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< We examine air quality parameter levels using a statistical index (Sigma).
< We model environmental interactions using a reasoning process.
< We predict air quality parameters using historical observations.
< We compare the proposed air quality index with the Mexican and the U.S. indices.
< Our results show a better performance compared against traditional methodologies.
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a b s t r a c t

In recent years, artificial intelligence methods have been used for the treatment of environmental
problems. This work, presents two models for assessment and prediction of air quality. First, we develop
a new computational model for air quality assessment in order to evaluate toxic compounds that can
harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use
a Sigma operator to statistically asses air quality parameters using their historical data information and
determining their negative impact in air quality based on toxicity limits, frequency average and devia-
tions of toxicological tests. We also introduce a fuzzy inference system to perform parameter classifi-
cation using a reasoning process and integrating them in an air quality index describing the pollution
levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in
this work predicts air quality concentrations using an autoregressive model, providing a predicted air
quality index based on the fuzzy inference system previously developed. Using data from Mexico City
Atmospheric Monitoring System, we perform a comparison among air quality indices developed for
environmental agencies and similar models. Our results show that our models are an appropriate tool for
assessing site pollution and for providing guidance to improve contingency actions in urban areas.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The presence in the air of substances which involve risk, danger
or serious problems to people’s health is known as air pollution.
The main sources of air pollution are industrial processes involving
combustion (industry and automobile) (Bartra et al., 2007).
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Nowadays, efficient methods for assessment of air quality are
needed in order to establish mechanisms for managing pollutant
concentration and preventing illness for sensitive people (USEPA,
2009; SMA, 2009). The criterion for good air quality varies with
the kind of ecosystem and is established in levels. Several meth-
odologies for the assessment and monitoring of air pollutants have
been implemented by organizations such as the United States
Environmental Protection Agency (USEPA, 2009), the Pan American
Health Organization (PAHO, 2009) and the Mexican Ministry of
Environment (SMA, 2009) among others, all of them have devel-
oped indexes for air quality. USEPA, SMA, and other similar indexes
exhibit several weak points, where some parameters in the index
equations can dramatically influence the final score without valid
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Table 1
Air quality parameters and their importance to air pollution.

Air quality parameters Importance on air pollution.

Ozone (O3) In earth’s lower atmosphere, ground-level ozone is considered “bad” (Bell et al., 2004; Borja et al., 1996). Breathing ozone can trigger a
variety of health problems including chest pain, coughing, throat irritation, and congestion. It can worsen bronchitis, emphysema, and
asthma (Bell et al., 2004; NOM-020-SSA1-1993).

Sulfur dioxide (SO2) This is one of the causes for concern over the environmental impact in the use of fuels as power sources. Inhaling sulfur dioxide is
associated with increased respiratory symptoms and disease, difficulty in breathing, and premature death (USEPA, 2009; WHO, 1987;
NOM-022-SSA1-1993).

Nitrogen dioxide (NO2) This reddish-brown toxic gas has a characteristic sharp, biting odor, being one of the most prominent air pollutants. Inhalation of such
particles may cause or worsen respiratory diseases such as emphysema, bronchitis it may also aggravate existing heart disease
(USEPA, 2009; Dovilé, 2008; NOM-023-SSA1-1993).

Carbon monoxide (CO) It is a colorless, odorless, non-irritating but very poisonous gas. The health threat from carbon monoxide at low levels is most serious
for those who suffer from cardiovascular disease, such as angina pectoris. At much higher levels, carbon monoxide can be poisonous.
(USEPA, 2000; NOM-021-SSA1-1993).

Particulate matter The size of the particles is directly linked to their potential effects for causing health problems. Once inhaled, these particles can affect
the heart and lungs and cause serious health effects (Arreola and González, 1999; NOM-025-SSA1-1993). USEPA and SMA group particle
pollution into two categories: particles smaller than 10 and 2.5 mm (PM10 and PM2.5).
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justification. However, the most critical drawback of these indexes
is that they cannot deal with uncertainty and subjectivity present in
this complex environmental problem.

Alternative methodologies for assessing air quality using fuzzy
logic, which introduce environmental levels in the respective index
and have a more accurate air quality evaluation, have been
proposed. (Upadhyaya and Dashore, 2010; Liu et al., 2009; Alhanafy
et al., 2010; Sowlat et al., 2011). However those researches only
compute one sample and do not evaluate statistically the affecta-
tions of sampling deviations in the final score of ameasurement set.

Other methodologies have been applied to the analysis of
environmental pollution increasing the accuracy of the results,
such as artificial neural networks (Salazar, 2007), associative
memories (Yañez et al., 2008), support vector machines (Wang
et al., 2008), factor analysis (Bishoi et al., 2009) among others. All
these methodologies have the same lack of a reasoning process.

Air quality requirements are based on the results of chemical
toxicity tests. These tests measure people responses to defined
quantities of specific compounds. Air quality parameters have
certain toxicity limits, where low or high concentrations can be
harmful for people (NADF-009-AIRE-2006; WHO, 2005). Following
the negative situations generated by the combination of different
air quality parameters, it is possible to implement a computational
model that according to the limits and fluctuations of those
parameters can be used for determining when a concentration is
good or bad for people. This strategy would reduce potentially
negative situations for populations. In this way, associated diseases
would be reduced.

Our proposal is to develop novel computational models to
effectively assess and predict air quality conditions, in order to
reduce uncertainty and imprecision in decision-making tools.
These models combine different signal processing techniques, as
well as fuzzy logic and autoregressive models. Our work is pre-
sented in three steps: first, a new algorithm for assessment of
Table 2
Classification levels of air quality parameters.

IMECA levels

Parameters “Good” “Regular” “High”

O3 [ppm] 0.000e0.055 0.056e0.110 0.111e0
NO2 [ppm] 0.000e0.105 0.106e0.210 0.211e0
SO2 [ppm] 0.000e0.065 0.066e0.130 0.131e0
CO [ppm] 0.00e5.50 5.51e11.00 11.01e1
PM10 [mg m�3] 0e60 61e120 121e220
PM2.5[mg m�3] 0e15.4 15.5e40.4 40.5e65

“Excellent” “Good” “Regular
AQI 0e50 51e100 101e150
toxicity levels in air quality parameters is proposed, this algorithm
is called the Sigma operator. The second step consists in creating
a new air quality index based on a fuzzy inference system. These
two steps form a model to assess the air quality. Finally, air quality
parameters are predicted through an autoregressive model in order
to predict future air quality conditions using the developed fuzzy
inference system.

In the present study, the proposed models are applied for
analyzing the air quality of Mexico City and its Metropolitan Area,
where air quality parameters are assessed for establishing an
indicator for good or bad air quality.

2. Air quality analysis

An air pollutant is a substance in the air that can cause harm to
humans and the environment (Bartra et al., 2007). Pollutants can be
present as solid particles or gases, and are frequently monitored in
order to avoid negative health effects in populations (USEPA, 2009;
SMA, 2009). There are six common air pollutants that have been
studied for defining air quality levels: ozone, sulfur dioxide, nitrogen
dioxide, carbon monoxide and particulate matter smaller than 10
and 25 mm Table 1 describes the importance of the 6 most common
air quality parameters used as indicators of air quality onMexico City
and its Metropolitan Area and their respective importance.

2.1. Toxicity levels

Air quality parameters present random perturbations that can
be harmful for long time expositions. In order to classify the
negative impact of those parameters, it is necessary to define the
levels for optimal or harmful concentrations. Table 2 presents the
classification levels of the air quality parameters defined according
to air pollution standards proposed by the USEPA and the SMA
(USEPA, 2009; NADF-009-AIRE-2006).
“Very high” “Extremely high” Deviation

.165 0.166e0.220 >0.220 0.0275

.315 0.316e0.420 >0.420 0.0525

.195 0.196e0.260 >0.260 0.0325
6.50 16.51e22.00 > 22.00 2.75

221e320 >320 30
.4 65.5e150.4 >150.4 7.7
” “Bad” “Dangerous”

151e200 >200 25
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In our study, the allowed deviations used to determine range
bounds (where values can be considered closer or farther from
a specified level) were fixed as the half of the respective levels
defined for each air quality parameter.
2.2. Air quality levels

According to air quality standards (USEPA, 2009; NADF-009-
AIRE-2006), the negative effects in health of air pollutants can be
classified as follows:

� Excellent: suitable for conducing outdoor activities.
� Good: outdoor activities can be carried out; but possible
discomfort in children, the elderly and people with illnesses
can be present.

� Regular: outdoor activities should be avoided; greater health
effects in the population, particularly in children and older
adults with cardiovascular and/or respiratory problems such as
asthma, can be present.

� Bad: greater adverse health effects in the general population,
particularly children and older adults with cardiovascular and/
or respiratory conditions such as asthma.

� Dangerous: health effects on the general population. Serious
complications can be presented in children and older adults
with cardiovascular and/or respiratory conditions such as
asthma.
3. Air quality assessment model

In this section, we introduce an air quality assessment model;
for a better understanding we divide the presentation in two parts.
The first part (Subsection 3.1), presents the use of a Sigma operator
to statistically assess air quality parameters using their historical
data information and determining their negative impact in air
quality based on toxicity limits, frequency average and deviations of
toxicological tests. The second part (Subsection 3.2) presents
a fuzzy inference system to perform parameter classification using
a reasoning process and integrating them in an air quality index
(AQI) describing the pollution levels in five stages: excellent, good,
regular, bad and danger, respectively.
3.1. Sigma operator (s)

In air quality assessment, toxicity ranges define the negative
impact on health. However, measurements into a range can be close
to another range and these deviations directly affect the air quality
score. In order to estimate the effect in air condition of fluctuations
and deviations of parameter concentrations, the Sigma operator
provides a [0, 1] score for toxicity levels.

The Sigma operator (s) calculates the sample average from
a desired level and the deviations from the average of such levels
(Table 2) as follows.

3.1.1. Index 1: a (Frequency)
The frequency (a) represents the percentage of individual

parameters whose current concentration is out of their allowed
limits (failed tests).

a ¼ mf

mt
(1)

wheremf is the number of failed tests andmt is the number of total
measurements.
3.1.2. Index 2: b (Amplitude)
The amplitude (b) represents the average deviation of a set of

measurements that are close to other ranges or out of the assessed
level. An asymptotic function establishes the result in a [0, 1] range
for the frequency as follows:

b ¼ dffiffiffiffiffiffiffiffiffiffiffiffi
1þ d

p (2)

Where d is the average deviation and it can be computed with Eq.
(3):

d ¼

Pn
i
ei

mt
(3)

where i: 1, 2,. n; n is the number of calculated deviations and ei is
the ith deviation of the set of measurements. Deviation e can be
determined in two steps as follows:

a) When the value must not exceed the level:

e ¼ m� la
ta � la

(4)

wherem is the value of the test; la is the upper limit of the range to
evaluate; ta is the upper tolerance.

b) When the value must not fall below the level:

e ¼ lb �m
lb � tb

(5)

where lb is the lower limit of the evaluated range; tb is the lower
range tolerance.

For example, limits and tolerance for O3 (first row in Table 2)
concentrations in a regular condition can be defined according to
Table 2 as la ¼ 0.0825; ta ¼ 0.1375; lb ¼ 0.0825 and tb ¼ 0.0275.

3.1.3. Index 3: s (Sigma operator)
The Sigma operator (s) classifies a set of toxicological concen-

trations establishing a status level according to Table 2. The s index
is computed as follows:

s ¼ 1� ab (6)

The value that s takes can be interpreted as follows:

� If 0 < s < 1, the concentration set is classified inside the
evaluated range.

� If s ¼ 0, the concentration set is classified totally outside the
evaluated range

Fig. 1 shows an example of two signals (set of air quality
parameter concentrations) that have been assessed using the Sigma
operator. In this example, we evaluate particles smaller than 10 mm
and ozone for excellent and regular levels.
3.2. Fuzzy inference system (FIS)

In this section, a fuzzy inference system is used in order to
analyze the air quality condition in urban areas based on a reasoning
process (rules). Themain contribution of the fuzzy inference system
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Fig. 1. A week of measurements was used to evaluate PM10 and O3 concentrations using the Sigma operator for regular and excellent levels. It is important to remark that
concentrations on the bounds deteriorate the level classification since limits used to define the Sigma operator are established in the half of the assessed level.
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is to create an air quality index using the fuzzy theory, increasing the
effectiveness of air quality assessment over traditional methodolo-
gies, and integrating particular concentration levels in a fuzzy index.
Our hypothesis is that minimal deviations and changes in the air
quality parameters directly affect the air quality status generating
harmful tendencies in the assessment of air pollution.

Primary pollutants can be affected by external factors as the
weather and these pollutants can produce secondary pollutants
due to chemical processes. The fuzzy inference system takes into
account the interactions between typical primary pollutants in
different concentrations in order to detect and control effects of
secondary pollutants.

It is important to consider that air quality parameters are
defined by limits which must not be exceeded. When concentra-
tions fall inside a range, the classification of these concentrations
can be easily determined, but when concentrations fall on bound-
aries, the classification of air quality cannot be clearly established.
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Fig. 2. Architecture of the Fuzzy Inference Sy
Uncertainty allows a treatment of air quality parameters when their
classification status is ambiguous, allowing to quantify concentra-
tions that present offsets from a respective level. Subjectivity refers
to specific interpretations of any aspect of experiences. The
proposed index uses subjectivity in order to determine different
problems, in the air pollutants, generated by different parameter
conditions. This process is implemented using rules, which are
included within a fuzzy inference system. Both, uncertainty and
subjectivity are powerful techniques for an effective assessment of
the air quality condition in our model.

Fuzzy inference is the process of formulating a mapping from
a given input to an output using fuzzy logic (Fig. 2). This mapping
provides a basis from which decisions can be made, or patterns
could be discerned (Mo-Yuen, 1997). The process of fuzzy inference
can be expressed in four phases: membership functions, inference
rules (If-then rules), aggregation, and defuzzification (Zadeh, 1978;
Ocampo et al., 2006; Soler, 2007).
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Fig. 3. Air quality membership function.
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3.2.1. Membership functions
Membership functions (m) transform real data into a value in [0,

1] value. There is not a specific method to build a membership
function; the most common functions are triangular, rectangular,
trapezoidal or Gaussian (Soler, 2007; Ocampo et al., 2006).

In our fuzzy inference system (FIS), we propose to use two types
of membership functions: input membership functions for air
quality parameters and output membership functions for air
quality status. For input membership functions, the Sigma operator
is used as membership function since it statistically evaluates air
parameter concentrations in a [0, 1] range, using their respective
toxicity levels as proposed in Table 2 (good, regular, high, etc.). It is
important to remark, that each air quality parameter level corre-
sponds to one membership function; in this case, five membership
functions by parameter were implemented. Limits, parameters and
ranges used to build the input membership functions based on the
Sigma operator are shown in Table 3. On the other hand,
membership functions for air quality conditions are built using
linear functions, since they facilitate the defuzzification process and
provide a good performance. Trapezoidal membership functions
define the output transformation of the FIS (Ocampo et al., 2006;
Zadeh, 1965), and they can be represented as in expression 7.

mðx; a;b; c; dÞ ¼ max
�
min

�
x� a
b� a

;1;
d� x
d� c

�
;0

�
(7)

where x is an air quality concentration parameter; a, b, c and d are
membership parameters. In this work, we have developed five
membership functions for the air quality according to the recom-
mendations of the standards: excellent, good, regular bad and
dangerous (USEPA, 2009; NADF-009-AIRE-2006). These functions
were built using their respective air quality ranges and deviations
defined in Table 2. The Fig. 3 shows the output membership func-
tions used for computing the air quality and Table 3 shows the
parameters used by the respective functions.

3.2.2. Inference rules (reasoning process)
In current air quality indices, when one air quality parameter

takes a value (either low or high) out of the allowed limits, the
index status changes irrespective of the excellent conditions of
other parameters. On the other hand, when all air quality param-
eters are inside the same level, but some of them are on the bound,
the index condition does not change. Additionally, some bad
parameter concentrations can detonate harmful chemical reactions
in other important parameters in air pollution and they are not
considered in current air quality indices. These conditions for
parameter concentrations will be taken into account in the rules of
our FIS assessing the environmental condition of air pollution. In
this sense, the fuzzy inference system will be able to detect
potential crisis, bad changes on parameter concentrations or
possible consequences in sensitive people only if the rules are built
correctly.
Table 3
Parameters for membership functions used in the fuzzy inference system.

Indicator “Good” “Regular” “High”

tb ¼ lb la ta tb lb la ta tb

O3 [ppm] 0 0.027 0.082 0.027 0.082 0.082 0.137 0.082
NO2 [ppm] 0 0.052 0.157 0.052 0.157 0.157 2.62 0.157
SO2 [ppm] 0 0.032 0.097 0.032 0.097 0. 097 0.162 0.098
CO [ppm] 0 2.25 7.75 2.25 7.75 7.75 13.75 7.75
PM10 [mg m�3] 0 30 90 30 90 90 150 90
PM2.5[mg m�3] 0 7.7 23.1 7.7 23.1 23.1 48.1 23.1

a ¼ b c d a b c d a

AQI 0 25 75 25 75 75 125 75
In air quality assessment, there are expressions that are
frequently used by experts: “if all parameter concentrations are in
good levels, then the expected air quality is excellent” or “if the
ozone level is good and nitrogen oxide is regular, and sulfur dioxide
is good, and carbon monoxide is good, and particulate matter is
good, then the expected air quality is good”. In fuzzy language,
those expressions could be enunciated as follows:

Rule 1:If O3 is good and NO2 is good and SO2 is good and CO is
good and PM10 is good then AQ is excellent.
Rule 2:If O3 is good and NO2 is regular and SO2 is good and CO is
good and PM10 is good then AQ is good.

In the same way, other rules can be enunciated. Robustness of
the system depends on the number and quality of the rules. In this
work, a set of 1025 rules were built and comprise the core of the FIS.
The size of the set corresponds to the interactions and harmful
combinations of the air quality parameters. In this example, we
enunciate three more rules showing the main air conditions:

Rule 3:If O3 is good and NO2 is good and SO2 is high and CO is
good and PM10 is good then AQ is regular.
Rule 4:If O3 is good and NO2 is good and SO2 is good and CO is
very high and PM10 is good then AQ is bad.
Rule 5:If O3 is good and NO2 is regular and SO2 is good and CO is
good and PM10 is extremely high then AQ is dangerous.

Inference rules are built considering air quality parameters
combinations. According on how harmful a concentration is, the
rule is built choosing as consequence an air quality condition. Also,
if concentrations can disestablish other air quality parameters
(primary or secondary parameters), the air quality condition is
assigned. In this sense, the size of the rule set depends of howmany
rules are needed to describe the ecosystem dynamics. Standards
define criteria clearly established for rule building; however, the
success of the inference process depends on expert criteria, who
define possible effects and crisis that an air quality parameter
combination could generate.
“Very high” “Extremely high

lb la ta tb lb la ta tb lb la ¼ ta

0.137 0.137 0.192 0.137 0.192 0.192 0.247 0.19 0.247 N

2.62 2.62 0.367 2.62 0.367 0.367 0.472 0.368 0.472 N

0.162 0.162 0.227 0.162 0.227 0.227 0.292 0.227 0.292 N

13.75 13.75 18.75 13.75 18.75 18.75 24.25 18.75 24.25 N

150 150 250 150 250 250 350 250 350 N

48.1 48.1 73.1 48.1 73.1 73.1 158.1 73.1 158.1 N

b c d a b c d a b c ¼ d

125 125 175 125 175 175 225 175 125 250
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Even though change of season or influences parameter
concentration; the proposed fuzzy inference system does not
consider temporality when it evaluates concentrations levels. In
this sense, the fuzzy inference system does not depend directly of
the season; it depends exclusively on the input information, which
of course depends on the season.

Inference rules must be evaluated in order to determine the air
quality condition level. In this work, rules based on and operators
have been implemented; they can be evaluated using the following
expression:

mR ¼ min
n
miO3

; mjNO2
; mkSO2

; mlCO; m
m
PM10

o
(8)

where i, j, k, l and m are the evaluated levels respectively; this
expression represents the rule antecedent. Fig. 4 illustrates the
operation of rules 1 and 2.

3.2.3. Aggregation
Once the rule set has been processed, an integration of the

results must be done. Output membership functions for air quality
are matched and truncated according the consequent of the rule as
follows:

mR out ¼ min
n
mR; m

l
AQI

o
(9)

where l is the selected membership function (excellent, good,
regular, bad or dangerous); this expression represents the rule
consequent. Therefore, all truncated membership functions
(mR_out), for each rule, are aggregated by superposing the shapes
creating one final membership function (mout). Fig. 4 shows the
aggregation process.

3.2.4. Defuzzification
The final step of the fuzzy inference system is the defuzzification

process, where the Air Quality Index is computed using the centroid
method (Fig. 4). The centroid function is the most prevalent and
physically appealing of all available methods for a defuzzification
If O3 and NO2 and SO2 and C

R
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R
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e 
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Fig. 4. Fuzzy inference diagram for the air quality scoring problemwith five variables and tw
values (m) of the 5 variables are used to truncate the AQI membership function assessed
membership function (mout), which is used to determine the AQI by the centroid method.
process (Ocampo et al., 2006; Mo-Yuen, 1997; Ross, 2004). The
centroid method returns the center of area under the curve formed
by the output fuzzy function according to expression 10:

AQI ¼

Z
xmoutðxÞdxZ
moutðxÞdx

(10)

4. Air quality prediction model

In general, prediction models developed for air quality predic-
tion are based on analyzing the current air quality status, and giving
assumptions for future conditions (Wang et al., 2011; Alhanafy
et al., 2010; Yong et al., 2008). In this case, a prediction assump-
tion could be wrong, since their models are only based on inter-
pretations without any background. A prediction must be done
using a solid background of the air quality parameters.

In this work, predictions are based on past observations using
historical measurements of air quality parameters, predicting
particular concentrations in different time periods and assessing
them using a fuzzy inference system. Themain idea of this step is to
effectively predict the air quality parameters. However, the predic-
tion success is based on the assessment of the predicted concen-
trations using the fuzzy inference system proposed in Section 3. In
this sense, the predictionprocess is linked to the fuzzy environment,
providing a better performance over traditional models.

Main air quality indicators are used to implement contingency
plans in order to prevent future crisis. However, decision making
using those indicators is based on parameter concentrations
measured instantly. In this sense, an opportune treatment of air
quality can avoid harmful crisis if an accurate prediction of
parameters and air assessment is implemented.

There are several methodologies for data prediction, artificial
neural networks (ANN) is one of themost usedmodels. However, in
an ANN the most suitable topology for a specific problem cannot be
determined, and usually it is determined by a trial and error. In this
O and PM10 then AQI

Defuzzification

0           AQI      300

RegularGoodGood

Excellent
Good

A
ggregation

Good

Representation

μ

μ

o rules. Rules 1 and 2 were used to show the defuzzification process. The membership
in the respective rule. All truncated functions (mAQI) are combined creating a final
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section an autoregressive model (AR) is used due to its simplicity.
An AR model is built by adding terms obtained from the original
signal, and they can be implemented following a determined
number of steps.

4.1. Preprocessing

Measurements always depend on the performance of electronic
devices and human protocols. However, fluctuations can be due to
changes in weather or changes in air quality. In order to deal with
these fluctuations, before a prediction model is built (autore-
gressive model) some previous steps are needed to have a signal
more suitable for modeling. In this work, smoothing and detrend-
ing of signals are used as preprocessing steps. The preprocessing is
useful for the prediction, but not for the assessment of air quality.
Even though, in preprocessing step some information is lost, it is
irrelevant for air quality assessment. In general a signal is pre-
processed in order to have a more suitable signal and to reduce the
computational cost for further analysis. In this sense, preprocessing
is not a result by itself; it is only a step that allows smoothing the
input signal of the prediction process.

4.1.1. Smoothing
The signal of anairqualityparameter containsfluctuationshaving

several peak values and random behaviors. In order to reduce these
effects, the smoothing process erases peaks using a digital filter. In
this work, a moving average weighted filter is used for smoothing
each air quality signal. This filter works using an average of signal
points (measured concentrations) for producing new output points
of the new filtered signal, as follows (Emmanuel, 1993):

yðnÞ ¼
XK
i�0

bixðn� iÞ (11)
Sa

O3

SO2

PM

pp
m
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Fig. 5. Original and smoothed signal of the environ
where x(n) is the air quality measured signal, y(n) is the new
smoothed signal, K is the filter order, bi are the Spencer 15 terms
coefficients (Kenney and Keeping, 1962), and they are defined as
1=320 [�3, �6, �5, 3, 21, 46, 67, 74, 67, 46, 21, 3, �5, �6, �3].
Replacing the Spencer coefficients in Eq. (11) with k ¼ 14, the
smoothing using a moving average weighted filter is as in Eq. (12):

yðnÞ ¼ � 3
320

xðnÞ � 6
320

xðn� 1Þ � 5
320

xðn� 2Þ þ.

� 3
320

xðn� 14Þ (12)

Fig. 5 shows the smoothing process for the air quality signals.

4.1.2. Detrending
A signal usually contains some constant amplitude offset

components or low frequency trends, those behaviors jointly with
the fact that amplitudes of these trends sometimes are large could
corrupt the results of time series modeling. (Chatfield, 2004;
Shumway and Stoffer, 2000). Therefore, it is necessary to remove
these trends before performing further analysis (Chapra and
Canale, 1999). The trend is estimated as follows:

yðnÞ ¼ a0 þ a1xðnÞ þ e (13)

where a0 and a1 are coefficients that represent the amplitude offset
and the slope respectively, y is the output signal and e is the error
between the modeled and the observed values. The coefficient a1
and a0 can be calculated using:

a1 ¼ n
P

xiyi �
P

xi
P

yi
n
P

x2i � ðP xiÞ2
(14)

a0 ¼ y� a1x (15)
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mental variables using a moving average filter.
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where n is the number of series points, and xi is the ith
measurement.

4.2. Prediction models

Air quality signals are built from series of measured values
(observed values). Those measures are used to create a model
which has a similar behavior. In this sense, air quality signals can be
modeled using their own historical information. In this work, an
autoregressive model (AR) is build using a set of measured
parameter concentrations. In this sense, the AR model is able to
predict a current value of the air quality parameter x(t), based on
a series of observed values x(t � 1), x(t � 2),., x(t � n) and
a prediction error (De la Fuente and García, 1998; Brockwell and
Davis, 1996), where n determines the number of past values used
for predicting a new value (model order).

There is no straightforward way to determine the correct model
order. There are several formal techniques for choosing the model
order; in our study, the PHI criterion was the technique with best
results for the AR models. The PHI criterion is a weighted estima-
tion error based on the variation of a given signal with a penalty
term when exceeding the optimal number of parameters to
represent the signal (Chatfield, 2004; Emmanuel, 1993):

PHI ¼ en

�
1þ ð2nÞlnjlnjLjj

L

�
(16)

where L is the number of points in the time series, n is the model
order and en is the prediction error. In this case n varies to reach an
optimum score. The AR models that we propose to describe the air
quality signals using the model order (estimated with the PHI
criterion) are:

O3ðtÞ ¼
X20
i¼1

aiO3ðt � iÞ þ eðtÞ (17)

NO2ðtÞ ¼
X20
i¼1

diNO2ðt � iÞ þ eðtÞ (18)

SO2ðtÞ ¼
X23
i¼1

biSO2ðt � iÞ þ eðtÞ (19)

COðtÞ ¼
X22
i¼1

giCOðt � iÞ þ eðtÞ (20)

PM10ðtÞ ¼
X20
i¼1

ciPM10ðt � iÞ þ eðtÞ (21)

where e(t) is the predicted error and ai, bi, ci, di, gi are the AR
coefficients. Eqs. (17)e(21) represent the AR models for the air
quality signal prediction. Each AR coefficient is calculated for
a particular air quality parameter using its own information. The AR
coefficients can be determined using the YuleeWalker equations
(Dijkhof and Wensik, 2000) as follows:

0
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« « 1 «
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gð1Þ
gð2Þ
«
gðnÞ

1
CCA (22)
where the g operator can be calculated using the expected value as:

gðhÞ ¼ hxðtÞxðt � hÞi (23)

where x is an air quality signal.
Fig. 6 shows examples of the air quality signals reconstruction,

where a total of 24 points (one day) were predicted using the
proposed AR(n) models.

Once air quality parameter concentrations are modeled and
predicted, the final step is to process those values using the fuzzy
inference system; the final result is a predicted air quality assess-
ment (P-AQI).

5. Experimental results

There are several models for air quality assessment. However,
most of these models assess immediate measurements averaging
frequently measured parameters without any previous treatment
of the information. We can enunciate some of them for example,
the metropolitan index for air quality (Indice Metropolitano de la
Calidad del Aire, IMECA in Spanish) (NADF-009-AIRE-2006), was
developed for the Atmospheric Monitoring System (SIMAT, 2009),
and shows the pollution level of the Mexico City and its Metro-
politan Area in a [0, 250] range (see Table 2), this index uses some
transforming equations and provides, as an overall evaluation, the
air quality parameter with the highest result (SMA, 2009). The
USEPA index is the base for most air quality indexes worldwide and
it shows the air quality level in a [0, 500] range (see Appendix A).
Additionally, Sowlat et al. (2011) proposed a fuzzy inference system
based on linear inputs transformations where parameter concen-
trations are aggregated in a complete index. In this paper, we
proposed another approach where inputs are no linear functions;
moreover in our work we give a particular treatment to each
parameter before process it by the inference system. In this section,
we compare these four approaches (AQI, IMECA, USEPA and Sowlat
et al.) in order to show the advantages of our proposal.

5.1. Study area

The research area encompassed the Federal District of Mexico
and its Metropolitan Area (Fig. 7), which includes more than eight
million inhabitants, (Fig. 7). The Federal District has an area of
1.485 km2 and has a minimum altitude of 2200 m (7217 feet) above
sea level, and is surrounded bymountains and volcanoes that reach
elevations of over 5000 m high. This area is located in the Trans-
Mexican Volcanic Belt located in the high plateaus of south-
central Mexico (INEGI, 2009). Air pollution differences within
Mexico City can be large due to meteorological factors, particularly
wind direction.

5.2. Data information

The Mexico City Atmospheric Monitoring System (SIMAT, 2009)
is committed to operate and maintain a trustworthy system for
monitoring air quality in Mexico City and its Metropolitan Area
(Fig. 7), made up by the Automatic Network for Atmospheric
Monitoring (RAMA, 2009) and the Manual Network for Atmo-
spheric Monitoring (REDMET, 2009), publishing their pollutant
concentration information.

For our experiments, data information from 2008 year was ob-
tained from RAMA and SIMAT databases. Although, concentration
measurements have different time frequencies, these databases
offer measurements each hour. IMECA results are given using
averages of measurements in their respective period according to
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Fig. 7. Location of the monitoring stations used for air quality parameter measuring in the Mexico City and its Metropolitan Area.
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the standards. Ozone and nitrogen dioxide averages are reported
every hour; sulfur dioxide every 24 h; carbon oxide every 8 h and
particulate matter every 24 h. Particles smaller than 2.5 mm are not
measured by SIMAT.

5.3. Air quality assessment results

In our experiments wewill assess the condition of the air quality
in the Mexico City and its Metropolitan Area, through different air
quality indexes, using data extracted from SIMAT public databases
from January toMarch, 2008 (SIMAT, 2009). A better understanding
of the environmental behaviors can be observed in Fig. 1, where it
can be noticed that variable fluctuations appear every day.

Air quality has been assessed using a set of 24measurements for
each air quality parameter (one day of information). Following
A

Sam

January, 2008

A

Sam

February, 2008

A

Sam

March, 2008

In
de

x
In

de
x 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

In
de

x

Fig. 8. Comparison between AQI, USEPA and IMECA from January to March, 2008. The fuzzy
to the index integrates all affectations of minimal toxicity levels in all air pollutants.
ranges and allowed deviations (see Table 3) it is possible deter-
mining a fuzzy input for the FIS using the s index. A comparison of
AQI against IMECA, USEPA and the index proposed by Sowlat et al.
(2011) is shown in Fig. 8. According to the results showed in Fig. 8,
air quality scores given by air quality indices in general are below
80, it means that those values are always considered as excellent
and good air quality (51 and 100 levels respectively). However, the
fuzzy environment and the treatment of data information using the
Sigma operator in our proposal for air quality assessment (AQI),
both affect directly the final score, reporting the worst air condi-
tions, since AQI considers the amplitudes and deviations of the
samples. The reasoning process provides a more accurate evalua-
tion since it integrates all concentration levels in the final index. In
this sense, the proposed AQI matches better with real data since it
provides different levels for the air quality assessment, while
QI

ples

QI

ples

QI

ples

environment in the AQI affects the final score giving a more penalized assessment, due



Table 4
Comparison between AQI, IMECA, USEPA and the model proposed by Sowlat et al. (2011).

O3 (ppm) NO2 (ppm) SO2 (ppm) CO (ppm) PM10 (mg m�3) AQI IMECA USEPA Sowlat Observations

0.0143 0.0336 0.0091 2.2 52.8 76.7 49.1 45.4 53 According to IMECA the air is excellent ¿Can
a 49 value in a 0e50 range really be
considered as an excellent index?

0.0121 0.0378 0.0091 2.31 55.2
0.0077 0.0357 0.0091 2.31 60
0.0077 0.0357 0.0091 2.42 68.4
0.033 0.0126 0.0104 1.98 63.6 78.9 53.9 49.9 60.1 According to USEPA the air is good ¿Can

a 49.9 value in a 0e50 range really be
considered as a good index?

0.0374 0.0084 0.0091 1.87 62.4
0.0374 0.0063 0.0091 1.65 62.4
0.0385 0.0042 0.0091 1.43 61.2
0.0187 0.0252 0.0026 0.66 112.8 95.8 99.4 73.2 81.5 According to IMECA the air is good. However,

it is close to be in a regular level.0.0198 0.0231 0.0026 0.66 115.2
0.0231 0.021 0.0026 0.77 117.6
0.0275 0.0189 0.0026 0.77 120

AQI
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Fig. 9. Results of the prediction and assessment of air condition.
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IMECA and USEPA only provide a true or false value and they
change their values only when one air quality parameter exceeds its
limits regardless other parameters. Table 4 describes the compar-
ison among indexes where a set of measurements is analyzed. In
the first evaluation IMECA and USEPA indexes report scores of 49.1
and 45.5 because PM10 presents values close to a regular situation,
while other parameters are in excellent levels. However, the values
of IMECA and USEPA are classified as excellent despite their prox-
imity to good. In this case AQI evaluates sample deviations from
a desired level and processes this information using the FIS, inte-
grating all negative effects of toxicity levels giving a score of 76.7,
which means a good air quality. The second analysis shows IMECA
and USEPA values of 53.9 and 49.9 which means good and excellent
levels respectively. However, it is hard understand why these
values are too close to good and excellent levels. Another aspect to
consider is that those values were considered only for PM10 values.
The AQI solves this problem, since the analysis and integration of all
situations generated by the air quality parameter set produces
a score of 78.9. The index proposed by Sowlat et al. (2011) also
solves those problems using a fuzzy inference system. However, in
our proposed model the treatment of the inputs using the Sigma
operator has a better performance.

5.4. Air quality prediction results

It is important to remark that air quality prediction is based in
two steps: in the first step the air quality parameters are predicted,
and in the second step the fuzzy inference system assesses pre-
dicted values having as a result a predicted air quality index. In our
experiments, prediction tests were made using one day of infor-
mation and one day of informationwas predicted (24 values); three
months of measurements were extracted from data base (January,
February and March, 2008). In other words, for one day of infor-
mation, the next 24 h can be predicted using the AR model, and in
the second step the predicted values are processed by the fuzzy
inference system, calculating the predicted AQI (P-AQI).

The P-AQI performances were evaluated using correlation
coefficient (R), mean error (ME), root mean square error (RMSE)
1:1
Line
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NRMSE = 0.06
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Fig. 10. Comparison between assessment and prediction,
and normalized root mean square error (NRMSE). In brief, the AQI
predictions were optimum if R, ME, and RMSE were found to be
close to 1, 0, and 0, respectively. Also R, RMSE, and ME were used to
measure the prediction performance of P-AQI on the validation
data set.

A comparison between assessed (AQI) and predicted (P-AQI) air
quality are showed in Fig. 9. Scores of predicted air quality showed
a good performance. In Fig. 10, statistical results about the predic-
tion process are given, where the relationship between estimated
and real values confirms the good predictability of the 24 h analysis.
The points nearest to the diagonal line represent more accurate
predictions. The values predicted by our model were too close to
those measured values (see the line of exact fit); moreover ME
showed low error rates (2.49, 1.95 and 3.26 from a [0e250] range).

6. Discussion

The methods proposed for assessing air quality provides a good
approach in the air management field. The AQI assesses air quality
using past information and giving a [0, 250] range for an air quality
level. Currently, methodologies for air pollution evaluation do not
consider the potentiality of reasoning processes in air quality
assessment and the deviation of failed tests, which are very
important for detection of potential harmful situations.

Traditional reports on air quality tend to be too technical and
detailed, presenting monitoring data on individual substances,
without providing a complete and interpreted description of air
quality. To solve this gap, several air quality indexes have been
developed to integrate air quality parameters. Traditional meth-
odologies evaluate air quality in a rigorous sense, where certain
levels of concentrations are classified in a strict level. The proposed
AQI, follows a soft approach where the measured concentrations
are processed giving an indication of the air pollution degree,
integrating all compounds.

Although IMECA and USEPA solve the problem of air pollution
assessment, the reasoning process of harmful situations in AQI
provides a more accurate evaluation. In addition, the proposed
model integrates all air quality parameter evaluations providing
1:1
Line

R = 0.8752
ME = 1.95
RMSE = 2.53
NRMSE=0.05

b
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R = 0.6599
ME = 3.26
RMSE = 4.08
NRMSE = 0.04

QI

P
A

Q
I

where the line represents the accuracy of the results.
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a complete air quality index. Sowlat et al. (2011) propose a fuzzy
inference system for air quality assessment; nevertheless, our
model makes a treatment to the input of the system that signifi-
cantly increases the performance of the air pollution assessment.

On the other hand, the prediction of air quality is an important
factor in high polluted areas, where a crisis in air pollution can lead
to serious health problems. Predicting bad air quality conditions
would help to implement more effective preventive programs for
controlling harmful pollutant emissions and to detect future
dangerous concentrations. In this sense the IMECA, USEPA and
international air quality indexes have not introduced methodolo-
gies for predicting air quality conditions using past values. The
preventive programs are implemented after a high polluted
concentration exceeds a critical limit.

7. Conclusions and future work

In this paper, a newmodel based on fuzzy inference systems has
been introduced to assess air quality status. The proposed AQI
works in two steps: first, the toxicity of a set of measured
concentrations is classified by levels (Sigma operator); second, the
effects in the ecosystem are evaluated in order to determine air
quality status (fuzzy inference system). A comparison between
models shows that a fuzzy environment directly affects the results
providing a more accurate index dealing with real data. Experi-
mental results showed that the proposed algorithm is an efficient
way to monitor air pollution in urban areas.

Amodel to predict air quality was also developed and it works in
two phases: first, a parameter predictionwas done using one day of
information; then predicted signals were assessed using the AQI in
order to predict an air pollution level. A comparison of the
assessment and the predicted air quality showed a good system
performance. Therefore the proposed model in this research is
a powerful tool in decision support for monitoring future air
pollution environmental problems.

As futureworkwewill assess and analyze specific polluted areas
of Mexico City using the proposed AQI. We consider that the best
way to validate an index performance is comparing it with impact
indicators for air pollution. In this sense, more comparisons
between air quality indices in the literature are going to be
implemented in order to assess the effectiveness of the proposed
system. Additionally, correlations between diseases and the
proposed AQI scores will be studied in order to understand diseases
appearing with bad air quality conditions.
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Appendix A

A.1 USEPA
USEPA measures the daily pollution index of the compounds for

which the USEPA has established National Ambient Air Quality
Standards (NAAQS). The index for a pollutant can be calculated as
follows:

Ip ¼ IHi � ILO
BPHi � BPLO

�
Cp � BPLO

�þ ILO

where, IP is the index value for the pollutant, P; CP is the pollutant
truncated concentration; BPHi is the breakpoint that is greater or
equal to CP; BPLO is the breakpoint that is lesser or equal to CP; IHi is
the AQI value corresponding to BPHi, ILO is the air quality value
corresponding to BPLO. USEPA index is determined by considering
the maximum index value (Ip) of a single pollutant (Bishoi et al.,
2009; USEPA, 2009).
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