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Abstract—This paper proposes new pathological element-based
active device models which can be used in analysis tasks of
linear(ized) analog circuits. Nullators and norators along with
the voltage mirror-current mirror (VM-CM) pair (collectively
known as pathological elements) are used to model the behavior
of active devices in voltage-, current-, and mixed-mode, also
considering parasitic elements. Since analog circuits are trans-
formed to nullor-based equivalent circuits or VM-CM pairs or
as a combination of both, standard nodal analysis can be used
to formulate the admittance matrix. We present a formulation
method in order to build the nodal admittance (NA) matrix of
nullor-equivalent circuits, where the order of the matrix is given
by the number of nodes minus the number of nullors. Since patho-
logical elements are used to model the behavior of active devices,
we introduce a more efficient formulation method in order to com-
pute small-signal characteristics of pathological element-based
equivalent circuits, where the order of the NA matrix is given by
the number of nodes minus the number of pathological elements.
Examples are discussed in order to illustrate the potential of the
proposed pathological element-based active device models and
the new formulation method in performing symbolic analysis of
analog circuits. The improved formulation method is compared
with traditional formulation methods, showing that the NAmatrix
is more compact and the generation of nonzero coefficients is re-
duced. As a consequence, the proposed formulation method is the
most efficient one reported so far, since the CPU time and memory
consumption is reduced when recursive determinant-expansion
techniques are used to solve the NA matrix.

Index Terms—Current conveyors, nullor, operational amplifiers,
pathological elements, symbolic nodal analysis.

I. INTRODUCTION

S YMBOLIC analysis is a powerful tool which is used to
model the behavior of a circuit in terms of symbolic pa-

rameters [1]–[9]. Symbolic expressions not only give better in-
sight on the behavior of the circuit, but can also be used in syn-
thesis and optimization procedures [3], [4], [6], [10]. Tradition-
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ally, the behavior of active devices is modeled with voltage-or
current-controlled voltage or current sources. Then, symbolic
methods, such as: tree enumeration methods, signal-flow-graph
methods, parameter extraction methods, numerical interpola-
tion methods and determinant expansion methods [2]–[4] are
used in order to compute the symbolic expressions. Particu-
larly, matrix-based formulation methods, such as nodal anal-
ysis, modified nodal analysis (MNA), or tableau analysis, use
the element stamp procedure to fill the admittance matrix. How-
ever, for the case of nodal analysis, only compatible elements
can be introduced. This disadvantage has been overcome by the
MNA technique, in which additional columns and rows are in-
corporated into the admittance matrix and the noncompatible el-
ements are readily included by using a stamp [2]–[4]. However,
not only the size of the admittance matrix increases with the in-
clusion of controlled sources, since it depends on the number
of node voltages and on the branch currents associated to the
type of elements contained in the circuit, but the number of
nonzero coefficients into this matrix is also increased. As a con-
sequence, the CPU time and memory consumption used to solve
the system of equations increases [4], [8].
Let be a square matrix given by

...
. . .

...
. . .

...

...
. . .

...
. . .

...

(1)

The determinant of (1) can be obtained by applying Laplace
expansion as

(2)

or

(3)

where is a nonzero coefficient of the matrix in the most
sparse row or column , and is the minor with respect
to , which is also a determinant and can be computed using
the same rules. From (1), (2), and (3) it can be inferred that
for a full matrix, the computational complexity of the symbolic
calculation of the determinant of (1), is [11], where is
the rank of the matrix. This cost can be significantly reduced,
e.g., by exploiting matrix sparsity, that is directly given by the
number of nonzero coefficients. Therefore, the complexity of
the solution algorithm depends on the size of the matrix and
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of the number of nonzero coefficients. On the other hand, the
determinant of (1) can also be obtained by applying

(4)

where is a matrix obtained from (1) by setting .
Note that (2) and (3) are special cases of (4). Based on (4),
the determinant of (1) can be represented with compact graphs
by using the Determinant Decision Diagrams (DDDs) concept
[12]–[14]. Each nonzero coefficient of the matrix is considered
as one distinct symbol and each of them is represented into
DDDs as one nonterminal vertex. Because DDDs are based in
the manipulation of nonzero coefficients in order to expand the
determinant of (1), the complexity to compute the determinant
of a full matrix with an optimal order of the nonzero coefficients
is given by [11]. But even if modern simplification
during generation techniques that only calculate the dominant
part of the symbolic solution are going to be applied to the solu-
tion of (1), the computational complexity of best algorithms still
grow exponentially with matrix size and the number of nonzero
coefficients [15], [16]. Therefore, the CPU time and memory
consumption ofmodern symbolic analysis algorithms is dramat-
ically improved by applying formulation techniques of network
equations yielding small and sparse matrices.
Regarding formulation methods, new stamps associated to

the four types of controlled sources as well as for the nullors,
op-amps, transistors, and impedance converters have been
proposed in [17], [18]. Unlike the classical stamps, which are
deduced directly from the behavior of the active devices by
using Kirchhoff’s current law [2], [4], the new stamps have
been obtained by using the concept of matrix port-equiv-
alence and limit-variables [17], [18]. However, although
controlled sources can directly be used into the nodal analysis
method, infinity limits can only be applied once fully symbolic
small-signal characteristics of analog circuits are computed
[19]. Therefore, valuable computer resources will be wasted in
generating symbolic terms that will be pruned when the limits
are applied on the symbolic analysis results. Other limitations
of this method are as follows: the size of the Nodal Admittance
(NA) matrix depends on the number of nodes as independent
variables, the number of nonzero coefficients into the NA
matrix is increased and as a consequence, the solution of the
system of equations is more complex.
On the other hand, since its introduction in 1964 by Carlin

[20], the nullor has proven its usefulness in the areas of mod-
eling, synthesis, and analysis of analog circuits in several levels
of abstraction [21]–[28]. Despite some active devices can be
ideally modeled with the nullor, still other elements, like re-
sistors, must be added to the equivalent circuit to adequately
model the behavior of some active devices, such as: the normal
and inverting second generation current conveyors ( and

) with single or multiple outputs [29], [30]. As a conse-
quence, the number of nonzero coefficients into the equivalent
NA matrix is increased. More recently, the voltage mirror-cur-
rent mirror (VM-CM) pair has been shown to be useful to ide-
ally model active devices with voltage and current reversing
properties, without requiring additional resistors [31]–[36]. The
VM-CM pair has also a NA matrix stamp which has been ob-
tained by using the limit-variable method [33], [34]. However,
only the modeling of active devices with unity gain has been in-

Fig. 1. Pathological elements. (a) Nullator and norator. (b) Voltage and current
mirrors.

troduced and although the VM-CM pair has mainly been used
to synthesize analog circuits, it exhibits some drawbacks when
it is used for symbolic analysis purposes. The major drawback
is that the stamp of the VM-CM pair introduces the transcon-
ductance gain into the NA matrix and it must be taken as
a limit to infinity once symbolic expressions are computed. Be-
sides this, the parasitic elements of the synthesized active de-
vices are not considered [32]–[36]. Therefore, in order to com-
pute fully symbolic expressions of pathological element-based
equivalent analog circuits, the nullor properties along with the
VM-CM pair properties, should be taken into account in the for-
mulation process.
In this paper, the modeling of linear active devices by using

nullators, norators, VM-CM pairs, or as a combination of them,
is introduced. Moreover, parasitic elements associated to active
devices are also considered inside the proposedmodels. Further-
more, because pathological elements are used to model the be-
havior of active devices, a new method to formulate the NAma-
trix is also introduced. Experimental results demonstrate that the
proposed models together with the formulation method, offer a
significant improvement over previous approaches reported so
far [1]–[9], [17]–[19], [24]–[38]. We also observe that the NA
matrix is more compact, the generation of cancellation terms is
reduced, and if DDDs are used to solve the system of equations,
only few nonterminal vertices are required, reducing the CPU
time and memory consumption during the solution of the NA
matrix [8]–[14].

II. NULLOR AND VM-CM CONCEPTS

The nullor is an ideal element which is composed of a nullator
, connected in the input-port and a norator , connected

in the output port, as shown in Fig. 1(a) [20], [25]. The nullator
does not allow current to flow through it, and the voltage across
its terminals is zero

arbitrary (5)

For the norator, an arbitrary voltage can exist across its ter-
minals and an arbitrary current can flow through it

arbitrary arbitrary (6)

The nullator and norator form the nullor, which can also
be implemented with inverting characteristics by using the
VM-CM pair. Its symbol is shown in Fig. 1(b) [31], [32], [34].
This pair is also an ideal element and it is composed of a VM
at the input port and a CM at the output port. The VM imposes
two constraints on its voltage and current, given by

arbitrary (7)
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Fig. 2. Nullor-based: (a) VM and (b) CM equivalents.

The CM also imposes two constraints, given by

arbitrary arbitrary (8)

To efficiently model the behavior of active devices, the VM
and the CM will be used as two-terminal elements, as shown in
Fig. 1(b), which are also known as grounded mirror elements
[32]–[36]. The ideal behavior of the VM and CM can be mod-
eled with nullators, norators, and resistors, as shown in Fig. 2
[30], [31], and the two constraints associated with VMs and
CMs can easily be obtained by analyzing these equivalent cir-
cuits. Further, if any terminal of the VM or CM is connected to
ground, it is equivalent to a nullator or norator element, respec-
tively.
To perform symbolic analysis of analog circuits, the be-

havior of the active devices can be modeled with pathological
elements. Then, a formulation method along with a solution
method are executed, where the nullator, norator, VM, and
CM properties are taken into account [37], [38]. Suppose that
an electronic network with nodes is composed by passive
elements and pathological elements, as shown in Fig. 3(a).
The system of equations of the pathological element-equivalent
network is obtained by applying a standard nodal analysis and
given by (1). To reduce the size of the NA matrix, (5), (6), (7),
and (8) must be applied. For this reduction process, we have
two cases that are discussed as follows.

A. Nullator and Norator Trees

According to (5), the voltage level in the two nodes of a
nullator is the same. Since each node of a nullator represents
one column into the NA matrix, all the coefficients from the
two columns should be added, yielding a single column. This
process is generalized for the case of nullator trees, as shown
in Fig. 3(b). Therefore, all the coefficients of (1) associated
with the set of nodes of a nullator tree, , must
be added as

(9)

where is the new coefficient of the reduced matrix
in the th row. Besides, if any node of a nullator is grounded,

Fig. 3. (a) Analog network. (b) Nullator tree. (c) Norator tree. (d) Nullator-VM
tree. (e) Norator-CM tree.

the column of the NA matrix which is associated with the un-
grounded node of the nullator must be deleted. As a conse-
quence, (1) is reduced to

...
. . .

... (10)

For the case of a norator element, it is also connected between
two nodes and each node represents one row in the NA matrix.
According to (6) and because the current that flows from one
node to another through a norator is the same, all the coefficients
from the two rows in the NA matrix must be added to obtain
a single row. This process is also generalized for the case of
norator trees, as shown in Fig. 3(c). Thus, all the coefficients

of (10) associated with the set of nodes of a norator tree,
, must be added as

(11)

where is the coefficient of the reduced matrix in the
th column. Otherwise, if any terminal of a norator is connected
to ground, the row of the NA matrix which is represented by the
other node of the norator must be deleted [24], [37], [38]. Hence,
when the NA matrix is built from nullor-equivalent circuits, the
order of the system of equations is given by .

B. Nullator-VM and Norator-CM Trees

In the general case when nullors and VM-CM pairs are used
to model the behavior of active devices, the formulation method
should take into account the inverting properties of the VM-CM
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Fig. 4. Nullor-based operational amplifiers.

pair. Similar to the nullator, the nodes of a VM are related to the
columns of the admittance matrix, but with opposite character-

istics. According to (7), two columns in the NA matrix should
be subtracted in order to obtain a single column. This reduc-
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tion process can also be generalized by considering nullator-VM
trees, as shown in Fig. 3(d). In this way, all the coefficients
of (1) associated with the set of nodes of a nullator-VM tree,

and , must be added as

(12)

where is the new coefficient of the reducedmatrix in
the th row. As a result, (1) is reduced to (10). Similar to the no-
rator, the nodes of a CM are related to the rows of the admittance
matrix, but with opposite characteristics. According to (8), two
rows in the NA matrix should be subtracted in order to obtain
a single row. Again, this reduction process can also be gener-
alized by considering norator-VM trees, as shown in Fig. 3(e).
Therefore, all the coefficients of (10) associated with the set
of nodes of a norator-VM tree given as and

, must be added as

(13)

where is the coefficient of the reduced matrix in
the th column. As a consequence, when the NA matrix is built
from pathological element-based equivalent circuits, the order
of the system of equations is given by .
However, although (9), (11)–(13) can be used to obtain the NA
matrix of pathological element-based circuits, valuable com-
puter resources are still wasted in the generation of (1) and later
on (10). An improved formulation method of pathological ele-
ment-based equivalent circuits will be presented in Section V.
To reduce the number of nonzero coefficients in the equiva-

lent NAmatrix, the behavior of an active device should be mod-
eled with pathological elements as simple as possible, avoiding
the use of floating resistors. This is because a grounded resistor
has only one entry in the NA matrix, whereas a floating resistor
has four entries. Further, from (9), (11)–(13) one can see that
the coefficients of (1) are always added or subtracted during the
reduction process in order to obtain the new coefficients. As a
consequence, the number of nonzero coefficients of the equiv-
alent NA matrix is usually smaller than the number of nonzero
coefficients generated by other formulation methods, like the
MNA method.

III. PATHOLOGICAL ELEMENT-BASED ACTIVE
DEVICE MODELING

According to the voltage-current relationships of the nullor,
a nullator can model a node with high-impedance, if it is
floating, or a node with low-impedance, if any terminal of
the nullator is grounded [27], [28]. For the norator, it can
model both impedance levels: high or low, depending of the
signal to be measured. Thus, by considering the impedance
characteristics along with the gain equations of operational
amplifiers, and by applying the nullor properties, several active
devices can adequately be modeled with the nullor, as shown
in Fig. 4. Some of these active device models are well known
[39]–[44], but the nullor-based models of the OTRA, COA,
FOTRA, CFB-OTA, and OFC are reported herein for the first
time in the literature. As an example, the nullor-based model
of the OFC is derived as follows: the OFC is a hybrid amplifier
which can process voltage and current signals at its input and
output ports. According to the gain equation in the input port,

Fig. 5. Pathological element-based operational amplifier models.

the voltage in the positive terminal is equal to the voltage in
the negative terminal. Also, since a voltage signal is applied
in the positive terminal of the OFC, its input impedance must
be ideally infinity. Thus, by using the nullator properties, the
input port of the OFC can be modeled with a floating nullator,
as shown in Fig. 4. For the output port, both terminals are
processing current signals and therefore, they must have ideally
an infinity impedance level. Again, by considering the gain
equation, the impedance levels of the output terminals and the
norator properties, the output port of the OFC can adequately
be modeled with a floating norator. Furthermore, the OFC is ba-
sically a transresistance amplifier with low and high impedance
levels, respectively. Since, the negative terminal in the input
port of the OFC can only process current signals, its behavior
is better modeled by using a floating norator. Afterwards, this
current signal is transformed to voltage by using a grounded
resistor, which models the transresistance gain of the OFC.
Finally, by applying the nullator properties, the voltage signal
is obtained in the W-terminal of the OFC. In the same manner,
positive/negative-type first-, second-, and third-generation
inverting and noninverting current conveyors with a single or
multiple outputs can also be modeled with the nullor [22], [29],
[39]. Therefore, standard nodal analysis can be applied in order
to compute fully-symbolic expressions of analog circuits [37],
[38].
The VM-CM pair, recently introduced as an universal active

element [34], can be used to reduce the number of circuit-ele-
ments in the nullor-based operational amplifier models shown
in Fig. 4. For instance, we can identify the nullor-based model
of the CM shown in Fig. 2(b), in several amplifiers of Fig. 4,
which are surround with a dashed line. Therefore, by substi-
tuting the equivalent model from Fig. 2(b) in Fig. 4, some oper-
ational amplifier models can be compacted, as shown in Fig. 5.
In an analogous manner, some types of current conveyor models
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Fig. 6. Pathological element-based current conveyor models. (a) (b) (c) (d) MOICCI. (e) (f) (g) (h) MOICCII.
(i) (j) (k) (l) (m) MOICCIII.

introduced in [29] can be improved, as shown in Fig. 6. The
grounded resistors in Figs. 4–6 model the gain of the opera-
tional amplifiers and along with nullators, norators, VMs, or
CMs, they are also used to transform current to voltage or vice
versa. Further, parasitic resistors and capacitors can easily be in-
cluded in the input-output terminals of Figs. 4–6. For instance,
a CFOA is characterized by in the -terminal, and
in the -terminal, and in the z-terminal (here, is the
parallel of and ). Therefore, a more realistic model can be
built, as shown in Fig. 7. Note, however, that although floating
pathological element-based active device models have been in-
troduced [32], [36], they cannot be used without the limit vari-
ables, whose negative impact for symbolic analysis has been
discussed above and will be illustrated in Section V.

IV. FORMULATION METHOD FOR NULLOR-BASED
EQUIVALENT CIRCUITS

The behavior of active devices can bemodeled with grounded
resistors, nullators and norators, as shown in Fig. 4, and by sub-
stituting the VMs and CMs in Figs. 5 and 6 by their nullor-
based models shown in Fig. 2. As a consequence, a fully con-
nected nullor-equivalent circuit is obtained. It follows that be-
fore computing symbolic small-signal characteristics, a formu-

Fig. 7. Pathological element-based CFOA model including parasitic elements.

lation method must be applied to obtain the system of equations
given by

(14)

where is the current vector, is the NA matrix, and rep-
resents the vector of nodal voltages. The proposed formulation
method along with a detailed application example are described
in Sections IV-A–IV-E.

A. Generation of Tables for Nullators, Norators, Independent
Current Sources, and Admittances

1) Replace each active device by its nullor-based model.
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2) Group and store nullators, norators, independent current
sources, and admittances in tables, including their symbols
and nodes.

3) From the nullor-equivalent circuit, obtain a set of nodes
ordered in ascending form (0 is assigned to the reference
node)

B. Computing Norator and Nullator Indexes

The nodes of the nullators and norators must be manipulated
to generate two vectors, namely: (norator vector) and (nul-
lator vector). These vectors have the indexes associated to the
column and row variables of the NA matrix. The procedure to
compute the indexes is done as follows.
1) Group each pair of nodes of a norator and nullator as a set
and store it in the vector or vector , respectively.

2) Compare the nodes of each set with every set of nodes into
the same vector ( or ). If a node is duplicated in two
sets, they must be joined into a single set and ordered in
ascending form.

3) Compare each node of with every set of nodes
of the vector (alternatively ).
• If a node of matches the first node of any set of
nodes of the vector (alternatively ), the set of nodes
must be reordered according to the position of the node
in .

• If a node of does not match with the nodes
of any set of nodes of the vector (alternatively ),
must be included into the vector (alternatively ) and
placed in the same position as in .

4) Delete the set of nodes of the vector (alternatively ), if
the reference node is one of its nodes.

The final vectors are given as

where along with are
the sets of nodes, and along with are the nodes of the sets.

C. Construction of the NA Matrix

Manipulating the indexes of the admittances and the vectors
and , the NA matrix is done as follows
1) Compare the nodes of every set of nodes of the vector
with the pair of nodes of the admittances.
• If node of a set matches with any node of some
floating admittances, include the nodes along with the
names of the admittances into a list called

, where is the name of
the th admittance and is the nonmatching node of

.
• If node matches the node of some grounded admit-
tances, include the node and the admittance names as

.
2) Compare each node of every set with the nodes of
each set of the list , in order to generate each co-
efficient of the NA matrix.
• If , all the admittances in the set of are
added in with positive sign.

• If , only the admittance connected to the node
is added in with negative sign.

D. Generation of the Vectors and

Each node of the sets in vector , represents a nodal voltage.
Therefore, the voltage vector is obtained as

(15)

Each set in vector , represents an entry of a current source

(16)

To fill (16), each node of must be compared with the nodes
of a current source.

• If , add the current source with negative sign in (16),
according to the position of in the vector .

• If , add the current source with positive sign in (16),
according to the position of in the vector .

Hence, for any analog circuit modeled with nullor elements,
the equivalent circuit has nodes and nullor elements, thus,
the size of the admittance matrix is equal to .

E. NA Matrix Formulation Using Nullor-Based Models

To illustrate the NA matrix formulation using nullor-based
models, let us consider the symbolic analysis of the

-based inverting low-pass filter shown in Fig. 8(a)
[45]. If the nullor-based VM and CM models shown in Fig. 2
are used in the model in Fig. 6(f), then a nullor-equiv-
alent circuit for Fig. 8(a) is generated, as shown in Fig. 8(c).
Following the proposed formulation method described above,
the set of nodes is given by

(17)

The nullators, norators, admittances, and independent current
sources are stored as two-terminal elements in Table I. The
nodes of the nullators and norators are grouped and stored in
the vectors and , respectively

(18)

(19)

Each node in (17) is compared with all the nodes of the set
of nodes in (18) and (19). In this way, the sets are ordered in
ascending form and the nodes of (17) which are not considered
in the vectors and are readily included

(20)

(21)

Because the reference node is included in the first set of nodes
in (21), this set must be removed. Thus, the final vectors are
obtained as

(22)

(23)

According to Step 1 from Section IV-C, the lists
are obtained by manipulating the admittances along with their
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Fig. 8. (a) Inverting low-pass filter; the output is the node 3. (b) Stamp model.
(c) Nullor-based model. (d) Pathological element-based model.

TABLE I
TWO-TERMINAL ELEMENTS FROM FIG. 8(C)

nodes given in Table I and the indexes of (22), which are given
as

(24)

In order to generate all the coefficients of the NA matrix,
the nodes of (23) must be compared with the nodes of (24).
For instance, to obtain the element , each node of the third
set in (23) should be compared with each node of , thus,

. On the other hand, the vector is obtained
from (22) and given by

(25)

Finally, the vector is obtained by comparing each node of (23)
with the node pair of the independent current source shown in
Table I and given by

(26)

Thus, the system of equations becomes

(27)
The output voltage is taken at and is given by

(28)

V. EXTENDED FORMULATION METHOD FOR PATHOLOGICAL
ELEMENT-BASED EQUIVALENT CIRCUITS

Pathological element-based active device models have been
shown in Section II. Thus, according to the pathological ele-
ment-equivalent circuits, the NA matrix can be formulated.

A. NA Matrix Formulation by Applying Limit Variables

To illustrate the evolution towards a more efficient NAmatrix
formulation method for symbolic analysis purposes, let us con-
sider again the analysis of the -based inverting low-pass
filter in Fig. 8(a) [45], by using the limit variables method [33],
[34]. For this case, the VM-CM-based model from
Fig. 6(f) is used in Fig. 8(a), as shown in Fig. 8(b). The stamp
of the VM-CM pair shown in Fig. 1(b) [33], is given as

(29)

where is the transconductance gain of the VM-CMpair con-
sidered as a voltage-controlled current source (VCCS). In this
manner, by applying (29) and by using the voltage source stamp
in Fig. 8(b), the system of equations is given by

(30)
where

(31)

The fully symbolic transfer function of the inverting low-pass
filter with node 3 considered as output node is given by

(32)
However, once this expression has been generated, it must

still be reduced by taking the limit to infinity of in (32) [17],
[18], [32]–[34]. The resulting symbolic expression is the same
as the one given by (28). Furthermore, it can be inferred that
the size of (30) depends on the number of nodes of the original
circuit. Therefore, not only the size of the matrix and the number
of nonzero elements has not been reduced with respect to the
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nullor-based formulation method, but a limit to infinity must
be applied. Hence, this formulation method does not show any
advantage with respect to nullor-based models.

B. NA Matrix Formulation by Using Pathological
Element-Based Models

By using nullor-based models, the original circuit is trans-
formed to a nullor-equivalent circuit and then standard nodal
analysis can be applied to formulate the system of equations
and to compute symbolic expressions. However, the order of the
NAmatrix is given by the number of nodes minus the number of
nullors, which becomes large if the nullor-based models are also
more complex. The reason for this disadvantage is that grounded
resistors are used to model the inverting behavior of some op-
erational amplifiers and current conveyors, as shown in Fig. 4
and in [29]. To avoid the problem of using large nullor-equiva-
lents in active devices with inverting characteristics, the use of
pathological element-based models is proposed. The main idea
of using pathological elements is to obtain more compact active
device models, but with their same original behavior. As a con-
sequence, the order of the system of equations and the number
of nonzero coefficients should be reduced. Let us consider again
the circuit shown in Fig. 8(a) and the current conveyor model
shown in Fig. 6(f). The pathological element-based equivalent
circuit is shown in Fig. 8(d) and by applying standard nodal
analysis, the system of equations is obtained as

(33)
To reduce the order of (33), the nullor and VM-CM pair prop-

erties mentioned in Section II should be applied. According to
the nullator properties, the coefficients of the fifth column are
added to the first column. From Fig. 8(d) and by considering the
voltage-constraint of the VM, , the coefficients of the
second column should be subtracted from the third column. For
the norator connected between node 1 and ground, the first row
in (33) should be deleted. Finally, because a CM is connected
between nodes 2 and 4 and by applying its current-constraint,
the coefficients of the fourth row are subtracted from the second
row. So, the NA matrix of Fig. 8(b) in (33) is reduced to

(34)
As can be seen, not only the order of the NA matrix is much

lower when using the pathological element-based
model compared to traditional stamps and nullor equivalents,
but the number of nonzero coefficients is also reduced. For
example, the order in (30) is 5 with 12 nonzero coefficients; the
order in (27) is 5 with 11 nonzero coefficients, but using the
pathological elements the order of the NA matrix is reduced
to 3 with only 6 nonzero coefficients, as given by (34). This
is a good advantage of using pathological elements in active
devices with inverting properties, e.g., the . Therefore,
the fully symbolic transfer function of the inverting low-pass
filter is computed by considering as output and yielding

the same function in (28). Since , a noninverting
low-pass filter is also obtained if the node 2 is the output, as
shown in [45]. A systematic method to obtain (34) is very
convenient if active devices are modeled with pathological
elements instead of only nullors, as shown in Figs. 5 and 6,
since the formulation method described in Section IV cannot
be applied. Therefore, a formulation method is required that
considers the inverting properties of the VM-CM pair during
the formulation process. The new proposed formulation method
is described as follows.

C. Generation of Tables for Nullator-VM, Norator-CM,
Independent Current Sources, and Admittances

1) Replace each active device by its pathological element-
based model.

2) Group and store nullators along with VMs, norators along
with CMs, admittances, and independent current sources in
a table, including their symbols and nodes. From the two
constraints given by (7) and (8), the nodes of each VM and
CM must be included with their signs, but one should be
careful of not to duplicate a node with different signs. In
this case, the sign of the nodes of a VM or a CM must be
inverted, in order to obtain a uniform agreement of signs.

3) Compute the set of nodes ordered in ascending form:
(0 is the reference node).

D. Computing Norator, Nullator, VM, and CM Indexes

The nodes of nullators, norators, VMs, and CMs are manipu-
lated to generate two vectors, namely: (norator-
vector) and (nullator- vector), as follows.
1) Group each pair of nodes of a norator, nullator, , and

as a set and store it in the vector or ,
respectively.

2) Compare the nodes of each set with every set of nodes
into the same vector ( or ). If a node
is duplicated in two sets, they are joined into a single set
and ordered in ascending form, but without considering the
negative sign of the node numbers.

3) Compare each node of with every set of nodes
of the vector (alternatively ).
• If a node of matches the first node of any set
of nodes of the vector (alternatively )
(without considering the negative sign of the node), the
set of nodes must be placed according to the position of
the node in .

• If a node of does not match with the nodes of
any set of nodes of the vector (alternatively

), must be included into the vector
(alternatively ) and placed in the same position
as in .

4) Delete the set of nodes of the vector (alternatively
), if the reference node is within the set of nodes.

The final vectors are given as: and
, where

and are the set of nodes, and along
with are the nodes of the sets.

E. NA Matrix Formulation

Manipulating the indexes of admittances along with the vec-
tors and , the NA matrix is built as follows.
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1) Compare the nodes of every set of nodes of the vector
with the pair of nodes of the admittances.

• If the node of a set match with any node
of some floating admittances, include the nodes
along with the names of the admittances into

.
• If the node match the node of some grounded ad-
mittances, include the node and the admittances as

.
2) Compare each node of every set with the nodes
of each set of the list , in order to generate each
coefficient of the NA matrix.
• If , all the admittances in the set of are
added in with positive sign.

• If , all the admittances in the set of
are added in with negative sign.

• If , only the admittance connected to the node
is added in with negative sign.

• If , only the admittance connected to the node
is added in with positive sign.

F. Generating and Vectors

The voltage vector is obtained from the vector

(35)

Each set in the vector represents an entry of
current sources

(36)

To fill (36), each node of the set must be compared
with the nodes of a current source.
• If , add the current source with negative sign in
(36), according to the position of in vector .

• If , add the current source with positive sign in (36),
according to the position of in vector .

Hence, for any analog circuit modeled with pathological ele-
ments, the equivalent circuit has nodes and pathological el-
ements, thus, the size of the admittance matrix is equal to

. Comparing the two proposed formulation methods,
that introduced in Section IV, and that described above, we can
conclude that the former can be considered a particular case of
the latter.

G. NA Matrix Formulation by Applying the Proposed Method

To show the usefulness of the pathological element-based
models of active devices and the potential of the proposed sym-
bolic formulation method introduced in the previous sections,
we consider again the symbolic analysis of the -based
inverting low-pass filter shown in Fig. 8(d) [45]. Following the
proposed formulation method, all the two-terminal elements are
stored in Table II. The set of nodes is obtained from Fig. 8(d)
and given by

(37)

According to Section V-D and from Table II, the final vectors
and are obtained as

(38)

TABLE II
TWO-TERMINAL ELEMENTS FROM FIG. 8(D)

(39)

According to Section V-E, the nodes of the admittances given
in Table II along with the indexes of (38) are manipulated to
obtain the lists as

(40)

Later on, each node of (39) is compared with each node of
(40) and therefore, the admittance matrix given by (34) is ob-
tained with . The voltage vector is obtained from (38) as

(41)

and finally, the current vector is obtained by comparing each
node of (39) with the nodes of the current source in Table II and
given by

(42)

VI. ILLUSTRATIVE EXAMPLE

As a second example to compare the existing and pro-
posed formulation methods, let us consider the noninverting
band-pass and low-pass filter using shown in Fig. 9(a)
[45]. The behavior of each active device is modeled with its
pathological element-equivalent as shown in Fig. 6(f) and (g)
augmented with parasitic elements. The equivalent circuit is
illustrated in Fig. 9(b). Following the proposed formulation
method, the names and nodes of the nullators, norators, VMs,
CMs, admittances, and independent current sources are stored
in Table III. From Fig. 9(b), the set of nodes is obtained as

(43)

From Table III, the nodes of the nullators, VMs, norators, and
CMs are grouped and stored in the vectors and

, respectively

(44)

(45)

The set of nodes in (44) and (45) are ordered with respect to the
nodes of (43), and the nodes of (43) which are not considered
in the set of nodes in (44) and (45), are included in the vectors

and , respectively

(46)

(47)
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Fig. 9. (a) Noninverting band-pass and low-pass filter taken from [45]. (b) Pathological element-based model.

TABLE III
TWO-TERMINAL ELEMENTS FROM FIG. 9(B)

The reference node is included into the third and second set
of nodes in (46) and (47), hence, they should be deleted. Thus,
the final vectors are given by

(48)

(49)

Bymanipulating the admittances alongwith their nodes given
in Table III and the indexes of (48), the lists are given
as

(50)

Afterwards, each node of every set in (49) is compared
with the nodes of (50). For instance, let us consider the set

. In order to obtain the coefficent , each node of the
set is compared with each node of , thus,

. Vector is obtained by
using (48) and given by

(51)

Vector is obtained by comparing each node of (49) with
the pair of nodes of the independent current source shown in
Table III and given by

(52)

Therefore, the system of equations from Fig. 9(b) by using
pathological element-based models becomes

(53)

where and . The low-pass
response with both polarities can be obtained by solving (53)
to and considering that , as already provided
in (54). The band-pass response is available at node and
given by (55). If parasitic elements are not considered, then
ideal transfer functions are computed [45]. See (54)–(58) at the
bottom of the next page.
The system of equations of the circuit shown in Fig. 9(a) has

also been formulated with:
—MNA by using controlled sources;
—MNA by applying limit-variables stamp;
—Nodal analysis by using nullor equivalents.
The system of equations for each formulation method is given

by: (56), where , , and are the gains of the controlled
sources; (57), where , are the transconductance gains
of the VM-CM pairs; and (58), where the formulation method
introduced in Section IV has been applied. Comparisons be-
tween the size of the admittance matrix and the generation of
nonzero coefficients according to the formulation methods are
summarized in Table IV. Therefore, we can see that by applying
the formulation method described in Section V, the size of the
admittance matrix is reduced. Further, we also note that some
canceling terms are generated with the formulation methods de-
scribed in Table IV, whereas with the new formulation method,
the generation of canceling terms is reduced. For instance, (53)
is cancellation-free and (34) has only one canceling term. Fur-
thermore, if controlled sources are used to model the behavior
of and the MNA method is applied, 20 nonzero co-
efficients are generated. Otherwise, if the proposed formulation
method is executed, only six nonzero coefficients are generated.
To validate the efficiency of our formulationmethods in terms

of CPU time andmemory consumption, the four system of equa-
tions from Fig. 9(a) given by (53), (56)–(58) have been solved
by applying DDD method. The solution method was run on a
3.06-GHz Intel Xeon 4 Coresmachine with 2 GBRAM. Table V
shows the average CPU time andmemory consumption required
during solution of the system of equations for each formulation
method. In this way, less CPU time and memory consumption
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TABLE IV
COMPARISON OF FORMULATION METHODS

TABLE V
CPU-TIME AND MEMORY CONSUMPTION USED TO SOLVE THE SYSTEM OF

EQUATIONS

are required to solve (53) instead of (56). Also, from Table IV,
20 nonterminal vertices are required to represent (56) by means
of DDDs. Otherwise, if the proposed formulation method is ex-
ecuted, only six nonterminal vertices are necessary to represent
(53) with DDDs. As a consequence, the complexity in the gen-
eration of nonterminal vertices along with the CPU time and
memory consumption used during the solution of (53) are re-
duced, as shown in Table V[8], [12]–[14].
Our experiences show that if the behavior of active devices

are adequately modeled with pathological elements, the size of

the system of equations and the number of nonzero coefficients
are always smaller than those generated with other formulation
methods. In the worst case, there are analog circuits that by the
manner of how they are connected, the pathological element-
based model is reduced to its nullor-based equivalent model
and, however, the proposed formulation method from Section V
can still be applied. This is the case of the OTRA, COA, and
FOTRAwhen the negative terminal is floating, for instance. Ad-
ditionally, in the proposed pathological element-based models,
parasitic elements can be considered while maintaining a lower
order of the NA matrix than by applying the limit-variables
method or nullor equivalents, for which the system of equations
is large and as already shown in Section V-A a limit to infinity is
always required in order to simplify the symbolic expressions.
On the other hand, the proposed formulation methods are

based on the manipulation of the interconnection relation-
ships of the pathological elements. Therefore, if pathological
element-based models of new active devices are complex,
(i.e., a large number of floated or grounded resistors are used
to model the behavior of active devices), the size of the NA
matrix and the number of nonzero coefficients increases. As a
consequence, the CPU time and memory consumption used to
solve the system of equations with any solution method is also
increased. A limitation of the proposed formulation methods is
that floating pathological element-based active device models
cannot be included into the formulation process. In this case,
stamps of floating pathological elements can be used, but a
limit to infinity must be again applied to reduce the symbolic
expressions.

(54)

(55)

(56)

(57)

(58)
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VII. CONCLUSIONS

In this paper, we proposed novel pathological element-based
active device models and new approaches to formulate the NA
matrix of analog circuits. Nullators, norators, VMs, and CMs
properties were used in order to model the behavior of several
active devices, eventually including parasitic elements. The
significant advantage of our proposed symbolic formulation
method is that the NA matrix can quickly be constructed
by manipulating the relationship between the indexes of the
pathological elements and admittances. It was demonstrated
that the new approximation achieves a considerable reduction
not only in the order of the system of equations, but also in the
generation of nonzero coefficients into the NA matrix, which
have been compared with the formulation methods given in
Table IV. The formulation method described in Section V can
be easily implemented within a design automation tool and
from Table V we can conclude that the compacted NA matrix
improves the CPU time and memory consumption during the
solution process.
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