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Association rule mining and classification are important tasks in data mining. Using association rules has
proved to be a good approach for classification. In this paper, we propose an accurate classifier based on
class association rules (CARs), called CAR-IC, which introduces a new pruning strategy for mining CARs,
which allows building specific rules with high confidence. Moreover, we propose and prove three prop-
ositions that support the use of a confidence threshold for computing rules that avoids ambiguity at the
classification stage. This paper also presents a new way for ordering the set of CARs based on rule size and
confidence. Finally, we define a new coverage strategy, which reduces the number of non-covered
unseen-transactions during the classification stage. Results over several datasets show that CAR-IC beats
the best classifiers based on CARs reported in the literature.
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1. Introduction

Associative Classification, introduced in Liu, Hsu, and Ma
(1998), is a well-known technique in data mining that aims to
build a classifier based on class association rules (CARs) to deter-
mine the class of ‘‘unseen’’ transactions. Associative Classification
integrates association rule mining (ARM) (Agrawal & Srikant,
1994) and classification rule mining (CRM) (Quinlan, 1993) to con-
struct supervised classifiers also known as Associative Classifiers; a
classifier based on this approach usually consists in an ordered list
of CARs, which are used for classifying new transactions (Li, Han, &
Pei, 2001; Liu et al., 1998; Yin & Han, 2003).

Nowadays, Associative Classification methods are increasingly
applied in modern applications, such as prediction of protein–
protein interaction types (Park, Reyes, Gilbert, Kim, & Kim, 2009),
prediction of consumer behavior (Bae & Kim, 2010), text segmen-
tation (Cesario, Folino, Locane, Manco, & Ortale, 2008), text classi-
fication (Buddeewong & Kreesuradej, 2005; Yoon & Lee, 2005),
determination of DNA splice junction types (Berzal, Cubero,
Sánchez, & Serrano, 2004), classification of mammograms (Dua,
Singh, & Thompson, 2009), detection of breast cancer (Karabatak
& Ince, 2009), obtention of minimal gene groups potentially
responsible for the development of cancer (Dong & Li, 2005), anal-
ysis of real world geo-referenced census data (Ceci, 2006) and
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mammalian mesenchymal stem cell differentiation (Wang, Wang,
Cui, & Coenen, 2009), among others.

In Associative Classification, similar to ARM, a set of items
I = {i1, i2, . . . , in}, a set of classes C, and a set of labeled transactions
D, are given. Each transaction t 2 D contains a set of items X # I
and a class c 2 C. The support of an itemset X # I is the fraction of
transactions in D containing X (see Eq. (1)). A CAR is a expression
X) c, where X # I and c 2 C. The interest of a CAR is usually eval-
uated using the support and confidence measures. The support of a
CAR X) c (see Eq. (2)) is the fraction of transactions in D that con-
tain X [ {c}. The confidence of a CAR X) c (see Eq. (3)) is the prob-
ability of finding c in transactions that contain X, which represents
how ‘‘strongly’’ the rule antecedent X implies the rule consequent c.

SupðXÞ ¼ jDX j
jDj ð1Þ

where DX is the set of transactions in D containing X and j�j repre-
sents the cardinality.

SupðX ) cÞ ¼ SupðX [ fcgÞ ð2Þ

Conf ðX ) cÞ ¼ SupðX ) cÞ
SupðXÞ ð3Þ

Some works (Agrawal & Srikant, 1994; Zaki, Parthasarathy, Ogihara,
& Li, 1997) have mentioned that finding association rules is a hard
problem that requires extensive computation capacity, especially
when a small support threshold is used and the expected number
of candidate ARs is too large. In order to deal with this problem into
the context of CAR mining, some works (Coenen, Leng, & Zhang,
2005; Wang, Xin, & Coenen, 2007a, Wang, Xin, & Coenen, 2007b,
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2008) propose to prune the CAR space when a CAR satisfies prede-
fined support and confidence thresholds, in this way general (small)
rules are obtained. This strategy has two main drawbacks:

� Many branches of the CAR space could be explored in vain
because the CARs are extended until they satisfy both support
and confidence thresholds, which could never happen. For the
support, this drawback is overcame by apriori-like algorithms
that prune the search space using the anti-monotonic property
of the support but the confidence measure does not satisfy the
anti-monotonic property.
� Once a CAR X) c is computed then the CAR X0 ) c with X � X0

(a larger rule) never will be computed, this approach does not
allow to generate specific (large) rules, some of which could
be more interesting (i.e. these rules could have a higher
confidence).

On the other hand, in previous works (Coenen et al., 2005; Li
et al., 2001; Liu et al., 1998; Wang, Xin, & Coenen, 2008; Yin &
Han, 2003), the concept of coverage of a transaction by a CAR is
as follows: a CAR X) c satisfies or covers a transaction t if X # t,
which means that t must contain all the items of X; we will refer
to this concept as exact coverage. Besides, in these works when
no rule covers a transaction, the default class (majority class in
all cases) is assigned and this could influence positively or nega-
tively the results, hiding the real classification accuracy.

To solve these drawbacks, in this paper we introduce a new CAR
based classifier called CAR-IC (Classification Association Rules with
Inexact Coverage).

Preliminary results of this paper were published in Hernández,
Carrasco, Martínez, and Hernández (2010). The main differences of
this paper w.r.t. the conference paper (Hernández et al., 2010) are
the following: (1) we prove the Propositions 1 and 2, which were
only enunciated in Hernández et al. (2010); (2) we introduce and
prove a new proposition, which guarantees that CAR-IC uses the
minimum confidence threshold value that avoids ambiguity at
the classification stage; (3) we introduce a new coverage strategy,
which allows to reduce the number of non-covered unseen-trans-
actions (default class assignations) improving the accuracy of CAR-
IC; (4) the pruning strategy, the ordering strategy, the procedure
for mining the CARs and the classification process are better ex-
plained and supported with examples, and (5) in the experiments,
we included more datasets and new experiments to show the po-
sitive impact of the new coverage strategy in the classification
stage, and to show the statistical significance of the results.

This paper is organized as follows: the next section describes
the related work. In section three the CAR-IC classifier is intro-
duced. Additionally, propositions that guarantee selecting a suit-
able confidence threshold value for computing rules that avoid
ambiguity at the classification stage are presented and proved. In
section four the experimental results, comparing CAR-IC against
other state of the art classifiers based on CAR jointly with a discus-
sion about these experiments are shown. Finally, conclusions as
well as future work are given in section five.
2. Related work

The main classifiers based on CARs, reported in the literature,
can be divided in two groups according to the approach used for
obtaining the set of CARs:

1. Two Stage classifiers. In a first stage all CARs satisfying the sup-
port and confidence thresholds are mined and later, in a second
stage, a classifier is built by selecting a small subset of CARs that
fully covers the training set. CBA (Liu et al., 1998), CMAR (Li
et al., 2001) and MCAR (Thabtah, Cowling, & Peng, 2005) follow
this strategy.

2. Integrated classifiers. In these classifiers a small subset of CARs
is directly generated. CPAR (Yin & Han, 2003), TFPC (Coenen
et al., 2005) and HARMONY (Wang & Karypis, 2006) follow this
strategy.

Regardless of the approach used for generating the set of CARs,
there are five main schemes for ordering CARs:

(a) CSA (Confidence–Support–Antecedent size): The CSA order-
ing scheme (used by CBA (Liu et al., 1998)) sorts the rules in
a descending order according to their confidence. Those
CARs that share a common confidence value are sorted in a
descending order according to their support, and in case of
tie, CSA sorts the rules in ascending order according to the
size of their rule antecedent. If all above criteria are identi-
cal, CSA sorts the rules following the order in which they
were generated.

(b) ACS (Antecedent size–Confidence–Support): The ACS order-
ing scheme (used by TFPC (Coenen et al., 2005)) is a variation
of CSA. But it takes the size of the rule antecedent as first
ordering criterion, followed by the confidence and the
support.

(c) WRA (Weighted Relative Accuracy): The WRA ordering
scheme, proposed in Lavraĉ, Flach, and Zupan (1999) and
used in three versions of the TFPC classifier (Wang et al.,
2007a, 2007b, 2008), assigns to each CAR a weight based
on its support and confidence and then sorts the set of CARs
in a descending order according to these weights.

(d) LAP (Laplace Expected Error Estimate): The LAP ordering
scheme was introduced by Clark and Boswell (1991) and it
has been used to order CARs in CPAR (Yin & Han, 2003). This
ordering scheme is similar to WRA but it computes the
weights in a different way, also based on support and
confidence.

(e) v2 (Chi-Square): the v2 ordering scheme is a well known
technique in statistics, which can be used to determine
whether two variables are independent or related. After
computing an additive v2 value for each CAR, this value is
used in CMAR (Li et al., 2001) to sort the set of CARs in a
descending order.

In the literature there are three main satisfaction mechanisms
(Li et al., 2001; Liu et al., 1998; Wang et al., 2008) to determine
the class of an unseen transaction. Let t be a new transaction,

1. Best rule: This mechanism assigns to t the class associated with
the first (‘‘the best’’) rule in the order that satisfies t (Liu et al.,
1998).

2. Best K rules: This mechanism uses the best K rules in the order
(for each class) that satisfy t for determining the class of t
(Wang et al., 2008).

3. All rules: This mechanism uses all rules that satisfy t to deter-
mine the class of t (Li et al., 2001).

Algorithms following the ‘‘Best rule’’ mechanism could suffer
biased classification or overfitting since the classification is based
on only one rule. On the other hand, the ‘‘All rules’’ mechanism
could include rules with low ranking for classification and this
could affect the accuracy of the classifier. Since the ‘‘Best K rules’’
mechanism has been the most used satisfaction mechanism for
CAR based classifiers (Wang et al., 2007a, 2007b, 2008), and it
has reported the best results, we will use it in our classifier.
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3. CAR-IC classifier

We divide the explanation of the proposed classifier in 3 sub-
sections. First of all, in Subsection 3.1, we propose and prove three
propositions that guarantee using the minimum confidence
threshold value, for computing a set of CARs, that avoids ambiguity
at the classification stage. In Subsection 3.2, we describe the pro-
cess for mining the CARs jointly with the new pruning strategy.
In Section 3.3, a new way for ordering the CARs as well as a new
coverage strategy for reducing the number of non-covered un-
seen-transactions are proposed. Finally, using all the above
improvements the CAR-IC classifier is introduced.

3.1. Determining the confidence threshold

Commonly, CAR based classifiers use support and confidence
thresholds for mining the set of CARs. However, these thresholds
must be carefully defined by the user; there is not a guideline
that helps the user to choose these threshold values. If we use
too small threshold values (close to 0) then we have to deal with
a large number of CARs, while if we use too big threshold values
(close to 1) then many interesting CARs could be omitted. In this
paper, unlike previous works reported in the literature, we pro-
pose to use the minimum confidence threshold that avoids ambi-
guity at the classification stage. We will say that two CARs are
ambiguous if they have the same antecedent implying different
classes.

In order to determine the minimum confidence threshold that
avoids ambiguity we introduce three propositions. The Proposition
1 guarantees that the sum of the confidence values of all CARs hav-
ing identical antecedent is 1. Later, the Proposition 2 shows that
only one CAR can have a confidence value greater than 0.5 and
the Proposition 3 guarantees that, for any dataset, 0.5 is the mini-
mum threshold value that avoids CAR ambiguity at the classifica-
tion stage.

Proposition 1. Let X be an itemset and C = {c1, c2, . . . , cm} be the set of
predefined classes, the following equation is fulfilled:
Pm

i¼1
Conf ðX ) ciÞ ¼ 1
Table 1
Dataset D used in the proof of Proposition 3.

Transaction Itemset Class

t1 X c1

t2 X c1

� � � � � � � � �
Proof. From the definition of CAR confidence (Eq. (3)) we have:

Pm

i¼1
Conf ðX ) ciÞ ¼

Pm

i¼1

SupðX ) ciÞ
SupðXÞ ¼

Pm
i¼1SupðX ) ciÞ

SupðXÞ ð4Þ

From Eqs. (1) and (2), we have:

Pm

i¼1
SupðX ) ciÞ ¼

Pm

i¼1
SupðX [ fcigÞ ¼

Pm

i¼1

jDX[fcigj
jDj ¼

Pm
i¼1jDX[fcigj
jDj ð5Þ

Since each transaction has one and only one class then
Pm

i¼1jDX[fcigj ¼ jDX j and

Pm

i¼1
SupðX ) ciÞ ¼

jDX j
jDj ¼ SupðXÞ ð6Þ

Later, substituting (6) in (4)

Pm

i¼1
Conf ðX ) ciÞ ¼

SupðXÞ
SupðXÞ ¼ 1 �
tn X c1

tn+1 X c2

tn+2 X c2

� � � � � � � � �
t2n X c2
Proposition 2. Let X be an itemset and C = {c1, c2, . . . , cm} be the set of
predefined classes, at most one CAR X) ck (ck 2 C) has a confidence
value greater than 0.5.
Proof. From Eq. (3), we have that Conf(X) c) takes values
between 0 and 1 because Conf evaluates the probability of finding
c in transactions that also contain X. Besides, from Proposition 1 we
have that the sum of the confidence values of all CARs with equal
antecedent is 1. Therefore, we can not have more than one CAR
with equal antecedent and confidence value greater than 0.5
because in that case the sum of their confidence values would be
greater than 1. h

Based on Proposition 2, if we set the confidence threshold to 0.5,
for each itemset X we can obtain at most one CAR having X as ante-
cedent, with a confidence greater than 0.5. In this way, ambiguity
at the classification stage is avoided. However, Proposition 2 does
not guarantee that for all datasets 0.5 is the minimum confidence
threshold that avoids ambiguity. Therefore, we will prove the fol-
lowing proposition:

Proposition 3. Let X be an itemset and C = {c1, c2, . . . , cm} be the set of
predefined classes, independently of the dataset, 0.5 is the minimum
confidence threshold value that avoids ambiguity in CARs having X as
antecedent.
Proof. In order to prove this proposition, we just have to find a
dataset containing an itemset X where any confidence value smal-
ler than 0.5 does not avoid ambiguity in CARs having to X as ante-
cedent. Suppose a dataset D having only two classes c1 and c2 such
that jDfc1gj ¼ jDfc2gj and containing the itemset X in all its transac-
tions (see Table 1). In the dataset D, for all confidence threshold
a < 0.5 we have two CARs X) c1 and X) c2 having confidence
values greater than a (see Eq. (7)).

Conf ðX ) c1Þ ¼ Conf ðX ) c2Þ ¼
n

2 � n
¼ 0:5 > a � ð7Þ

Taking into account the previous analysis, we propose to use a
confidence threshold value equal to 0.5 for computing CARs, which,
independently of the dataset, is the minimum value that avoids
CAR ambiguity at classification stage.
3.2. Mining the set of CARs

Similar to frequent itemset (FI) mining, the CARs mining task
consumes too many time due to its combinatorial explosion. Usu-
ally, CAR computing implies traversing the CAR space (see Fig. 1).
The recent approaches use either breadth first search (BFS) or
depth first search (DFS). In a BFS strategy all CARs of size k � 1
are computed before computing CARs of size k, and in a DFS strat-
egy a recursive process allows to traverse the CAR space by adding
items to the current CAR’s antecedent until the CAR cannot grow
anymore.

In order to generate the set of CARs, we propose a modification
of the FI mining algorithm CA (Hernández et al., 2010), called CAR-
CA. The CA algorithm, according to the experiments shown by their
authors, outperforms other efficient algorithms for mining fre-
quent itemsets, like Apriori (Agrawal & Srikant, 1994) (used in
training phase of CBA (Liu et al., 1998)), Fp-growth (Han, Pei, &
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Fig. 1. CAR space for three items and two classes.
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Yin, 2000) (used in training phase of CMAR (Li et al., 2001)) and TFP
(Coenen, Leng, & Ahmed, 2004) (used in training phase of TFPC
(Coenen et al., 2005)).

In Zaki et al. (1997), for mining FI, the authors propose parti-
tioning the itemset space into equivalence classes grouping item-
sets of the same size k which have a common (k � 1)-length
prefix. Later, they use a DFS strategy for mining all FI. In this paper,
we propose to divide the CAR space into equivalence classes de-
fined by a new equivalence relation:

Definition 1. Let U be the CAR space, we will say that r1 2 U is
related with r2 2 U (r1 R r2) iff:

� r1 and r2 have the same size (k).
� r1 and r2 have the same consequent (the same class).
� The antecedents of r1 and r2, which have k � 1 tems, have a

common k � 2-length prefix.

The above relation is clearly an equivalence relation because it
is transitive, symmetric and reflexive. Equivalence relations define
equivalence classes. All equivalence classes defined in a set Q,
using an equivalence relation R, define a partition in Q, therefore,
by structuring the CAR space in equivalence classes using the pro-
posed equivalence relation we can calculate, separately, the rules
belonging to each class. In Fig. 2, we show the CAR space parti-
tioned in equivalence classes using the proposed equivalence rela-
tion. Based on this analysis, for mining the CAR space, we propose
to combine the BFS and DFS strategies processing the equivalence
classes in DFS form, and for each one, computing the k-CARs in BFS
form.

Similar to CA (Hernández et al., 2010), in order to compute the
support values fast, we take advantage of bit-to-bit operations by
representing the dataset as an m x n binary matrix, where m is
the number of transactions and n is the number of items including
class items. The binary values 1 and 0 denote the presence or
,,, 131211 cicici ⇒⇒⇒

1c

i

,, 131121 ciicii ⇒⇒ 32ii ⇒

,1121
ciii

kjjj ⇒
−

Classes

2-CARs

3-CARs

k-CARs

Fig. 2. CAR space structured in equivalence cl
absence of an item in a transaction, respectively. Each column
(associated to an item j) is compressed and represented as an
integer array Ij, as follows:

Ij ¼ fW1;j;W2;j; . . . ;Wq;jg; q ¼ dm=32e ð8Þ

where each integer Wi,j of the array Ij represents 32 transactions (in
a 32 bit architecture). We iteratively generate a list LECk

representing
the equivalence classes containing CARs of size k, each equivalence
class ECk in LECk

has the format:

hc;AntPrefk�2; IAAntPrefk�2
;AntSuff i ð9Þ

where c is the consequent of the grouped CARs, AntPrefk�2 is the
(k � 2)-itemset that is common to all the antecedents of the
grouped CARs (antecedent’s prefix), AntSuff is the set of all items j
which can extend AntPrefk�2 (antecedent suffixes), where j is lexico-
graphically greater than each item in the antecedent prefix, and
IAAntPrefk�2

is an array of pairs (value, id), with value > 0 and 1 6 id 6 q,
this array is built by intersecting (using AND operations) the integer
arrays of items belonging to AntPrefk�2. The IA arrays store the sup-
port of the antecedent prefix of each equivalence class ECk, which is
used to compute the support of the rule antecedent of each CAR in
ECk. If k is large, the number of elements of IA is small because the
AND operations generate null integers, and null integers are not
stored because they do not have influence neither over the support
nor over the confidence. The procedure for obtaining IA is as fol-
lows: Let i and j be two items, then:

IAfig[fjg ¼ fðWk;i & Wk;j; kÞj
ðWk;i & Wk;jÞ > 0; k 2 ½1; q�g

ð10Þ

now let X be an itemset and j be an item, then:

IAX[fjg ¼ fðb & Wk;j; kÞjðb; kÞ 2 IAX ;

ðb & Wk;jÞ > 0; k 2 ½1; q�g
ð11Þ

In order to compute the support of an itemset X with an integer ar-
ray IAX, the expression (12) is used:

SupðXÞ ¼
P

ðb;kÞ2IAX

BitCountðbÞ ð12Þ

where BitCount(b) is a function that computes the Hamming weight
of b.

In the literature, regardless of the strategy used for mining the
CARs, during the mining stage each CAR satisfying the support and
confidence thresholds is extended by adding a new item. The
extended CAR, called candidate CAR, is searched in the transaction
,,, 232221 cicic ⇒⇒⇒

2c

,1c ,, 231221 ciicii ⇒⇒

,2121
ciii

khhh ⇒
−

asses using the new equivalence relation.
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dataset to compute its support and confidence values. Recent algo-
rithms for mining the set of CARs (Coenen et al., 2005; Wang et al.,
2007a, 2007b, 2008) prune the CAR space each time a CAR satisfy-
ing the support and confidence thresholds is found, and it results in
general (small) rules with high confidence. In our proposal, instead
of pruning the CAR space when a CAR satisfies the support and
confidence thresholds, we propose the following pruning strategy:

� If a candidate CAR X) c does not satisfy either the support
threshold or the confidence threshold we do not extend the
CAR anymore avoiding to explore this part of the CAR space in
vain, i.e., we do not generate candidate CARs from CARs wich
do not satisfy either the support threshold or the confidence
threshold.
� Otherwise, if a candidate CAR X) c satisfies the confidence

threshold we keep extending it while Conf(X [ {i} ) c) is
greater than or equal to Conf(X) c), where i is a new item
added to the rule’s antecedent, thus we allow to obtain more
specific (large) rules with high confidence.

3.3. Ordering and classifying

Once the set of CARs has been generated, the CAR list is sorted.
As we mentioned earlier, for classifying unseen transactions, we
will use specific (large) rules with high confidence. For this pur-
pose, we propose sorting the set of CARs in a descending order
according to the size of the CARs (the largest first) and in case of
tie, we sort the tied CARs in a descending order according to their
confidence (the highest values first). If two rules have the same
size and confidence, then we follow the order in which they were
generated.

The intuition behind this ordering is that more specific rules
should be preferred rather than more general rules because spe-
cific rules involve more items of an unseen transaction than gen-
eral rules. If there is a tie in size, those rules with high
confidence should be preferred rather than rules with low confi-
dence. For example, in Table 2(a), we have a classifier with three
CARs, which are sorted by the criterion of the most general first.
Given the transaction {i1, i2, i3, i4, i5, i6}, using the ‘‘Best rule’’ mecha-
nism, this transaction would be classified as belonging to class c1

when intuitively class c2 or c3 would be more likely to be the cor-
rect class because the rules {i1i2i3}) c2 and {i4i5i6}) c3 take into
account three of the six items of the transaction, while the rule
Table 2
Example of CAR ordering strategies.

# CAR Confidence

(a) More general rules first
1 {i1}) c1 0.65
2 {i4i5i6}) c3 0.65
3 {i1i2i3}) c2 0.60

(b) More specific rules first
1 {i4i5i6}) c3 0.65
2 {i1i2i3}) c2 0.60
3 {i1}) c1 0.65

Table 3
Example of a set of interesting CARs.

CAR Confidence

{i1}) c 0.52
{i1,i2}) c 0.52
{i1,i2,i3}) c 0.54
{i1,i2,i3,i4}) c 0.56
{i5}) c 0.51
{i5,i6}) c 0.53
{i5,i6,i7}) c 0.53
{i1}) c1 only considers the item i1. In Table 2(b), we show the
same three CARs but sorted by our ordering strategy, more specific
rules first and for rules of the same size, highest confidence first.
Therefore, given the transaction {i1, i2, i3, i4, i5, i6}, our classifier
would assign the class c3 because the rules {i4i5i6}) c3 and {i1 i2
i3}) c2 have the same size but the former has greater confidence.

As it was mentioned in Section 1, in previous works, the authors
considered that a CAR r covers a transaction t if the antecedent of
the rule r is a subset of t. Consider the set of interesting CARs in
Table 3, if you want to classify the transactions {i2, i3} or {i2, i3, i4}
then the majority class will be assigned (or the classifier refuses
to classify) because, using exact coverage, these transactions are
not covered by any CAR of Table 3 although {i2, i3} and {i2, i3, i4}
appear in the antecedents of some rules.

In order to reduce the number of non-covered unseen-transac-
tions for those cases where the exact coverage does not work, we
propose the following coverage definition:

Definition 2. A CAR X) c, with jXj = n P 2, inexactly covers a
transaction t if there is an itemset X0 � t such that X0 � X and
jX0j = n � 1.

Using this inexact coverage definition, the transactions {i2, i3}
and {i2, i3, i4} of our example would be covered by the CARs
{i1, i2, i3}) c and {i1, i2, i3, i4}) c respectively. This covering defini-
tion allows reducing the number of non-covered unseen-
transactions.

For classifying unseen transactions, we decided to follow the
‘‘Best K rules’’ satisfaction mechanism, because, as it was explained
in Section 2, the ‘‘Best rule’’ mechanism could suffer biased classi-
fication or overfitting since the classification is based on only one
rule; and the ‘‘All rules’’ mechanism could take into account rules
with low ranking, which affects the accuracy of the classifier.

Algorithm 1: Training phase.

Input: training dataset db
Outpur: the classifier (ordered set of CARs)
1 Answer = ;
2 CARs = Generating_CARs(db)
3 Answer = Ordering_CARs(CARs)
4 return Answer

Using the improvements introduced in this section, we build a
new classifier based on class association rules (named CAR-IC) as
follows:

(a) In the training phase CAR-IC computes, from the training
dataset, the set of CARs using the CAR-CA algorithm applying
the proposed pruning strategy jointly with the confidence
threshold value suggested by Proposition 3. After, CAR-IC
sorts the set of CARs in a descending order according to
the size of the CARs and if there is a tie, the CARs are sorted
in a descending order according to their confidence. if the tie
persists then CAR-IC orders the CARs according to the order
they were generated.
Algorithm 2: Classification phase.

Input: set of sorted CARs, unseen transaction t
Output: the assigned class
1 Answer = ;
2 BestK = Select_BestK(t)
3 Answer = Classify(BestK)
4 return Answer
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(b) In the classification phase, CAR-IC classifies an unseen trans-

action t applying the ‘‘Best K rules’’ satisfaction mechanism
(we used K = 5 as in the other evaluated classifiers). We first
use the CARs that exactly cover t; if no CAR covers exactly t
then CAR-IC uses those CARs that inexactly cover t. The class
having the highest average confidence is assigned to t. If
there is a tie, one of the tied classes is randomly assigned.
If no rule covers t (exactly or inexactly), unlike other classi-
fiers which assign the majority class hiding the real behavior
of the classifier, CAR-IC refuses to classify t. However, in our
experiments such abstentions are counted as errors.
Although some real applications do not support abstentions,
we prefer to include them in the experiments as errors for
avoiding CAR-IC be favored from casual hits using the major-
ity class.

Algorithms 1 and 2 show the pseudo code of the training and
classification phases of the CAR-IC classifier, respectively.

4. Experimental results

In this section, we present the results of our experimental com-
parison between CAR-IC and the main classifiers based on CARs re-
ported in the literature: CBA (Liu et al., 1998), CMAR (Li et al.,
2001), CPAR (Yin & Han, 2003), TFPC (Coenen et al., 2005), HAR-
MONY (Wang & Karypis, 2006) and DDPMine (Cheng, Yan, Han,
& Yu, 2008).

The codes of CBA, CMAR, CPAR and TFPC were downloaded from
the Frans Coenen’s homepage (http://www.csc.liv.ac.uk/�frans),
the code of DDPMine was provided by their authors and for HAR-
MONY, we used the accuracy values reported in Wang and Karypis
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Table 4
Dataset characteristics.

Dataset # Instances # Items # Classes

Adult 48842 97 2
Anneal 898 73 6
Breast 699 20 2
Connect4 67557 129 4
Dermatology 366 49 6
E-coli 336 34 8
Flare 1389 39 9
Glass 214 48 7
Heart 303 52 5
Hepatitis 155 56 2
HorseColic 368 85 2
Ionosphere 351 157 2
Iris 150 19 3
Led7 3200 24 10
LetRecog 20000 106 26
Mushroom 8124 90 2
PageBlocks 5473 46 5
PenDigits 10992 89 10
Pima 768 38 2
Waveform 5000 101 3

Table 5
Average accuracy of CBA, CMAR, CPAR and TFPC classifiers over the tested datasets, for di

Classifier % Support/ % Confidence

1/40 1/50 1/60 10/40

CBA 70.26 72.41 69.38 68.42
CMAR 74.33 77.63 73.15 71.98
CPAR 74.12 76.58 73.26 71.44
TFPC 72.21 75.46 71.87 71.25
(2006). The accuracy of a classifier depends on the number of
transactions correctly classified and it is computed as T/S, where
T is the number of transactions correctly classified, and S is the to-
tal number of transactions presented to the classifier.

All our experiments were done using ten-fold cross-validation
and we report the average over the ten folds. The same folds were
used for all classifiers. All the tests were performed on a PC with an
Intel Core 2 Duo at 1.86 GHz CPU with 1 GB DDR2 RAM, running
Windows XP SP2.

In the same way as in other works (Coenen et al., 2005; Li et al.,
2001; Liu et al., 1998; Yin & Han, 2003), we used several datasets,
specifically 20 datasets also reported in Li et al. (2001), Liu et al.
(1998), Wang and Karypis (2006), Yin and Han (2003). The chosen
datasets (see characteristic in Table 4) were originally taken from
the UCI Machine Learning Repository (Asuncion & Newman,
2007), and their numerical attributes were discretized by Frans
Coenen using the LUCS-KDD (Coenen, 2003) discretized/normal-
ized ARM and CARM Data Library. The discretization technique
used in LUCS-KDD is different from those used in Coenen et al.
(2005), Li et al. (2001), Liu et al. (1998), Yin and Han (2003); this
is the reason because our results reported in Table 6 are different
from other results previously reported, even though the results
were obtained using the same classifier and the same dataset
(Wang & Karypis, 2005).

For CBA, CMAR, CPAR and TFPC classifiers we used the confi-
dence threshold set to 0.5 and the support threshold set to 0.01,
as their authors suggested. No matter this suggestion, we tested
these classifiers with other threshold values (see Table 5), and
we confirmed the best results are obtained using 0.01 as support
threshold and 0.5 as confidence threshold; as Coenen reported in
Coenen et al. (2005). For CAR-IC we used 0.5 as confidence thresh-
old, based on the analysis presented in Section 3.1. Notice that the
bold values is Table 5 as well as in Tables 6 and 8 indicate the best
value of each row.

In Table 6, the results show that CAR-IC yields an average accu-
racy higher than all other evaluated classifiers, having a difference
of 0.88% with respect to the classifier in the second place. Table 7
shows the position obtained, from 1 to 6, by each classifier accord-
ing to its average accuracy (ranking position), i.e. the best average in
the first place, the second best average in the second place and so on.

Analyzing these Tables, we can see that CBA had the worst aver-
age accuracy however it had a good average ranking; this is be-
cause, although CBA had low accuracy for some datasets (e.g.
letRecog, ionosphere and mushroom), it reached the first, second
or third place in 11 of the 20 datasets. On the other hand, CMAR
had a good average accuracy but a poor average ranking. The pro-
posed classifier, CAR-IC, was the best in average accuracy as well as
in average ranking, in this last case tied with DDPMine, which was
the second best in average accuracy.

As we can see in Table 4, the used datasets have between 2 and
26 classes. In order to show the accuracy of CAR-IC on the different
datasets, we grouped them according to the number of classes, in
three groups: (1) datasets with 2 or 3 classes; (2) datasets with
4, 5, 6 or 7 classes and (3) datasets with more than 7 classes. In
Table 8 we report the average accuracy of CAR-IC and DDPMine
fferent support and confidence values.

10/50 10/60 20/40 20/50 20/60

68.76 66.35 41.67 41.73 40.68
72.06 70.15 43.02 43.65 41.85
71.68 70.01 44.21 44.30 42.92
71.31 69.40 41.88 42.15 39.76

http://www.csc.liv.ac.uk/~frans
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Table 7
Ranking position based on accuracy.

Dataset CBA CMAR CPAR TFPC HARMONY DDPMine CAR-IC

Adult 1 6 7 5 4 2 3
Anneal 2 6 1 7 4 5 3
Breast 1 6 2 5 3 7 4
Connect4 3 6 5 4 1 2 7
Dermatology 4 1 3 5 7 6 2
E-coli 1 4 3 7 6 5 2
Flare 3 4 7 2 6 5 1
Glass 3 1 4 5 7 6 2
Heart 1 4 5 7 3 2 6
Hepatitis 6 4 5 4 2 3 1
HorseColic 6 5 3 7 1 4 2
Ionosphere 7 4 3 6 2 1 5
Iris 5 7 3 2 6 4 1
Led7 7 4 5 6 1 2 3
LetRecog 4 7 5 6 1 2 3
Mushroom 6 1 5 3 2 1 4
PageBlocks 5 7 2 6 4 1 3
PenDigits 3 4 7 6 2 1 5
Pima 3 6 4 5 7 2 1
Waveform 3 5 6 7 2 1 4
Average 3.70 4.60 4.25 5.25 3.55 3.10 3.10

Table 8
Average accuracy of DDPMine and CAR-IC over datasets grouped by number of
classes.

# classes DDPMine CAR-IC

2 or 3 86.56 85.72
4,5,6 or 7 71.02 74.08
more than 7 77.86 79.23

Table 6
Classification accuracy.

Dataset CBA CMAR CPAR TFPC HARMONY DDPMine CAR-IC

Adult 84.21 79.72 77.24 80.79 81.90 82.82 82.61
Anneal 94.65 89.09 94.99 88.28 91.51 90.86 92.73
Breast 94.09 88.84 92.95 89.98 92.42 86.53 90.03
Bonnect4 66.67 64.83 65.15 65.83 68.05 67.80 56.02
Dermatology 80.00 82.92 80.08 76.30 62.22 63.42 80.16
E-coli 83.17 77.01 80.59 58.53 63.60 64.25 82.06
Flare 84.23 83.30 64.75 84.30 75.02 77.10 85.98
Glass 68.30 74.37 64.10 64.09 49.80 53.61 68.95
Heart 57.33 55.36 55.03 51.42 56.46 57.19 54.35
Hepatitis 57.83 81.16 74.34 81.16 83.16 82.29 84.62
HorseColic 79.24 80.06 81.57 79.06 82.53 81.07 82.47
Ionosphere 31.64 89.61 89.76 86.05 92.03 93.25 86.10
Iris 94.00 92.33 94.70 95.33 93.32 94.03 96.67
Led7 66.56 72.31 71.38 68.71 74.56 73.98 73.02
LetRecog 28.64 26.25 28.13 27.57 76.81 76.12 73.14
Mushroom 46.73 100.00 98.52 99.03 99.94 100.00 98.54
PageBlocks 90.94 87.98 92.54 89.98 91.60 93.24 92.26
PenDigits 87.39 82.48 80.39 81.73 96.23 97.87 81.93
Pima 75.03 72.85 74.82 74.36 72.34 75.22 76.01
Waveform 77.58 72.22 70.66 66.74 80.46 83.83 74.39
Average 72.41 77.63 76.58 75.46 79.20 79.72 80.60
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(the second best) classifiers over these three groups of datasets, in
this experiment we can see that CAR-IC works well independently
of the number of classes in the datasets.

In Table 9, we show the percent of abstentions and the accuracy
of CAR-IC using exact and inexact coverage. When we used inexact
coverage, CAR-IC had, in average, 1.35% less abstentions than using
exact coverage and its average accuracy was improved in 1.02%.
Notice that, using exact coverage, CAR-IC obtains an accuracy of
79.58 (see Table 9), which is greater than the accuracy of the other
classifiers with the exception of DDPMine, showing that the pro-
posed pruning and ordering strategies together, even without
using inexact coverage, result in a good classifier. Additionally, in
the last column of Table 9, we show the accuracy obtained if the
majority class is assigned when no rule covers an unseen transac-
tion after checking exact and inexact coverage, as the other classi-
fiers do. In these experiments, we can clearly see that assigning the
majority class affects the results (in this case increasing the
accuracy).

Finally, in order to determine if the results shown in Table 6 are
statistically significant, we performed a pairwise comparison
between CAR-IC and the other tested classifiers. Each cell in
Table 10 contains the number of datasets where our classifier
significantly Win/Lose to each other classifier. We detected ties
using a one-tailed T-Test (Demšar, 2006; Dietterich, 1998) with



Table 10
Pairwise comparison between CAR-IC and the other classifiers. Each cell shows the
number of times CAR-IC Win/Lose with respect to the corresponding classifier over
the 20 selected datasets.

CBA CMAR CPAR TFPC HARMONY DDPMine CAR-IC

CBA 11/7 8/5 10/5 8/8 7/9 6/12
CMAR 7/11 8/8 8/5 5/12 5/12 4/14
CPAR 5/8 8/8 10/3 6/11 5/11 4/14
TFPC 5/10 5/8 3/10 5/14 4/13 1/16
HARMONY 8/8 12/5 11/6 14/5 2/7 5/10
DDPMine 9/7 12/5 11/5 13/4 7/2 5/9
CAR-IC 12/6 14/4 14/4 16/1 10/5 9/5

Table 9
Percentage of abstentions (%Abst.) and accuracy (Acc.) of CAR-IC using exact (EC) and
inexact (IC) coverage. The last column (default class) shows the accuracy if the default
class is assigned when no CAR covers an unseen transaction.

Dataset %Abst. (EC) Acc. %Abst. (IC) Acc. default class

Adult 0.85 82.11 0.33 82.61 84.22
Anneal 1.11 91.80 0.12 92.73 92.97
Breast 7.63 84.42 1.59 90.03 91.12
Connect4 0.83 56.02 0.80 56.02 56.99
Dermatology 5.46 78.43 2.73 80.16 80.51
E-coli 1.65 82.06 1.32 82.06 82.59
Flare 1.04 85.98 1.04 85.98 86.57
Glass 3.63 68.12 2.08 68.95 69.53
Heart 5.50 53.21 4.03 54.35 54.46
Hepatitis 1.43 84.56 0.72 84.62 85.92
HorseColic 2.42 82.47 1.81 82.47 83.54
Ionosphere 6.65 84.07 3.80 86.10 86.83
Iris 1.48 96.06 0.74 96.67 97.37
Led7 2.29 72.71 1.42 73.02 73.45
LetRecog 1.45 73.14 1.28 73.14 73.61
Mushroom 0.25 98.54 0.22 98.54 98.95
PageBlocks 1.08 91.82 0.53 92.26 92.58
PenDigits 6.40 77.86 2.14 81.93 82.38
Pima 4.63 75.23 3.62 76.01 76.77
Waveform 1.96 73.06 0.51 74.39 75.33
Average 2.89 79.58 1.54 80.60 81.28
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significance level of 0.05. The results in the pairwise comparison
reveal that the CAR-IC classifier beats in accuracy all other evalu-
ated classifiers over most of the tested datasets.

5. Conclusions

In this paper, a new accurate classifier based on CARs was pro-
posed. This classifier, called CAR-IC, introduces a new pruning
strategy for obtaining specific rules with as high as possible confi-
dence value, but avoiding ambiguity at the classification stage. Be-
sides, CAR-IC proposes a new way for ordering the set of CARs
based on the size of the CARs and their confidence value. Finally,
CAR-IC also introduces a new coverage strategy for reducing the
number of non-covered unseen-transactions.

Based on our experiments, we can conclude that the proposed
improvements allow to improve the accuracy obtained by other
CAR based classifiers (CBA, CMAR, CPAR, TFPC, HARMONY and
DDPMine). Additionally, we can conclude that assigning the major-
ity class, when no rule covers an unseen transactions, as all CAR
based classifiers do, hides the real behavior of the classifier.

As future work, we are going to study the problem of producing
rules with multiple labels, it means rules with multiple classes in
the consequent. This kind of rules are necessary for problems
where the objects can belong to more than one class. For this, we
will study the use of confidence thresholds smaller than 0.5 allow-
ing to obtain more than one rule with the same antecedent.
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