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Resumen

El diseño de circuitos integrados (CIs) analógicos se ha convertido en un proceso com-
plejo, debido al gran numero de parámetros, variables de diseño y compromisos entre
las caracterı́sticas eléctricas de cada circuito. Por lo tanto, se han implementado diferen-
tes técnicas de optimización para el diseño de CIs, una de las más utilizadas actualmente
es la aplicación de metaheuristicas para el dimensionamiento de CIs, ya que proporcio-
nan un conjunto de soluciones factibles de acuerdo al parámetro a optimizar. En esta
Tesis se aplican metaheuristicas mono y multi-objetivo para el dimensionamiento de
Amplificadores Operacionales de Transconductacia (OTAs) con el objetivo de minimi-
zar el área de silicio y garantizar que los transistores MOS operen dentro de un punto
de operación de corriente directa (DCOP) adecuado.

En esta Tesis se describen los algoritmos de optimización basados en poblaciones y en
algoritmos evolutivos como Optimización de Enjambre de Partı́culas (PSO), Muchos
Enlaces de Optimización (MOL) y Algoritmo Genético de Clasificación No dominado-
II (NSGA-II) aplicados al dimensionamiento de los OTAs Miller y Recycled Folded
Cascode, utilizando las tecnologı́as UMC de 180nm y onsemiconductor de 500nm,
respectivamente. Además, se realiza el diseño y la caracterización de un OTA Miller
utilizando las ecuaciones del modelo cuadrático. Posteriormente se describe el procedi-
miento que se llevo a cabo para estimar el área de silicio de cada OTA y las condiciones
para garantizar que los transistores MOS operen dentro de la región de inversión fuerte.

Se muestra el comportamiento y los resultados de las partı́culas de los algoritmos PSO
y MOL a traves de las generaciones, y los frentes de Pareto correspondientes al algo-
ritmo NSGA-II. Finalmente, de acuerdo con los resultados obtenidos de los algoritmos
para el dimensionamiento de los OTAs, el layout y las simulaciones post-layout se lle-
van a cabo para verificar que los circuitos optimizados sean robustos a variaciones de
proceso, voltaje y temperatura (PVT).





Abstract

Analog integrated circuits design has been a challenge, due to the large number of pa-
rameters, design variables and trade-offs among the electrical characteristics of each
circuit. Therefore, different optimization techniques have been implemented for the de-
sign of ICs. One of the most used techniques is the application of metaheuristics for the
sizing of ICs, since they provide a set of feasible solutions according to the parameter
to be optimized. In this Thesis mono and multi-objective metaheuristics are applied for
the sizing of Transconductance Operational Amplifiers (OTAs) with the aim of minimi-
zing the silicon area and guaranteeing that the MOS transistors operate within a suitable
direct current operating point (DCOP).

In this Thesis are described population-based optimization algorithms and evolutionary
algorithms, such as Particle Swarm Optimization (PSO), Many Optimization Liaisons
(MOL) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) applied to the si-
zing of both the Miller and Recycled Folded Cascode OTAs, using UMC 180nm and
onsemiconductor 500nm technologies, respectively. Moreover, the design and charac-
terization of a Miller OTA is performed using the quadratic model. Subsequently, the
procedure that was carried out to estimate the silicon area of each OTA and the con-
ditions to ensure that MOS transistors operate within the strong inversion region is
described.

The behaviors and results of the PSO and MOL particles through the generations and
the Pareto fronts corresponding to the NSGA-II algorithm are shown. Finally, according
to the results obtained with the algorithms for the sizing of the OTAs, the layout and the
post-layout simulations are carried out to verify that the optimized circuits are robust to
process, voltage and temperature variations (PVT).
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Chapter 1
Introduction

Integrated circuit (IC) design using complementary metal-oxide semiconductor (CMOS)
technology is a complex process since the performance of the circuit depends on the si-
ze of the fabrication process. There are mathematical models that describe the circuit’s
behavior at different technologies, but usually they do not take into account secondary
effects like channel length modulation, body effect and velocity saturation that can af-
fect the circuit’s performance. For example, as mentioned in [6], to carry out a good
design is necessary to start from a set of previously established specifications. Howe-
ver, there is no general method for IC design, but as mentioned in [1], top-down design
methodologies are proposed with the intention of separating a complex problem into se-
veral ones with a minor difficulty. In a hierarchical design approach, generally the first
stage is the system level, which is based on developing the architecture to satisfy the
established specifications, programs such as Matlab and Verilog AMS allow to verify
the system’s performance. Subsequently, the system is partitioned into blocks, which
describe the system’s operation through a behavioral programming language such as
Simulink, Verilog and VHDL. The next stage corresponds to the circuit level, at this
stage the designer requires experience to choose the appropriate topology and his abi-
lity to carry out the devices sizing corresponding to the circuit’s parameters. There are
different methods to implement the transistor sizing, and they require different kind of
models such as the quadratic one that is based on independent equations that describe
the transistor’s behavior, gm/id technique and other automation tools.

1.1. Analog Integrated Circuit Design

The integration of mixed digital-analog circuits in VLSI (Very-Large-Scale Integration)
technology is a challenge for analog IC design. For example, as already mentioned
in [7], automated synthesis or sizing methodologies are needed to avoid long design
times, high design complexity, high cost and highly skilled designers. In practice, and
as shown in Fig. 1.1, parameters such as noise, power dissipation, input and output

1
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Figure 1.1: Analog design octagon [2]

impedance, linearity, gain, voltage range, speed and voltage sources present a trade-off
among them. One example on understanding trade-offs is the one related to have a better
gain in an amplifier design, which main condition requires a high output impedance.
Other examples of trade-offs can be inferred looking at Fig. 1.1, from which one can
conclude that according to [2], analog integrated circuit design is a kind of a multi-
dimensional optimization problem. This allows the integrated circuit design process to
be automated and optimized, with the aim of minimizing design errors according to
target specifications.

The problem of designing an electronic system from its most abstract descriptions can
be solved by adopting hierarchical design approximations. For example: in Fig. 1.2
one can see the steps to achieve a CMOS design at different levels of abstraction. The
most abstract step is selecting a topology that fits the specifications, this topology can
be selected from designer’s experience, database or with heuristics rules. Once it was
chosen the best topology is important to propose current branches and biasing voltages
for each circuit element to start with the next step, transistor sizing. In this step, the
width (W) and the length (L) of each transistor are determined in order to find the best
sizes that accomplish target specifications. Afterwards, the verification of the circuit
performance, can be performed by using circuit simulators like SPICE (Simulation
Program with Integrated Circuit Emphasis). If the circuit doesn’t complies with all
previously established requirements the previous steps are reviewed, otherwise the next
step is the layout generation, verification and extraction.

The sizing of analog integrated circuits is not a trivial task, so that one can find diffe-
rent works proposing different sizing techniques because in the analog domain, every
topology may require different approaches. According to [1], one can identify two main
strategies for performing the automatic sizing of analog ICs: knowledge based and op-
timization based. The first one is based on calculating the design parameters according
to the circuit’s characteristics by means of design equations, combining mathemati-
cal techniques with the intuition and experience of the designer. The latter consists of



1.2. METAHEURISTICS 3

Figure 1.2: Hierarchical approach of ICs design [1]

applying conventional optimization approaches or metaheuristics, and in both cases the
optimization loop evaluates circuit performances using a circuit analysis tool like SPI-
CE.

1.2. Metaheuristics
The first appearance of the heuristics was during the second world war in 1940 with
Alan Turing who called his method as heuristics search, as mentioned in [11]. After
this great contribution the next big step was the development of evolutionary algorithms
by John Holland and his collaborators among 1960s and 1970s. In 1975 Kenneth De
Jong showed the potential of genetic algorithms for objective functions, whether noisy,
multimodal or even discontinuous. The most important time in the development of me-
taheuristics was in the decade of the 90s with Tabu Search [12] by Fred Glover’s in
1997. Then, in 1992, search techniques based on swarm intelligence ants using phero-
mones to communicate between them, was developed in [13]. Another great advance in
the development of metaheuristics was particle swarm optimization (PSO) that is ins-
pired by the social behavior of fish and birds PSO was developed by James Kennedy,
and engineer Russell C. Eberhart [14].

The word metaheuristics comes frommetawhich means the highest level and heuristic
which mean the art of discovering new strategies [3]. According to [15], metaheuristics
can be classified into two groups: single-solution-based and population-based. The first
one is based on a single solution at any time such as search-based (SA). The population-
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based metaheuristics are updated iteratively until the termination condition is satisfied
and are exploration-oriented, moreover are categorized into evolutionary algorithms
(EAs) and swarm-based algorithms.

Another type of classification is presented in [16], where metaheuristics are classified
into four categories: relaxation, constructive, search and evolutionary metaheuristics.

Relaxation metaheuristics propose models that can be simplified to eliminate or
weaken a complex problem.
Constructive metaheuristics are based on procedures that obtain a solution from
the analysis and gradual selection of the components that form it.
Search metaheuristics guide the procedures that use movements to go through the
space of alternative solutions and exploit the associated structures.
Evolutionary metaheuristics are focused on procedures based on sets of solutions
that evolve over the solution space.

Optimization has become an important subject of interest for many researchers in or-
der to maximize or minimize the characteristics of some process. According to [11] the
vast majority of optimization techniques are metaheuristics, due to its ability to produce
feasible solutions to complex problems in a short time. In general, metaheuristics al-
gorithms are based on some abstractions of nature, arguing that nature has found good
solutions to all kinds of problems over the years. The most important characteristics of
the metaheuristics, is the selection process which ensures that the solutions converge
at one point, on the other hand is the randomness that ensures that the algorithm is not
stuck in a limited search space.

Metaheuristics allow to solve a problem by delivering satisfactory solutions in a short ti-
me. There is no guarantee to find global optimal solutions. Fig. 1.3 shows the genealogy
of metaheuristics. Is also observed that since the 80s the development of metaheuristics
has exponentially increased due to the demand to improve the optimization process.
According to [3] a metaheuristic must take into account two contradictory criteria: ex-
ploration of the search space (diversification) and exploitation of the best solutions
found (intensification). In one hand the diversification visits unexplored regions to be
sure that all the search regions are evenly explored. On the other hand intensification is
based on exploring the most promising regions with the aim of finding better solutions.

Due to different optimization methods, metaheuristics can be classified according to
certain criteria [3] such as Nature and Nonnature inspired: a large number of me-
taheuristics are based on a natural process such as evolutionary algorithms and particle
swarm optimization, moreover another type of metaheuristics employ physics princi-
ples like the simulated annealing. There are also methods of memory usage and me-
moryless. In the latter, no information extracted is used during the search, an example
of this type of local search is greedy adaptive search procedure (GRASP) [17], on the
contrary, metaheuristics like tabu search occupies short and long term memory space.
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Figure 1.3: Genealogy of the metaheuristics [3]

Also the metaheuristics can be classified in deterministic and stochastic: The former
metaheuristics solves an optimization problem by making deterministic decisions whi-
le a stochastic metaheuristics applies random rules during the search. Finally another
type of classification can be iterative and greedy: Iterative algorithms are initialized
with a number of solutions which will be transformed in each iteration using some
search operators. Greedy algorithms start from an empty solution, and at each step a
decision variable of the problem is assigned.

In recent years, metaheuristics have been applied to the design of integrated circuits,
in [18] an evolutionary approach based on a variation of the PSO is implemented with
the purpose of sizing a two-stage comparator (TSC) and a CMOS Folded Cascode
Operational Transconductance Amplifier (FCOTA) for low power applications. In [19]
a highly effective hybrid sizing methodology for the detection of parasitics is proposed,
using mono-objective evolutionary algorithms. Another metaheuristic strongly used in
transistor sizing is the genetic algorithm as shown in [20], with the purpose of sizing
an operational amplifier since it can be translated into a multi-objective optimization
task. In [10] is shown the usefulness of assigning current-branches-bias levels, in or-
der to improve the sizing optimization of analog integrated circuits. In addition me-
taheuristics have been used for multi-objective optimization problems as shown in [21]
where the authors use NSGA-II for the sizing of a Recycled Folded Cascode Opera-
tional Transconductance Amplifier (RFCOTA). An optimization system which uses the
multi-objective evolutionary algorithm based on decomposition (MOEA/D) is presen-
ted in [22] for sizing second generation current conveyors (CCIIs). PSO and NSGA-II,
have been applied in optimizing CMOS amplifiers, but they require circuit evaluators
that embed mathematical models of the MOS transistors.



6 CHAPTER 1. INTRODUCTION

1.3. MOS Transistor Models

The design of analog and digital ICs can be done using CMOS technologies, but it is
important to have a reliable MOS transistor model. These models allow the designer to
predict the behavior of MOS transistors under a particular operation condition, since
it describes the physical phenomena present in MOS transistors with a small number
of physical variables. The basic idea of modeling a device is to have a list of the elec-
trical variables, whether geometrical or physical, in order to identify which ones can
function as design parameters. There is a trade-off between the quality and the com-
plexity of the model. Therefore a simple model is generally necessary to facilitate the
design and the symbolic hand manipulation like quadratic model. There are many mo-
dels, like EKV model, with greater complexity that are generally used for computer
simulation of circuits employing CMOS devices. Unlike analog design, digital circuits
can be modeled as switches, which is a relatively simple model, while analog circuits
require a more detailed model. According to [23] a MOS transistor model must take
into account the voltage-current relationships, noise and temperature variations and the
dynamic behavior of the CMOS devices.

1.3.1. BSIM3v3
BSIM3v3 is the latest industry-standard MOSFET model for deep-submicron digital
and analog circuit designs from the BSIM Group at the University of California at
Berkeley. BSIM3v3.2.2 is based on its predecessor, BSIM3v3.2. This model is used in
the circuit simulator SPICE, its main advantages are:

Elimination of small negative capacitance values (Cgs, Cgd) in the accumulation-
depletion regions.
Improved modeling of C-V characteristics at the weak-to-strong inversion transition.
Option of using C-V inversion charge equations of CAPMOD=0,1,2,3 to calcu-
late the thermal noise when NOIMOD=2 or 4.
A separate set of length/width dependence parameters for the CV model.
Additional parameter checking.
Improvements in numerical stability.

According to [24], the implementation of the BSIM3v3 model is performed with 21
files that are divided into 5 parts. 1) Data Structures: BSIM3v3 model is described
with pointers to function, which provide specific operations and tables that describe the
BSIM3v3 model parameters. BSIM3v3 model needs two specific internal data structu-
res, one for the global device model and the other for defining the individual devices
in a circuit. Data placed in the model data structure is static, this data structure con-
tains only the data that is universal to all the devices. 2) Input Routines: These routines
are used by pass the input parameters to the device. This routine requires two files,
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the first one b3par.c is used to take the parameter values from the input parser and to
set the appropriate field in the data structure of the device. Other file is b3mpar.c and
provides values for model parameters. 3) Output Routines: This routine include two
files b3ask.c and b3mask.c and are used to obtain data from the BSIM3v3 model by the
simulator. 4) Structure decomposition routines: These routines are used to separate the
data structures. It consists of 3 files, the first file b3dest.c releases all the used memory.
b3mdel.c file is designed to delete BSIM3v3 from the circuit. Finally b3del.c is used to
delete specified instance from the circuit. 5) Processing Routines: This routine include
ten files, the first one is b3set.c file and is used to prepare BSIM3v3 for simulation;
b3temp.c completes the parameter preprocessing; b3check.c examines if the values of
the parameters are invalid or unreasonable before they are loaded by the simulator for
any calculation; b3getic.c is used to convert node initial conditions to device initial
conditions; b3ld.c is responsible for evaluating all instances at each iteration in the DC
and transient analyses and for loading the Jacobian matrix and right hand side vector
with the appropriate values; b3trunc.c is used to compute the truncation error for each
device in the circuit; b3cvtest.c performs the necessary convergence testing; b3acld.c is
used when ac analysis is performed; b3pzld.c evaluates the conductance at the complex
frequency; b3noi.c evaluates all of the noise sources.

This model like others is developed for expressions to different device operation regi-
mes, such as subthreshold and strong inversion. These expressions describe in a very
precise way the behavior of the device in its respective region of operation. But in re-
gions of transition these equations are no longer accurate and are practically not a good
approximation of the device’s behavior. Therefore to correct this error, an unified model
should be synthesized to ensure the continuities of current and conductance and their
derivatives in all transition regions.

The expressions (1.1) and (1.2) are the charge density in subthreshold and strong inver-
sion, respectively. Both expressions are valid for small VDS

Qinv = QOexp(
VGS − VT
nUT

) (1.1)

Qinv = Cox(VGS − VT ) (1.2)

Where n is the subthreshold swing parameter and the thermodynamic voltage UT which
is equivalent to (k ∗T )/q where k is the Boltzman constant, q the elementary charge of
the electron and the temperature T = 300K. UT is approximately 25.8mV . To obtain
a unified expression a Vgsteff function is introduced to describe the channel charge
characteristics from subthreshold to strong inversion.

Vgsteff =
2nUT ln[1 + exp(

VGS − VT
2nUT

)]

1 + 2nCox

√
2Φs

qεsiNch

exp(−VGS − VTH − 2Voff
2nUT

)

(1.3)
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Voff is an important parameter which determines the drain current at VGS = 0, Nch is
the doping concentration in the channel and εsi is the silicon’s permittivity. Then the
unified expression for the channel charge density for subthreshold and inversion region
is given by (1.4).

Qinv = CoxVgsteff (1.4)

The Vgsteff function gives a unified expression for the linear drain current. In order
to obtain a generalized expression a smooth function of VDS is introduced. In (1.5) is
shown the final current equation for both linear and saturation regions.

ID =
Idso(vdsat)

1 +
RdsIdso(vdsat)

Vdsat

(1 +
Vds − Vdsat

VA
)(1 +

Vds − Vdsat
VASCBE

) (1.5)

where VA is the early voltage and Rds is the resistance that is formed between the drain
terminals and the source.

1.3.2. Quadratic Model
Nowadays the quadratic model is the most used model due to the few physical para-
meters that describe the transistor’s behavior in each of its operating regions, such as
cutoff, linear or triode and saturation. Is important to mention that each of these regions
are governed by independent equations.

The derivation of the quadratic model like the EKV model requires an expression for
the charge density. FromQ = CV is noted thatC is the gate capacitance per unit length
and V is the voltage difference between gate and channel and Q is the charge density.
The gate capacitance is denoted by a capacitance per unit area Cox, taking into account
the transistor’s width W and also considering that V = VGS − VT , because no mobile
charge exists for VGS < VT . Therefore, the charge density is given by (1.6).

Q = WCox(VGS − VT ) (1.6)

Then as the channel voltage varies along the length of the transistor is necessary to
denote the channel potential at x by V (x), which goes from zero to VD

Q(x) = WCox(VGS − V (x)− VT ) (1.7)

Once an expression for the charge density is obtained, is important to derive an expres-
sion for the drain current where basically two important points are considered according
to [25]. The first one mentions that I is given by the total charge that passes through the
cross section of the bar in one second. The second consideration says that if the carriers
move with a velocity vm/s , then the charge enclosed in v meters along the bar and
passes through the cross section in one second is equal to Qv, this is expressed in (1.8).
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I = Qv (1.8)

where v = µ
dV

dx
. Combining (1.7), (1.8) and the definition of v the drain current is

(1.9).

ID = WCox(VGS − V (x)− VT )µ
dV

dx
(1.9)

To find an expression of the current in terms of the voltage terminals both sides of (1.9)
are integrated

ID =
1

2
µCox

W

L
[2(VGS − VTH)VDS − V 2

DS] (1.10)

A MOS transistor is composed of a plate called gate and two junctions called source
and drain. The operating principle of a MOS transistor is to apply a voltage on the
gate so that current flows from source to drain. The physical effects and derivations
of the equations are detailedly explained in [6] and [25]. The operating regions can be
derived from the voltages applied to the terminals of the MOS transistor and the drain
current (1.10). So if VGS < VT is said that the MOS transistor is in cutoff region. When
VGS > VT and VDS < VGS − VT the MOS transistor operates in triode region. In this
region the drain current ID is given by 1.11.

ID =
1

2
µCox

W

L
(VGS − VT −

VDS

2
)VDS (1.11)

In triode region the drain current (1.11) is proportional to VGS and VDS . The MOS
transistor operates in saturation region if VGS > VT and VDS > VGS − VT . In this
region the channel is pinched-off and ID is proportional to (VGS − VT )2 as shown in
(1.12).

ID ≈
1

2
µnCox

W

L
(VDSAT )2(1 + λVDS) (1.12)

Figure 1.4 shows the ID − VDS characteristics. According to [25] the formation of
the channel is actually a gradual effect and the device presents a small current when
VGS < VT , this effect is called subthreshold conduction and occurs when the MOS
transistor changes from cutoff to triode region. Another important consideration is that
the gate is isolated from the substrate by means of an insulator layer and the current at
the gate IG is nearly 0.

1.4. Problem Formulation
The design of integrated circuits (ICs) using complementary metal-oxide-semiconductor
(CMOS) is a complex process due to the many target specifications, the many design
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Figure 1.4: ID − VDS Characteristics

variables, constraints and the sparse ranges of the search spaces of every performance.
Therefore analog design automation tools are required to improve the IC design.

Metaheuristics have shown their usefulness in optimizing analog ICs because they link
circuit simulators like SPICE to evaluate electrical characteristics that are associated
to a CMOS technology. As demonstrated in [26] and [21] metaheuristics like PSO,
MOL and NSGA-II present a satisfactory behavior in the transistor sizing. According
to the problem, metaheuristics can optimize mono-objective, multi-objective and many-
objective.

Although metaheuristics provide feasible solutions, they do not guarantee that the MOS
transistors work in the desired direct current operating point (DCOP) condition, so that
a slight variation in the DC voltage or current levels, can degrade the performance of
the sized analog IC. In addition the area of integrated circuits has become an important
factor, therefore is necessary to minimize the area without modifying the performance
of the circuit. In this manner, this Thesis proposes to guarantee the desired DCOP and
minimize the silicon area by applying PSO, MOL and NSGA-II algorithms.

1.5. Objectives

1.5.1. General objective

The main objective of this Thesis is to guarantee a proper direct current operating
point (DCOP) condition of the MOS transistor and to minimize the silicon area by
applying Particle Swarm Optimization (PSO), Many Optimizing Liaisons (MOL) and
Non-dominated Sorting Genetic Algorithm II (NSGA-II) metaheuristics.
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1.5.2. Specific objectives
Application of metaheuristics algorithms to automate the biasing and sizing of
analog ICs.

Apply mono-objective and multi-objective algorithms for the sizing of OTAs
using constraints.

Guaranteeing the DCOP of each MOS transistor to ensure robustness.

Minimize the silicon area of an OTA.

1.6. Thesis Organization
This thesis is organized in five chapters. In chapter 1 an introduction to the methodology
of analog integrated circuit’s design, and also the general aspects of the metaheuristics
that are used in the sizing of amplifiers are presented. In addition, allusions to the most
influential works applied to the sizing of CMOS circuits are introduced.

Chapter 2 presents the topologies of the operational transconductance amplifiers (OTAs)
to be optimized through different metaheuristics solving mono and multi-objective pro-
blems. In addition, the design of a Two Stage Miller OTA is done by hand using the
quadratic model’s equations. Finally, the results and configurations used to characterize
an OTA are presented.

Chapter 3. In this chapter the theory about mono and multi-objective algorithms, such
as PSO, MOL and NSGA-II is described. The principle of operation of each metaheu-
ristic and the modifications performed on the algorithms to carry out the design of the
integrated circuits are portrayed. Also, the techniques used to verify the transistor’s
operation region and a method to estimate the integrated circuit’s area considering the
minimum dimensions allowed by the technology is explained.

In chapter 4 the results provided by the optimization algorithms are shown and the
specifications required to carry out the sizing of the topologies presented in chapter
2 are described. The behavior of the particles corresponding to the PSO and MOL
algorithms and the Pareto fronts from NSGA-II are described. The sizing results of the
Miller and the RFC-OTA are summarized in tables.

Chapter 5 shows the layout of a Two Stage Miller OTA and the post-layout simulations
to verify that the behavior of the circuit is optimal. In addition simulations to test the
circuit’s performance under PVT variations are performed.

Finally, chapter 6 presents the conclusions of the Thesis and future work.





Chapter 2
DCOP Conditions of Analog ICs

Operational amplifiers (op-amps) are one of the most important integrated CMOS cir-
cuits in the development of VLSI systems, and are studied in basic electronic courses.
As mentioned in [4], operational amplifiers are mainly employed to drive capacitive
loads, such as transistor’s gates or in applications like switched capacitor, track and
hold circuits and data converters. In this type of application there is no need for the
amplifier to have a low output impedance, therefore op-amps are usually replaced by
operational transconductance amplifiers (OTAs) which output impedance is high. The
symbol of an op-amp and OTA is shown in Figure 2.1.

(a) OTA symbol. (b) Op-amp symbol.

Figure 2.1: Symbols.

Nowadays, due to the high demand of high-speed electronic devices, many researchers
have focused on designing integrated circuits like OTAs to work at both high frequen-
cies and low power. The OTA is the primary block in analog integrated circuit’s appli-
cations like Gm-C filters and sigma delta A/D converters, since the operation of these
circuits depends on the OTA’s performance.

There is a great variety of OTA’s topologies but according to [4], the typical structure of
an OTA is represented in Figure 2.2. The first stage corresponds to a differential ampli-
fier, which provides a differential output voltage that depends only on the differential
input. Subsequently, the differential signal is converted to single-ended, but this stage
can be omitted depending on the application. To guarantee high speed and accuracy, an
OTA with high gain and wide bandwidth is the best solution if the gain of the first stage

13
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is not enough, a second stage can be added to improve the OTA’s gain. For the imple-
mentation of an op-amp an output stage that provides low impedance and improves the
slew rate is added. However, if the application does not require a low output impedance,
both the OTA’s input transconductor and large output resistance can be used to achieve
the required voltage gain .

Figure 2.2: Diagram of a typical OTA [4]

In general, the gain of a single-stage OTA is approximately 30 to 40dB, which means
that to ensure a gain greater than 60dB is necessary to add two stages or alternatively to
increase the output resistance by using topologies such as Folded Cascode. The choice
of the topology’s amount of stages clearly depends on the application. According to
the authors in [27], a performance comparison between single stage amplifiers and
two stage amplifiers shows that single stage amplifiers are suitable to operate at the
high frequency range while two stage amplifiers are appropriate to perform at the mid-
frequency range.

In this work, the Two-Stage Miller and Reclyded Folded Cascode OTA’s topologies are
selected to be optimized through the use of both mono and multi-objective metaheu-
ristics. The main objective is to reduce is the silicon area, while also guaranteeing a
proper DCOP conditions.. As mentioned in [6], the main condition for a MOS tran-
sistor to work in strong inversion is modeled by (2.1). The operating region of a MOS
transistor is an important factor in the performance of OTAs, so it is necessary to ensure
an appropriate DCOP.

VDS > VGS − VTH (2.1)

2.1. Two-Stage Miller Operational Transconductance Am-
plifier

As specified by its name the Two Stage Miller is the cascade of two stages, where the
first stage is composed of a differential amplifier, integrated by M1 and M2 transistors,
and a single ended converter formed by M4 and M5 transistors, as shown in 2.3. The
second stage is a simple inverter with active load, to improve the differential mode
gain. Owing to the fact that the output signal of the differential pair is current, which
comes from M2 and is mirrored by M4 and M5 to be subtracted by M1. Therefore a
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single ended output voltage is the signal contribution of the two currents multiplied by
the output resistance, that is the input signal of the second stage. The differential mode
gain of a Two Stage OTA at low frequency is given by the product of the gain of each
stage, as seen in (2.2).

Av = A1A2 =
gm1gm6

(gds1 + gds5)(gds6 + gds7)
(2.2)

As mentioned in [28], when the first and the second stage are connected without any
intermediate components the frequency response could be disrupted, therefore are va-
rious pole compensation techniques. The first compensated topology is the two stage
OTA with miller compensation, this technique is based on using a miller capacitor Cc
between the two corresponding stages, where the feedback capacitor splits the poles.
The pole of the first stage goes at low frequency and the one of the second stage is
pushed at high frequency, this is called pole splitting, then the dominant pole will de-
crease and the non dominant pole will increase simultaneously when the gain of the
second stage improves. Another technique is to use the nested miller capacitor along
with a nulling resistor between the two stages, this compensated topology is called two
stage OTA with miller capacitor and nulling resistor, this topolgy is shown in Figure
2.3. According to [4], the resistance RC value that cancels the zero is the inverse of the
transconductance gain of the second stage’s transconductance gain.

Figure 2.3: Two-Stage Miller OTA.
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2.2. Design of a Two-Stage Miller OTA
One of the techniques for the design of analog integrated circuits is to use the quadratic
model to carry out the transistor’s sizing. Considering the operational transconductance
amplifier (OTA) Milller of Figure 2.3 and the specifications shown in Table 2.1.

Table 2.1: Specifications for the design of the Two-Stage Miller OTA

Topology Miller OTA
CMOS Technology[µm] 0.18

Voltage Supply[V ] ± 0.9
(Kn)n[µA/V 2] 340
(Kn)p[µA/V 2] 70

CL[pF ] 5
GB[MHz] 100
SR[V/µs] 20
VDSAT [V ] 0.1

The equation for the gain bandwidth is given by 2.3.

GB =
gm

2πCL

(2.3)

where the transconductance’s equation can be approximated to

gm =
2ID

VGS − VTH

(2.4)

Replacing (2.4) in (2.3) is obtained

GB =
2ID

2π(VGS − VTH)CL

(2.5)

Then, to find the drain current needed to satisfy the GB value, solve 2.5 for ID.

ID|GB =
2πGB(VGS − VTH)CL

2
(2.6)

Replacing the values of Table 2.1 in (2.6), ID is

ID|GB = 315µA

In addition is important to guarantee that the magnitude of the current satisfies the slew
rate established in the circuit’s specifications. Therefore, to find the minimum value of
the current necessary to achieve the required slew rate, the following equation is used:
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SR =
2ID
CL

(2.7)

Equation (2.7) leads to the expression that allows to compute ID

ID =
CLSR

2
(2.8)

Then, the minimum current value for ID is

ID|SR = 50µA

According to ID value calculated by 2.8, the minimum value of the current required to
have the desired slew rate is 6 times less than the current necessary to reach a GB =
100MHz, therefore the minimum current value taken for the following equation is
the ID|GB. Using the equation of the quadratic model and solving for W/L, leads to
equations 2.9 and 2.10 that correspond to NMOS and PMOS transistors, respectively.

(
W

L
)n =

ID|GB

(Kn)n
2

(VGS − VTH)2
(2.9)

(
W

L
)p =

ID|GB

(Kn)p
2

(VGS − VTH)2
(2.10)

According with the specifications, the dimensions rations for both kinds of transistor
are

(
W

L
)n = 47

(
W

L
)p = 225

If L = 0.18µm, the transistor’s width values are

(W )n = 9µm

(W )p = 41µm

Finally the values of Rc and Cc are obtained from the following expressions

RC =
1

2gm
(2.11)

Substituting (2.4) in (2.11), 2.12 is obtained

RC =
VDSAT

4ID
(2.12)

Replacing the values of Table 2.1 in (2.12)
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RC = 160Ω

The value of Cc is determined by the following expression

CC ≤
CL

5
(2.13)

Therefore the compensation capacitor’s value is

CC = 1pF

The best strategy according to [4], is send the zero at infinite and not trying to enlarge
the bandwidth by some pole-zero cancellation.

2.3. Characterization
The characterization of an OTA is an important process, since it allows to verify the
circuit’s performance. Currently, the behavior of this type of integrated circuits is very
close to the behavior of an ideal device, however in VLSI systems precise models are
required. Therefore to verify that the performance of the device matches the calculated
results, analysis in the DC, AC and time domains are generally carries out.

One of the most important features of OTAs is the differential gain (AOL), which is
the open loop differential gain measured as a function of frequency and determines the
accuracy of the feedback system. The magnitude of the gain can vary a few orders of
magnitude depending on the application, and a high gain is usually required to suppress
non-linearity, therefore a typical value of the differential mode gain, ranges from 60
to 80 dB. Fig 2.4 shows the circuit configuration implemented to measure the AOL,
GBW and PM . Also, Figure 2.6 shows the measurements results of the differential
gain, GBW and phase margin obtained from the design of the Two Stage Miller OTA
designed in the previous section.

Figure 2.4: Configuration to measure the AOL, GBW and PM .

The gain-bandwidth product GBW (or unity gain frequency (fT )) is the frequency at
which the differential gain is equal to 0dB, as shown in Figure 2.5. The unity gain
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frequency is the product of the differential gain (AOL) and bandwidth (f1), therefore fT
is called gain-bandwidth product.

Figure 2.5: Bode Diagram

As mentioned in [4], the phase margin is the phase shift of the small-signal differential
gain measured at the unity gain frequency. In order to ensure stability when using the
unity gain configuration is necessary to achieve a phase margin greater than 60o.

Figure 2.6: Results of the AOL, GBW and PM .

AOL = 46dB GBW = 87MHz PM = 71o

Common mode gain (ACM ) is the open loop gain obtained by applying a small signal to
both inputs. To measure it, the configuration in Figure 2.7 is used. Ideally, OTAs should
amplify only differential signals and attenuate common mode signals. A typical value
of ACM at low frequency is 10-30dB. The result of the ACM is shown in Fig. 2.8.

ACM = −1.5dB
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Figure 2.7: Configuration to measure the ACM .

Figure 2.8: Result of the ACM .
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A merit factor of any OTA is the common mode rejection ratio (CMRR), this measure
is the ratio between the differential gain and the common mode gain. The effect of a
finite CMRR on an OTA is the presence of an undue signal at the output of the ampli-
fier that is a function of the common mode signal component at its input. Generally a
high value of CMRR is desired.

CMRR =
AOL

ACM

The CMRR of the Miller OTA is illustrated in Fig 2.9.

Figure 2.9: Result of the CMRR.

CMRR =
46dB

−1.5dB
= 47dB

Another important merit factor for an OTA is the power supply rejection ratio (PSRR).
This measure is obtained applying a small signal in series with the positive or negative
voltage supply. The ration between the differential gain and the power supply gain leads
the PSRR. Fig. 2.10 illustrate the configuration to measure the PSRR. A typical value
of PSRR is 60 dB at low frequencies and decreases to 20 – 40 dB at high frequencies.

The output voltage of the Figure 2.10 is equivalent to V o = 1/PSRR, therefore to
know the value of the PSRR is necessary to obtain the inverse of the output voltage.
Figure 2.11 shows the results obtained from both PSRR+ and PSRR−.

PSRR+ = 51dB PSRR− = 54dB

The slew rate (SR) is a transient analysis and is defined as the maximum achievable
time derivative of the output voltage. The positive slew rate can be different from the
negative slew rate, depending on the specific design. Typical SR’s values, , fluctuate
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(a) PSRR+. (b) PSRR−.

Figure 2.10: Configuration to measure the PSRR.

Figure 2.11: Result of the PSRR+ and PSRR−.

within the 40 and 80V/µs range. The configuration to measure SR is shown in Figure
2.12. In addition another important parameter is the settling time, this is the time that
the output voltage requires to achieve the expected output voltage. The SR is given by

SR =
4V
4t

According to [29], the applied input signal to obtain a correct measurement of SR in
180nm technology must have an amplitude of 50mVpp at a frequency of 5MHz.

SR+ = 7v/µs SR− = 7v/µs

Another important figure of merit (FoM) of an OTA is obtained from (2.14) and is
typically measured in ((MHz)(pF ))/mA.

FoM =
(GBW )(CL)

IB
(2.14)
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Figure 2.12: Configuration to measure the SR.

Figure 2.13: Result of the SR+ and SR−.
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Therefore the FoM of the Two Stage Miller OTA designed in the previous section is

FoM = 870

Finally, the maximum and minimum input voltages are measured using the configura-
tion shown in Figure 2.14. According to [30], to obtain this measurement is necessary
to excite the circuit with a triangular signal at the input with a maximum amplitude
determined by the power supply voltages. The result is shown in Fig. 2.15

Figure 2.14: Configuration to measure the V in+ and V in−.

Figure 2.15: Result of the V in+ and V in−.

V in+ = 0.8v V in− = −0.5v

2.4. Recycled Folded Cascode Operational Transcon-
ductance Amplifier

The RFC OTA shown in Fig. 2.16 is a modification of the traditional Folded Cascode
OTA, it converts the folding node current source of FC OTA into a driven current source
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Figure 2.16: Reclycled Folded Cascode OTA.

by using a recycling current mirror with a gain equal to K. The RFC OTA improves
the transconductance and the slew rate of the FC OTA. The differential pair of the FC
OTA is divided in half to fix the current to I/2, which results in gm = 2gma1. Another
improvement is achieved by using a cross coupled format at the differential pair’s output
with the objective of increasing the bandwidth.

One of the disadvantages of the RFC OTA is its poor power efficiency, this is mainly
due to two reasons as mentioned in [31]. Firstly, current gain K scales the dynamic
and static current. Secondly, the active current mirrors included, lead to an internal
copy of dynamic currents. According to [29], by applying good approximations, the
main relations of the RFC OTA are summarized through equations (2.15-2.20). The
transconductance GmRFC is obtained

GmRFC = gma1(1 + k) (2.15)

For the power and area to be equal to that of the FC OTA, K must be equal to 3. If
K 6= 3, transistors M9 to M14 need to be scaled accordingly, in order to maintain the
same inversion level. It has been demonstrated that the transconductance of the RFC
OTA is twice than that of the FC OTA with the same power consumption. Therefore the
RFC OTA has twice the gain bandwidth product (GBW) as that of the FC OTA for the
same power, and consequently twice the speed. In addition the DC gain AvRFC is

AvRFC = ROUTGmRFC = ROUTgma1(1 + k) (2.16)

where



26 CHAPTER 2. DCOP CONDITIONS OF ANALOG ICS

ROUT = (gm12ro12ro14)||gm10ro10(roa4||roa2) (2.17)

The gain enhancement depends on the rds increase of M2a and M4a, since it drives less
current compared to their counterparts of the FC OTA. Typically the gain in a RFC OTA
is approximately 8 to 10dB greater, in regards to a FC OTA. Another critical design
aspect is the Slew Rate (SR), according to [32], by assuming a capacitive load and a
large signal in the inputs of the RFC OTA the SR can be derived as follows: if V in+

increase M1a and M1b turn off, which force M4a and M4b to turn off. Consequently,
the drain voltage of M4a rises and M10 is turned off, whereas M2a is driven into deep
triode. The tail current, 2IB, is driven into M2b and is mirrored by a K factor into M9

and again by a factor of 1 into CL. This result’s in

SRRFC =
2KIB
CL

(2.18)

The frequency response of the RFC OTA is defined by both the dominant pole fre-
quency which is determined by the output impedance and the capacitive load,

wpRFC = − 1

ROUTCL

, CL = COUT + Cd12 + Cd10 (2.19)

and by the unity gain frequency

wuRFC =
GmRFC

CL

=
(K + 1)gma1

CL

(2.20)



Chapter 3
Metaheuristics

The metaheuristics used in the design of integrated circuits have presented an important
development, due to the positive results on integrated circuit’s optimization. Although
of the important advances in this area, none of the works in the state of the art are
focused on guaranteeing that the transistor operates in the desired region. As shown
in Chapter 2, assuring that a transistor’s operation point is set at the desired region
is fundamental in the integrated circuit’s performance. In this manner, PSO, MOL and
NSGA-II algorithms are applied to minimize and maximize the most important features
in the design of integrated circuits, such as operational transconductance amplifiers,
while guaranteeing that all MOS transistors work in strong inversion. In addition, the
step-by-step procedure that follows each of the algorithms for the design of integrated
circuits and how the electrical characteristics are evaluated through linking it with a
circuit simulator such as SPICE is explained.

3.1. Mono-Objective Optimization

3.1.1. Particle Swarm Optimization
Particle Swarm Optimization belongs to the field of Swarm Intelligence and Collective
Intelligence and is a sub-field of Computational Intelligence [33]. Moreover is related
to other swarm intelligence algorithms such as Ant Colony Optimization [13]. PSO
is based on a mathematical model developed by Kennedy and Eberhart in 1995 [5].
It describes the social behavior of birds or fishes. The model is based on the basic
principles of self-organization that are used to describe complex systems. These swarms
form a search group with the purpose of finding food, usually each individual continues
his search according to his own experience and the experience of the group.

The main objective of the PSO algorithm is that all the particles locate the optimal solu-
tions in a search space. For this is important to initialize both the random positions of all
particles in space and the small initial random velocities. In addition, the development
of PSO is related to two researches: Evolutionary algorithms and Artificial life. As de-

27
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tailed in [34], PSO initializtion starts from a set of randomly distributed particles in a
limited search space, these particles have an initial position and velocity that are repre-
sented by simple mathematical expressions. These expressions suggest the movement
of each particle towards the best position as an individual and the best global position,
besides there are different variants using different update rules. The general idea is to
initialize a set of particles in a search space, this gives the particles a favorable initial
position, in addition an initial velocity vector is assigned, which allows the particles to
change their position in each iteration while the speed is adjusted depending on some
random parameters. Each particle can remember its best position and recognize if its
current position is the best among the other particles, that is, the best global. The par-
ticles have to be updated according to their positions and past speeds. Mathematically,
the updating equations are given in (3.1) and (3.2)

vi(t+ 1) = vi(t) + c1rand()(pbest(t)− pi(t)) + c2rand()(gbest(t)− pi(t)) (3.1)

pi(t+ 1) = pi(t) + vi(t+ 1) (3.2)

where vi(t + 1) and pi(t + 1) represent the velocity and position of the particle in the
ith iteration, respectively; where rand() is a function that returns random real number
values between 0 and 1; pbest and gbest represent the best position of the particle and the
best global position among all the particles; c1 and c2 are two parameters that represent
the confidence of the particle itself (cognition) and in the swarm (social behavior),
respectively. These last constants are the most relevant in (3.1), according to a set of
tests it was found that the higher the constants the faster the convergence will be. As
mentioned in [5], the constants c1 and c2 have values that may improve the convergence,
but it depends on the kind of problem. In this article c1 = c2 = 2. In Fig 3.1 is shown
the flowchart of the PSO algorithm.

3.1.2. Many Optimizing Liaisons
MOL is a variant of PSO that is based on eliminating the best known position of the par-
ticle (pbest) in (3.1), which updates to (3.3). This variant behaves similarly or better than
the PSO algorithm, where it proposes several combinations for the MOL parameters w,
c2, given in (3.3), and the number of individuals (particles) for different problems, and
thus one calibrates the algorithm depending on the dimensions of the problem and the
number of evaluations of the objective function. MOL is a purely social algorithm ten-
ding to follow the best swarm’s particle (gbest), thus when the inertia coefficient w = 1,
it restricts the particles exploring better solutions in the search space, so that a challenge
is finding the appropriate w value that allow the particles exploring different directions
to find better solutions in the entire search space, in addition to maintain the velocity’s
limits in a previously defined range. The flowchart of the MOL algorithm is shown in
Fig. 3.2.
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Figure 3.1: Flowchart of the PSO algorithm [5].
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vi(t+ 1) = wvi(t) + c2rand()(gbest(t)− pi(t)) (3.3)

One of the main problems with the MOL algorithm is that the parameters w and c2 are
not currently well defined, therefore a challenge is finding the appropriate w value that
allow the particles exploring different directions to find better solutions in the entire
search space, in addition to maintain the velocity’s limits in a previously defined range.
In [35] the values of the parameters for several problem configurations are presented,
for the case of study of this work the best value for each parameter, considering that is
a problem with four design variables and a thousand fitness evaluation, w = −0.3084
and c2 = 2.0273.

Figure 3.2: Flowchart of the MOL algorithm.

3.2. Multi-Objective Optimization
As explained in [36] a multi-objective problem (MOP) is defined as the problem of
finding the vector: x = [x1, x2, ..., xn]T that complies with the k inequality constraints:
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gi(x) < 0; for i = 1, 2, ..., k, the p equality constraints: hj(x) = 0; for j = 1, 2, ..., p
and minimizes the vector function

f : Rn → Rm

f(x) = [f1(x), f2(x), ..., fm(x)]T

In MOP there are many feasible solutions but in order to say that a solution dominates
another one, the dominating solution needs to be better in at least one objective and not
worse in any objective. This is called Pareto dominance and is defined as follows: A
vector u ∈ Rm dominate a vector v ∈ Rm, u ≺ v, if and only if u is less than v.

3.2.1. Evolutionary Algorithms
As described in [33] Evolutionary Algorithms(EAs) belong to the Evolutionary Compu-
tation field and are inspired by the process and mechanisms of biological evolution and
the natural selection of the species theory presented by Darwin. One of the most impor-
tant evolutionary algorithms are the genetic algorithms (GA), which were developed by
John Holland and his collaborators between 1960 and 1970. According to [11] the base
of GA are the genetic operators such as crossover, mutation and selection.

The procedure of a genetic algorithm involves the encoding of an optimization problem
from a bit or character strings to represent the chromosomes, the operations of strings
by genetic operators, and the selection of the fitness with the aim to find a solution to
the problem. Then the genetic operators are explained.

Crossover is the genetic operator with the higher probability, also as mentioned
in [20] is responsible for the cutting and recombination of building blocks. The
simplest form of crossover is that a single point is chosen on two chromosomes
of equal length and intersecting at that particular point as shown in Fig. 3.3
In addition is possible to select two or more crossover points but this could de-
grade the performance. Basically crossover consists of generating a new solution
from parameters that are taken from one solution and exchanged with another at
the same point.

The genetic operator mutation is defined as a genetic manipulation operator, this
process is random and has a small probability. Essentially is based on altering the
gene of a chromosome from one generation to the next. It is usually used to avoid
a premature convergence that can occur in the selection process since the solu-
tions become similar before reaching an optimal solution. Figure 3.4 illustrates
the operation of the mutation.
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Figure 3.3: Crossover.

Figure 3.4: Mutation.

Selection is the most important genetic operator and is carried out by the evalua-
tion of its fitness. According to [36] there are three different ways to choose indi-
viduals namely Tournament Selection, Fitness Proportional Selection and Rank
Based Selection. The former two or more individuals are randomly selected from
the current generation to compete with each other. The winner is the individual
with the highest fitness. In proportional selection all individuals have a chance of
selection but the individual with the highest fitness has more possibilities. Rou-
lette Wheel Selection is the most used method. Finally, the rank of the individual
within the generation is used to select the best individual. The elitism is when the
fittest individuals in a generation are cloned into the next generation in order to
make sure to preserve their genetic material.

3.2.2. Non-dominated Sorting Genetic Algorithm II
The Non-Dominated Sorting Genetic Algorithm II is a non domination multi-objective
optimization that was proposed by Kalyanmoy Deb in [37]. In NSGA-II the solution
is obtained from the current parents and their offspring using a fitness function that is
defined as a measure of how good is in relation to the objective and constraints.

In the NSGA-II algorithm all the non-dominated solutions form the Pareto front, which
is approximated by sorting and ranking all solutions in order to choose the better solu-
tions to make new offspring. This algorithm belongs to evolutionary algorithms which



3.3. SIZING ICS BY PSO, MOL AND NSGA-II 33

use a set of solutions also called population, which is evolving through genetic ope-
rators to generate solutions that represent individuals, only the best individual survive
to the next generation. According to [36] NSGA-II is based on three main approaches
to improve the performance of the algorithm: Fast Ranking Function, Crowding Dis-
tance Assignment and Elitism. In Fig. 3.5 is shown the Pareto front and the crowding
distance.

Figure 3.5: Pareto Front and Crowding Distance.

Fast Ranking Function determines a rank value according to the number of individuals
that dominated each solution, as mentioned in [38] the non-dominated solution receive
a rank equal to one, while the other solutions receive a rank value according to how
many subsets they dominate. Crowding Distance measures the average size of the cu-
boid formed with the points that enclose a solution in the population. Finally Elitism
basically select the individual that best reaches the fitness function and the constraints,
in other words the individual with the highest rank. If all the solutions are in the first
rank the algorithm select the solution with the highest crowding distance. In Fig. 3.6 is
illustrated the flowchart of the NSGA-II algorithm.

Is important that the Pareto front has a good convergence, in addition, the solutions
must be spread all over the front, in figure 3.7 different Pareto fronts are shown. In
quadrants 3 and 4 is seen how the solutions are not well distributed along the front, in
quadrant 2 the front is not well defined since this front does not have feasible solutions.
Finally, in quadrant 1, the ideal Pareto front is seen.

3.3. Sizing ICs by PSO, MOL and NSGA-II
Analog integrated circuit’s design is a complex process due to the many targets and
trade-offs that are involved in the design process, for that reason optimization methods
as metaheuristics are used for transistor sizing. The algorithms used for the design of
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Figure 3.6: Flowchart of the NSGA-II algorithm.
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Figure 3.7: Pareto Fronts.

integrated circuits are applied especially to analog circuits where the design variables
are the relation W/L and the biasing conditions. Generally, algorithms are developed
to optimize problems that can be interpreted through mathematical functions, hence the
challenge for the optimization in the design of analog integrated circuits is to know
how to interpret the circuit as a function, therefore is important to make an analogy
between the devices that are part of the circuit and the variables to be introduced to the
algorithm.

3.3.1. Codification
In order to make an analogy is necessary to know the terminology used in metaheu-
ristics based on swarm optimization and evolutionary algorithms. Some of these are:
fitness function, particle or individual, position or gene, velocity, swarm (population)
and iteration also called generation. The design variables represents the gene of the in-
dividual in a search space, the velocity of each particle in the case of PSO and MOL
algorithms reflects the distance traveled by this particle at each iteration and a chromo-
some represents a vector formed by genes. In Fig. 3.8 the coding of a simple current
mirror is illustrated.

A population is formed by a set of individuals, an objective function and even cons-
traints. Finally the generation is defined as iteration and correspond to the evolution
process and each design variable has a search space specified by the designer and its
limits are established so that the solutions converge faster and avoid errors with the
integrated circuit simulator.

The design variables W , L and IB are encoded by integer numbers and scaled in mi-
crons into SPICE using the command .option scale by 0.09µm which is equivalent to
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Figure 3.8: Circuit Codification.

the lambda of the 180nm CMOS technology. Usually, the values of the design variables
are written as shown in the following SPICE code:

.param W1 = 9u

.param W2 = 54u

.param L1 = 0.18u

.param L2 = 0.36u

The command .param is used to parameterize the design variables, moreover an exam-
ple of using .option scale command within SPICE is given below:

.option scale = 0.09u

.param W1 = 100

.param W2 = 600

.param L1 = 2

.param L2 = 4

Mx Drain Gate Source Bulk PMODEL W =’W1’ L =’L1’
Mx Drain Gate Source Bulk NMODEL W =’W2’ L =’L2’

The post-processing step for rounding the sizes of W and L allows to decrease the
computation time and memory usage, it also facilitates the coding of the design varia-
ble’s values. Another advantage of scaling by values that are multiples of lambda is that
it facilitates the realization of the layout.

3.3.2. Initialization

PSO and MOL algorithm implementation was developed in MATLABTM by [39] and
NSGA-II by K. Deb. The evaluation of the fitness function is carried out by linking
the circuit simulator (SPICE) with the algorithms. The first step is to generate an in-
put file of the integrated circuit (netlist) in a SPICE file (.sp). The design variables of
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the integrated circuit, the number of individuals, generations, objective function, cons-
traints, stop criteria and search space of each design variable are declared previously as
independent variables into the algorithm.

The algorithm randomly initializes the circuit design variables within a given search
space, these values are assigned to the design variables w1, w2...wn, Ib and subse-
quently replaced in the netlist using the command .param

.param W1 = W2 = W3 = Ib =

3.3.3. Fitness Evaluation
After coding the design variables and initializing the parameters corresponding to the
metaheuristics algorithm the input file is simulated using SPICE. According to (3.1)
and (3.3) the position of the particle that corresponds to the design variables of the in-
tegrated circuit can give negative solutions, this represents a problem in the numerical
method used by SPICE, therefore is important to establish the limits of the search spa-
ces, considering that the lower limit for transistor’s width W needs to be greater than
the upper limit of the transistor’s length L. This to avoid problems with the circuit si-
mulator, since it is physically impossible that W has a value less than L.

After simulating the circuit is necessary to measure the performance features that co-
rresponds to the objectives and constraints of the analog IC. To perform the analysis in
different domains (.DC, .AC, .TRAN) subcircuits are used in different configurations.
In order to obtain the characteristics of the integrated circuit that correspond to the va-
lues of the objectives and constraints, the .MEASURE command is used, which gives
the numerical outputs results in the SPICE .lis output file. Therefore the metaheuristic
algorithm is modified to capture this data through a search within the .lis file. These
values are stored within the metaheuristic algorithm to be later used to determine the
best particle and best global particle. The format to use this command is as follows:

.OP

.AC dec 10 10 1000meg

.TRAN 0.01n 600n

.MEASURE AC DCgain MAX Vdb(Vouta)

.MEASURE AC GBW when Vdb(Vouta)=0

.MEASURE AC CMgain MAX Vdb(Voutb)

.MEASURE AC PSRRp MIN Vdb(Voutc)

.MEASURE TRAN Vmax MAX V(Voutf)

.MEASURE TRAN Vmin MIN V(Voutf)

The SPICE output file (.lis) shows the results obtained through each of the analyzes.
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These values are read by the metaheuristic algorithm, and immediately assigned to the
variables that represent the objectives and constraints to perform the design process.
The format in .lis output file is as follows:

dcgain= 7.1062E+01 at= 1.0000E+01
from= 1.0000E+01 to= 1.0000E+09
gbw= 1.3756E+07
cmgain= -1.3915E+01 at= 1.0000E+01
from= 1.0000E+01 to= 1.0000E+09
psrrp= -7.6328E+01 at= 1.0000E+01
from= 1.0000E+01 to= 1.0000E+09
psrrn= -7.4728E+01 at= 5.0119E+01
from= 1.0000E+01 to= 1.0000E+09

3.3.4. DCOP Conditions
Both sizing algorithms guarantee DCOP conditions by verifying that all MOS tran-
sistor operate in strong inversion, as mentioned in Chapter 2, specifically in (2.1). In
this manner, to guarantee that the MOS transistors are working in strong inversion, is
sufficient to accomplish 3XSAT , where SAT is evaluated by (3.4).

SAT =
VDS

VGS − VTH

(3.4)

The DCOP condition is guaranteed by extracting the values of VDS , VGS and VTH for
each MOS transistor and from the output text-file provided by SPICE, with extension
.lis. An example of this text file is shown in Table 3.1.

Each column is verified to accomplish that the ratio in (3.4) is greater than 3(VGS −
VTH), so that the DCOP of the MOS transistor is in strong inversion, as shown in
Figure 3.9. If the ratio is lower than 3, the MOS transistor is in moderate inversion and
may lead to triode region, which is not appropriate for the OTAs. If all MOS transistors
are in strong inversion, PSO, MOL and NSGA-II algorithms evaluate the MOS area
of the OTA, and update the best individual associated to the lowest MOS area of the
population.

Within SPICE the values of the voltages VDS , VGS and VTH for each transistor are se-
lected to perform the operation corresponding to (3.9) using the command .MEASURE.
The format for this command to perform the operation is as follows:

.MEASURE TRAN SAT1 MAX PAR(’vds(X1.M1)/((vgs(X1.M1)-vth(X1.M1)))’)

.MEASURE TRAN SAT2 MAX PAR(’vds(X1.M2)/((vgs(X1.M2)-vth(X1.M2)))’)
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Table 3.1: Output file .lis provided by SPICE.

element 1:m1 1:m2 1:m3
model 0:n 18 mm 0:n 18 mm 0:n 18 mm
region Saturati Saturati Saturati

id 23.2156u 23.0051u 46.2207u
ibs -266.9393a -266.9393a -7.91E-21
ibd -888.7196a -937.5297a -176.8286a
vgs 553.7568m 551.9880m 586.2443m
vds 806.5237m 869.8355m 346.2432m
vbs -346.2432m -346.2432m 0
vth 524.2255m 523.0335m 477.5087m

Figure 3.9: DC OP regions in a MOS transistor plotting ID vs VDS .

.MEASURE TRAN SAT3 MAX PAR(’vds(X1.M3)/((vgs(X1.M3)-vth(X1.M3)))’)

.MEASURE TRAN SAT4 MAX PAR(’vds(X1.M4)/((vgs(X1.M4)-vth(X1.M4)))’)

.MEASURE TRAN SAT5 MAX PAR(’vds(X1.M5)/((vgs(X1.M5)-vth(X1.M5)))’)

.MEASURE TRAN SAT6 MAX PAR(’vds(X1.M6)/((vgs(X1.M6)-vth(X1.M6)))’)

.MEASURE TRAN SAT7 MAX PAR(’vds(X1.M7)/((vgs(X1.M7)-vth(X1.M7)))’)

.MEASURE TRAN SAT8 MAX PAR(’vds(X1.Mbias)/((vgs(X1.Mbias)-vth(X1.Mbias)))’)

After performing the simulation, the results of the operation are shown in the output
text file .lis of SPICE and are saved as variables within the metaheuristic algorithm.

sat1= 6.7225E+00
sat2= 6.9149E+00
sat3= 3.5197E+00
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sat4= 6.0894E+00
sat5= 6.2837E+00
sat6= 7.4124E+00
sat7= 5.0344E+00
sat8= 3.9309E+00

These values are normalized, if the saturation value is greater than 3 then it will be 1
otherwise it will be 0. Finally, the sum of the normalized values of all the transistors
is done. If all are equal to 1 then is said that the particle is feasible, but if at least one
value is different from 1 the particle is not feasible.

3.3.5. Silicon Area Estimation
The objective function for PSO, MOL and NSGA-II algorithms is the minimization of
the silicon area, since allows secondary objectives such as differential mode gain to be
in conflict with the objective function, which is a requirement for optimization problems
applying metaheuristics. Ideally is not possible to know exactly the total silicon area
that an integrated circuit can occupy. However, an estimation can be carry out if the
minimum dimensions required to build a transistor, either n-type or p-type, are known,
as shown in Figure 3.10.

(a) N-Type.

(b) P-Type.

Figure 3.10: Minimum dimensions of a transistor in 180nm.

Therefore, to obtain an approximation of the total silicon area, the sum of the areas
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of each of the transistors that are part of the integrated circuit is performed. Equations
(3.5) and (3.6) are used to obtain the area of a n-type and p-type transistor, respectively.

N − TransistorAREA = ((w)(0.09µm) + 0.44µm)(2.66µm) (3.5)

P − TransistorAREA = ((w)(0.09µm) + 0.86µm)(3.08µm) (3.6)

As observed in the equations (3.5) and (3.6) that determine the area of each transistor,
the only variable is the width of the transistor. Where the 0.09µm factor, serves to scale
the value of the W obtained from the algorithm as an integer. Is also considered that
L = 0.36µm, therefore the transistor’s area depends only on the change of W . For
example, the area of a n-type transistor as shown in Figure 3.10, will be 2.3674µm2. If
the metaheuristics algorithm finds a W value equal to 100, then the value of the tran-
sistor’s area will be 25.1104µm2. The corresponding operations are performed within
the metaheuristic algorithm.

In addition, to perform the RFC OTA optimization the 0.5um onsemiconductor techno-
logy is used, where the values of the minimum transistors change. Figure 3.11 shows
the values used in equations (3.7) and (3.8) to estimate transistor’s area.

N − TransistorAREA = ((w)(0.6µm) + 1.2µm)(5.1µm) (3.7)

P − TransistorAREA = ((w)(0.6µm) + 3.6µm)(7.5µm) (3.8)
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(a) N-Type.

(b) P-Type.

Figure 3.11: Minimum dimensions of a transistor in 0.5um.

3.3.6. Selection
To carry out the selection of the particle, is necessary to consider the values of the
objectives and constraints. Therefore, the best individual is the one that best complies
with these values and is selected by means of constraints handling proposed in [40].
This mechanism is based in comparing feasible solutions and the fitness values of the
individuals. If two solutions are compared then the individual with the highest fitness
value wins, if one of the individuals is infeasible and the other is feasible, the feasible
individual wins. When two infeasible individuals are compared the individual who best
meets the constraints wins.

Once the simulation is performed, the extraction of the results and the selection of the
best individual is passed to the next generation or iteration where the values of the
design variables are updated according to the updating equations and genetic operators
of the metaheuristics algorithms. Then the following steps are repeated until reaching
a stop criteria. PSO, MOL and NSGA-II pseudo-code are summarized in Algorithms
1 and 2 respectively. The only difference between PSO and MOL algorithms in the
pseudo-code is when the velocity of the particle is updated, in this case, the pseudo-
code of MOL is the same as PSO but replacing (3.1) by (3.3). Is important to mention
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that the constraints are normalized between 0 and 1 to facilitate the calculation of the
number of constraints that were fulfilled by each particle.

Algorithm 1 PSO
1: procedure PSO(nPop,MaxIt)
2: Generate the input file of the IC (netlist) according to SPICE
3: for i = 1 : nPop do
4: Initialize randomly the design variables: width (W) of the MOS transistors

and the bias current (IB)
5: Simulate the ICi in SPICE
6: Calculate the constraints and update the pbest particle
7: Update the gbest particle by checking the constraints.
8: end for
9: for it = 1 : MaxIt do

10: for i = 1 : nPop do
11: Copy particle i to p
12: Update the particle p velocity according to (3.1)
13: Update the particle p position according to (3.2)
14: Compare particles i and p
15: Update pbest and gbest particles by checking the constraints.
16: end for
17: end for
18: end procedure
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Algorithm 2 NSGA-II

procedure NSGA-II(N, g, f(x))
2: Generate the input file of the OTA (netlist) according to SPICE

Initialize randomly the design variables: width (W) of the MOS transistor and
the bias current (IB).

4: Simulate the ICi in SPICE.
Calculate objective values and constraints

6: Assign Rank based in Pareto
Generate Child Population

8: Binary Tournament Selection
Recombination and Mutation

10: for i = 1 : g do
for Each Parent and Child in Population do

12: Assign Rank based on Pareto
Generate sets of nondominated solutions

14: Determine Crowding Distance
Loop (inside) by adding solutions to the next generation starting from

the first front until N individuals found determine crowding distance between
points on each front

16: end for
Select points (Elitist) on the lower front and are outside a crowding distance

18: Create next generation
Binary Tournament Selection

20: end for
end procedure



Chapter 4
Feasible sized solutions provided by

PSO, MOL and NSGA-II

This chapter describes the results of the simulations using PSO, MOL and NSGA-II
algorithms for the sizing of topologies presented in chapter 2, that are the Two Stage
Miller and the Recycled Folded Cascode OTA, respectively. Usually PSO and MOL
algorithms are classified as mono-objective algorithms, despite being mono-objective,
these algorithms are not limited to optimizing a single objective, because more targets
can be added using constraints. In this work the main objective in addition to sizing the
proposed OTAs is to minimize the silicon area and guarantee that transistors operate
in strong inversion. In addition a test of process, voltage and temperature variations is
performed.

Table 4.1: Characteristics of the two solved problems.

Topology Miller OTA Recycled-Folded-Cascode OTA
CMOS technology 0.18µm 0.5µm
Voltage supply [V] ±0.9 ±1

CL[pF ] 5 70
L [µm] 0.36 0.6

Gain [dB] ≥ 60 ≥ 60
No. Design variables 4 9

No. constraints 9 17
VDSAT >3 >3

No. Individuals 10 10
No. Generations 100 100

No. Runs 10 10

45
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4.1. PSO and MOL Results
In both PSO and MOL the direction of the particle gradually changes to move in di-
rection of the best found positions, looking in its vicinity and potentially discovering
better positions according to (3.1), (3.2) and (3.3). In CMOS OTA’s sizing, the position
of the particle represents the dimensions W that are being updated in order to find the
best area. Table 4.1 shows the conditions to execute PSO and MOL to size the MILLER
and RFC OTA. The behavior of metaheuristics is not a predictive behavior therefore is
required to perform several tests.

(a) PSO

(b) MOL

Figure 4.1: Evolution of the MOS area for each particle applying (a) PSO and (b) MOL.

4.1.1. Two Stage Miller OTA Results
The PSO and MOL algorithms are based on a set of particles with a specific position,
these positions are updated in each generation in order to find better results in a specific
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search space. Figure 4.1 shows the evolution of the area for 10 particles after 100 gene-
rations. As is observed the behavior of the PSO’s particles tend to follow an individual
behavior, this is because the algorithm is designed to find its best position both indivi-
dually as globally. On the other hand the particles of the MOL algorithm tend to follow
the best particle also called global best, this is due to the fact that the MOL algorithm
is based on a completely social behavior.

(a) PSO

(b) MOL

Figure 4.2: Best global evolution of the particles in sizing the Miller OTA applying (a) PSO and
(b) MOL.

Both PSO and MOL algorithms select the best global particle, this particle is selected
with constraints handling. Basically the global best particle is the one that best complies
with the constraints, in case two or more particles comply with all of them, the particle
with the smallest area is selected. For example; in the first generation in Fig. 4.2(a), the
best global is approximately 1300µm2, which represents the particle8 in Fig. 4.1(a).
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This means that in the first generation particle8 was the one that fulfilled the most
restrictions, this particle remained until generation 10 where the particle10 obtained
better results with an area of 1030µm2. If none of the particles was better than the
best global, this is maintained until another particle has a better performance with the
handling constraints. The same analysis is performed for MOL.

Fig. 4.3 allows to appreciate the difference between the feasible solutions provided by
PSO and MOL. MOL shows how all the particles tend to follow the global best as the
generations increase, while the PSO particles tend to have an unstable behavior until
the end of generations. According to the constraint-handling mechanism implemented
herein, the best particle is the one that meets the greatest number of constraints, lowest
silicon area and differential gain of at least 60dB.

(a) PSO

(b) MOL

Figure 4.3: Evolution of the particles in sizing the Miller OTA applying (a) PSO and (b) MOL.

Figure 4.4 shows the best evolution of the minimum area solutions for 100 generations
during 10 runs. As is observed in these figures, the MOL algorithm finds better results
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in a few generations, this is because all the particles follow the best global particle
during the whole simulation.

(a) PSO

(b) MOL

Figure 4.4: Best global evolution of the MOS area for 10 runs.

Metaheuristics are used to obtain a set of feasible solutions, but not always ensure the
correct solution, for this reason is important to perform several tests that prove the
algorithm is well-tuned. Figure 4.5 shows the averages of the sized solutions. These
box graphs describe where the median of the area is located, if the line is not in the
center of the box is said that the data is not symmetric. Also shows the outliers, these
are represented as red crosses. Figure 4.5 shows how the data provided by the MOL
algorithm has a minimum deviation compared with the PSO data. This means that each
of the particles of MOL tend to a specific value, while the PSO presents more distributed
results within the search space.

These results are detailed in Tables 4.2 and 4.3 for PSO and MOL, respectively. In the
last row are shown the values for the objective function that is the total estimated MOS
area. The other performances that are listed in the Tables were evaluated during the
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(a) PSO

(b) MOL

Figure 4.5: Average of the sized solutions after 10 runs applying (a) PSO and (b) MOL.

optimization process and they are: differential-mode gainAOL, gain-bandwidth product
(GBW ), common-mode gain ACM , common-mode rejection ratio (CMRR), power
supply rejection ratio (PSRR), positive slew rate (SR+), negative slew rate (SR−),
maximum input voltage (V inmax), minimum input voltage (V inmin), width of the MOS
transistors (M1 and M2 encoded by W1), width of the P-type MOS transistors W2,
width of the N-type MOS transistors W3, length of all MOS transistors L, and current
bias Ib.

To verify the results presented in Tables 4.2 and 4.3 are correct, one of the runs is selec-
ted to carry out the characterization individually for each of measurements. Figures 4.6
and 4.7 show the results for the differential mode gain, GBW, and the common mode
gain, respectively.
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Table 4.2: Electrical characteristics and feasible W/L sizes of the Miller OTA guaranteeing
DCOP conditions of the MOS transistors applying PSO for 10 runs. The best values are high-
lighted in bold face.
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Table 4.3: Electrical characteristics and feasible W/L sizes of the Miller OTA guaranteeing
DCOP conditions of the MOS transistors applying MOL for 10 runs. The best values are high-
lighted in bold face.
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Figure 4.6: Algorithm results to the AOL and GB.

Figure 4.7: Algorithm results to the ACM .

CMRR is one of the most important characteristics of an OTA since is a measure of the
rejection offered by the configuration to the common voltage input. Figure 4.8 shows
the CMRR measurement.

Figure 4.8: Algorithm results to the CMRR.

Figures 4.9 and 4.10 show the positive and negative PSRR.
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Figure 4.9: Algorithm results to the PSRR+.

Figure 4.10: Algorithm results to the PSRR−.

Finally, Figure 4.11 shows the results of the time analysis for the positive and negative
Slew Rate.

Figure 4.11: Algorithm results to the SR±.
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4.1.2. Recycled Folded Cascode OTA Results
The RFC-OTA shown in Fig. 2.16 is sized by applying PSO and MOL algorithms to
minimize the silicon area and ensure that the MOS transistors operate in the desired
DCOP region. Figure 4.12 shows the evolution of the particles in each generation. It
should be noted that the encoding of this circuit must have more design variables, W
and L compared to the two-stages OTA Miller, because it has more MOS transistors.
In this manner, eight widths W are encoded as shown in Tables 4.4 and 4.5. In the
simulations for the RFC OTA design, it was considered a factor k = 3.

(a) PSO

(b) MOL

Figure 4.12: Evolution of the MOS area for each particle applying (a) PSO and (b) MOL.

Figure 4.13 shows the evolution of the best global feasible solution. The behavior of
the area evolution of the RFC-OTA is very similar to the two-stages OTA Miller. In
this case, it can be appreciated that all the particles tend to the best global after 20 ge-
nerations for the MOL algorithm, and the PSO tends to have unpredictable behavior.
The particle’s behavior is mainly due to the constraints handling. Usually no particle
finds a feasible solution from the beginning of the simulation, however with the update
equations the algorithm approaches the best solutions with the course of generations.
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(a) PSO

(b) MOL

Figure 4.13: Best global evolution of the particles in sizing the RFC OTA applying (a) PSO and
(b) MOL.

(a) PSO

(b) MOL

Figure 4.14: Best global evolution of the MOS area for 10 runs (a) PSO and (b) MOL.
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PSO and MOL can be applied in large spaces of candidate solutions since are assumed
few hypotheses about the problem to be optimized. Nevertheless, like all metaheuris-
tics, PSO and MOL does not guarantee obtaining an optimal solution in all cases, as
shown in Figure 4.14. Due to the circuit complexity the algorithms require more ti-
me to find feasible solutions and satisfy each of the specified constraints. According
to figure 4.15(a), is observed how the particles change from one solution to another
very different without marking a certain tendency in the optimization of the area. On
the other hand MOL algorithm keeps the same behavior despite increasing the circuit
complexity, always follows the best particle from the beginning.

(a) PSO

(b) MOL

Figure 4.15: Evolution of the particles in sizing the RFC OTA applying (a) PSO and (b) MOL.

Another important difference with respect to the results of the algorithm for the Miller
OTA is the variation of the average area amount runs. Figure 4.5 shows how the ave-
rage of all the runs stays in an approximate area, while the average area for the RFC
OTA changes from one run to another as observed in Fig. 4.16. The results of the RFC
OTA measurements are shown in Tables 4.4 and 4.5. To verify that the data resulting
from the algorithm is correct, measurements of the characteristics of the RFC OTA are
carried out. The values of W and Ib are the data in column 2 of table 4.4.

The differential mode gain and GBW of the RFC OTA are depicted in Figure 4.17.
Figures 4.18 and 4.19 show the common mode gain and the CMRR, respectively.
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Table 4.4: Electrical characteristics and feasible W/L sizes of the RFC OTA guaranteeing DCOP
conditions of the MOS transistors applying PSO for 10 runs. The best values are highlighted in
bold face.
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Table 4.5: Electrical characteristics and feasible W/L sizes of the RFC OTA guaranteeing DCOP
conditions of the MOS transistors applying MOL for 10 runs. The best values are highlighted
in bold face.
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(a) PSO

(b) MOL

Figure 4.16: Average of the sized solutions after 10 runs applying (a) PSO and (b) MOL.

Figure 4.17: Algorithm results to the AOL and GB.

Subsequently, the positive and negative PSRR Figures are presented in 4.20 and 4.21,
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Figure 4.18: Algorithm results to the ACM .

Figure 4.19: Algorithm results to the CMRR.

respectively. Finally, in Figure 4.22, the positive and negative SR measurements are
shown.

Figure 4.20: Algorithm results to the PSRR+.
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Figure 4.21: Algorithm results to the PSRR−.

Figure 4.22: Algorithm results to the SR±.

4.2. NSGA-II Results

NSGA-II is one of the best multi-objective algorithms to solve optimization problems.
This test is performed for the same topologies presented in section 2, in order to com-
pare the behavior of mono-objective algorithms such as the PSO and MOL with a
multi-objective algorithm such as the NSGA-II. One of the advantages of using multi-
objective algorithms is the maximization or minimization of two objectives at the same
time without use constraints to truncate the results.

NSGA-II extracts several Pareto fronts composed of individuals to which an adapta-
tion value is assigned, also called ranking. In the first Pareto front there are the non-
dominated individuals, these individuals are assigned a high adaptation value. Meanw-
hile, the dominated individuals are ranked in the same way to identify the Pareto sub-
front. This process continues until all individuals are classified in fronts.
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4.2.1. Two Stage Miller OTA Results

Figure 4.23 shows the Pareto fronts for 10 runs, these Pareto fronts show all feasible
solutions over 100 generations with a population of 20 individuals. Is important to
specify that in order to propose two objectives, there must be a conflict between them
to improve the performance of the algorithm. In general, an evolutionary algorithm is
encoded to minimize a function, therefore to be able to increase the differential mode
gain as an objective is necessary to invert the function.

Table 4.6: Electrical characteristics and feasible W/L sizes of the Miller OTA guaranteeing
DCOP conditions of the MOS transistors applying NSGA-II. The best values are highlighted in
bold face.

Aol[dB] 60 60.2 60.5 61.4 62.4
GB[MHz] 25 25 24 24 24
Acm[dB] -3 -3 -3 -3 -3

CMRR[dB] 63 63.2 63.5 64.4 65.4
PSRR+[dB] 70 70 70 70 70
PSRR-[dB] 105 98 98 98 98
SR+[v/us] 6 6 6 6 6
SR-[v/us] 6 6 6 6 6

W1[M1,M2][um] 27 29 29 30 27
W2[M4,M5,M6][um] 27 33 38 55 87

W3[M3,M7,Mbias][um] 27 27 27 27 27
L[um] 0.36 0.36 0.36 0.36 0.36
Ib[uA] 50 50 50 50 50

Total Mos Area[um2] 622 689 729 899 1220

A chromosome is formed by 4 genes w1, w2, w3 and Ib, where the objective functions
are the minimization of the area and the maximization of the differential mode gain,
in addition the region of operation of the transistors is guaranteed. Fig. 4.24 shows the
Pareto front formed by the 5 best solutions of all the Paretos front shown in Figure 4.23.
Table 4.6 summarizes the electrical characteristics and feasible W/L sizes of the 5 best
solutions.
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(a) RUN1 (b) RUN2

(c) RUN3 (d) RUN4

(e) RUN5 (f) RUN6

(g) RUN7 (h) RUN8

(i) RUN9 (j) RUN10

Figure 4.23: Pareto Fronts of the Two Stage Miller OTA for 10 runs.
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Figure 4.24: Pareto Front of 5 best solutions.

4.2.2. Recycled Folded Cascode OTA Results
To perform the RFC OTA sizing is necessary to create a chromosome with 9 genes
w1, w2, w3, w4, w5, w6, w7, w8 and Ib, considering a factor of k = 3 for the current
mirrors. NSGA-II algorithm tends to find better solutions with greater number of gene-
rations, this also depends on the value of the genetic operators. The 5 best solutions of
the 10 Pareto fronts shown in Figure 4.26 are plotted in Figure 4.25. Results are shown
in Table 4.7.

Figure 4.25: Pareto Front of 5 best solutions.

Figure 4.26 shows the Pareto fronts for 10 runs, as shown in this Figure the number of
feasible solutions does not match with the number of individuals,since not all indivi-
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duals find the best solution in that number of generations. In addition Pareto fronts are
not always ideally formed, this is usually due to the crossover and mutation probability
values.

Table 4.7: Electrical characteristics and feasible W/L sizes of the RFC OTA guaranteeing DCOP
conditions of the MOS transistors applying NSGA-II. The best values are highlighted in bold
face.

Aol[dB] 70 72 73 74 77
GB[MHz] 1.02 1.19 0.9 1 1.3
Acm[dB] -40 -42 -38 -34 -48

CMRR[dB] 110 114 111 107 125
PSRR+[dB] 53 55 40 39 75
PSRR-[dB] 94 94 80 80 94
SR+[v/us] 0.22 0.25 0.4 0.4 0.24
SR-[v/us] 0.22 0.25 0.4 0.4 0.24

W1[M1a,M2a][um] 61 62 66 76 68
W2[M1b,M2b][um] 60 60 60 60 60
W3[M3a,M4a][um] 60 60 60 60 61
W4[M3b,M4b][um] 63 73 89 89 119
W5[M3c,M4c][um] 60 60 60 60 61
W6[M5,M6][um] 60 60 60 60 62
W7[M7,M8][um] 60 60 61 61 61

W8[M9,M10][um] 61 61 60 60 60
L[um] 0.6 0.6 0.6 0.6 0.6
Ib[uA] 20 27 45 45 45

Total Mos Area[um2] 6360 6450 6720 6900 7080
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(a) RUN1 (b) RUN2

(c) RUN3 (d) RUN4

(e) RUN5 (f) RUN6

(g) RUN7 (h) RUN8

(i) RUN9 (j) RUN10

Figure 4.26: Pareto Fronts of the RFC OTA for 10 runs.





Chapter 5
Design performance and results

5.1. Layout

In this section the layout of a Two Stage Miller OTA is performed. The first step to
achieve a good layout is to perform a floorplaning in which all the transistors, dimen-
sions, interdigitated, sensitivity, multiplicities and position are considered. This step
is the most important and difficult because it requires time, creativity and experience
from the designer to avoid layout mismatches. This step usually requires more time
than the others, for this reason the use of integer values that are multiples of the lambda
is facilitates the calculation of multiplicities, interdigitated and also reduces the design
time.

Figure 5.1: Layout of the Miller OTA
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Another important aspect is the symmetry, this allows to reduce the variations that can
affect the circuit in the fabrication process, reduces the mismatch between the tran-
sistors and ensures the voltage or current is distributed equally to the corresponding
transistors. Fig. 5.1 shows the implemented layout. One of the main objectives is the
minimization of the area, therefore transistors with small areas allow to guarantee a
smaller silicon area, despite not considering multiplicities, guard rings and rules of
technology. For the layout the electromigration rules were considered, which was not
a problem since the polarization current is small enough for the metal’s widths. Figure
5.1 also shows the use of a power grid, which allows to distribute all the power to the
entire circuit.

Subsequently is important to perform the post-layout simulations, this serves to ve-
rify that the operation of the IC remains the same as the main design. The post-layout
measurements of each of the characteristics of the Miller OTA are shown in Figures
[5.2-5.7].

Figure 5.2: Post-Layout results to the AOL.

The figure 5.2 shows how the differential mode gain varies a bit compared to the results
of the main circuit. The GBW was the feature that was most affected, due to para-
sitic capacitances. The other measurements are very close to the previously obtained
measurements.
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Figure 5.3: Post-Layout results to the ACM .

Figure 5.4: Post-Layout results to the CMRR.

Figure 5.5: Post-Layout results to the PSRR+.

5.2. PVT Variations
Nowadays, the industry that studies the design of analog integrated circuits faces a
lot of challenges, due to the high demand of electronic devices. The design of analog
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Figure 5.6: Post-Layout results to the PSRR−.

Figure 5.7: Post-Layout results to the SR+ and SR−.

integrated circuits is usually carried out under ideal operating conditions, therefore in
the laboratory is not a problem. But when the circuit is subjected to different conditions
they are vulnerable to variations. For this reason is important to perform PVT tests
on integrated circuits, this tests are used to determine how robust a circuit is under
different variations tests. Usually, these variations can be classified into three main
groups: process, voltage and temperature.

Process variations depend on the corners within which a device may vary. Ge-
nerally the integrated circuits are manufactured in silicon wafers, therefore these
variations refer to the differences in the doping of the devices. The corner’s varia-
tion makes the devices work very fast or very slow depending on the fluctuations
in the amount of doping, this is due to the dispersion of the current carrying par-
ticles due to thermal heating. There are 5 corners: the typical value (TT), fast-fast
(FF) which refers to the best case and the worst case slow-slow (SS). The other
two corners are the combination of the previous two corners slow-fast (SF) and
fast-slow (FS).

The voltage variations are mainly due to the fact that the supply voltages do
not provide the specified nominal voltage. Therefore is important to simulate



5.2. PVT VARIATIONS 73

a variation in the supply voltage of ±10 % of the nominal value of the power
supply.

Integrated circuits often operate in environments where the temperature is not
stable, also is important to consider that these circuits are surrounded by others
that dissipate energy in form of heat. Usually the design of integrated circuits is
done at a temperature of 60o and not a 25o as expected. The temperature corners
that are commonly used are 60 o, -20o and 100o.

Figure 5.8 shows the PVT analysis for each of the corners TT, FF, SS, FS and SF. For
each corner a temperature of -20o, 60o and 120o is used with a variation in the supply
voltage of ±10 %.
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(a) TT

(b) FF

(c) SS

(d) FS

(e) SF

Figure 5.8: PVT analysis for each corner.



Chapter 6
Conclusions and Future work

6.1. Conclusions

Analog integrated circuit design is a process that can be optimized and automated,
since is one of the most complex processes in the electronics area, this is due to the
large number of constraints and specifications that must be satisfied. This work mainly
focuses on transconductance operational amplifiers due to its importance circuits in the
development of converters and amplification stages. The design of OTAs becomes a
complicated task when is necessary to improve two or more characteristics, since there
are many trade-offs which compromise the operation of the circuit. In this work, a hand-
drawn design of an OTA Miller is developed using the quadratic model’s equations to
compare the results with those obtained from the algorithms.

In addition, it was demonstrated that both mono and multi-objective metaheuristics ba-
sed on population and evolutionary algorithms such as PSO, MOL and NSGA-II serve
to optimize CMOS OTAs based on the design variables. In this work, restrictions were
used to guide the algorithm to a fast convergence and to modify the mono-objective
algorithms such as the PSO and MOL to be used with more objectives.

To obtain more accurate results about the circuit’s perfomance, the code of the algo-
rithms was modified to achieve the corresponding simulations with SPICE. This repre-
sents a great advantage over the commonly performed design method, since the results
are provided directly from the SPICE .lis output files. The design variables are scaled
by the technology’s lambda within SPICE, therefore the assignment of integers values
to the design variables in the algorithm for transistor’s sizing is a matter of great impor-
tance. This is also beneficial to the layout implementation process, and avoids the need
of a post-procesing step over this values.

One of the objectives for the optimization of both OTA’s topologies Miller and RFC
is the minimization of the silicon area from the area calculation of each transistor that
is part of the OTA. Therefore the area of each transistor was minimized to reduce the
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area of the entire circuit. It should be noted that other features were considered, such
as ensuring a minimum differential mode gain of 60dB and a GBW of 10MHz for the
MIller OTA and greater than 100KHz for the RFC OTA.

Finally, is guaranteed that the operation point of each transistor is whithin the strong
inversion region, this to ensure that the circuits are not affected by PVT variations.
Subsequently, the layout of an OTA Miller was carried out, then post-layout simula-
tions were performed and through the analysis of these results is demonstrated that the
extracted circuit is also robust to PVT variations.

6.2. Future work
Use algorithms that are capable of optimizing many objectives, in order to mini-
mize or maximize all the characteristics of an OTA.

Dimension more complex integrated circuits from the design variables by applying
metaheuristics with a greater number of objectives.

Implement and improve constraints handling to guide the algorithm to better so-
lutions.

Improve the processing time and memory space of the implemented algorithms
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[36] M. Köppen, G. Schaefer, and A. Abraham, Intelligent Computational Optimiza-
tion in Engineering: Techniques & Applications, vol. 366. Springer Science &
Business Media, 2011.



80 BIBLIOGRAPHY

[37] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation,
vol. 6, no. 2, pp. 182–197, 2002.

[38] L. G. de la Fraga and E. Tlelo-Cuautle, “Optimizing the maximum lyapunov ex-
ponent and phase space portraits in multi-scroll chaotic oscillators,” Nonlinear
Dynamics, vol. 76, no. 2, pp. 1503–1515, 2014.

[39] “Particle swarm optimization in MATLAB,” Last time checked: May 22nd, 2019.
http://yarpiz.com/50/ypea102-particle-swarm-optimization.

[40] J. C. F. Cabrera and C. A. C. Coello, “Handling constraints in particle swarm
optimization using a small population size,” in Mexican International Conference
on Artificial Intelligence, pp. 41–51, Springer, 2007.


