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Objective: Acute leukemia is a malignant disease that affects a large proportion of the world population.
Different types and subtypes of acute leukemia require different treatments. In order to assign the correct
treatment, a physician must identify the leukemia type or subtype. Advanced and precise methods are
available for identifying leukemia types, but they are very expensive and not available in most hospitals
in developing countries. Thus, alternative methods have been proposed. An option explored in this paper
is based on the morphological properties of bone marrow images, where features are extracted from
medical images and standard machine learning techniques are used to build leukemia type classifiers.
Methods and materials: This paper studies the use of ensemble particle swarm model selection (EPSMS),
which is an automated tool for the selection of classification models, in the context of acute leukemia clas-
sification. EPSMS is the application of particle swarm optimization to the exploration of the search space
of ensembles that can be formed by heterogeneous classification models in a machine learning toolbox.
EPSMS does not require prior domain knowledge and it is able to select highly accurate classification
models without user intervention. Furthermore, specific models can be used for different classification
tasks.
Results: We report experimental results for acute leukemia classification with real data and show that
EPSMS outperformed the best results obtained using manually designed classifiers with the same data.
The highest performance using EPSMS was of 97.68% for two-type classification problems and of 94.21%
for more than two types problems. To the best of our knowledge, these are the best results reported
for this data set. Compared with previous studies, these improvements were consistent among different
type/subtype classification tasks, different features extracted from images, and different feature extrac-
tion regions. The performance improvements were statistically significant. We improved previous results
by an average of 6% and there are improvements of more than 20% with some settings. In addition to the

performance improvements, we demonstrated that no manual effort was required during acute leukemia
type/subtype classification.
Conclusions: Morphological classification of acute leukemia using EPSMS provides an alternative to expen-
sive diagnostic methods in developing countries. EPSMS is a highly effective method for the automated
construction of ensemble classifiers for acute leukemia classification, which requires no significant user
intervention. EPSMS could also be used to address other medical classification tasks.
. Introduction
According to the Leukemia and Lymphoma Society, “leukemia is
malignant disease (cancer) of the bone marrow and blood character-

zed by an uncontrolled accumulation of blood cells [1]”. Leukemia is

∗ Corresponding author at: National Institute of Astrophysics, Optics and Elec-
ronics, Department of Computational Sciences, Luis Enrique Erro # 1, Tonantzintla,
uebla 72840, Mexico. Tel.: +52 222 2663100x8319; fax: +52 222 2663152.

E-mail address: hugojair@inaoep.mx (H.J. Escalante).

933-3657/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.artmed.2012.03.005
© 2012 Elsevier B.V. All rights reserved.

divided in myelogenous and lymphocytic types, where both types
can be acute or chronic (which progresses slowly compared to
acute leukemia). A few highlights taken from the Leukemia and
Lymphoma Society facts 2010–2011 are as follows [1]:

• It is estimated that 259,889 people in the USA are living with, or
are in remission from, leukemia.
• An estimated 43,050 new cases of leukemia will be diagnosed in
the USA during 2011.

• In 2010, leukemia was expected to affect more than 10 times as
many adults (39,733) as children (3317, aged 0–14 years).

dx.doi.org/10.1016/j.artmed.2012.03.005
http://www.sciencedirect.com/science/journal/09333657
http://www.elsevier.com/locate/aiim
mailto:hugojair@inaoep.mx
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The most common type of childhood leukemia (0–19 years old)
is acute lymphocytic leukemia (ALL).
In 2007, the most recent year for which data are available, 74%
of new ALL cases occurred among children (approximately 2859
cases, aged 0–19 years).
In 2010, it was anticipated that approximately 21,840 deaths
(12,660 males and 9180 females) would be attributable to
leukemia in the USA, i.e., 8950 attributable to acute myelogenous
leukemia (AML), 4390 to chronic lymphocytic leukemia (CLL),
1420 to ALL, and 440 to chronic myeloid leukemia (CML).

Although these figures relate to the USA, proportional statis-
ics are expected for other countries. Thus, it is clear that medical
nd technological advances in the understanding of leukemia will
ave a broad impact on the entire world population. In partic-
lar, acute leukemia is a deadly disease and the morphological

dentification of leukocytes is a fundamental task in its detection
the focus of this study). Acute leukemia may be either ALL or
ML, with the following acute leukemia subtypes according to the
rench–American–British classification [2]: L1, L2, and L3 in the
ymphocytic family; and M0, M1, M2, M3, M4, M5, M6, and M7 in
he myelogenous family.

The morphological identification of acute leukemia is mainly
erformed by chemists and hematologists. The process starts when
bone marrow sample is taken from the patient’s spine, which is
repared as a smear with Wright’s staining method. This makes
he white globules more visible during analysis. Depending on
he economic resources of the hospital (because this equipment is
ery expensive), a flow cytometry test is conducted so the specific
eukemia type and sub-type can be identified. After an accurate
iagnosis, the appropriate treatment can be given to the patient.
he flow cytometer test is usually considered reliable, which can
ake the morphological analysis obsolete, although high costs can
ean that the morphological test is used. Indeed, most of the hospi-

als found in developing countries do not have flow cytometers, so
orphological analysis is still required. During the morphological

nalysis, chemists and hematologists study the type and matu-
ity level of leukocytes in the bone marrow sample. They use their
nowledge to analyze the morphology of leukocytes to identify the
ype and subtype of acute leukemia. The identification by experts
s reliable, but automated tools would be useful to support experts
nd reduce the costs for health institutions.

.1. Proposed solution

This paper describes an automated approach for morphological
cute leukemia classification from images based on machine vision
nd machine learning techniques. The proposed method consists
f three main phases: cell segmentation, feature extraction, and
lassification. In a previous study, we focused on segmentation and
eature extraction [3,4], whereas we concentrate on the classifica-
ion stage in this paper. More specifically, we focus on the problem
f selecting the best classification model (formed by data prepro-
essing, feature selection, and classification methods) to provide
aximum classification accuracy.
In previous studies, physicians have reported errors of up to

0% when classifying acute leukemia subtypes.1 We have obtained
ccuracies close to 90% (in average) in our own previous studies by
anually combining methods of preprocessing, feature selection,
nd classification, while trying to identify appropriate parameters
o increase accuracy [4]. Although we obtained satisfactory results
ia the manual selection of classification models, this method was

1 According to the information provided by physicians that perform morpholog-
cal classification manually at the Mexican Social Security Institute (IMSS).
e in Medicine 55 (2012) 163–175

extremely difficult and time-consuming. Thus, automatic methods
for effectively selecting classifiers are required. Clearly, increasing
the classification accuracy translates into improved diagnoses by
the hematologist, which in turn means that patients will have a
better treatments and an increased life expectancy.

We aimed to develop more powerful tools to improve the
classification accuracy of our previous study [3,4] and provide
more reliable tools for medical diagnosis. Previously, we were
mainly focused on segmentation algorithms. We also worked
on the extraction of descriptive features/characteristics for acute
leukemia cells. However, we did not find a combination of
algorithms, parameters, and sets of descriptive characteristics,
guaranteeing outstanding results. In order to achieve our goal,
we propose the use of ensemble particle swarm model selection
(EPSMS) for the automatic selection of accurate classifiers for the
morphological identification of acute leukemia.

EPSMS is a generic tool that explores the search space of candi-
date classifiers to automatically build ensemble classifiers [5]. The
main benefit of EPSMS is that it can obtain very effective classifi-
cation models without user intervention. EPSMS selects ensembles
instead of single models [6,7], so it is more robust to noisy data
and it provides more stable predictions. A distinctive feature of
EPSMS is that the ensemble classifier is formed of heterogeneous
full models, where a full model is composed of methods for pre-
processing, feature selection, and classification. We use EPSMS for
type/subtype acute leukemia classification in an one-vs-all clas-
sification method where we selected ad hoc classifiers for each
binary type/subtype problem. This was advantageous because dif-
ferent classification problems may require different classification
models. Our results compared favorably with those reported in a
previous study [3,4], where classification models were constructed
manually after machine learning experts spent long periods of time
in development. Furthermore, the models selected using EPSMS
can provide insights into distinctive features of the acute leukemia
type/subtype classification task. The improvements in performance
were significant and they may motivate further research on the
application of EPSMS to other medical tasks.

As mentioned earlier, we adopted a morphological approach
because this is an inexpensive method that is available in many
hospitals in developing countries. We are aware of other more pre-
cise options for addressing the problem, such as flow cytometry
or microarray gene expression analysis techniques. Unfortunately,
these techniques are not accessible to most people living in poor
countries.2 We will also compare the performance of our technique
with other approaches when data is available (as the cost of tests
decrease) and when the method can be offered to more people.
This is part of our future work. Meanwhile, we think the proposed
approach is a practical alternative to expensive techniques. This
statement is supported by experimental results that show the pro-
posed approach achieves very similar performance to that obtained
with alternative and more expensive methods.

The rest of this paper is organized as follows. The next section
reviews related work on acute leukemia classification and ensem-
ble member selection. Section 3 describes particle swarm model
selection, which is the method EPSMS is based on. Section 4 intro-
duces EPSMS and Section 5 describes how EPSMS was used for
acute leukemia classification. Section 6 reports our experimental
results acute leukemia classification. Finally, Section 7 summarizes
our main findings and outlines future work areas.
2 At the moment of writing this paper, the cost of leukemia studies in Mexico
range from 100 USD to 1300 USD. A large portion of Mexican population receives
100 USD or less as payment for a moth of work.
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. Related work

This section reviews related work on acute leukemia classifica-
ion and classification using ensemble methods.

.1. Acute leukemia classification

Many studies have been devoted to the development of accurate
ethods for automatically detecting different types of leukemia.
uang et al. reported several methods for the recognition and
lassification of leukemia [8]. They focused on the seminal work
f Golub et al. who presented the first microarray-based and
ioinformatics-oriented approaches for identifying and classifying
umor types [9,10]. In that study they used a signal-to-noise statis-
ic to select a small set of genes, before developed a scheme based on

icroarray gene expression analysis to distinguish ALL from AML,
nd they reported recognition rates of 94.1%. Other research stud-
es were inspired by Golub et al. and they used the same ALL/AML
ata sets presented in [8]. These studies applied models, such as
ultilayer perceptron networks, support vector machines, and the

-nearest neighbor method, where the accuracy ranged from 58%
o 97%.

Li et al. proposed two Bayesian classification algorithms, which
ncorporate feature selection, for the classification of gene expres-
ion data derived from cDNA microarrays [11]. The authors
valuated their methods using three gene expression data sets for
olon cancer, ovarian cancer and leukemia (ALL vs AML). In addi-
ion to providing acceptable performance, the proposed methods
rovide sparse solutions.

Zong et al. developed a tool for the identification of differ-
nt white blood cell categories in a given blood sample [12]. Two
pproaches were implemented with two different parametric data
lusters. In the first, a multidimensional space using artificial neural
etworks (ANNs) was trained followed by cross-validation using
ytometry data. The second approach exploited gene expression
rofiling of ALL to classify its six subtypes. The system was also
rained to assess the inherent problem of data overlap and to recog-
ize abnormal blood cell patterns. The classification performance of
he first approach reached up to 100% while the performance of the
econd approach was up to 92%. A novel ANN algorithm for optimiz-
ng the classification of multidimensional data, which focused on
cute leukemia samples, was proposed by Adjouadi et al. [13]. The
NN technique classifies normal vs abnormal (i.e., ALL and AML)
lood samples. The authors reported classification results of up to
6.67% with an increased data set size.

However, despite the very good results obtained using microar-
ay information, the process for gathering this data is complex and
xpensive. In this paper we propose an approach based on the
orphological analysis of bone marrow, which achieved a similar

erformance to that reported with microarray data but that does
ot require sophisticated equipment. This means it can be applied

n most health facilities in developing countries. Like microarray
ata analysis, flow cytometry studies are also very precise (e.g.,
9.99% confident). However, they are also very expensive and only
few hospitals (in developing countries) can afford them. There-

ore, compared with other methods our morphological method for
cute leukemia identification offers a better tradeoff between low
ost and accuracy, and we think it may have a broad impact.

The studies reviewed above are a representative sample of the
ide variety of methods proposed for acute leukemia classifica-

ion. Different methods for data preprocessing, feature selection,
nd classification have been developed in different studies, which

ave proved to be very effective with different acute leukemia
ata sets. These methods have been manually designed/selected
y experts on machine learning and/or leukemia classification.
lthough this development scenario is acceptable, there are many
e in Medicine 55 (2012) 163–175 165

situations where both types of experts are not available, so auto-
mated methods for the construction of classification models are
required. Even in scenarios where expert knowledge is available,
the availability of automated methods for classifier construction
can simplify the design and development process. In this study,
we explore the use of automatic methods for the construction of
classification models for acute leukemia classification. In particu-
lar, we study the benefits of using a technique for the automatic
construction of ensembles of full models, where a full model is
composed of methods for data preprocessing, feature selection, and
classification.

2.2. Ensemble classifiers

The underlying idea of ensemble methods is that we can obtain
more accurate and more robust predictions by considering multiple
views of the same problem. This is justified by theoretic and empir-
ical studies showing that, under certain conditions, a combination
of multiple individual models is beneficial in terms of accuracy
and the stability of predictors [14]. However, despite the fact that
the ensemble learning paradigm has been studied for more than
two decades, there are still some open issues that merit further
study. One issue is the selection of a set of classifiers for creating an
ensemble [14–17].

Previous studies suggest that the effectiveness of ensembles
depends on the accuracy and diversity of the individual models
[14–17]. Thus, successful ensemble methods aim to guarantee (at
least) default accuracy and high diversity among its members by
adopting different strategies. For example, learning weights for
weak learners [18], randomizing the sets of features and examples
that are considered for each classifier [19,20], partitioning the input
space into clusters and learning different classifiers for the differ-
ent clusters [21], determining the most appropriate classifier (from
a predefined set) for each test example according to distance mea-
sures [22], or using different learning algorithms for each individual
model [17,23–26]. The latter strategy, known as heterogeneous
ensembles, is most relevant to our work.

Heterogeneous ensembles are based on an assumption that
decision functions will be different because different learning
algorithms have different biases, which may lead to higher diver-
sity among the individual models. However, a problem with this
approach is that it is not clear how to select the learning algo-
rithms that will form the ensemble. Some researchers have adopted
diverse search strategies for the selection of a set of models so the
performance of the ensemble is optimized under a certain fusion
strategy [17,23–26]. They have considered a pool of classifica-
tion algorithms and used combinatorial optimization techniques to
select the combination of methods that maximizes the performance
of the ensemble [24,27,28]. Some researchers have also attempted
to optimize the weight associated to each method in the ensemble
[25,26]. However, the parameters of the learning algorithms are
fixed in these approaches so the classifiers are not really optimized
for individual problems. In addition, the same data preprocess-
ing methods and feature selection techniques are used for all of
the models that are considered in the ensemble, thereby reduc-
ing the potential diversity of the members of the ensemble. In this
study, we built ensembles using heterogeneous classifiers, which
were composed of different methods for data preprocessing, fea-
ture selection, and classification. We also used different parameters
for the individual models. These methods were selected using full
model selection methods.

Full model selection methods are aimed at selecting the best

combination of methods for preprocessing, feature selection, and
classification, starting with a training data set [6,7,29]. The main
benefit of these methods is that very effective classification mod-
els can be obtained for diverse classification problems without
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Table 1
Classification (C), feature selection (F), and preprocessing (P) methods considered
in our experiments. We show the method name and number of parameters for each
technique.

Object name Type # pars. Description

zarbi C 0 Linear classifier
naive C 0 Naïve Bayes
logitboost C 3 Boosting with trees
neural C 4 Neural network
svc C 4 SVM classifier
kridge C 4 Kernel ridge regression
rf C 3 Random forest
lssvm C 5 Kernel ridge regression

Ftest F 4 F-test criterion
Ttest F 4 T-test criterion
aucfs F 4 AUC criterion
odds-ratio F 4 Odds ratio criterion
relief F 3 Relief ranking criterion
Pearson F 4 Pearson correlation coefficient
ZFilter F 2 Statistical filter
s2n F 2 Signal-to-noise ratio
pc-extract F 1 Principal components analysis
svcrfe F 1 SVC-recursive feature elimination

normalize P 1 Data normalization

and the adaptive inertia weight3 W allowed PSMS to select very
effective classification models and, more importantly, it allowed
PSMS to avoid overfitting to some extent, see [6] for a detailed
66 H.J. Escalante et al. / Artificial Inte

pending much time on the design and development of specific
odels for these problems. Thus, the work of the data analyst is

reatly simplified. The main hypothesis of this study was that full
odel selection methods could be helpful for selecting member

lassifiers when building ensembles [5].
To the best of our knowledge, the two main full model selection

trategies proposed to date are described in [6,7]. Both methods
re based on the same formulation, they explore the search space
f full models that can be generated using methods from different
achine learning toolboxes, where the two methods differ in the

echnique used to explore the search space. Gorissen et al. used
enetic algorithms for model type selection [7], whereas Escalante
t al. proposed particle swarm model selection (PSMS) [6]. Both
echniques reported satisfactory results in diverse domains. In this
tudy, we focus on the suitability of models selected with PSMS for
uilding ensembles and we postpone until future work the study of
odels selected using Gorrisen et al.’s method for building ensem-

les.

. Particle swarm model selection

PSMS is the application of particle swarm optimization (PSO)
o the problem of full model selection (FMS) [6]. Given a pool of

ethods for data preprocessing, feature selection, and pattern clas-
ification, and a data set associated with a classification task, FMS is
he task of selecting the best combination of methods such that an
stimate of generalization performance is maximized for the classi-
cation task. In addition, the hyper-parameters must be optimized

or each of the selected methods. Thus, PSMS may be considered as
black-box tool that receives the input data set for a classification

ask and returns a very effective classification model.
A full model is comprised of the serial application of prepro-

essing, feature selection, and classification methods. For example,
n the challenge learning object package (CLOP) [30], (the machine
earning toolbox considered in this study), a sample full model is
s follows:

hain(normalize(c = 0), relief (m = 25), svc(d = 0; � = 0.13)),

here chain is the CLOP operator for building serial models. In this
odel, the data is first normalized (normalize) without previously

entering (c = 0), before the relief technique is used for feature
election to select a maximum of 25 features (m = 25). Finally, the
esulting data is used to train a support vector classifier (svc) with
n rbf kernel and width � = 0.13. The full list of methods available
n the CLOP toolbox is described in Table 1. Thus, PSMS explores
he space containing all the possible combinations of methods and
arameters in Table 1 using PSO.

PSO was originally proposed by Kennedy and Eberhart [31], it is a
opulation-based search heuristic that mimics the behavior of bio-

ogical societies where individuals have common goals and show
ocial and individual behaviors (e.g., swarms of bees or flocks of
irds) [32]. Like evolutionary algorithms, PSO is useful when other
echniques are not applicable such as gradient descend or direct
nalytical discovery. Combinatorial and real-valued optimization
roblems where the optimization surface possesses many locally
ptimal solutions (e.g., FMS) are well suited to swarm optimization.
omparable performances of PSO and other evolutionary compu-
ation methods (e.g., genetic algorithms) have been reported in the
iterature [32,33]. However, we selected PSO for FMS, rather than
volutionary algorithms, because of its simplicity and generality,

nd because no ad hoc modification was required when apply-
ng it to FMS [6]. PSO is easier to implement than evolutionary
lgorithms because it involves only a single operator for updating
olutions. In contrast, evolutionary algorithms require a particular
standardize P 1 Data standardization
shift-scale P 1 Data scaling

representation and specific methods for crossover, mutation, spe-
ciation, and selection.

In the basic implementation of PSO, the solutions to the prob-
lem at hand are coded as vectors of real numbers xi ∈ Rd, where
d is the dimensionality of the solutions. xi is referred to as the ith
particle or the position of the ith particle in the search space. Each
particle is associated to a vector of velocities vi ∈ Rd that specifies
how particles move in the search space.

Initially, m-solutions and their velocities are randomly initial-
ized. Next, each solution is updated iteratively by considering the
previous best position for that solution (personal best) and the
global best solution so far (global best) [32]. The personal best solu-
tion introduces local knowledge from the previous positions of each
particle, whereas the leader particle (global best) provides global
knowledge. The goodness of solutions is evaluated by means of a
fitness function. We considered the following updating equations
for the PSO algorithm:

xt+1
i

= xt
i + vt+1

i
(1)

vt+1
i

= (W × vt
i ) + (c1 × r1 × (pi − xt

i )) + (c2 × r2 × (gt − xt
i )) (2)

where pi is the best position obtained by particle (solution) xi (i.e.,
personal best), gt is the best particle in the swarm up to iteration
t (i.e., global best), c1 and c2 are constant weights for the contri-
bution of local and global knowledge, whereas r1, r2 ∼ U[0, 1] are
random numbers. W is the so called inertia term, which weights
the contribution of the previous velocity into the new one, see [32]
for details. PSO ends when a fixed number of iterations (tmax) is
performed. The PSO implementation we used is shown in Fig. 1.

In a previous study, we performed an extensive analysis of the
influence of PSO parameters: c1, c2, tmax, W, and m, on the perfor-
mance of PSMS and EPSMS [5,6,29]. In agreement with literature on
PSO [32,34], we found that the most influential parameters were c1,
c2 and W. In particular, we found that the configuration c1 = c2 = 2
3 W is initialized with the value wstart = 1.2 and then W is linearly decreased
through the iterations until the value wend = 0.4.
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ation, the global best solution is updated (because a new solution
has obtained a lower fitness value) and this global best solution is
also stored to be considered for the ensemble. During iteration t = 2,
Fig. 1. Pseudo-code of the particle swarm optimization (PSO) algorithm.

iscussion on parameter selection for PSMS. Thus, we used this
onfiguration of parameters in our experiments.

In PSMS, we defined a codification of full models using their
arameters as vectors of real numbers and we used the straight
SO implementation shown in Fig. 1. The fitness function for PSMS
as the k-fold cross-validation (CV) error of the full models using

raining data (k = 2 was used for the experiments reported in this
aper). We used CV as a mechanism to avoid overfitting, although

t is known that the model selection criteria (CV in our case) can
lso be overfitted [35]. However, in a previous study we found that
he search method performed in PSMS was helpful for avoiding
verfitting to some extent [6]. This was due to a combination of
everal factors, i.e., the incorporation of local and global informa-
ion in the generation of new solutions (through the local and global
est solutions), the inclusion of an adaptive inertia weight (i.e., W),
he randomness introduced in the process to generate new solu-
ions, and the use of CV. The combination of these factors allowed
s to successfully apply PSMS in a variety of domains including
uthorship verification [36] and object recognition [5,37]. Also, it
as evaluated using benchmark data [6] and in several machine

earning competitions [6,29,38].

. Ensemble particle swarm model selection

EPSMS is an extension of PSMS, which has the goal of building
nsemble classifiers from PSMS’s partial solutions [5]. The intu-
tion behind EPSMS is that a combination of candidate solutions
an result in ensemble classifiers that are capable of outperform-
ng individual models. EPSMS is motivated by the large number
f solutions (i.e., a total of (tmax + 1) × m) that are evaluated via
SMS’s search process, most of which achieve performance bet-
er than random after a few iterations. EPSMS is also motivated
y the fact that PSMS’s partial solutions are formed by heteroge-
eous classifiers, i.e., models that differ in terms of the methods
sed for preprocessing, feature selection, and classification, while
lso have different hyper-parameter settings. Our hypothesis was
hat this heterogeneity is correlated with diversity (i.e., models

ake uncorrelated errors). Both the performance and the diver-

ity of members of ensembles are known to be very influential
actors when building accurate ensembles [14–17]. Therefore, we
an build very effective ensemble classifiers by carefully selecting
SMS partial solutions to ensure that diversity and high accuracy is
e in Medicine 55 (2012) 163–175 167

guaranteed to some extent. Note that no special coding of solutions
is required for EPSMS because this method only selects classifiers
generated by PSMS that are potential ensemble members, while it
combines the outputs of the identified methods.

4.1. Selection of candidate solutions

In a previous study, we proposed three variants of EPSMS
[5], which differ in the manner that PSMS partial solutions were
selected for building the ensemble:

• Best-set. Uses the set of global best solutions found every h-
iterations of PSMS (i.e., the global best is stored after every
h-iterations).

• Swarm. Uses the resultant swarm at the end of the PSMS search
process.

• Best-per-iteration. Uses the set formed by the best solution
found after each PSMS iteration.

In [5], we evaluated the performance of the three strategies,
in terms of the accuracy of the ensembles and the diversity of
their members, using benchmark data and an object recognition
data set. We found that the Best-set and Swarm strategies were
outperformed (in terms of performance and diversity) by the Best-
per-iteration approach, so we focused in the latter strategy in this
study.

In the Best-per-iteration (BPI) formulation, we store the best
solution found in the swarm after each iteration t of PSMS and we
denote the full model associated with the best particle at iteration
t as ft. Note that ft may or may not coincide with the global best
solution at iteration t (i.e., gt). In this way, the solutions stored at
each iteration are all different (guaranteeing diversity among mod-
els to some extent) and they provide better performance than the
other models in the swarm at (least in) one iteration (guaranteeing
the accuracy of the models to some extent). When the PSMS search
process is complete, we have a set of tmax + 1 solutions,4 which are
used to build the ensemble. At this point, no extra computation is
required for selecting the members of the ensemble compared with
the straight PSMS, because we simply stored certain full models
that were evaluated via the search process of PSMS.

Fig. 2 shows the straight PSMS approach (a), and illustrates how
PSMS solutions are selected to build ensembles in EPSMS-BPI (b).
We assume that the fitness function is a measure of the misclassifi-
cation errors of each model using CV. Particles (i.e., full models) are
represented as stars in each iteration t, while the circle encloses
the global best solution (i.e., gt). During iterations t = 2, 3, 4, the
global best does not change, so a total of six particles are depicted
(five particles plus the global best solution) for these iterations.
PSMS returns the global best solution gtmax , although a total of
(tmax + 1) × m solutions were evaluated during the search process,
see Fig. 2(a).

In Fig. 2(b), the particles enclosed in a square are those selected
for building an ensemble in EPSMS-BPI. During the initialization
(Init), m = 5 solutions are randomly generated. The solution with
the lowest fitness value is marked as the global best (blue circle)
and this solution is the one with the lowest value, so it is stored
to be considered for the ensemble. In iteration t = 1, another five
new solutions are generated using Eqs. (1) and (2). During this iter-
4 One solution from each of the tmax iterations plus the best solution in the initial
swarm.
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ig. 2. Illustration of the PSMS (a) and EPSMS (b) approaches. (For interpretation of

nother five new solutions are generated, but the global best solu-
ion is not updated (because none of the solutions generated has a
ower fitness value). However, the solution with the lowest fitness
alue (that enclosed in the square) is stored during this iteration,
o be considered for the ensemble. This process is repeated for each
teration of PSMS.

If we only select the global best solutions at each iteration to
uild the ensemble, we may produce a set of candidate solutions
ith very low diversity because the global best solutions can be

epeated during several iterations of PSMS. This is why the Best-set
pproach was not very helpful for building ensembles in a previous
tudy [5]. With the Swarm approach, the m-particles at iteration
max are used to build the ensemble, because this is the set of mod-
ls produced at the end of the PSMS search process. Most of these
olutions are similar, because all of the particles converge to the
lobal best solution with high probability at the end of the search.
hus, the diversity of these models is also low, see [5].

.2. Ensemble construction

When a set of solutions has been selected, they are combined
sing a standard averaging strategy to build the ensemble. When a
ew pattern pT needs to be classified, all of the individual mod-
ls (previously trained using training data) are used to classify
he example. Each individual model fj, j = {1, . . ., tmax+1} expresses
ts confidence for the class of the pattern pT, we denote with
j(pT) ∈ [− 1, 1] the confidence of fj for pattern (pT). Next, we use
he average confidence values as the confidence of the ensemble:

E(pT ) = 1
tmax + 1

tmax+1∑

j=1

fj(p
T ) (3)
inally, we assign the class corresponding to the sign of fE(pT) to
he test pattern.

The considered classifiers are potentially heterogeneous, so
heir outputs are normalized before fusion to ensure that they are
ferences to color in the text, the reader is referred to the web version of the article.)

on a comparable scale. We use the following normalization method
for a classifier fj :

fj(p
T ) = fj(pT ) − min(fj(.))

max(fj(.)) − min(fj(.))
(4)

where fj(pT) is the output of classifier j for input pT, min(fj(.)) and
max(fj(.)) are the minimum and maximum values, respectively,
assigned by the jth classifier to an example in the test set.

4.3. Extensions to EPSMS

We now describe EPSMS modifications and extensions that have
not been reported elsewhere. First, we describe an alternative fit-
ness function and we describe an alternative for normalizing the
outputs of individual classifiers before building the ensemble.

The original implementations of PSMS [6] and EPSMS [5] used
the CV balanced error rate (BER) as the fitness function:

BER(f ) = E+(f ) + E−(f )
2

(5)

where E+(f) and E−(f) are the misclassification error rates for the
positive and negative classes, respectively, for model f. The main
benefit of BER is that it is well suited to imbalanced domains
because it takes into the account error rates of both classes [6,38].
However, although the resulting measure was very useful for model
selection in previous studies [5,6,29,36,37], it was limited because
it was dependent on a fixed classification threshold. For example,
if the classification threshold is 0, examples pT where f(pT) ≥ 0 are
considered to belong to the positive class whereas examples where
pT < 0 belong to the negative class. In certain classification models,
however, the optimal classification threshold may be different from
0 (e.g., a classifier where the outputs are probabilistic), so BER does

not reflect the actual performance of those classification models.
Since we build ensembles by combining the real output for classi-
fiers (see Eq. (4)), a measure to evaluate the real output of classifiers
would be preferable.
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Fig. 3. Diagram of the considered scenario f

Instead of using BER, we used a fitness function based on the
ross-validation area under the ROC curve (AUC) [39], where AUC
[0, 1]. To conform with the previous version of PSMS, which
inimized an estimate of the classification errors, we used as

tness function fitness(xi) = (1 − AUC(xi)), where AUC(xi) was the
rea under the ROC curve for the model associated with parti-
le xi. This fitness function is independent of the classification
hreshold of the model and it directly evaluates the real output
f the classification models, so it is well suited to EPSMS. Intu-
tively, a higher AUC produced by the model indicates that the

odel was better at assigning higher confidence values to posi-
ive examples and lower confidence values to negative ones. It is
mportant to emphasize that AUC compares the performance of

odels that returned outputs in different scales. AUC is currently
ne of the main evaluation measures used in most classification
asks [39] (including medical domains), as well as most machine
earning competitions that involve classification (see for exam-
le the Kaggle website5 or I. Guyon’s machine-learning-challenges
ebsite6).

The outputs of the members selected for the ensemble must
e normalized before fusing them. This is because heterogeneous
odels may provide outputs at different scales. We previously

onsidered the normalization described in (4), but we wanted to
est whether an alternative normalization method might have an
mpact on the accuracy of the ensemble or if using the raw output
rom classifiers could result in effective ensemble classifiers. In this
tudy, we used an alternative normalization method, given by:

j(p
T ) = fj(pT ) − mean(fj(.))

stddev(fj(.))
(6)

here mean(fj(.)) is the average of the outputs of the classifier fj
hile stddev(fj(.)) is the standard deviation of the outputs of the

lassifier fj. Formula (6) is a standardization that is used widely in
tatistics for hypothesis testing and as a data preprocessing step in
achine learning [40]. In Section 6, we report experimental results
ith PSMS/EPSMS when using both forms of normalization, (4) and

6), and when using the raw outputs of classifiers.
The next section describes how EPSMS was used for acute

eukemia classification. EPSMS is a generic tool for the selection of
lassification models and its performance must be evaluated and
alidated appropriately in specific application domains, see Sec-
ion 6. It is desirable to tailor EPSMS to each particular application
omain, so it can exploit all of the available prior domain knowl-
dge. We emphasize that the use of EPSMS or any other method for
uilding classification models in the medical domain should not be

substitute for the diagnoses of physicians, and instead they should
e considered as decision support tools.

5 http://www.kaggle.com/.
6 http://clopinet.com/challenges/.
rphological classification of acute leukemia.

5. EPSMS for acute leukemia classification

This section describes our proposed approach for acute
leukemia classification using EPSMS. We first describe the scenario.
Next, we describe the methods used for cell segmentation and fea-
ture extraction. Finally, we describe how EPSMS was used to select
competitive classification models.

5.1. Morphological identification of leukemia

Our problem was the morphological classification of acute
leukemia from digitized bone marrow images. The scenario can be
summarized as follows. First, digitized images were obtained. After
preprocessing the images (to adjust for the contrast and filtering
noise), the first step of the methodology was image segmentation,
which involved the identification of regions of interest in images.
Features were then extracted from the regions identified, before
the classification model was built. Fig. 3 shows the scenario we
considered.

In this study, we used a database of cell images from real patients
[41]. In each record in our database, we identified smears from
patients who were representative of acute leukemia type (lym-
phocytic or myelogenous). In each case, we had the results of the
flow cytometry test and stored the acute leukemia subtype. This
selection was performed with the help of domain experts (chemists
and hematologists) who carefully helped us to choose samples to
digitize based on their experience.

We then digitized our bone marrow smear images using a Carl
Zeiss optical microscope with 100 objectives. The microscope was
connected to a digital camera via a frame grabber. The process used
to obtain an image of a bone marrow smear was as follows. First,
the smear was cleaned of dirt particles and located on the micro-
scope slide. The smear was observed by the domain expert using
a 10× lens to spot interesting areas. It was possible to find several
areas of interest in one smear. The areas of interest were digitized
with the 10× lens at a resolution of 800 × 600 pixels. We then used
the 100× lens with immersion oil to look for cells of interest inside
the selected area. When the cells were located, they were digitized.
This process was repeated as necessary, depending on the num-
ber of cells of interest found in each area. Next, we segmented the
leukocytes and extracted significant characteristics to differentiate
among the types and subtypes of acute leukemia cells. The seg-
mentation method and features considered are described in the
next section.

5.2. Segmentation and feature extraction

The segmentation phase of our methodology consisted of the
isolation of leukemia cells from the digital images obtained in
the previous stage. During this process, chemists and/or hema-

tologists were required to identify regions of interest (ROIs). They
selected cells that were representative of the types and subtypes of
acute leukemia under study (which we used as training/test data in
our machine learning task). After the domain expert had selected

http://www.kaggle.com/
http://clopinet.com/challenges/


170 H.J. Escalante et al. / Artificial Intelligence in Medicine 55 (2012) 163–175

Table 2
Description of the features used in our study. Statistical and texture features were extracted from each channel of the image in RGB format. IOD is the integrated optical
density.

ID Type Cell, nucleus Cytoplasm

1 Morphological Area, perimeter, circularity, width, height, elongation,
major axis, minor axis, eccentricity, extension, diameter,
Euler number, convex area, solidity

Area

2 Statistical Mode, mean, standard deviation, var
IOD

3 Texture Entropy, contrast, correlation, energy

Table 3
Number of features used for each configuration of feature/region in our experiments.

Subset Cell Nucleus and
cytoplasm

Description

A 58 78 Features from Table 2
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classification using EPSMS.
B 120 120 Principal components
C 178 198 Features from Table 2 and principal

components

he ROIs, we used machine vision techniques for segmentation
isolating leukemia cells or ROIs from the rest of the image). For
egmentation, we used a method based on Markov random fields,
hich was previously used for the segmentation of remote sens-

ng images [42]. After the segmentation stage, each cell in each
mage was divided into two parts: nucleus and cytoplasm. In order
o determine which part of the image was the nucleus and which
art corresponded to the cytoplasm, the set of rules defined in [43]
as used. See [3,4,43] for further details on the segmentation phase

nd its evaluation during the detection of nuclei and cytoplasm.
After determining which image regions corresponded to the

ucleus and cytoplasm, we extracted the visual attributes from
hese regions. The extracted features were used to represent the
ells. Because the experts have identified which cells were asso-
iated with specific types of acute leukemia, we used the pairs of
eatures and leukemia types as observations in the classification
ask. The set of features used in our study are described in Table
. These features were extracted from the nucleus and cytoplasm,
s well as extracted features from the whole cell. In addition to the
eatures listed in Table 2, we performed principal components anal-
sis (PCA) and used the top 30 components from each RGB channel
nd from the gray scale image for a total of 120 components. Note
hat PCA was applied directly to the ROIs, rather than the features
xtracted from the ROIs.

The features extracted from the nucleus and cytoplasm were
ombined and used as a single region. The performance of fea-
ures extracted from the nucleus and cytoplasm was compared to
he performance obtained with features extracted from the whole
ell, i.e., there were two regions from which features could be
xtracted (the cell and nucleus + cytoplasm). Table 3 shows the
umber of features for each combination of features (A, B, or C)
nd the region where features were extracted (the whole cell, or
he nucleus and cytoplasm used as individual parts of the cell) in
ur experiments. For further details on feature extraction we refer
he reader to [3,43,4]. The next section describes our classification
pproach for morphological leukemia classification, which used the
eatures described in this section to represent images.

.3. Classification with EPSMS

EPSMS is an automatic tool for the selection of highly effective
lassification models in generic classification tasks. We used EPSMS

or type/subtype acute leukemia classification. Our hypothesis was
hat models selected with EPSMS could achieve comparable or
uperior performance to that obtained with manually selected
odels. As well as improving performance, the use of EPSMS has
iance, IOD, average Mode, mean, standard deviation, variance

, homogeneity –

additional benefits, e.g., specific models could be used for the
classification of different acute leukemia types/subtypes, without
spending long periods of time manually selecting the best model for
each task. Thus, experts on machine learning or in the application
domain were not required.

EPSMS is designed for binary classification problems where
training examples can belong to one of two classes. Thus, the
straight EPSMS implementation could be used for most acute
leukemia classification tasks in this study. For example, models
of leukemia type classification (ALL vs AML), or several configu-
rations of leukemia subtype classification problems (e.g., L1 vs L2
or M1–M2 vs M3) could be selected with straight EPSMS. However,
there were other scenarios where the classification problem was
associated with more than two classes, i.e., a multiclass classifica-
tion problem. For example, when the patient was positive for AML
and we wanted to know the specific subtype (i.e., M1 vs M2 vs M3),
or when we did not know the type of leukemia and we wanted to
know the type and subtype of leukemia (e.g., L1 vs L2 vs L3 vs M1
vs M3 vs M5).

In the multiclass classification tasks, we used an one-vs-all
(OVA) method because of its efficiency and proven performance
[44]. In OVA, a set of K-binary classifiers is built given a multiclass
classification problem with K classes, where each classifier is able
to discriminate examples as class ki (positive class) or k{j:j /= i} (neg-
ative class), provided each classifier is independent. When a new
observation pT needs to be classified, it is passed through the K-
classifiers and each classifier fi returns a real value fi(pT) reflecting
its confidence in the correct labeling of pT suing ki. The class corre-
sponding to the classifier with the highest confidence is assigned
to pT.

Fig. 4 shows the OVA method used for multiclass acute leukemia
subtype classification7 where the class corresponding to the classi-
fier with the largest confidence value was selected as the output of
the multiclass classifier. This is a fairly standard multiclass classifi-
cation strategy. In previous studies, however, the same classifier
fi was used for all classes [4], whereas in this study a different
classifier fi was used for each class, where each classifier was an
ensemble selected using EPSMS. We believe that the selection of
ad hoc models for each of the subproblems can have a positive
impact on the final multiclass classifier. In Section 6, we provide
experimental results that support our hypothesis.

6. Experiments and results

This section describes the experimental results for the appli-
cation of EPSMS for leukemia subtype classification. The next
section describes the experimental methodology we used. Sec-
tion 6.2 describes the experimental results for leukemia subtype
7 For the output combination stage, the outputs of the classifiers for each class are
standardized using Formula (6)
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Table 4
Type statistics for the data set used in our experiments.

AML M2 M3 M5

338 95 47 56
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Table 5
Summary of the methods compared in the next sections.

Method – ID Description

Reference Best result obtained using a manually selected model, as
reported in [4].

Baseline Random forest classifier, implemented by Dahinden [48].
PSMS Model selected with straight PSMS.
E1 EPSMS-BPI using Expression (4) to normalize the outputs

of individual models.
E2 EPSMS-BPI using Expression (6) to normalize the outputs

F
p

Type/subtype ALL L1 L2

No. images 295 102 135

.1. Experimental settings

In our experiments, we used the cell image collection from the
exican Social Security Institute, which contains 633 bone mar-

ow leukemia cell images with different color staining (the images
orrespond to real cases of acute leukemia). The images in this
ollection were digitized by Morales et al. [41], as described in Sec-
ion 5.1. Table 4 shows the number of examples associated with
ach subtype of acute leukemia included in the collection.

We performed several acute leukemia classification exper-
ments with EPSMS. In each experiment, we tested different
lassification tasks based on previous work [4]. These classifica-
ion tasks include a leukemia type classification task (ALL vs AML)
nd subtype leukemia classification tasks for the types ALL (L1 and
2) and AML (M2, M3 and M5). We also report results for subtype
eukemia classification, in the following settings: [M2 vs M3 vs M5]
nd [L1 vs L2 vs M2 vs M3 vs M5]. In the latter experiments we used
multiclass classification approach with the OVA method [44], see
ection 5.

To assess the classification performance of EPSMS we used a
0-fold cross validation approach [45]. In this method, the avail-
ble data were split randomly into 10 subsets with 10 rounds of
raining/testing, where in each round nine subsets were used for
raining (i.e., EPSMS was used for the selection of models and the
onstruction of the ensemble) while one subset was used for test-
ng (i.e., using the constructed ensemble), and a different testing
ubset was used in each round. The performance of the ensemble
as evaluated in the test subset for 10 rounds and the average and

tandard deviation of its performance was reported. We would like
o emphasize that the test samples were not used in any form dur-

ng the model selection process or for training the selected models,
hereby avoiding any “selective bias” [46,47]. In each experiment,
e also ensured that the same partitions of training and testing
ere used by all the methods compared. Thus, all of the methods

ig. 4. OVA multiclass classification approach. K (independent) binary classifiers are built
T is assigned the label corresponding to the classifier with the highest confidence fi(pT).
of individual models.
E3 EPSMS-BPI using the raw output of individual models.

used exactly the same data for training and testing in each fold of
the 10-fold cross validation. We used AUC as the main evaluation
measure, see Section 4. In the multiclass classification problem, we
reported the average AUC obtained by the independent models and
the percentage of correct classifications.

In addition to evaluating the performance of EPSMS in differ-
ent settings we assessed the performance of the best single-model
selected by PSMS (i.e., straight PSMS). This result will be useful
for evaluating the advantages of EPSMS over PSMS. We also evalu-
ated the performance of the random forest classifier implemented
in CLOP [48], which was identified as the best performing model
for the data sets we used. The results obtained using random for-
est were helpful for assessing the advantages of the full model
selection strategy compared with a highly competitive classifier.
However, identifying the random forest classifier as the best per-
forming model in the classification tasks required a long period of
trial and error experiments. Finally, in order to compare the per-
formance of EPSMS with previous studies, we provide the results

obtained using manually selected models as reported in Reta et al.
[4], which were the previous best results for the data sets we used.
Table 5 summarizes the methods compared in our experiments.

, where each can classify the observations in class ki vs the rest kj:j /= i . A test region
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Table 6
Average AUC performance for the different type/subtype classification tasks (binary classification). The best result in each row is shown in bold. We report experimental
results for different sets of features and those extracted from different image regions for the range of methods, see Section 6.1.

ID Features Region Reference Baseline PSMS E1 E2 E3

ALL vs AML
1 A C 89.26 93.63 93.87 95.14 95.14 92.43
2 N-C 90.65 94.37 95.16 96.06 96.16 92.58
3 B C 79.06 84.38 83.41 83.43 83.31 77.82
4 N-C 81.27 80.59 79.74 80.32 80.32 76.08
5 C C 89.92 93.04 93.15 95.04 94.87 91.95
6 N-C 92.17 93.17 95.66 96.48 96.66 93.77

L1 vs L2
7 A C 81.4 91.46 87.68 88.95 88.72 92.24
8 N-C 90.69 91.13 88.54 92 92 94.1
9 B C 76.08 79.73 79.07 79.76 79.91 84.11

10 N-C 83.67 80.07 74.79 86.8 87.06 87.41
11 C C 82.25 87.85 87.45 89.7 89.71 92.38
12 N-C 88.61 88.93 88.06 90.23 90.37 93.09

M2 vs M3, M5
13 A C 80.45 94.43 91.93 95.78 95.13 92.72
14 N-C 95.9 95.58 96.71 95.7 95.51 93.01
15 B C 71.06 73.34 72.99 80.23 80.33 72.1
16 N-C 78.93 81.47 79.06 83.48 83.44 76.69
17 C C 84.12 93.2 95.93 95.67 95.7 92.85
18 N-C 94.68 93.54 93.65 94.24 94.36 89.45

M3 vs M2, M5
19 A C 78.82 89.71 88.25 92.01 92.57 88.72
20 N-C 87.97 86.88 91.51 96.62 96.55 92.28
21 B C 78.67 74.59 72.93 74.9 75 79.86
22 N-C 73.91 72.34 77.26 76.4 76.78 76.89
23 C C 71.01 81.91 92.74 94.02 94.15 92.01
24 N-C 89.85 84.25 93.06 93.24 92.98 90.44

M5 vs M2, M3
25 A C 86.64 92.08 87.32 89.53 89.93 95.28
26 N-C 95.52 92.87 92.94 94.54 94.69 97.68
27 B C 73.14 69.87 61.77 66.4 67.73 75.78
28 N-C 73.32 69.3 79.24 78.08 78.12 85.91
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29 C C 84.98 90.
30 N-C 93.54 92.

In the next section we use a Wilcoxon signed-rank test to deter-
ine the statistical significance of any performance differences

mong the methods. This test is recommended for the comparison
f classifiers among multiple data sets [49].

.2. Experimental results

This section reports the experimental results for acute leukemia
ubtype classification. The goals of this section are:

to analyze the classification performance of the models selected
by EPSMS for the different acute leukemia classification tasks;
to evaluate the improvement provided by EPSMS compared with
PSMS and the baseline classifier;
to compare the performance of EPSMS using the normalization
strategies described in Section 4;
to compare the performance of the models obtained with EPSMS
with those produced in previous studies [4].

Table 6 shows the experimental results with different methods
or the different leukemia subtype classification tasks. We show the
esults for the different sets of features and for the different regions
here features were extracted, see Section 5.2.

Table 6 shows that the results obtained using the different tech-
iques were acceptable for most acute leukemia classification tasks.

owever, EPSMS consistently outperformed the results obtained
sing the reference, baseline, and straight PSMS methods with the
ifferent settings. Only three settings in the results from a previous
tudy [4] outperformed EPSMS, i.e., rows 4, 18 and 30, although the
92.29 95.85 96.01 95.77
88.97 92.14 92.25 93.07

difference in performance was very small. In fact, the differences
in performance (across all settings) between the E1, E2, and E3
methods with the reference and baseline methods were statistically
significant at the 99% level, where E1, E2 and E3 performed better.
The random forest baseline method outperformed the reference
method and PSMS in 18 and 16 out of the 30 settings, respec-
tively, which demonstrated the high performance of the baseline
method used. The difference between the reference and the base-
line method was statistically significant, whereas the difference
between PSMS and the baseline was not.

The results shown in Table 6 confirm that fusing the output of
the selected models improved the performance of the best indi-
vidual model selected using PSMS. The differences between PSMS
and E1/E2 were statistically significant at the 99% level, whereas
the difference between E3 and PSMS was not statistically signifi-
cant. Thus, it was better to use a normalization strategy for fusing
the outputs, rather than using the raw outputs of classifiers. How-
ever, the three normalization strategies performed similarly. In fact,
the differences in performance among the three EPSMS variants
were not statistically significant. The use of E1 and E2 is preferable
because E3 did not outperform PSMS. In future work we would like
to explore alternative strategies to fuse the outputs of the selected
full models.

Table 6 shows that EPSMS delivered no significant difference
in performance with the different feature subsets (A, B or C) or

when features were extracted from different regions (N and NC).
This was not true for the methods used in the reference study
[4] where methods built using features from subset B had a lim-
ited performance in the different tasks. This is an important result
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Table 7
Average AUC performance for the different type/subtype classification tasks (multiclass classification). The best result in each row is shown in bold. In this experiment we
used the features subset C, based on results from Table 6.

Measure Region Reference Baseline PSMS E1 E2 E3

M1 vs M3 vs M5
Avg. AUC C 78.66 92.58 92.37 93.94 93.94 93.82
Accuracy C 66.13 82.29 83.37 81.32 79.76 78.79
Avg. AUC N-C 92.80 92.35 92.36 93.94 93.92 93.28
Accuracy N-C 84.87 82.87 81.84 81.87 82.34 79.34

L1 vs L2 vs M1 vs M3 vs M5
Avg. AUC C 84.03 92.34 91.13 93.78 93.76 83.40
Accuracy C 55.86 74.95 72.86 75.83 76.06 74.92
Avg. AUC N-C 92.33 91.76 90.62 94.21 94.09 86.09
Accuracy N-C 77.48 73.81 71.72 74.50 75.65 74.03

Table 8
Members of ensembles generated using EPSMS with the best and worst average performance among the three variants of EPSMS for the results reported in Table 6. Column
2 indicates whether feature selection (FS) was performed before data preprocessing (P). Columns 3–5 show the preprocessing, feature selection and classification techniques
used in each individual model.

ID P/FS Preprocessing Feature selection Classification

Models considered in the ensemble selected with EPSMS that gave the best result
1 FS Standardize(1), shift-scale(0) Pearson(103) lssvm(c = 1;d = 1;� = 0.4315;sh = 0.6828;b = 1)
2 P Normalize(1), standardize(1), shift-scale(1) Ftest(4) logitboost(u = 10;sh = 0.33925;de = 1)
3 P Normalize(1), shift-scale(1), standardize(1) Ftest(4) rf(u = 100;m = 1;b = 1)
4 P Normalize(1), shift-scale(1), standard-ize(1) Relief(65) lssvm(c = 0;d = 2;� = 2.8358;sh = 2;b = 1)
5 – Normalize(1), shift-scale(1), standard-ize(1) – lssvm(c = 1;d = 1;� = 2.0133;sh = 0.92317;b = 0)
6 P Standardize(0), shift-scale(1) Ftest(17) rf(u = 10;m = 4;b = 1)

Models considered in the ensemble selected with EPSMS that gave the worst result
1 – Normalize(1) - rf(u = 100;m = 1;b = 1)
2 – Normalize(1), shift-scale(0) – logitboost(u = 101;1.77;d = 1)
3 – Normalize(1), shift-scale(1), standardize(1) – logitboost(u = 110;sh = 2;de = 2)
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those reported in Table 6. EPSMS methods outperformed the other
techniques in terms of the AUC measure. The improvements over
the reference results were more major for the attributes extracted
from the C region. In terms of accuracy, the reference result
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ecause we can practically achieve similar accuracy using features
xtracted from the whole cell, or the nucleus and cytoplasm. This
eans it is not necessary to perform image segmentation to achieve

cceptable classification performance. A final observation from the
esults shown in Table 6 is that EPSMS did not obtain the best results
n the 30 classification tasks but it was the most reliable method

ith all settings. This confirmed that no single classifier or method
uarantees the best classification model for all classification tasks,
lthough EPSMS was a much better choice than the other model
election strategies considered.

The computational complexity of EPSMS/PSMS is difficult to
stimate because it depends on the complexities of the methods
sed during the search process (different methods for classifica-
ion, feature selection, and preprocessing), which also depend on
ther factors such as the number of examples or the dimension-
lity of the problem (see [6] for an extended discussion of the
omputational complexity of PSMS). During each run of PSMS, a
otal of (tmax + 1) × m solutions were evaluated and each evaluation
equires a k-fold cross validation. Therefore, EPSMS/PSMS may be
computationally expensive process for large or high-dimensional
ata sets. In practice, however, this complexity is manageable.
or example, the average processing time for EPSMS/PSMS in the
xperiments reported in Table 6 was 45.63 min on a laptop with
GB of RAM and a Dual Core Processor at 1.5 GHz. This was the
verage time required for the evaluation of the 10 folds in the
ross-validation. Thus, 45.63 min were required for ten runs of
PSMS/PSMS. We should also emphasize that the generation of
nsembles using EPSMS does not add to the complexity of PSMS.

Fig. 5 summarizes the results from Table 6, to show the best

esult obtained using each method in each binary classification task.

ith the exception of the task M2 vs M3, M5 EPSMS had the best
odel in all tasks. The improvement over the reference method

erformance was considerable. It is important to point out that
Ftest(16) neural(u = 25;sh = 1.42;b = 1;e = 10)
gs(40) neural(u = 25;sh = 1.14;b = 1;e = 10)
– rf(u = 100;m = 2;b = 1)

the performance achieved with EPSMS (ranging between 92% and
98%) was similar to results obtained using microarray data or flow
cytometer tests (see Section 2), so we consider that our method
offers a good tradeoff between low cost and accuracy.

Table 7 shows the results obtained using the different methods
in the multiclass classification problems. These results agreed with
Data set
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Fig. 5. Best result obtained using each method in each binary classification task.
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utperformed E1, E2, and E3 in terms of the features extracted from
he N-C region, although the differences were rather small.

Table 8 shows the members of two ensembles selected using
PSMS for the results reported in Table 6. In particular, we highlight
he ensembles with the worst and the best performance with any
PSMS variant in Table 6. This table shows that different individ-
al models were used for building the ensembles, which differed in
erms of preprocessing methods, feature selection techniques, and
lassification model, while the parameters of each model were dif-
erent. Thus, this table shows that individual models were diverse
hen compared with each other. It was interesting that the indi-

idual models with the worst performing ensemble did not use any
eature selection method or preprocessing method in 4 out the 6

odels. In contrast, 5 out of the 6 individual models with the best
erforming ensemble included preprocessing and feature selection
ethods. This suggests that the incorporation of preprocessing and

eature selection methods is an important factor that affects the
erformance of the ensemble. It is also interesting that the classi-
ers with the best ensembles were less complex than those with
he worst ensembles (e.g., compare the number of units (u) used for
he logitboost and rf classifiers in the best and worst ensembles).

. Conclusions

We proposed the application of EPSMS to the problem of
cute leukemia classification. The classification of acute leukemia
ypes/subtypes is an important task because it ensures patients
eceive appropriate treatments. Very effective methods and tests
re available for this task, but they are complex and very expensive.
hus, these methods are not available in most developing countries.
he morphological classification of acute leukemia, where bone
arrow cell images are analyzed, is an inexpensive alternative to

hese complex methods.
EPSMS is a tool for automatically building ensembles that does

ot require prior knowledge of the domain or machine learning.
PSMS is a generic technique but it can generate classification
odels that are specifically designed for each acute leukemia clas-

ification task. In this study we proposed improvements for EPSMS
nd reported experimental results based on real data for the acute
eukemia classification task.

The experimental results showed that acceptable performance
ould be obtained with EPSMS in the classification of acute
eukemia subtypes. We found that EPSMS outperformed previous

ethods with different settings. EPSMS outperformed manually
onstructed models [4], a strong baseline classifier [48], and PSMS
6]. The results were consistent in different subtype classifica-
ion tasks, using different features, and different image regions
here features were extracted. In addition to its accuracy, another

enefit of EPSMS is that no user interaction is required to pro-
uce highly effective classification models. Thus, other medical
and non-medical) classification tasks could benefit from EPSMS.
urthermore, the analysis of models selected using EPSMS could
rovide the analyst with insights into the different classification
asks, which may help to build classification models for other
elated problems. It is important to emphasize that the classifica-
ion performance of models selected with EPSMS was very close
o that obtained with more accurate, but expensive methodolo-
ies. Further, EPSMS achieved similar results when using features
xtracted from segmented and unsegmented images. This is impor-
ant because image segmentation is still an open issue in computer
ision.
Several future research directions arose throughout the devel-
pment of this work. In particular, we would like to develop
lternative strategies for the selection of individual models and/or
or the combination of heterogeneous models with the goal of

[

[
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improving the performance of EPSMS. Also, we would like to
develop parallel versions of EPSMS to increase the efficiency of the
method and to explore the development of alternative heuristic
search methods for the selection of ensemble classifiers. We would
like to develop hierarchical classification models based on EPSMS
for acute leukemia classification. Finally, we are very interested in
applying EPSMS to other medical classification tasks.
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