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Abstract 

 

One of the most exciting developing fields in optics is the non-

Hermitian topological photonics theory. This new field not only promises the 

understanding of the theoretical properties of non-Hermitian systems, but has 

also generated the possibility to develop more efficient materials. This new 

field have emerged from the merging of two frontiers research fields. One is 

the study of non-Hermitian Hamiltonians that has led to the study of the 

Parity-time symmetry theory (PT). Its application in Optics has originated 

diverse applications such as, invisibility metamaterials and metasurfaces and 

single mode selection, to selection a few. The second one is the application of 

topological concepts in physical systems. 

The main objective of this work is to analyze a topological system with 

PT symmetry. The conditions where the PT symmetry and the topological 

properties are conserved in this theoretical model are determined. 

The PT symmetry and the topology of a system have transition phases. 

In a PT symmetric system, it is called unbroken phase when the eigenvalues 

of the system are completely real and it is called broken phase when the 

symmetry is no longer fulfilled and generates imaginary eigenvalues. In the 

case of a topological system, the system presents the trivial topological phase 

and the non-trivial phase. 

We will study the relation between the PT symmetry phases and the non-

trivial phase of the topological system. 
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To achieve the main goal, the work is divided into two parts: 

 An optical PT symmetric system made by two coupled microring resonators 

are analyzed. Through this model, the broken and unbroken PT phases are 

verified. 

 Finally, through a finite SSH array composed of microrings resonators, we 

study the conditions to have PT symmetry in the system. The model 

analyzed has been taken from the work of M. Parto, et.al.,Phys. Rev. Lett. 

120, 113901 (2018). 

We corroborate that the system satisfies indeed the PT symmetry and 

topological conditions. 
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Resumen 

 

Uno de los campos en desarrollo más emocionantes de la óptica es la 

fotónica topológica no Hermitiana. Este nuevo campo no solo promete la 

comprensión de las propiedades teóricas de los sistemas no Hermitianos, sino 

que también ha generado la posibilidad de desarrollar materiales más 

eficientes. Este nuevo campo ha surgido de la fusión de dos campos de 

investigación de frontera. Uno es el estudio de Hamiltonianos no Hermitianos 

que ha llevado al estudio de la teoría de la simetría de paridad-tiempo (PT). 

Su aplicación en óptica ha originado diversas aplicaciones, Tales como, 

invisibilidad en metamateriales y metasuperficies, selección de modo único, 

por ejemplo. El segundo es la aplicación de conceptos topológicos en 

sistemas físicos. 

El objetivo principal de este trabajo es analizar la simetría PT en un 

arreglo topológico. Se determinarán las condiciones en las que la simetría PT 

y las propiedades topológicas se conservan en este modelo teórico. 

La simetría PT y la topología de un sistema muestran fases de 

transición. En un sistema PT simétrico, se denomina fase no rota cuando los 

valores propios del sistema son completamente reales y fase rota cuando la 

simetría PT ya no se cumple y genera valores propios imaginarios. En el caso 

de un sistema topológico, el sistema presenta la fase topológica trivial y la 

fase no trivial, la última será analizada. 

Estudiaremos la relación entre las fases de simetría PT y la fase no trivial del 

sistema topológico. 
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Para lograr el objetivo principal, el trabajo está dividido en dos partes: 

• Estudio de un sistema óptico PT simétrico hecho por dos microanillos 

resonadores acoplados. A través de este modelo, se verificarán las fases PT 

no rota y rota. 

• Finalmente, a través de un arreglo SSH formado por microanillos 

resonadores, se estudiarán las condiciones para que exista simetría PT. El 

modelo analizado ha sido tomado del trabajo de M. Parto, et.al., Phys. Rev. 

Lett. 120, 113901 (2018). 

Corroboraremos que el sistema satisface tanto la simetría PT como el 

comportamiento topológico. 
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Preface 

 

This thesis is related to the field of non-Hermitian topological photonics, by 

a theoretical study of two Parity-time symmetric systems. This work was done 

during my research stay in UCF-CREOL under the supervision of Dr. Demetrios 

Christodoulides with the final supervision of Dr. Sánchez Mondragón at INAOE. 

The main objective of this work is to analyze a topological system with PT 

symmetry. This thesis is organized as follows: 

Chapter 1 is a review of quantum theory and pseudo-Hermitian theory, to 

understand the context where the PT symmetric theory was developed. 

Chapter 2 presents the PT Symmetry theory and its application to photonics. 

Chapter 3 is a review of the band structure theory. This chapter will be useful to 

understand the topological phases of the system that will be described in Chapter 

4. 

Chapter 4 is an introduction of the topological properties in photonics. We will 

study the Su-Schrieffer-Heeger (SSH) model. 

Chapter 5 presents the final results.  In this chapter the PT symmetric-SSH array 

are analyzed. In this chapter a system of PT microring resonators is studied and 

the PT phases of the system will be shown. Then, the PT-SSH array is analyzed. 

Chapter 6 presents the conclusions and future perspectives of the study. 
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Chapter 1 

The theoretical background of 

Parity-Time symmetry 

 

Abstract 

 

This chapter is an introduction to the basis of the Parity-Time symmetric 

theory that will be studied in the Chapter 2.The main properties of quantum theory 

and the properties of the parity and time reversal operators are reviewed. 

There are several proposals to build a theoretical basis for studying non-

Hermitian Hamiltonians. One of these is the pseudo-Hermitian Hamiltonian theory. 

In this chapter, we briefly show the main features of this theory. 
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Introduction 

 

 

The quantum theory is one of the most important theories in Physics, which, 

since its emergence, it has established its mathematical foundations in a rigorous 

way.  

Such mathematical rigor, which ensures the conservation of probability and the 

existence of real eigenvalues, has led to the exclusion of non-Hermitian systems. 

Several approaches like the one developed by Mostafazadeh1, through the pseudo-

Hermitian Hamiltonians theory, have been proposed that suggest the extension of 

the quantum theory. 

 

 

 

 

 

 

 

 

 

 

 

                                                             
1 Mostafazadeh A., Phys. Rev. A, 87 (2013) 012103. 
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1.1 Quantum Theory 

 

The quantum theory describes the behavior of a system, in a Hilbert space, 

associated with the wave function , fulfilling the Schrödinger equation: 


 


ˆi H

t
                                           (1)  

Where  is the Planck constant and Ĥ  is the Hamiltonian operator   
2ˆˆ ˆ

2

p
H V x  

that determines the energy eigenstates and the eigenvalues correspond to the 

energy levels, using the independent Schrödinger equation n n nH E E E . 

These energy eigenvalues are real numbers. ˆ ˆ , V and p x  correspond to the 

momentum eigenvector, potential and position eigenvector respectively. 

In addition, the theory is stipulated under the following conditions2: 

 Symmetry. If an operator Â  (unitary or anti-unitary) satisfies †ˆ ˆ ˆ ˆA HA H  it 

represents symmetry of the Hamiltonian Ĥ . Then, Â  commutes with the 

Hamiltonian Ĥ ,   
 
ˆ ˆ, 0A H . This means that the eigenstates of Ĥ  are also 

eigenstates of Â . 

 The Hamiltonian determines the time evolution giving by the time-

dependent Schrödinger Equation 
d

H t i t
dt

   whose solution 

is  ˆ 0t U .Where Û , a unitary operator, is called unitary evolution operator. 

 Unitarity must not be violated. Using the solution of the time-dependent 

solution, we have that the operator Û  is unitary if satisfies  † 1 †ˆ ˆ ˆˆ ˆ or 1U U UU .  

                                                             
2 C. M. Bender, and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. 
Rev. Lett. 80, 5243 (1998). 
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We have that that operator Û  preserves the norm with the time (probability is 

conserved) and this must be real and positive, ˆ ˆU U    . 

However, these conditions exclude the use of complex Hamiltonians since 

they only establish the study of real and symmetric Hamiltonians. Because of this, 

the Hermiticity has been established as the indispensable condition for studying a 

physical system in quantum mechanics, this condition allows the use of complex 

Hamiltonians and guarantees the existence of real eigenvalues and the unitarity 

with time, two of the essential properties of the theory. 

1.1.1 Parity and time reversal operators 

Two of the most important operators in Quantum Theory are the parity P̂  

and the time reversal T̂  operators. These operator acting on the dynamical 

variables x̂  (the coordinate operator) and p̂  (the momentum operator). The effect 

of each operator are defined as follows. 

The Parity operator P̂  is a spatial transformation whose effect is the reflection in 

position, this means: 

 

 

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ

x x

p p

x x

p p

x P x

p P p

 

 

 

 

 

 

 

 

                                       (2) 

We have that x̂  and p̂  operators are transformed under spatial inversion by the 

rule: 

†

†

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

P xP x

P pP p

 

 
                                                (3)  
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Where parity operator is unitary 1†ˆ ˆ ˆP P  . In addition P̂  is linear, considering 

1̂ˆˆ,x p i   , the operator satisfies 1 1†ˆ ˆˆ ˆP i P i . 

We have that a Hamiltonian is P-invariant if satisfies the relation: 

    †ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ, ,H x p H x p P HP H                                  (4) 

Where parity is conserved, 0ˆ ˆ,P H  
    

The effect of Time reversal operator T̂  is the reversal of motion: 

     

ˆ ˆ  

ˆ ˆ

t t

x x

p p

 



 

                                              (5) 

Under the action of this operator, the rules of transformation are: 

†

†

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

T xT x

T pT p



 
                                              (6) 

To find how the Time reversal operator T̂  preserves the normalization of the wave 

function, with a time-independent Hamiltonian, the behavior of this operator will 

be studied. 

Considering the time evolution of the function where 
ˆ /ˆ iHtU e  is introduced as a 

unitary operator. 

     0ˆt U t                                           (7) 

Applying the action of Û  on a time reversed state and taking into account that T̂  

must preserve the norm of the wave function 1†ˆ ˆ ˆT T   : 
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0

0

0

†

†

†

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

T t TU t

t TU t T T

t TU t T

TU t T U t

 

 

 



 

 

  

                                    (8) 

This implies 

   ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

TU t U t T

TiH iHT

 

 

                                           (9) 

We have that T̂  and Ĥ  anti-commute, if T̂ is unitary, this leads to negative 

energies: 

ˆ ˆ ˆ ˆ ˆ
EHT TH ET                                        (10) 

To have 0ˆ ˆ,T H  
   and to preserve the commutation relation ˆˆ,x p i   , we 

noticed that: 

ˆ ˆ ˆˆ ˆ, ,T x p x p i                                                 (11) 

Because of the equation (11) we have that T̂  must be an anti-unitary operator 

defined as: 

ˆ ˆ ˆ

ˆ ˆ

T UK

Ti iT



  
                                               (12) 

Where K̂  is the complex conjugation operator. 

Applying (12) in (9) and (11), we obtain:  

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆˆ,

T̂i

TiH iTH iHT

TH HT

T x p i

i

   

 

   

   

                                       (13) 
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Because the properties of anti-unitary operators ˆ ˆT T   


 , we have that 

the Time reversal operator exchanges initial and final states. 

Taking into account the last property, we obtain the time reversal rule for the 

wave function: 

       ˆ ˆ , ,x T t t x T x t x t                             (14) 

To find the rule for the Hamiltonian  ˆ ˆˆ,H x p  , we have: 

     † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ, , ,T H x p T H T xT T pT H x p                   (15) 

This means that a Hamiltonian will be T̂  invariant if: 

   ˆ ˆˆ ˆˆ ˆ, ,H x p H x p                                      (16) 

 

1.2 Pseudo-Hermitian Hamiltonians 

 

A Hamiltonian Ĥ , in the Hilbert space, is pseudo-Hermitian if satisfies the 

definition: 

1†ˆ ˆ ˆ ˆH AHA                                             (17) 

Where Â  is a Hermitian operator: 

       0 0, ,t A t A                                    (18) 

We have that Â  is not unique, if the Hamiltonian satisfies the equation (17) for a 

specific operator Â , will be called A-pseudo-Hermitian.  

For this Hamiltonians, the evolution is not unitary and the norm is not conserved in 

the same way that the Hermitian Hamiltonians. 
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We will have that the eigenfunctions are not orthogonal. To show this property, 

equation (1) is multiplied by 
n  from the left and multiplying multiplying by 

k  

the Hermitian conjugate of (1) and, we obtain: 

†

ˆ

ˆ

k

n n k

n

k n k

i H
t

i H
t







 




  


  

                                  (19) 

We have that: 

†ˆ ˆk n n k

n k n ki H H i
t t t

   
    

   

   
                    (20) 

where 
n k   establishes a pseudo inner product and Ĥ  is Hermitian under this 

condition. This means: 

ˆ:n k n kA
A                                          (21) 

, ,n k nk aba b                                           (22) 

1n k k n

nk nk

                                      (23) 

Where a and b are degeneracies labels. In this thesis will be considered only the 

non-degenerate case, the equation (23) appears without degeneracies. 

By definition, the energies of a pseudo-Hamiltonian are: 

†

ˆ

ˆ

n n n

k n k

H E

H E 





 

 
                                          (24) 

In a pseudo-Hermitian Hamiltonian we have that the energy values may be 

complex. 
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1.2.1 Expectation values 

Because the norm      N t t t   of a pseudo-Hermitian Hamiltonian is 

not conserved, it is assumed the initial condition N(0)=1. The rate of the norm is 

defined by equation (20). 

 

To know how this affect the expectation values of the pseudo-Hermitian 

Hamiltonian, we use the norm expression for a linear operator Â : 

   

   

ˆ
ˆ

t

t A t
A

t t

 

 
                                        (25) 

Obtaining the change of the expectation value of Â : 

   

   

               

   
2

ˆ
ˆ

ˆ ˆ

          

t

t A t
A

t t t t

t A t t t t t t A t
t t

t t

 

 

       

 

 


 

    
   

    

   (26) 

Using (20) 

               

   
2

1
† †ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ
t

t AH H A t t t t H H t t A t
A

t i t t

       

 

  



                                                                                                             

(27) 

Applying (17) in the form: †ˆ ˆ ˆ ˆAH H A  

   
   

ˆ
ˆ

t

A
A t t

t tt t
 

 

 
 
 

                              (28) 

Taking into account the initial condition    0 0 1   , we have: 
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0

ˆ
ˆ

t

A
A

t t 
                                       (29) 

This means that the expectation value in a pseudo-Hermitian Hamiltonian is 

rescaled. 

1.2.2 Involution operators 

In every diagonalizable (21-23) pseudo-Hermitian Hamiltonian Ĥ  exist a 

symmetry by a linear involution Ŝ  and a symmetry generated by an antilinear 

involution ̂ 1: 

 

 2 2

0

1

ˆˆ ˆ ˆ, ,

ˆ ˆ    

H S H

S involution

    
  

 





                                  (30) 
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Chapter 2 

Parity-Time Symmetry Theory 

 

Abstract 

 

In this chapter, the main features of the parity-time (PT) symmetry theory 

are studied. We will see that if a non-Hermitian system has PT symmetry, it will 

keep real eigenvalues under specific conditions in the potential. It will also be 

shown that if these conditions are modified, the system will generate purely 

imaginary eigenvalues (PT symmetry broken). In addition, it will be shown that PT 

theory is a particular case of the Pseudo-Hermitian Theory. 
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Introduction 

 

Hamiltonians with non-real eigenvalues for a long time were not studied 

because they did not satisfy one of the strongest conditions in quantum theory, 

the Hermiticity, that is established as: †H H . However, during the decades of 

1970 to 19903, several scientists realized that some non-Hermitian Hamiltonians 

might have real eigenvalues. These previous works contributed to the creation in 

1997 of the PT symmetry theory, proposed by C. M. Bender and S. Boettcher. 

They proposed a way to replace the condition of Hermiticity by the condition 

space-time reflection symmetry (PT symmetry). 

Nowadays, the application of this theory in optics has been very successful, 

generating the discovering of new phenomena.  

 

 

 

 

 

 

 

 

 

 

                                                             
3 C M. Bender, "Introduction to PT-symmetric quantum theory". Contemp. Phys. 46 277 (2005). 
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2.1 Parity-Time operator 

 

In general, the Hamiltonian  
2

2

ˆˆ ˆ
p

H V x
m

   associated with a complex 

potential ˆ( )V x  is parity–time symmetric ( ˆ ˆPT ) if Ĥ  satisfies the relation defined as 

follows3: 

   ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ, ,H x p PT PTH x p                                   (31) 

Considering (4) and (16), we have that the transformation of the Hamiltonian 

under the ˆ ˆPT operator is: 

   ˆ ˆ ˆ ˆˆ ˆˆ ˆ, ,PTH x p H x p                                    (32) 

Because ˆ ˆPT  is not linear, the eigenstates of Ĥ  may or may not be eigenstates of 

ˆ ˆPT .  

Applying (31) to  
2

2

ˆˆ ˆ
p

H V x
m

  , we have: 

 

 

   

2 2

2 2
* * *

2 2
* * *

*

ˆ ˆˆˆ ˆˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
2 2

ˆ ˆ
ˆ ˆ ˆ ˆ( ) ( ) ( )

2 2

ˆ ˆ
ˆ ˆ ˆ ˆ( ) ( ) ( )

2 2

ˆ ˆ

p p
V x PT x PT V x x

p p
V x x P V x x

p p
V x x V x x

V x V x

   
       

   

   
        

   

   
          

   

  

                     (33) 

This means that a necessary condition to have PT symmetry is that  ˆV x  satisfies 

the relation:  ˆ ˆ* ( )V x V x  . 
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2.2 Real eigenvalues condition 

 

The eigenvalues of a PT system with Hamiltonian Ĥ  will be real if the 

eigensolutions are PT symmetric: 

ˆ ˆ
n nPT                                                  (34) 

ˆ
n n nH E                                                  (35) 

Applying the ˆ ˆPT  operator in (35), using (34) and the fact that ˆ ˆPT  is antilinear: 

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

n n n

n n n n

PTH PTE

PTH H

PTE E

 

 

 









                                         (36) 

We have: 

ˆ
n n n

n n

H E

E E

 





 
                                              (37) 

The equation (37) represents that the PT symmetry of n  is a sufficient condition 

to have real eigenvalues. 

2.2.1 Broken and unbroken PT symmetry 

The condition showed in (37) is not a generalization for the eigensolutions 

of the PT system.  

If every eigensolution of a PT -symmetric Hamiltonian is also an eigensolution of 

the PT operator, we will have that the PT symmetry of H is unbroken and all the 

eigenvalues will be real.  

But, if some of the eigensolutions do not satisfy this condition, we will have that PT 

symmetry of H is broken and their eigenvalues will be complex. 
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2.3 PT symmetry and Pseudo-Hermitian Theory 

 

The P̂  and T̂  operators satisfies the condition (30): 

2 2

0

0

1

ˆˆ ˆ ˆ, ,

ˆ ˆ ˆˆ, ,

ˆ ˆ  

H S H P

H H T

P T

    
  

    
   

 

                                      (38) 

Then, the operators satisfies the condition (17): 

0

†ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ,

H PHP THT

PTH HPT

PT H

 

 

  
 

                                        (39) 

The pseudo-Hermiticity condition coincides with the PT-symmetry condition, so 

that the PT-symmetry is considered a class of Pseudo-Hermitian systems. 
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Chapter 3 

The Band Structure Theory 

 

Abstract  

 

This chapter is an important introduction to understand the topological 

behavior of a crystal, through its band diagram. In this thesis the Su-Schrieffer-

Heeger (SSH) model will be studied, because of that, the band diagram of this 

model will be shown.  

 

 

 

 



25 
 

Introduction 

 

The band theory was created in 1927 to simplify the study of the electronic 

transport in solids, where it yield diagrams that show the energy levels allowed for 

a crystalline material. Currently it is a widely used method since the electrical and 

optical properties of crystals can be determined, characterized by their band 

structures4. 

A band structure is a 2D representation of the energies of the orbitals in a 

crystalline material versus the wavevector k; it can show if a material is metallic, 

semi-metallic or insulating. 

 

 

 

 

 

 

 

 

 

 

 

                                                             
4 P. Hofmann, “Solid State Physics”, Wiley-VCH, Weinheim, 2008. 
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3.1 Band Structures 

 

Considering a 1D Hamiltonian of an electron, with periodic potential V(x) 

and translational period. Defining the operator RT  acting on a function ( )f x  as5: 

( ) ( )RT f x f x R   and the function (Bloch function) ( ) exp( ) ( )k kx ikx u x   where 

( )ku x  is a function with the same periodicity as V(x), ( ) ( )k ku x nR u x   for all 

integers n. We have: 

( ) ( ) exp( ) ( )R k k kT x x R ikR x                                         (40) 

From (40) we can see that the eigenfunctions of the Hamiltonian can be expressed 

as the eigenfunctions of RT  , so that an eigenfunction ( )x  of the Hamiltonian can 

be expressed as: 

( ) ( ) exp( ) ( )k k k k

k k

x A x A ikx u x                                     (41) 

The wave functions can be enumerated by the constants k, so if the energy of the 

electrons is plotted vs k, the band structure of the crystal will be obtained. Due to 

the conditions of symmetry, the k is not unique, so to simplify the study, Brillouin 

first zone is defined, in a 3D crystal, as the unitary region of reciprocal to the area 

defined in the interval  / , /R R  , where Γ,M y X means the center, corner and 

face of the reciprocal lattice, respectively. Where the real lattice is the minimum 

structure from which the periodicity of structure originates. 

As an example, figure 1 shows the Brillouin zone of a square lattice, as can be 

seen, the blue area corresponds to the Brillouin zone5. 

                                                             
5 Joanopoulus J. D., R. D. Meade, J. N. Winn. Photonic Crystals: Moldingthe Flow of Light, Princeton, NJ, 
Princeton University Press, 1995. 
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Figure 1. Left: Square lattice, Right: Brillouin zone5. 

 

One of the periodic lattices that will be used in this work is the Su-Schrieffer-

Heeger (SSH) model, whose more detailed deduction is shown below. 

 

3.2 The Su-Schrieffer-Heeger (SSH) Lattice 

 

The Su-Schrieffer-Heeger (SSH) model consists of electrons located in a 

one-dimensional chain of N unit cells. Figure 2: 

 

Figure 2. SSH lattice representation. 

The simplest Hamiltonian for this model is the following6: 

 † †

1

1 1

†

1

ˆ ˆ ˆ ˆ ˆ. .

ˆ ˆwith     

N N

n n n n n

n n

N

n n

n

H tc c h c V c c

N c c



 



   



 


                           (42) 

                                                             
6 Asbóth J.K., Oroszlány L., Pályi A. (2016) The Su-Schrieffer-Heeger (SSH) Model. In: A Short Course on 
Topological Insulators. Lecture Notes in Physics, vol 919. Springer, Cham 

n 
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Where h.c. means the Hermitian conjugate, ĉ  is the creation or annihilation 

operator and t means the position amplitude. 

 Considerations: 

 One particle per unit cell 

 Translational symmetry 

 Same spacing t between particles. 

Writing in the diagonalized form: 

  † † †1ˆ ˆ ˆ ˆ ˆ     with  ikna

k k n k

k k

H E k c c c e c
N

                               (43) 

Because VnN is constant, the Hamiltonian takes the following form: 

   

   

 

  



       
        

       

   

  

   

 

' 1 1† * † '

' '

' '

* † †

1 1 1 1

(2cos )

N N N N
ik n a ik n aikna ik na

k k k k

k k k k

ika ika

k k k k

k k

H t e c e c t e c e c
N N N N

H te t e c c E k c c

E k t ka

(44) 

Figure 3 shows the Band structure of SSH model with same value t between 

particles. 

 

Figure 3. Eigen-energies SSH model with same t. 
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In general, the spacing t can be different from each other, considering t1 ≠ 

t2, we have the Hamiltonian: 

 

   

† †

,1 ,2 ,2 1,1

1

† † † † † †

,1 ,2 2 1 2

, 1

. .

   = , = , , we have      

N

n n n n n n

n

N

n n n n n m mn n

m n

H v c c w c c h c

defining c c c c c H c H c









  






       

(45) 

Therefore, we obtain: 

   

   

,1 ,1† † † † †

,1 ,2 ,1 ,2*
,2 ,2

1,1 1,1† † † † †

1 1 ,1 ,2 ,1 ,2

1,2 1,2

0

0

0

0

n nn

n nn n n n n n n

n nn

n nn

n nn n n n n n n

n nn

c cv
c H c c c c c U

c cv

c cw
c H c c c c c T

c cw

 

  

 

    
     

     

    
     

     

      

(46) 

Using translational symmetry and Pauli matrices, 

  

 

     
       

     

,

0 1 0 1 0
, ,

1 0 0 0 1

n n

x y z

T T U U

i

i
                          (47) 

We can construct the matrices T and U as: 

 

 

 

 

 

Re( ) Im( )

1

2

x y

x y

U v v

T w i
                                         (48) 
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Using  


1

1

ik n b

n ec c , implies 

     

      

      

 




      

  

   



†

1   , with 

Re cos arg

Im sin arg

0

N ikb ikb

n

x

y

z

H H k H k U Te T e k

h k v w kb w

h k v w kb w

h k

h

      (49) 

The eigenenergies are: 

           
2 2

2 cos arg argE k v w v w kb v w                (50) 

 

If     1 2arg( ) arg( ) 0 ,   and t    tv w v w v w  , we obtain the next 

figure: 

 

Figure 4. SSH model band structure with t1 ≠ t2. 
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Chapter 4 

Topological effects in photonics 

lattices 

 

Abstract 

 

In this chapter some concepts of topology will be reviewed. In 

addition, we will study a one dimensional topological insulator, the SSH 

model. 
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Introduction 

 

The discovering of topological phenomena in Physics, gave rise to 

develop the study of topological insulators. This systems are insulators in the 

bulk and are conductive on the surface through the edge states, like 

transportation channel, that were created in the material. Due to the 

tendency of miniaturization, the study of these edge states are important, as 

will be seen in the next section, the band structure of a material will be useful 

to determine its topological behavior. 
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4.1 Basics of Topology 

 

Topology is the branch of mathematics that studies the quantities that 

are preserved under continuous deformations. 

The quantities that remain constant under deformations are called topological 

invariants, these invariants help characterize different topologies. Objects 

with the same topological invariant are topologically equivalent, that means 

that they are in the same topological phase. There are many types of 

topological invariants, two examples are given below. 

Figure 5 shows several geometries, which do not share the same topology 

with each other. The topological invariant that indicate their classification it is 

called genus, which corresponds to the number of holes in a closed surface. A 

topological phase transitions means when a hole is created or removed in the 

structure. If the genus is preserved, the surface can be deformed in its 

equivalent topology. 

 

Figure 5. A spoon and a sphere share the same topological invariant (genus 

=0), just like the donut and the cup (genus=1)7. 

In physics, we will have that the band structure of a periodic array presents 

topological behavior, where the first Brillouin zone form a torus. Figure 6. 

                                                             
7 Lu, Ling; Joannopoulos, John D.; Soljačić, Marin, “Topological Photonics”, Nature Photonics, Volume 
8, Issue 11, pp. 821-829 (2014). 
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The number of holes in this torus and the kind of closed paths will determine 

if the system is in the trivial or non-trivial classification. 

 

Figure 6. Torus of Brillouin. Geometrical relation between Brillouin zone and a 
torus. 

 

4.2 Topological insulators. 

 

A topological insulator is a physical system that presents topologically 

protected edge states at their boundaries due to a nontrivial topology of the 

bulk bands. This principle is called the bulk-boundary correspondence. We 

have that if bulk is nontrivial, topologically protected edge states appear at 

the boundaries, and conversely, topologically protected edge states are due 

to a nontrivial topology of bulk bands8. Using the concept of band energies, 

the properties of a topological insulator are shown schematically in the next 

figure. 

                                                             
8 M Z Hasan and C L Kane 2010 Colloquium:Topological insulators Rev. Mod. Phys. 82 3045–3067 
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Figure 7. Topological insulator. The conducting occurs in the edge states of 

structure, when the bands meet in a Dirac Point.9 

 

We can see that in a Topological insulator exists gapless edge states that 

allow conducting. In optics, the features of a topological insulator allow light 

to flow without dissipation around large imperfections in the structure8. 

In the torus, the trajectories of the edge states corresponds to closed paths 

that under deformations these will not be transformed into points, this only 

can occurs if the path is open. 

The next figure shows two type of paths, we could see that the blue path 

that appears on the surface of the torus could be transformed in a point. In 

other hand, for the red path (edge states), we need to cut it. This means that 

                                                             
9 William Berdanier: Photonic Topological Insulators, Building Topological States of Matter, B.S. 
Physics and B.S. Mathematics Thesis, Austin TX, (2013). 
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this path is protected under transformations. 

 

Figure 8. Closed paths in a topological insulator. The red path represents the 
edge states. 

 

4.2.1 Topological insulator in 1D: SSH Model 

The SSH model is the most important one dimensional topological 

insulators. To study the topological properties of this model, we will use the 

equation (50):            
2 2

2 cos arg argE k v w v w kb v w  

Considering arg (ν) = 0, kb = [-π, π], we have two cases (Figure 9): 

              1) 

 

              2) 

Figure 9. SSH Model with different interactions between the particles. 

The Topological phases are given as: 

 Case 1. |v|>|w| Trivial Topological transition. 

 Case 2. |w|>|v| Non Trivial Topological transition. 
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The topological transition obtained of SSH model is shown in the next figures.  

The energies of the Figure 10, 11 and 13 are staggered. The Figure 12 shows 

the SSH model as a conductor, this represents the transition point between 

the Figure 11 and 13. 

The Figure 11 shows the trivial topological transition. We can see that after 

the change in the hopping amplitudes, the bands presents an inversion 

shown in the figure 13, this corresponds to the Non Trivial topological 

transition. 

 

 

Figure 10. Band structure for w=0 (similar figure is obtained with v=0). 

 

 



38 
 

 

Figure 11. Band structure for v>w. Topological Trivial phase. 

 

Figure 12. Band structure for v=w. Phase boundary. 
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Figure 13. Band structure for v<w. Non-Topological Trivial phase. 
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CHAPTER 5 

Non-Hermitian Topological 

Photonics. Numerical analysis. 
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Abstract 
 

Recent works have suggested PT symmetric versions of SSH model in 

optical settings, demonstrating the existence of edge states and developing 

the study of topological Non-Hermitian systems101112. 

In this chapter we will show the conditions to have an Optical PT system. 

Then, we study an Optical PT system made of two coupled microrings 

resonators. The designed has refractive index n = 3.18. The unbroken and 

broken PT phases for this system were obtained by COMSOL simulations. 

Finally, the properties of an SSH array generated by a periodic and finite 

coupled pairs of PT microring resonators, proposed by M.Parto and et.al.13, 

will be analyzed. 

 

 

 

 

 

 

                                                             
10 J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S. Rudner, M. Segev, and A. 
Szameit, Phys. Rev. Lett. 115, 040402 (2015). 
11 A.Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. Makris, M. Segev, M. Rechtsman, and A. 
Szameit, Nature materials 16, 433 (2017). 
12 L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang,X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. 

Kawakami, 
and et al., Nature Physics 13, 11171123 (2017). 
13 M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J. Ren, M. C. Rechtsman, M. Segev, D. N. 
Christodoulides, and M. Khajavikhan, Phys. Rev. Lett. 120, 113901 (2018) 
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5.1 PT symmetry in Optics 

 

Considering the Helmholtz equation for a field  ,E x z : 

 
 22

2 2

02 2
0

,
, ( , )

E x z
E x z k n E x z

x z


  

 
                     (51) 

Where 
0

0

2
,k n





 is the substrate index. Taking into account the paraxial 

regime, we can write: 

    0 0, , eik n zE x z E x z                                   (52) 

The variations of z are much smaller than the variations in x, because of that 

we can neglect the second order derivatives respect to z. 

2

2 2

0 0 0

1

2

E i E
nE

k n x k z

 
  

 
                                   (53) 

But, we will use a z independent refraction index, this allows to write n n  

and taking into account the real and imaginary part of the refraction index, 

we obtain: 

2

02

0 0

1

2

E E
i k nE

z k n x

 
  

 
                                  (54) 

   
2

02

0 0

1

2
R I

E E
i k n x in x E

z k n x

 
      

                       (55) 

 



43 
 

The equation 55 is called the paraxial equation and a relation between the 

Schrödinger wave equation has been established14: 

     
2 2 2

02 2

0 0

1

2 2
R I

E E
i k n x in x E i V x

z k n t mx x

   
           

 
          (56) 

This has allowed to establish the relationship between the complex potential 

and the refractive index, i.e.        0 R IV x k n x in x , generating the 

creation of new materials inspired by the concepts of PT symmetry theory 

and the discovery of many applications. Due the condition  ˆ ˆ* ( )V x V x   

(equation 33), PT-symmetry in optics demands the following properties: 

     R Rn x n x  : The spatial distribution of the refractive index is an 

even function of the space. 

     I In x n x   : The imaginary component representing gain or loss, 

is an odd function of position and their value not affect the real part of 

refractive index. The PT symmetry condition could be expressed with 

the complex permittivity as ( ) ( )r r    . 

 The spatial evolution along z is analog to the temporal evolution of the 

wave function. In this analogy the effect of the time reversal operator 

will correspond to the change in the direction of propagation z. 

 

We can model an optical PT system through two coupled microring 

resonators, this system will be described in the next section. 

 

                                                             
14 R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Ziad H. Musslimani, "Theory of coupled 
optical PT-symmetric structures," Opt. Lett. 32, 2632-2634 (2007) 
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5.2 Optical microring resonators 
 

An optical ring resonator can be viewed like a closed loop optical 

waveguide, this confines light in all spatial directions, light propagating in the 

ring resonator interferes with itself after every trip around the ring. When the 

roundtrip length is exactly equal to an integer multiple of the guided 

wavelength, constructive interference occurs. 

Ring resonators are one of the most versatile photonic devices, due to their 

high miniaturization (as a microrings resonators), high wavelength selectivity, 

large field enhancement, and high quality factor. These features have turned 

microrings into devices used in different areas, such as optical 

communication, signal processing, sensing, nonlinear optics and quantum 

optics. 

Recently, the microring resonators have been used to demonstrate PT 

symmetry in Optics15. 

5.2.1 Optical ring resonator theory 
 

Figure 14 shows the most used and investigated ring resonators. The 

coupling of the light is achieved as follows, a fraction of the wave E i1 is 

transmitted in the straight waveguide while the other fraction (Et2) is coupled 

to the ring. Part of the wave coupled to the ring (Ei2) is coupled to the 

straight waveguide becoming the Et1 wave, while the rest of that wave 

continues around the waveguide of the ring. Where t is the transmission 

coefficient, κ is the coupling coefficient and α is the round-trip loss. 

                                                             
15 H. Hodaei, et al., “Parity-Time-Symmetric Microring Lasers,” Science 346, 975 (2014). 
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Figure 14. Optical ring resonator coupled with a linear waveguide16. 

The fields are related by the following matrix relation15: 

1 1

* *
2 2

t i

t i

E Et

E Et





    
    

    
                                   (57) 

With:  

2 2 2 2

1 2 1 2t t i iE E E E                                 (58) 

2 2
1t                                            (59) 

Choosing Ei1 = 1. The wave propagates around the ring, with radius R, with 

accumulated phase ϕ=kR, the relationship is given by: 

2 2

i
i tE e E                                         (60) 

For a lossless ring α=1, we have that each value of ϕ= 0, 1,2,…, will specify 

the resonance modes of the ring. 

                                                             
16 D.G Rabus, “Integrated Ring Resonators, The Compendium”, Springer, 2007. 
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Another parameter is the propagation constant, defined by: 

2 effn



                                            (61) 

where effn  is the refractive effective index. 

The electric and magnetic field for the light in the ring could be 

expressed considering a dielectric waveguide or radius R, with refractive 

index n and constant of propagation β, Electric and Magnetic field distribution 

are given as: 













E

H

i

i

e

e




                                   (62) 

The fields E and H satisfy Maxwell's equations: 

0

2

0





  

 

E H

H E

i

i n
                                 (63) 

where ε0 and μ0 are the electric permittivity and magnetic permeability of 

vacuum, respectively. 

Eliminating the cross product of the second equation, we obtain: 

2 2E En k                                         (64) 

where /k c . 

The obtained equation represents an eigenvalue problem, whose solutions 

give the distribution of the field   of each mode with propagation β. 

The solution of the equation (64) can be found with the Finite Element 

Method, in this work this method was used through COMSOL software. 
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5.2.2 Microring resonator eigenfrequencies 
 

Figure 15 shows the simulation of whispering gallery modes supported by a 

single microring resonator. The microrings used in the simulation have a radii 

of 10 μm, width of 1.55 μm, refractive index n=3.18 and the rings are 

covered by air (n=1.0). 

 

Figure 15. Electric field intensity of microring. 2D simulation. 

 

5.2.3 PT symmetry breaking in coupled microring 

resonators 
 

An optical PT system can be realized by two coupled microrings, where 

one cavity provides gain and the other cavity loss. This system must satisfy 

the following conditions:      R Rn x n x  and       I In x n x . 
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When two resonators are coupled, they obey the differential equations for 

their modal amplitudes ,a b , clockwise and anticlockwise respectively: 

Eigenfrecuency   +   Gain/Loss +   Coupling   

            

 

           

a

b

da
i a a i b

dt

db
i b b i a

dt

   

   

  

  

                              (65) 

Where   coefficient represents the imaginary part of refractive index, whose 

sign determines if we have gain or loss. The model used was taken of H. 

Hodaei, et al.15 

The matrix form of the system is: 

     
     

     

a

b

i ka ad
i

k ib bdt

 

 
                                (66) 

We have that Hamiltonian is not Hermitian. To verify if is PT symmetric, we 

take into account the condition (31): 

ˆ ˆ ˆ ˆ ˆ ˆPTH HPT                                            (67) 

Applying (67) with 
0 1

1 0
P̂

 
  
 

 and T the complex conjugation: 

ˆ ˆ ˆ ˆ ˆ ˆb

a

k i
PTH HPT

i k

   
  

   
                                (68) 

The result obtained in (68) shows that the system is PT symmetric. 

The eigenfrecuencies 'of the system are: 

 
 
 

     
     

2

2

2 2
'     a b a bi                          (69) 
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With the PT condition     a b n (one of the ring is subject to gain while 

the other one is subject to the same amount of loss), the equation simplifies 

to: 

     
2 2

'  n                                        (70) 

An exceptional point (the transition point between unbroken and broken 

phase) is found if n   . 

The PT symmetry will be unbroken if 
n   . When the gain-loss contrast 

between the rings exceeds the strength of coupling, 
n   , we will have the 

broken PT phase. For a spacing of 200nm, Figure 16 shows the unbroken PT 

phase and Figure 17 shows the broken PT phase, obtained with i=0.004n . 
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a)                                                                                              b) 

a)                                                                       b) 

 

 

Figure 16.Unbroken PT phase/ spacing 200nm. Supermode 1 (left) and supermode 

2 (right). 

 

 

 

 

 

Figure 17.Broken PT phase/ spacing 200nm. 

 

Simulations were designed to obtain modes around 1550nm. The spacing of 

200nm was chosen after having done a spacing sweep (100nm to 400nm), in this 

spacing the frequencies showed more clearly. Figure 18 shows the images 

obtained of spacing sweep. 

   loss                                  gain                                            loss                                    gain  

   loss                                  gain                                               loss                                    gain  
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a)                                                                                         b) 

c)                                                                                           d)  

e)                                                                                            f) 

 

 

 

 

 

 

 

 

 

Figure 18. Spacing sweep of 100nm, 300nm and 400nm respectively. 
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5.3 SSH Microring array 
 

We have a SSH microring array, Figure 19. 

 

Figure 19. SSH microring array.13 

The microrings A and B are microrings resonators. As we can see, the array have a 

nontrivial termination. 

The dynamics of this array can be seen as the sum of a single SSH lattice with κ1 

and κ2 are the couplings between the lattices and εA and εB are the potentials. 

The Hamiltonian of the model is13: 

        
      
   † † † † † †

0 1 2 1 1

 

A A B B B A A B B A A B
A n n B n n n n n n n n n n

n n n

H c c c c c c c c c c c c
    (71) 

Using translational symmetry: 


   1

ikR B B ik
n R n n nc c e c c e                                      (72) 

 

We have: 

             
   † † † † † †

0 1 2
A A B B B A A B B A ik A B ik

A n n B n n n n n n n n n n
n n n

H c c c c c c c c c c e c c e   (73) 

Writing in the form    
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We obtain the Hamiltonian:  

  

  

 
  
  

1 2
0

1 2

ik
A

ik
B

e
H

e
                                     (74) 

From this Hamiltonian we can have the following cases: 

 Case I. εA =εB=0 (Potential =0). Hermitian case. 

If we set the potentials of the microrings equal to zero, we obtain that the SSH 

system will be Hermitian and the eigenvalues of the Hamiltonian are: 

      2 2
1 2 1 22 cos( )E k                                       (75) 

Evidently the Hamiltonian is Hermitian: 

1 2†
0

1 2

0

0

ik

ik

e
H

e

 
  
  

 

 
                                   (76) 

 Case II.   A Bg  

If we set the potentials of the microrings as identical, g, the same case as the 

Hermitian will be obtained. 

Therefore, we have that the eigenvalues are given as: 


  




 

   
 

0 1 2*
  with ik

g
H e

g
                                    (77) 

Where the eigenvalues appear shifted by -ig in their imaginary part: 

 
2

E g                                               (78) 
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Figure 20 shows the band structure for Case I and II. 

 

Figure 20. Real and Imaginary part of Case I and II. 

 

 Case III. A Big     , active SSH array. 

If the structure is active, it means that the potentials are purely imaginary, 

we have: 

0 *

ig
H

ig

 
  

 




                                             (79) 

 

5.3.1 Active SSH array with PT symmetry 

When the PT symmetry is introduced in the system, under this condition, 

the microrings must have identical but opposite complex potentials.  

That implies that the Hamiltonian will be: 





 
  

 
0 *

ig
H

ig
                                             (80) 

Where the eigenvalues are:  

  
2 2E g                                              (81) 

 Re(g) 

 Im(g) with g=0 

 Im(g) with g≠0 
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To observe the topological behavior of the PT symmetry phases in the system, the 

following variables are introduced13: 

2

1 1

     
g

 
 

                                             (82) 

Where   corresponds to the dimerization, which gives the parameter to place in 

the edge of the array. 

The variable   corresponds to the normalized gain and loss, which will indicate the 

transition of the PT symmetry phase.  

Therefore, the eigenvalues are: 

2 2
1 1 2 cos( )E k                                           (83) 

For this simulation we assume 2  . 

We have the next phases in the array:  

 0 1 0 06with .             

We obtain the band structure shown in figure 21.  

 

Figure 21. PT symmetric SSH model,0 1    . 

 

 

 Re(g)/κ1 

 Im(g)/k1 
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 1 1 1 1.with                 

The gain value increased, we have PT symmetry broken phase. Figure 22 shows 

that the eigenvalues became complex. 

 

Figure 22. PT symmetric SSH model, transition phase. 

 1 3 1.with             

In this phase the PT symmetry is totally broken, because the high contrast 

between gain and loss, all eigenvalues are complex. Figure 23. 

 

Figure 23. PT symmetric SSH model, 1    

 

 Re(g)/κ1 

 Im(g)/k1 

 Re(g)/κ1 

 Im(g)/k1 
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Chapter 6 

Conclusions 

 

In this work, a PT symmetric system made by two coupled micro rings was 

studied. This model can be applied to other semiconductor materials. In this work, 

a predefined model was used, with n = 3.18. 

The goal of the first part of the work was to analyze the behavior of PT symmetry. 

From the simulations obtained, Figure 16 showed the phase where the PT 

symmetric conditions are satisfied. It was observed that both rings show 

resonance. 

Figure 17 shows the phase where the PT symmetry is completely broken. As the 

symmetry breaks, the ring modes compete until finally only one show the total 

amplification. 

The objective of the final part was the study of PT symmetry in an SSH array, 

through the coupled microring resonators. 
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The phase III of this system, the PT symmetric phases were observed. 

Figure 21 shows the phase where the PT symmetry is satisfied in the active SSH 

array. The eigenvalues are completely real. 

Subsequently, the gain was increased, figure 22 shows that the eigenvalues of the 

system became imaginary. 

Figure 23 shows the phase of broken PT symmetry, we can see that the spectrum 

of eigenvalues became purely imaginary. The system is in the non-trivial 

topological phase. 

Because symmetries play an important role to defining the topology, as a future 

work we will study the symmetries of the system, through the symmetry-protected 

topological phase classification17. 

In addition, we will obtain the number of edge states of the system and we will 

study the relation with the PT symmetry. Because the final system is Non-

Hermitian, we will obtain the complex Berry phase to corroborate the values of 

each phase of the PT-active SSH array system. 

Finally, the intensities of the modes will be obtained, in order to study the emission 

properties under topological protection. 

 

                                                             
17 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008) 


