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Abstract This manuscript describes a new technique for
segmenting color images in different color spaces based on
geometrical properties of lattice auto-associative memories.
Lattice associative memories are artificial neural networks
able to store a finite set X of n-dimensional vectors and re-
call them when a noisy or incomplete input vector is pre-
sented. The canonical lattice auto-associative memories in-
clude the min memory WXX and the max memory MXX,
both defined as square matrices of size n × n. The column
vectors of WXX and MXX, scaled additively by the compo-
nents of the minimum and maximum vector bounds of X,
are used to determine a set of extreme points whose con-
vex hull encloses X. Specifically, since color images form
subsets of a finite geometrical space, the scaled column vec-
tors of each memory will correspond to saturated color pix-
els. Thus, maximal tetrahedrons do exist that enclose proper
subsets of pixels in X and such that other color pixels are
considered as linear mixtures of extreme points determined
from the scaled versions of WXX and MXX. We provide il-
lustrative examples to demonstrate the effectiveness of our
method including comparisons with alternative segmenta-
tion methods from the literature as well as color separation
results in four different color spaces.
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1 Introduction

In several image processing and analysis applications, im-
age segmentation is a preliminary step in the description
and representation of regions of interest [1–4]. Segmentation
techniques, first developed for grayscale images [5–8], have
been extended, enhanced or changed to deal efficiently with
color images coded in different color spaces as explained
next.

Color image segmentation has been approached from
several perspectives that currently are categorized as pixel,
area, edge, and physics based segmentation, for which early
compendiums appeared in [9, 10]. State-of-the-art surveys
are given in [11, 12]. For example, pixel based segmenta-
tion includes histogram techniques and cluster analysis in
color spaces. Optimal thresholding [13] and the use of a
perceptually uniform color space [14] are examples of his-
togram based techniques. Area based segmentation contem-
plates region growing as well as split-and-merge techniques,
whereas edge based segmentation embodies local methods
and extensions of the morphological watershed transforma-
tion. This transformation and the flat zone approach to color
image segmentation were originally developed, respectively,
in [15] and [16]. A seminal work employing Markov ran-
dom fields for splitting and merging color regions was pro-
posed in [17]. Other recent developments contemplate the
fusion of various segmentation techniques such as the ap-
plication of morphological closing and adaptive dilation to
color histogram thresholding [18] or the use of the water-
shed algorithm for color clustering with Markovian label-
ing [19]. Physics based segmentation relies on adequate re-
flection models of material objects such as inhomogeneous
dielectrics, plastics, or metals [20, 21]. Nevertheless, its ap-
plicability has been limited to finding changes in materials
whose reflection properties are well studied and modeled
properly.
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Recently, soft computing techniques [22] or fuzzy princi-
pal component analysis coupled with clustering based on re-
cursive one-dimensional histogram analysis [23], suggest al-
ternative ways to segment a color image. In order to quantify
the results obtained from different segmentation schemes,
the subject of color image segmentation evaluation has been
briefly exposed in [24]. Basic treatment of image segmenta-
tion performed in both Hue-Saturation-Intensity (HSI) and
RGB color spaces is given in [25, 26]; for a more com-
plete and systematic exposition of color image segmenta-
tion methods see [27] or [28]. Also, from the standpoint of
lattice algebra, [29, 30] are recent efforts related to the uni-
fication of lattice theory based image processing, compu-
tational intelligence, modeling, and knowledge representa-
tion.

In this paper we present a lattice algebra based tech-
nique for image segmentation applied to RGB (Red-Green-
Blue) color images transformed to other representative sys-
tems, such as the HSI (Hue-Saturation-Intensity), the I1I2I3

(principal components approximation), and the L*a*b*
(Luminance–redness/greenness–yellowness/blueness) color
spaces. The proposed method relies on the min WXX and
max MXX lattice auto-associative memories (LAAMs),
where X is the set formed by 3D pixel vectors or colors.
The scaled column vectors of any memory together with the
minimum or maximum bounds of X may form the vertices
of tetrahedra enclosing subsets of X, and will correspond
to the most saturated color pixels in the image. Image par-
tition into regions of similar colors is realized by linearly
unmixing pixels belonging to tetrahedra determined by the
columns of the scaled lattice auto-associative memories W

and M , and then by thresholding and scaling pixel color
fractions obtained numerically by applying a least squares
method, such as the linear least squares (LLS) method also
known as generalized matrix inversion [31], or the non-
negative least squares (NNLS) method [32]. In the final step
segmentation results are displayed as grayscale images. The
lattice algebra approach to color image segmentation can be
categorized as a pixel based unsupervised technique. Prelim-
inary research and computational experiments on the pro-
posed method for segmenting color images were reported in
[33, 34].

The paper is organized as follows: Sect. 2 presents
background material on image segmentation and a general
overview of minimax algebra and lattice auto-associative
memories; Sect. 3 develops with some detail the segmen-
tation technique based on the scaled column vectors of
LAAMs and briefly describes the linear mixing model used
to determine the color fractions composing any pixel vec-
tor in the input image. Illustrative examples using synthetic
and real images are provided to establish how the proposed
method works and how it compares in computational effort,
for example, with the c-means and fuzzy c-means clustering

techniques. In Sect. 4, we show other segmentation results
for additional images represented in the color spaces listed
above. Finally, Sect. 5 gives the conclusions and some per-
tinent comments concerning this research.

2 Mathematical Background

2.1 Image Segmentation

Although there are several approaches to segment a color
image, as briefly described in the Introduction, a mathemat-
ical description of the segmentation process, common to all
approaches, can be given using set theory [1, 3, 4, 25]. In
this framework, to segment an image is to divide it into a
finite set of disjoint regions whose pixels share well-defined
attributes. We recall from basic set theory that a partition
of a set is a family of pairwise disjoint subsets covering it.
Mathematically, we have

Definition 1 Let X be a finite set with k elements. A par-
tition of X is a family P = {Ri} of subsets of X, each with
ki elements for i = 1, . . . , q , that satisfy the following con-
ditions: 1) Ri ∩ Rj = ∅ for i �= j (pairwise disjoint subsets)
and 2)

⋃q

i=1 Ri = X where
∑q

i=1 ki = k (whole set cover-
ing).

Note that the only attribute shared between any two ele-
ments of X with respect to a given partition P is their mem-
bership to a single subset Ri of X. Unfortunately, the simple
attribute of sharing the same membership is not enough to
distinguish or separating objects of interest in a given image.
Therefore, Definition 1 must be enriched by imposing other
conditions required for image segmentation. Additional at-
tributes shared between pixels (elements of X) can be, for
example, spatial contiguity, similar intensity or color, and
type of connectedness. All or some of these quantifiable at-
tributes can be gathered into a single uniformity criterion
specified by a logical predicate. A mathematical statement
of our intuitive notion of segmentation follows next.

Definition 2 Let X be a finite set with k elements. A seg-
mentation of X is a pair ({Ri},p) composed of a family {Ri}
of subsets of X each with ki elements for i = 1, . . . , q , and
a logical predicate p specifying a uniformity criterion be-
tween elements of X, that satisfy the following conditions:
1) the family {Ri} is a partition P of X, 2) for any i, Ri is
a connected subset of X, 3) ∀i,p(Ri) = true (elements in
a single subset share the same attributes), and 4) for i �= j ,
p(Ri ∪ Rj) = false (elements in a pairwise union of subsets
do not share the same attributes).
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With respect to condition 2) in Definition 2, we remind
that a connected subset Ri is a set where every pair of el-
ements {xs, xt } ∈ Ri is connected in the sense that, a se-
quence of elements, denoted by (xs, . . . , xr , xr+1, . . . , xt ),
exists such that {xr , xr+1} belong to the same spatial neigh-
borhood and all points belong to Ri . A weaker but still use-
ful version of Condition 4) in Definition 2, requires that, Ri

and Rj should be neighbor sets. Loosely speaking, a sub-
set Ri ⊂ X is commonly refer as an image region. Whether
regions can be disconnected (2nd condition of Definition 2
is not imposed), multi-connected (with holes), should have
smooth boundaries, and so forth depends on the applica-
tion’s domain, segmentation technique, and goals. Percep-
tually, the segmentation process must convey the necessary
information to visually recognize or identify the prominent
features contained in the image such as color hue, bright-
ness or texture. Hence, adequate segmentation is essential
for further description and representation of regions of in-
terest suitable for image analysis or image understanding.
We turn now to the description of some basic concepts of
minimax algebra as well as some background material about
lattice auto-associative memories needed for Sects. 3 and 4.

2.2 Lattice Associative Memories

The basic numerical operations of computing the maximum
or minimum of two numbers usually denoted as functions
max(x, y) and min(x, y) will be written as binary opera-
tors using the “join” and “meet” symbols employed in lattice
theory, i.e., x ∨ y = max(x, y) and x ∧ y = min(x, y). We
use lattice matrix operations [35, 36] that are defined ele-
mentwise using the underlying structure of R−∞ or R∞ as
semirings. For example, the maximum of two matrices X,Y

of the same size m×n is defined as (X∨Y)ij = xij ∨yij for
i = 1, . . . ,m and j = 1, . . . , n. Inequalities between matri-
ces are also verified elementwise, for example, X ≤ Y if and
only if xij ≤ yij . Also, the conjugate matrix X∗ is defined
as −Xt where Xt denotes usual matrix transposition. The
max-of-sums X ∨Y , of appropriately sized matrices and
the min-of-sums X ∧Y , are defined, for i = 1, . . . ,m and
j = 1, . . . , n, respectively, as (X ∨ Y)ij = ∨p

k=1(xik + ykj )

and (X ∧ Y)ij = ∧p

k=1(xik + ykj ). For p = 1 these lattice
matrix operations reduce to the outer sum of two vectors
x = (x1, . . . , xn)

t ∈ R
n and y = (y1, . . . , ym)t ∈ R

m, given
by the m × n matrix (i = 1, . . . ,m and j = 1, . . . , n)

y × xt = (yi + xj )

=

⎛

⎜
⎜
⎜
⎝

y1 + x1 y1 + x2 · · · y1 + xn

y2 + x1 y2 + x2 · · · y2 + xn

...
...

...
...

ym + x1 ym + x2 · · · ym + xn

⎞

⎟
⎟
⎟
⎠

. (1)

Henceforth, let (x1,y1), . . . , (xk,yk) be k vector pairs with
xξ = (x

ξ
1 , . . . , x

ξ
n)t ∈ R

n and yξ = (y
ξ
1 , . . . , y

ξ
m)t ∈ R

m

for ξ = 1, . . . , k. For a given set of vector associations
{(xξ ,yξ ) : ξ = 1, . . . , k} we define a pair of associated ma-
trices (X,Y ), where X = (x1, . . . ,xk) and Y = (y1, . . . ,yk).
Thus, X is of dimension n × k with i, j th entry x

j
i and Y is

of dimension m × k with i, j th entry y
j
i . To store k vector

pairs (x1,y1), . . . , (xk,yk) in an m × n lattice associative
memory (LAM), also known as morphological associative
memory (MAM), a similar approach for vector encoding is
used as in a linear or correlation memory but instead of the
linear outer product, the lattice outer sum in (1) is applied.
The canonical LAM’s are defined as follows.

Definition 3 The min-memory WXY and the max-memory
MXY , both of size m × n, that store a set of associations
(X,Y ) are given, respectively, by the expressions

WXY =
k∧

ξ=1

[yξ × (−xξ )t ]; wij =
k∧

ξ=1

(y
ξ
i − x

ξ
j ), (2)

MXY =
k∨

ξ=1

[yξ × (−xξ )t ]; mij =
k∨

ξ=1

(y
ξ
i − x

ξ
j ). (3)

We speak of a lattice hetero-associative memory (LHAM) if
X �= Y and of a lattice auto-associative memory (LAAM) if
X = Y .

The expressions to the left of (2) and (3) are in ma-
trix form and the right expressions are the ij -th entries
that give the network weights of the corresponding asso-
ciative memory. Note that according to (1), for each ξ ,
yξ × (−xξ )t is a matrix Eξ of size m × n that memo-
rizes the association pair (xξ ,yξ ) hence WXY = ∧k

ξ=1 Eξ

and MXY = ∨k
ξ=1 Eξ , which suggests the given names. In

this paper we will use LAAMs only, i.e., WXX and MXX

of size n × n, and if no confusion arises of what the set
X stands for, we denote these memories by W and M re-
spectively. In particular, the main diagonals of both ma-
trices, i.e., wii and mii consist entirely of zeros. Since
Y = X, X ∨X∗ = (X∗)∗ ∨X∗ = (X ∧X∗)∗, and, therefore,
M = W ∗. Hence, the min-memory and the max-memory are
dual to each other in the sense of matrix conjugation; con-
sequently, mij = −wji .

This type of non-linear associative memories, developed
from a lattice algebra approach, were introduced as a new
paradigm in neural computation to deal with the problem of
recalling exemplar patterns from noisy binary or real valued
inputs [37–39]. Later, several advancements were achieved
including theoretical foundations [40], increased recall ca-
pability [41, 42] of exemplar patterns degraded by consid-
erable amounts of random noise, and hyperspectral imagery
endmember detection [44–49].
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3 LAAMs Approach to Color Image Segmentation

In this section, for illustrative purposes, we consider only
images coded in the RGB color space. The first subsection
gives a detailed description, in three stages, of the proposed
segmentation approach. A brief comment on two fundamen-
tal clustering techniques follows in the second subsection as
a framework for computational comparisons. The third sub-
section illustrates the segmentation results on synthetic and
real RGB color images obtained by the LAAM’s approach
together with the results derived from the c-means and fuzzy
c-means clustering techniques.

3.1 The Segmentation Process

Segmentation of a color image is performed in stages in-
cluding: 1) computation of the scaled lattice auto-associative
memories, 2) linear unmixing of color pixels using least
square methods, and 3) thresholding color fractions to pro-
duce color segmentation maps represented as grayscale im-
ages. These stages are explained in detail in the following
paragraphs.

Given a color image A consisting of p × q pixels, we
build a set X containing all different colors (3-dimensional
vectors) present in A. If |X| = k denotes the number of el-
ements in set X, then k ≤ pq = |A|, where pq is the maxi-
mum number of colors available in A. Then, using the right
expressions of (2) and (3), the memory matrices min-WXX

and max-MXX are computed and to make explicit their re-
spective column vectors, we rewrite them, respectively, as
W = (w1,w2,w3) and M = (m1,m2,m3). By definition,
the column vectors of W may not necessarily belong to
the space [0,255]3 since W usually has negative entries.
The general transformation given in the next definition, will
translate the column vectors of W within the color cube.

Definition 4 Let X = {x1, . . . ,xk} be a finite subset of R
n.

The minimum- and maximum vector bounds are given, re-
spectively by v = ∧k

ξ=1 xξ and u = ∨k
ξ=1 xξ . Their corre-

sponding entries, for i = 1, . . . , n, are computed as

vi =
k∧

ξ=1

x
ξ
i ; ui =

k∨

ξ=1

x
ξ
i . (4)

Let W = (w1, . . . ,wn) and M = (m1, . . . ,mn) be the sets of
column vectors of the min- and max memories relative to X,
then additive scaling results in two scaled matrices, denoted
respectively W and M , whose column vectors are defined,
for j = 1, . . . , n, by

wj = wj + uj ; mj = mj + vj , (5)

Note that for j = 1, . . . ,3, wjj = uj and mjj = vj . Hence,
diag(W) = u and diag(M) = v.

The first stage of the segmentation process is completed
by applying (4) and (5) to X, W , and M . Continuing with
the description of the proposed segmentation procedure, use
is made of the underlying sets of scaled columns W =
{w1,w2,w3} and M = {m1,m2,m3} including the extreme
vector bounds v and u. Note that, the vectors belonging to
the set W ∪ M ∪ {v,u} provide a way to determine sev-
eral tetrahedra enclosing specific subsets of X such as, e.g.,
W ∪ {u} and M ∪ {v}.

The second stage in the segmentation process is accom-
plished using concepts from convex set geometry. These
concepts make it possible to mix colors in any color space.
Recall that X is said to be a convex set if the straight line
joining any two points in X lies completely within X; also,
an n-dimensional simplex is the minimal convex set or con-
vex hull whose n + 1 vertices (extreme points) are affinely
independent vectors in R

n. Since the color cube is a sub-
space of R

3 a 3-dimensional simplex will correspond to a
tetrahedron. Thus, considering pixel vectors in a color im-
age enclosed by some tetrahedron, whose base face is de-
termined by its most saturated colors, an estimation of the
fractions in which they appear at any other color pixel can be
made. A model commonly used for the analysis of spectral
mixtures in hyperspectral images, known as the constrained
linear mixing (LM) model [43], can readily be adapted to
segment noiseless color images by representing each pixel
vector as a convex linear combination of the most saturated
colors. Its mathematical representation is given by

x = Sc = c1s1 + c2s2 + c3s3, subject to (6)

c1, c2, c3 ≥ 0 (non-negativity),

c1 + c2 + c3 = 1 (full additivity),

where, x is a 3 × 1 pixel vector, S = (s1, s2, s3) is a square
matrix of size 3 × 3 whose columns are the extreme col-
ors, and c is the 3 × 1 vector of “saturated color fractions”
present in x. Notice that the most saturated colors in a given
image may easily be equal to the set of primary colors (red,
green, blue) or to the set of complementary colors (cyan, ma-
genta, yellow). Therefore, the present step consists of solv-
ing (6) to find vector c given that S = W or S = M for ev-
ery x ∈ X, a procedure known as linear unmixing. As men-
tioned earlier in the introduction, to solve the constrained
linear system displayed in (6), one can employ the LLS or
NNLS methods imposing the full additivity or the positivity
constraint, respectively.

In the third and last stage of the segmentation process,
once (6) is solved for every color pixel xξ ∈ X, all c

j
ξ frac-

tion values are assembled to form a vector associated with
the saturated color sj , and the final step is carried out by ap-
plying a threshold value, in most cases, between 0.3 and 1 to
obtain an adequate segmentation depicting the correspond-
ing image partition (see Definition 2). Additional theoreti-
cal background on which the proposed method is based as
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Fig. 1 1st column: test RGB
color image; 1st row, 2nd to 4th
cols.: grayscale images
depicting segmented regions
containing proportions of red
(w1), green (w2), and blue (w3)
colors; 2nd row, 2nd to 4th
cols.: grayscale images with
regions composed of cyan (m1),
magenta (m2), and yellow (m3)
colors. Brighter gray tones
correspond to high fractions of
saturated colors

well as its application to hyperspectral imagery appears in
[47, 49].

3.2 A Comment on Clustering Techniques

Of the many existing approaches to image segmentation
[9–12], clustering techniques such as c-means and fuzzy c-
means can be applied to color images provided the num-
ber of clusters is known beforehand. When using any of
these techniques a cluster is interpreted as the mean or av-
erage color assigned to an iteratively determined subset of
color pixels belonging to X. For an explanation of the ba-
sic theory and algorithmic variants concerning the c-means
clustering technique cf. [50–52] and similarly, for the fuzzy
c-means clustering technique see [53, 54]. In relation to
our proposed method based on LAAMs, a comparison with
both clustering techniques is immediate since the maximum
number of saturated colors determined from W , M , and
possibly {v,u} is always 8, thus the number of clusters is
bounded by the interval [1,8]. Furthermore, since any mem-
ber in the set W ∪ M ∪ {v,u} is an extreme point, we are
able to select any two disjoint subsets of three column vec-
tors to form a 3 × 3 system in order to obtain unique so-
lutions to (6). Therefore, once a pair of triplets is fixed,
the number of clusters c can be restricted to the interval
[6,8].

3.3 Segmentation Results and Comparisons

Example 1 (Flat color image) Figure 1 shows in the left
column a test RGB color image (primary colors additive
mixtures) of size 256 × 256 pixels that has only 8 dif-
ferent colors. Hence, X = {x1, . . . ,x8} out of a total of
65,536 pixel vectors. The scaled lattice memory matri-
ces and the minimum-, maximum vector bounds are given
by

W =
⎛

⎝
255 0 0

0 255 0
0 0 255

⎞

⎠ ,

M =
⎛

⎝
0 255 255

255 0 255
255 255 0

⎞

⎠ ,

v =
⎛

⎝
0
0
0

⎞

⎠ , u =
⎛

⎝
255
255
255

⎞

⎠ .

(7)

For this trivial color image, a simple algebraic analysis
yields a closed solution for unmixing color pixels obey-
ing (6). In this case we have

W
−1 = 1

255

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ,

M
−1 = 1

510

⎛

⎝
−1 1 1
1 −1 1
1 1 −1

⎞

⎠ .

(8)

From (8), W
−1 = I/255 where I is the 3 × 3 identity ma-

trix and considering that x
ξ
i ∈ {0,255}, ci = xi/255 veri-

fies trivially the inequalities 0 ≤ ci ≤ 1 for all i = 1,2,3
and ξ ∈ {1, . . . ,8}. Full additivity is satisfied if

∑3
i=1 ci =

∑3
i=1 xi/255 = 1, therefore color pixel values x1, x2, and

x3 lie in the plane x1 + x2 + x3 = 255 which occurs only at
the points (255,0,0), (0,255,0), and (0,0,255). However,
letting s = x1 +x2 +x3 the color fractions obtained from the
scaled min memory W are readily specified by the simple
formula

ci = xi

s
= xi

x1 + x2 + x3
⇔ s �= 0, (9)

otherwise if s = 0 let ci = 0. Similarly, from the inverse

matrix M
−1

given in (8), one finds that ci = (
∑

j �=i xj −
xi)/510 for i = 1,2,3. However, since x

ξ
i ∈ {0,255} we
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Fig. 2 1st column: test RGB
color image; 1st row, 2nd to 4th
cols.: grayscale images of color
fractions obtained by linear
unmixing showing the
segmentation of cyan (m1),
magenta (m2), and yellow (m3)
(CMY) colors; 2nd row, 2nd to
4th cols.: fuzzy c-means
grayscale images depicting
membership distribution in
regions of CMY color gradients;
3rd row, 2nd to 4th cols.:
c-means binary images
depicting uniform segmented
regions labeled from CMY
centroids

Table 1 Fraction values for unmixing pixels of the test RGB color
image

Saturated Pixel values From W From M

color (x1, x2, x3) (c1, c2, c3) (c1, c2, c3)

Black (0,0,0) (0,0,0) (0,0,0)

Red (255,0,0) (1,0,0) (0, 1
2 , 1

2 )

Green (0,255,0) (0,1,0) ( 1
2 ,0, 1

2 )

Blue (0,0,255) (0,0,1) ( 1
2 , 1

2 ,0)

Cyan (0,255,255) (0, 1
2 , 1

2 ) (1,0,0)

Magenta (255,0,255) ( 1
2 ,0, 1

2 ) (0,1,0)

Yellow (255,255,0) ( 1
2 , 1

2 ,0) (0,0,1)

White (255,255,255) ( 1
3 , 1

3 , 1
3 ) ( 1

3 , 1
3 , 1

3 )

have ci ∈ {−0.5,0,0.5,1}; thus, non-negativity is not satis-
fied for all i. Also, full additivity is verified if

∑3
i=1 ci =

∑3
i=1(

∑
j �=i xj − xi)/510 = 1, implying that color pixel

values x1, x2, and x3 belong to the plane x1 + x2 + x3 =
510, and this can occur only at the points (0,255,255),
(255,0,255), and (255,255,0). Therefore, making s =
x1 + x2 + x3 the color fractions obtained from the scaled
max memory M are given by the formula

ci =
∑

j �=i xj − xi

s
=

∑
j �=i xj − xi

x1 + x2 + x3
⇔ s �= 0, (10)

otherwise if s = 0, then ci = 0; also, if ci = −1 (for some i),
then set ci = 0 and change cj to cj /2 for j �= i. Table 1 dis-
plays the correspondence between pixel color values and
color fractions derived from the scaled LAAMs.

Using the mapping established in Table 1 the color frac-
tion solution vector ‘c’ is quickly determined for each

one of the 65,536 pixels forming the image, using for S,
first the W matrix that unmixes the primary colors, then
the M matrix that unmixes the secondary colors. To the
right of the test RGB color image in Fig. 1, the color
fraction maps displayed as grayscale images are asso-
ciated to the saturated colors derived from the column
vectors of the scaled LAAMs, except black, considered
the image background, and white that results from addi-
tive mixture of the three primary colors. Each color frac-
tion segmented image sj is visible after a linear scaling
from the interval [0,1] to the grayscale dynamic range
[0,255].

Example 2 (Gradient color image) In Fig. 2, the left column
shows a synthetic RGB color image composed by a gradi-
ent of primary and secondary colors of size 256 × 256 pix-
els with 2,400 different colors. Thus, X = {x1, . . . ,x2400}
(again, from a total of 65,536 color pixels). It turns out
that the scaled LAAM matrices and the minimum-, max-
imum vector bounds are almost the same as those com-
puted in the previous example, (7), except that the nu-
meric value 255 is replaced by 254. Although the given
image is rather simple, an algebraic analysis would be
impractical for finding a color fractions formula applica-
ble for unmixing every different color present in the im-
age. However, fast pixel linear decomposition can be real-
ized, e.g., by generalized matrix inversion (LLS) enforcing
full additivity and adequate thresholding of numerical val-
ues.

From (6) any cq = 1 − cp − cr , where q = 1,2,3 and
q �= p < r �= q , can be selected to reduce the size of matrix
S and vector c. Consequently, computations are simplified
by solving for each color pixel the linear system given by
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Fig. 3 1st column: sample
RGB color images; 2nd col.:
scatter plot of a subset of X

showing 256 different colors
including the most saturated
colors determined from W and
M ; 3rd and 4th cols.: tetrahedra
determined from proper subsets
of W ∪ M ∪ {v,u}

xq = Sqcq , where cq = (cp, cr )
t , Sq = Wq or Sq = Mq , and

Sq =
⎛

⎝
s1p − s1q s1r − s1q

s2p − s2q s2r − s2q

s3p − s3q s3r − s3q

⎞

⎠ , xq =
⎛

⎝
x1 − s1q

x2 − s2q

x3 − s3q

⎞

⎠ .

(11)

In this example we let q = 1 and (12) is solved only for
S1 = M1. Hence, c1 = 1 − c2 − c3 and c1 = (c2, c3)

t . Also,
each i-th row of S1 and entries of the transformed input
color vector x1, for i = 1,2,3, are given by (mi2 − mi1,

mi3 − mi1) and xi − mi1, respectively. Thresholds applied
to fractions values for generating segmented images were
computed as

uj = τj

256

k∨

ξ=1

c
j
ξ , (12)

where k = 2,400 and by setting the user defined grayscale
threshold τj = 85 for all j . The first row in Fig. 2 shows
the segmentation produced using M (secondary colors),
where the brighter gray tones correspond to high fractions
of saturated colors. Hence color gradients are preserved
as grayscale gradients. Additionally, original color regions
composed of some proportion of the saturated colors m1,
m2, and m3 appear as middle or dark gray tones. The sec-
ond row displays the results obtained by applying the fuzzy
c-means technique with c = 7 and the thresholds values uj

used to cut fuzzy memberships were calculated with (12)
setting τj = 64 for all j = 1, . . . ,7. Observe that the brighter
gray tones are associated with pixels near to fuzzy centroids
(high membership values) whereas darker gray tones corre-
spond to pixels far from fuzzy centroids (low membership

values); note that original color gradients are not preserved.
The third row depicts as black and white binary images the
clusters found using the c-means algorithm with c = 7 and
initial centroids given by the set W ∪ M ∪ {v}. In this last
case thresholds are not needed since the c-means algorithm
is a labeling procedure that assigns to all similar colors be-
longing to a cluster the color value of its centroid. Con-
sequently, a simple labeling procedure is implemented to
separate regions of different color.

If W 1 is selected instead of M1 for the system matrix
S1 in (12), similar segmentation results are obtained except
that, in this case, red, green, and blue regions would be ex-
tracted from the corresponding saturated colors w1, w2, and
w3. We remark that Example 2 clearly shows the funda-
mental difference between the three segmentation methods
compared: c-means and fuzzy c-means clustering are statis-
tical and iterative in nature whereas the LAAM’s approach
coupled with the LM model is a non-iterative geometrical
procedure as discussed in Sect. 3.1.

Example 3 (Real color images) Next we provide additional
segmentation results for three realistic RGB color images
of size 256 × 256 pixels displayed in the first column of
Fig. 3 (see Table 2 for image information). For each of these
color images, we create a set X� = {x1, . . . ,xk�} ⊂ [0,255]3

where � = α,β, γ , and each vector xξ ∈ X� is distinct from
the others, i.e., xξ �= xζ whenever ξ �= ζ . This is achieved
by eliminating pixel vectors of the same color (k� is given
in Table 2). After application of (2)–(3) (LAAMs) and (4)
(vector bounds), the scaled matrices W and M are computed
with (5). The numerical entries for the scaled LAAM matri-
ces (3rd column, Table 2) of the sample images are explicitly
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Fig. 4 1st column: sample
RGB color images; 2nd, 3rd,
and 4th cols.: quantized
grayscale segmented images
composed from results obtained,
respectively, with c-means
clustering, fuzzy c-means
clustering, and scaled
LAAMs + LLS linear unmixing
techniques

Table 2 Information of sample real RGB color images

Image Pixels (pq) Colors (|X�| = k�) Scaled LAAMs

Circuit 65,536 35,932 Wα,Mα

Parrot 65,536 55,347 Wβ,Mβ

Baboon 65,536 63,106 Wγ ,Mγ

given below:

Wα =
⎛

⎝
255 80 101
71 255 135
46 154 255

⎞

⎠ ,

Mα =
⎛

⎝
19 203 228
194 19 120
173 139 19

⎞

⎠ ,

Wβ =
⎛

⎝
255 121 35
55 251 128
1 23 255

⎞

⎠ ,

Mβ =
⎛

⎝
0 200 254

130 0 228
220 127 0

⎞

⎠ ,

Wγ =
⎛

⎝
255 129 72
55 255 156
0 90 255

⎞

⎠ ,

Mγ =
⎛

⎝
0 200 255

126 0 165
183 99 0

⎞

⎠ .

Notice that the corresponding minimum and maximum vec-
tor bounds {v�,u�} for � = α,β, γ are readily available

from the main diagonals of the corresponding LAAM ma-
trices. A 3-D scatter plot of each set X showing only 256
different colors, including the extreme points of the set
W ∪ M ∪ {v,u}, is depicted in the second column of Fig. 3
for each sample image. Two tetrahedra enclosing points of
X are illustrated in the third column of the same figure. The
vertices of the left tetrahedron belong to the set W ∪ {v} and
those of the right tetrahedron are in W ∪{u}; similarly, in the
fourth column of Fig. 3, the left tetrahedron has its vertices
in the set M ∪ {v} and the right tetrahedron is formed with
the points of M ∪ {u}.

Again, for each RGB color image in Fig. 3, (6) was sim-
plified to (12) setting q = 1 and solving it using LLS for
each x ∈ X�, by taking first W� and then M� as the S ma-
trix for � = α,β, γ . It turns out that for the sample images
selected the corresponding 3 × 3 computed scaled LAAMs
are non-singular matrices (full rank) and, therefore, the solu-
tions found by the linear unmixing scheme are unique. Since
the minimum and maximum bounds {v�,u�} correspond, re-
spectively, to a “dark” color near black and to a “bright”
color near white it is possible to replace a specific column
in W or M with one of these extreme bounds in order to ob-
tain segmentations of dark or bright regions. Thus, final sat-
isfactory segmentation results are produced by an adequate
selection of saturated colors sj from the set W ∪M ∪ {v,u}.
Figure 4 displays the segmentation produced by applying
the clustering techniques of c-means, fuzzy c-means, and
our proposed LAAMs plus linear unmixing based technique.
Results are shown as quantized grayscale images where spe-
cific gray tones are associated with selected colors corre-
sponding to cluster centers or extreme points. Table 3 pro-
vides the technical information relative to each segmenting
algorithm; for example, “runs” is the number of times an al-
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Table 3 Technical data used for RGB color image segmentation

Image c-means Fuzzy c-means LAAMs + LLS

Circuit c = 8, runs = 5 c = 7, runs = 3 c = 6, runs = 1
distance: squared Euclidean exp(U) = 2, min.imp = 10−5 Wα,Mα,q = 1
5th run: 58 iter., 57 sec 3rd run: 108 iter., 720 sec non-iterative, 30 sec
RGB → 255,128,192 RG1G2B → 255,128,160,200 RGB → 255,128,192

Parrot c = 8, runs = 5 c = 6, runs = 3 c = 6, runs = 1
distance: city block exp(U) = 2, min.imp = 10−2 Wβ,Mβ,q = 1
5th run: 20 iter., 32 sec 3rd run: 134 iter., 238 sec non-iterative, 30 sec
RGBCY → 255,128,160,192,216 RG1G2Y → 255,128,160,216 RGB → 255,128,192

Baboon c = 7, runs = 5 c = 6, runs = 3 c = 6, runs = 1
distance: city block exp(U) = 2, min.imp = 10−2 Wγ ,Mγ ,q = 1
5th run: 39 iter., 38 sec 3rd run: 94 iter., 270 sec non-iterative, 30 sec
RGB1B2Y → 255,128,160,176,216 RGB1B2Y → 255,128,160,176,216 RGBCY → 255,128,160,192,216

procedure: kmeans (Matlab) procedure: fcm (Matlab) procedure: geninv (Mathcad)

gorithm is applied to a given image. Specifically, in the Mat-
lab environment, “runs” is equivalent to the “replicates” pa-
rameter used for c-means clustering; exp(U) and min. imp
refer to, respectively, the partition matrix exponent and the
minimum amount of improvement needed for the objective
function to converge in fuzzy c-means clustering. The no-
tation, e.g. RGB → 255,128,192, gives the gray levels as-
signed to the red, green, and blue colors.

4 Segmentation in Different Color Spaces

In this section, for brevity, we will refer to the LAAMs based
approach as the WM method. To test the performance of
the WM method in different color spaces, besides the stan-
dard non-normalized correlated RGB space, we selected as
representative alternatives, Ohta’s I1I2I3 linearly decorre-
lated RGB color space [12, 17], the HSI non-linear and non-
uniform color space [26, 28], and the perceptually uniform
color space L*a*b* [14, 28]. Mapping RGB colors to the
L*a*b* color space makes use of the linear NTSC illumi-
nant D65 RGB to XYZ conversion matrix.

Example 4 Figure 5 shows in the top left, the “peppers”
RGB color image of size 128 × 128 pixels, its HSI trans-
formation displayed as a false RGB color image, and the
extreme color pixels determined from W (upper row of rect-
angles) and M (lower row of rectangles) in the HSI color
space. Here, X = {x1, . . . ,x13,844} is reduced from a total of
16,384 pixel vectors. The scatter plot of X is depicted to the
left of Fig. 6 together with four tetrahedra enclosing differ-
ent subsets of X, namely W ∪ {v} and W ∪ {u} shown in the
middle, or M ∪ {v} and M ∪ {u} displayed to the right.The
computed scaled memory matrices and vector bounds are

Fig. 5 1st row, left to right: sample RGB color image, transformed
HSI color image, saturated colors obtained from W (upper horizontal
array of colored rectangles) and M (lower horizontal array of colored
rectangles); 2nd and 3rd rows: grayscale segmented images derived
from wj , respectively, mj for j = 1,2,3, showing “red/green” pepper
regions and bright reflected light regions

Fig. 6 Left: scatter plot of X showing all different colors present in
the HSI representation of the “peppers” RGB color image; middle
and right: tetrahedra determined, respectively, from W ∪ {v,u} and
M ∪ {v,u} enclosing four different subsets of X
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Fig. 7 1st row, 1st to 5th cols.:
“peppers” image in RGB,
I1I2I3, HSI, L*a*b* color
spaces, and NTSC grayscale
version; 2nd row, 1st to 5th
cols.: grayscale segmented
images of “red/green” peppers
and bright portions of reflected
light corresponding to each
color space, and the NTSC
grayscale version quantized to
16 levels; 3rd row, 1st to 5th
cols.: Sobel edge images
corresponding to segmentation
methods (1), (2), (5), (6) of
Table 4 and the Sobel edge
reference image obtained from
the quantized NTSC grayscale
version

given by

W =
⎛

⎝
255 100 36
188 255 16
115 103 255

⎞

⎠ , M =
⎛

⎝
0 67 140

155 0 152
219 239 0

⎞

⎠ ,

v =
⎛

⎝
0
0
0

⎞

⎠ , u =
⎛

⎝
255
255
255

⎞

⎠ .

Using the NNLS numerical method, (6) was solved for ev-
ery color pixel. The 2nd and 3rd rows in Fig. 5, display the
fraction maps obtained from the HSI saturated colors dis-
played in the top right, whose associated column vectors
correspond, respectively, to W and M . As before, thresh-
olds were again computed using (12) with k = 16,384 and
tuning τj to adequate values.

For the next example, we recall the mathematical formu-
las of two measures used for grayscale image comparisons.
Specifically, given to matrices A = (aij ) and B = (bij ) of
size p × q pixels, the correlation coefficient ρ(A,B) be-
tween A and B , and the signal to noise ratio SNR(A,B) are
computed as

ρ(A,B)

=
∑p

i=1

∑q

j=1(aij − μA)(bij − μB)
∑p

i=1

∑q

j=1(aij − μA)2
∑p

i=1

∑q

j=1(bij − μB)2
,

(13)

SNR(A,B) = −10 log10

∑p

i=1

∑q

j=1(aij − bij )
2

∑p

i=1

∑q

j=1 a2
ij

. (14)

In (13), the quantities μA and μB denote the mean value
of A and B , respectively.

Example 5 The “peppers” RGB color image and its trans-
formation to the I1I2I3, HSI, and L*a*b* color spaces, ren-

Table 4 Segmentation performance for the “peppers” color image

Segmentation method Corr. coef. (ρ) SNR

(1) WM in RGB 0.707 14.179

(2) WM in I1I2I3 0.717 14.931

(3) WM in HSI 0.708 14.124

(4) WM in L*a*b* 0.675 14.006

(5) Mahalanobis distance clustering 0.632 12.917

(6) Histograms + Morph. Watersheds 0.594 9.814

dered as false color RGB images, are displayed in the first
four columns of row one of Fig. 7. In the 2nd row below
each color image, composed thresholded fraction maps se-
lected from W ∪ M , depict the segmentation obtained in
the corresponding color space, e.g., vectors and fraction
thresholds used in RGB color space were w1(u1 = 0.454),
w2(u2 = 0.363), and m1(u1 = 1.561); similarly, for the
I1I2I3 color space, m3(u3 = 0.389), w3(u3 = 0.384), and
w1(u1 = 0.347) were chosen. The 3rd row displays So-
bel gradient edge images corresponding to the segmentation
produced by the WM method in the RGB and I1I2I3 color
spaces, a clustering method based on Mahalanobis distance,
and a hybrid technique employing histograms and morpho-
logical watersheds. The 5th column of Fig. 7 shows from
top to bottom, the NTSC grayscale version of the original
color image, a 16-level quantization produced by an opti-
mized octree nearest color algorithm, and its corresponding
Sobel edge image used as reference for quantitative compar-
isons (see Table 4).

Example 6 Figure 8 displays the segmentation results of ad-
ditional color images. In each row, the source color image in
RGB format is shown to the left; to the right, shown as quan-
tized grayscale images, follows the segmentation obtained in
the RGB, I1I2I3, HSI, and L*a*b* color spaces. For exam-
ple, the corresponding “bear” grayscale image in the I1I2I3
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Fig. 8 1st column: sample
RGB color images; 2nd to 5th
cols.: compound segmented
images obtained with the WM

method, respectively, in the
RGB, I1I2I3, HSI, and L*a*b*
color spaces (main regions of
interest are quantized)

color space (2nd row, 3rd column) was generated by com-
posing the fraction maps obtained from w2 and m2 after
thresholding at low values, respectively, setting u2 = 0.387
and u2 = 0.326.

Based on the example images given here and the perfor-
mance measure values listed in Table 4, the best segmen-
tation results produced by applying the WM method and
semi-constrained LM model occur in the I1I2I3 space (cf.
again 2nd column of Fig. 7 and 3rd column of Fig. 8).

5 Conclusions

This research work describes a novel pixel based segmen-
tation method for color images in different color spaces
based on the W and M lattice auto-associative memories,
whose scaled column vectors defines a small finite set of
saturated color pixels. These extreme points may form dif-
ferent suitable base sets to perform semi-constrained linear
unmixing to determine color fractions of any other pixel in
a given input image. Granular segmented images of all sat-
urated pixels are directly produced by scaling the fraction
data computed with the LLS or NNLS numerical methods,
and coarse segmented images can be obtained by thresh-
olding the corresponding color fraction maps. Examples us-
ing synthetic and real RGB color images are given to illus-
trate visually the results of segmentation. Table 3 summa-
rizes the computational performance of the LAAMs+LLS,
the c-means, and the fuzzy c-means techniques, from which
the main advantage of the proposed technique is the reduc-
tion of processing times due to its non-iterative nature. Sim-
ilarly, Table 4 gives the computational performance of the

LAAMs+NNLS technique in four different color spaces
by quantifying the difference between Sobel edge images
of segmented grayscale images using the correlation coeffi-
cient and the signal to noise ratio. Specifically, color image
segmentation carried out in the I1I2I3 color space outper-
formed the results obtained in the RGB space when using a
clustering technique based on the Mahalanobis distance be-
tween pixels, and a hybrid technique based on histograms
and morphological watersheds. We point out that the lattice
algebra based technique presented here has been applied so
far to still images and further developments are needed for
its application to real-time color image segmentation.
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