examined.
In this case, revivals are expected at multiples of Z = 4π .
When the input state is initially correlated, the map flips and
antibunching occurs at Z = π and Z = 3π , while it returns
to a broadened bunched state in the middle of a cycle. This
situation is altered when an anticorrelated biphoton input is
used. In this case the map tends to flip over to that of a
bunched state at Z = π and Z = 3π , while in the middle of
this oscillation it attains a correlation mixture—with bunching
being predominant. This evolution is altogether different from
that occurring in uniform lattices [13]. The present dynamics is
a direct outcome of the revivals and of the phase acquired upon
reflection from the boundary of this semi-infinite Glauber-
Fock oscillator array—which is absent in periodic arrays.
We next consider the evolution of correlations when two
periods are simultaneously involved in the lattice [e.g., when
the function f (Z) is periodic]. For this example we again
take f (Z) = κ0 + ε cos(	Z), with κ0 = 1, λ = 0.5, ε = 0.2,
and 	 = 3/4, in which case the revival period is 8π . For a
correlated input |ψC〉 the correlation map exhibits periodic
transitions from bunching to antibunching [Figs. 4(a)–4(e)].
However, at the half-cycle point the bunching is now not
entirely complete [Fig. 4(e)], due to the incomplete revival
of the single-photon trajectories. This scenario becomes very
different when the initial biphoton state |ψA〉 is anticorrelated
[Figs. 4(f)–4(j)]. The correlation dynamics corresponding to
both cases are shown up to half a cycle (4π ). Evidently,
right after the origin, bunching is seen to occur [Fig. 4(g)]
while midway in the cycle signatures of antibunching behavior
appear. This latter pattern is different from that obtained before
[(f Z) = 1] when only one oscillation frequency was involved
in the Glauber-Fock oscillator.

We have also explored the response of this system under
dynamic delocalization conditions. Figure 5 depicts again the
correlations for the same parameters used in the previous case,
except that here λ = 	 = 1. In this delocalization regime,
a correlated input |ψC〉 tends to initially oscillate between
bunching and antibunching, as was shown in Figs. 4(a)–4(c),
and eventually settles into an antibunched state [Fig. 5(a)].
On the other hand, for an anticorrelated biphoton input |ψA〉
the entangled photons very quickly and irreversibly become
bunched and they remain in this state [Fig. 5(b)]. The reason
why delocalization itself affects the correlation evolution has
to do with the fact that, in this case, the photons tend to
eventually escape into the bulk of the lattice—away from
the boundary. Simulations indicate that, by adjusting the two
oscillation frequencies, one can at will lock the output into
a particular bunching or antibunching state. In essence the
presence of revivals of quantum states (or absence of revivals)
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FIG. 4. (Color online) Left column shows the quantum correla-
tion maps when the input state |ψC〉 is coupled into a modulated-tilted
Glauber-Fock oscillator array (λ = 1/2, 	 = 3/4). Similarly, the
right column depicts the correlation evolution for the input state |ψA〉.
allows one to engineer the quantum dynamics in this class of
dynamic Glauber-Fock oscillator lattices.

Finally, we also consider this same arrangement when
fermionic-like input states are used [23]. Figure 5(c) shows
how the correlation evolves in this case under delocalization
conditions for parameters identical to those used in Fig. 3. The
input in this case is assumed to be of the type |ψF 〉 = b

†
f b

†
l |0〉,

where bn (b†n) represents the annihilation (creation) operator
for fermions in a lattice [20]. For this input, the antibunching
behavior in the correlation matrix is evident. See [24] for a
movie visualizing the propagation of Figs. 5(a)–5(c).

FIG. 5. (Color online) Correlation matrices at Z = 15π for the
initial states (a) |ψC〉, (b) |ψA〉 and (c) |ψF 〉.

IV. CONCLUSION

In conclusion, we have shown that a new family of dynamic
arrays—the so-called Glauber-Fock oscillator lattices—can be
used as a way to mold the quantum evolution of path-entangled
photons. In these systems, revivals and dynamic delocalization
are possible—each leaving a specific mark on the correlation
map. If the two oscillation periods associated with these Bloch-
like oscillators are irrational with respect to each other, the
dynamics become aperiodic. At this point several intriguing
questions remain. For example, of interest will be to examine
how such structures respond to other maximally entangled
states (like NOON states) or whether they can be used to
synthesize other quantum states of interest. The response of
these lattices may be also useful in considering other classes
of problems in other physical configurations having similar
quantum analogs like those of the Bose-Hubbard or Jaynes-
Cummings type with time-varying couplings [16,25].

APPENDIX

In order to obtain the solution to Eq. (1), we use operator
techniques. We start by introducing the Schrödinger equation
associated with Eq. (1) [26]

i
dT (a†,a,Z)

dZ
= [f (Z)(a† + a) + λa†a]T (a†,a,Z), (A1)

where a = 1
2 (x + d

dx
) and a† = 1

2 (x − d
dx

) are the annihilation
and creation operators, respectively, that satisfy the relations
[27]

a|n〉 = √
n|n − 1〉, a†|n〉 = √

n + 1|n + 1〉. (A2)

We now introduce a transformation V which converts
T (a†,a,t) into its normal form in which all the creation
operators appear to the left of the annihilation operators.
V transforms T (a†,a,Z) → T̃ (α∗,α,Z) by substituting a →
(α + ∂

∂α∗ ), and a† → α∗ [20]. In other words, V transforms
the operator differential equation into an equivalent algebraic
variable differential equation. By applying V to Eq. (A1) we
obtain

i
dT̃

dZ
=

[
f (Z)

(
α∗ + α + ∂

∂α∗

)
+ λα∗

(
α + ∂

∂α∗

)]
T̃ .

(A3)

This equation is easily solved by assuming a solution of the
form

T̃ (α∗,α,Z) = eS(α∗,α,Z). (A4)

With this substitution, Eq. (A3) becomes

i
dS

dZ
= f (Z)α∗ + f (Z)α + λα∗

(
α + ∂S

∂α∗

)
+ f (Z)

∂S

∂α∗ .

(A5)

We now determine S by demanding a functional form that
gives algebraically equivalent terms on both sides of Eq. (A5).
Therefore, in this case, S must be

S(α∗,α,Z) = A(Z) + B(Z)α + C(Z)α∗ + D(Z)α∗α, (A6)
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in this case Eq. (A5) becomes

i

(
dA

dZ
+ dB

dZ
α + dC

dZ
α∗ + dD

dZ
α∗α

)
= λα∗α + λα∗(C + Dα)

+ f (Z)(α + α∗) + f (Z)(C + Dα). (A7)

By equating coefficients of similar terms on both sides of
Eq. (A7) we readily obtain the solutions for A(Z), B(Z), C(Z),
and D(Z); namely,

D(Z) = e−iλZ − 1,

B(Z) = −i

∫ Z

0
e−iλZ′

f (Z′)dZ′,
(A8)

C(Z) = −e−iλZB∗(Z),

A(Z) = −
∫ Z

0

[ ∫ Z′′

0
eiλZ′

f (Z′)dZ′
]
f (Z′′)e−iλZ′′

dZ′′,

where B∗(Z) represents the complex conjugate of B(Z). Using
the normal-ordering symbol N , which converts a function of
the commuting variables (α∗,α) into the same function of the
operators (a†,a) (the resulting operator function being in the
normal form), we can now introduce the inverse transformation
V −1 such that [20]

T (a†,a,Z) = V −1[T̃ (α∗,α,Z)] = N (eA+Bα+Cα∗+Dα∗α).

(A9)

Then, by applying V −1 to Eq. (A4), one obtains

T (a†,a,Z) = eAeC(Z)a†
eDa†aeBa. (A10)

Finally, after performing the Taylor series expansion of the
exponentials and using the relations given in Eq. (A2), we
obtain the matrix elements given in Eq. (3):

Tk,n(Z) = 〈n|eAeC(Z)a†
eDa†aeBa|k〉. (A11)

[1] C. H. Bennett and D. P. DiVicenzo, Nature (London) 404, 247
(2000).

[2] S. Papp, K. Choi, H. Deng, P. Lougovski, S. J. Van Enk, and
H. J. Kimble, Science 324, 764 (2009).

[3] S. Bose, Phys. Rev. Lett. 91, 207901 (2003).
[4] P. Kouwenhoven, D. Austing, and S. Taruch, Rep. Prog. Phys.

64, 701 (2001).
[5] E. Knill, R. Laflamme, and G. Milburn, Nature 409, 46 (2001).
[6] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044

(1987).
[7] A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, Science

320, 5876 (2008).
[8] A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, and A. Tunnermann,

Opt. Exp. 15, 1579 (2007).
[9] R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-

Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, Phys.
Rev. Lett. 107, 103601 (2011).

[10] A. Rai and G. S. Agarwal, Phys. Rev. A 79, 053849 (2009).
[11] Y. Bromberg, Y. Lahini, and Y. Silberberg, Phys. Rev. Lett. 105,

263604 (2010).
[12] A. Peruzzo et al., Science 329, 5998 (2010).
[13] Y. Bromberg, Y. Lahini, R. Morandotti, and Y. Silberberg, Phys.

Rev. Lett. 102, 253904 (2009).
[14] Y. Lahini, Y. Bromberg, D. N. Christodoulides, and

Y. Silberberg, Phys. Rev. Lett. 105, 163905 (2010).

[15] R. Keil, F. Dreisow, M. Heinrich, A. Tünnermann, S. Nolte, and
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