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This article describes the application of particle swarm model selection (PSMS) to the problem of auto-
matic image annotation (AIA). PSMS can be considered a black-box tool for the selection of effective clas-
sifiers in binary classification problems. We face the AIA problem as one of multi-class classification,
considering a one-vs-all (OVA) strategy. OVA makes a multi-class problem into a series of binary classi-
fication problems, each of which deals with whether a region belongs to a particular class or not. We use
PSMS to select the models that compose the OVA classifier and propose a new technique for making
multi-class decisions from the selected classifiers. This way, effective classifiers can be obtained in
acceptable times; specific methods for preprocessing, feature selection and classification are selected
for each class; and, most importantly, very good annotation performance can be obtained. We present
experimental results in six data sets that give evidence of the validity of our approach; to the best of
our knowledge the results reported herein are the best obtained so far in the data sets we consider. It
is important to emphasize that despite the application domain we consider is AIA, nothing restricts us
of applying the methods described in this article to any other multi-class classification problem. .

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Automatic image annotation (AIA) consists of assigning textual
descriptors (labels, keywords, words) to images with the goal of
supporting annotation-based image retrieval (ABIR), that is, the
task of searching for images by using keywords. AIA has been rec-
ognized as one of the ‘‘hot topics’’ in the new age of multimedia
information retrieval (Datta, Joshi, Li, & Wang, 2008). This is moti-
vated by the availability of large repositories of images without any
textual description associated to them. The lack of textual descrip-
tions restricts the way the images can be searched for, as the only
way to access such collections is by using content-based image re-
trieval (CBIR) techniques; that is, image recovery through the com-
parison of a sample (query) image and the stored documents.
Whereas CBIR is a mature field in computer vision (Datta et al.,
2008; Liu, Zhang, Lu, & Ma, 2007), CBIR methods still need of a sig-
nificative amount of user interaction (e.g. for specifying query
images, for drawing query-sketches, through image-category
browsing and relevance feedback), which is not a desired property
for any automatic image retrieval system. Therefore, effective
methods are required for associating words with images (Barnard
et al., 2007).
ll rights reserved.
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The AIA problem can be mainly approached in two different
ways: at image-level and at region-level. In the former case, labels
are assigned to the image as a whole, not specifying what objects
correspond to which labels; in the second case, a single label is as-
signed to each region in segmented images, providing localization
information for the objects therein. Despite both formulations pro-
vide complimentary benefits, the region-level approach provides
information that is not readily available with the image-level for-
mulation (e.g. spatial relationships between regions), which can
be helpful for improving annotation performance or even for sup-
porting image retrieval (Escalante, Montes, & Sucar, 2007;
Hernandez & Sucar, 2007). For this reason we face the AIA problem
at a region-level.

AIA at region-level (hereafter just AIA) consists of assigning la-
bels, from a predefined vocabulary, to regions in segmented images.
Hence, this problem can be naturally posed as a multi-class classi-
fication task, with as many classes as labels are in the vocabulary.
Satisfactory results have been reported with this approach for data
sets involving a few labels (Bradshaw, 2000; Szummer & Picard,
1998; Vailaya, Jain, & Zhang, 1998). However, there is little work
with this technique for problems with more than 10 labels (Winn,
Criminisi, & Minka, 2005). This is because the classification problem
becomes more complex and accuracy decreases as the number of
labels increases. Nevertheless, facing the AIA problem as a multi-
class classification approach is advantageous as the best annotation
results have been reported with this formulation (Bradshaw, 2000;
Escalante et al., 2007; Hernandez & Sucar, 2007; Szummer & Picard,
1998; Vailaya et al., 1998; Winn et al., 2005).
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In this work, we adopt a one-vs-all (OVA) strategy for multi-
class classification (Bishop, 2006). For a problem of jCj classes,
the OVA approach consist of building jCj binary classifiers, each
one is able to distinguish examples of class Ci (positive examples)
from examples of any other class Ci–j (negative examples). When
a new instance needs to be classified, the outputs of the C � classi-
fiers are combined according to some criterion. Despite being sim-
ple, this technique has proved to be as effective as other, more
complex, methods for multi-class classification, provided the best
binary classifiers are used (Rifkin & Klautau, 2004). The latter find-
ing reduces the multi-class classification problem to that of select-
ing the best binary classifiers for each class. There is much work
from the machine learning community on this subject (known as
model selection) (Bishop, 2006; Guyon e al., 2011). However, most
of this work is restricted to a single model type (i. e. either selec-
tion of methods for feature selection or selection of learning algo-
rithm, but not both) or even to a single algorithm (e. g. parameter
optimization for a neural-network classifier). Furthermore, the
implementation of some of these methods requires domain knowl-
edge and significant expertise in machine learning.

This article describes the application of particle swarm model
selection (PSMS) to the AIA problem under the OVA formulation.
PSMS can be considered a black-box tool for the selection of effec-
tive classifiers in binary classification problems. In a nutshell, PSMS
explores the space of classification models by means of particle
swarm optimization and selects the model that minimizes an esti-
mate of classification error (Escalante, Montes, & Sucar, 2009). Be-
sides selecting classification method, PSMS selects methods for
preprocessing and feature selection as well, which is a distinctive
feature of the approach.

For AIA PSMS is used to select individual classification models
(one for each label) for building up a multi-class classifier under
OVA. This way, very effective binary classifiers will form the OVA
multi-class classifier. More importantly, performing model selec-
tion for each single class allows us to consider specific methods
for preprocessing, feature selection and learning for each label. This
is a clear advantage over other traditional OVA classifiers in which
a single learning algorithm is used for all of the classes. The
selection of individual classification models by means of PSMS is
particularly well suited for AIA, as the different labels require of
different classification models; for example, a good classifier for
the label ‘sky’ is not necessarily the best classifier for the label
‘building’.

The rest of this article describes how particle swarm optimiza-
tion can be used for full model selection, how to apply PSMS for bin-
ary classification problems and how PSMS can be used to solve
multi-class classification problems, in particular, the AIA task.
One should note that besides the application domain we consider
is AIA, most of the methods described herein can be applied to
many other binary and multi-class classification problems.

The organization of the paper is as follows. The next section
introduces the background required to understand the rest of the
paper. Section 3, describes the PSMS technique. Section 4 describes
the OVA approach to AIA. Section 5 presents experimental results
that show the validity of our approach. Section 6 outlines the
conclusions derived from this work and discusses future work
directions.
1 In this article we use the term semi-supervised to make reference to methods
trained on weakly labeled images.
2. Background

This section introduces the background required to understand
the rest of the paper. First we describe the AIA task, next we pres-
ent the OVA approach to multi-class classification and then we de-
scribe the basic swarm optimization algorithm we have adopted
for PSMS.
2.1. Automatic image annotation

AIA is a very important step towards developing more precise
image retrieval systems (Datta et al., 2008; Barnard et al., 2007).
However, AIA is not an easy task and, therefore, effective labeling
techniques are required. The difficulty of the AIA problem is mainly
due to the visual–polysemy and visual–synonymy issues. On the
one hand, some regions that are visually similar may denote differ-
ent concepts (e. g. ‘sky’ and ‘sea’). On the other hand, regions that
are visually different can be associated to the same concept (e. g.
both a region with a white cow and a region with a brown one
are labeled with ‘cow’). Furthermore, poor image segmentation is
another complication in AIA, as automatic segmentation methods
can partition a single object in more than one region. Fig. 1 illus-
trates the main difficulties in AIA. The difficultness of the AIA task
has motivated the development of effective methods that can deal,
to some extent, with specific issues; however, a complete under-
standing of the AIA problem is still an open topic.

The specific AIA setting we consider is as follows. Each image Ii

is segmented into Ni regions, r1;...Ni
, visual attributes (e.g. color and

area statistics) are measured from each region so that a region is
represented by a vector of features. To simplify notation we denote
both the jth region and the vector of features representing the jth
region with rj. Each region rj is associated with one of jVj � labels
(i.e. concepts, words, annotations, semantic descriptors), taken
from a predefined vocabulary V = {v1, . . . ,vjVj}; in particular, region
rj is associated with the label v l

j that best describes its content.
Thus, together labels and regions can be considered ordered pairs
of the form rj;v l

j

� �
2 Rd � V , with d the dimensionality of the fea-

ture vectors. The AIA task consists of finding a mapping from re-
gions to labels (i.e. f ðrjÞ ¼ v l

jÞ, given a training set of region-label
pairs, so that the obtained model can be used to predict the labels
for regions, for which labels are unknown.

The predominant approach to AIA is the use of probabilistic latent
variable models (Barnard et al., 2007). Instances of these sort of mod-
els are hidden Markov models (Ghoshal, Ircing, & Khudanpur, 2005),
random fields (Carbonetto, de Freitas, & Barnard, 2004), correspon-
dence latent Dirichlet allocation models (Barnard et al., 2007) and
cross-media relevance models (Jeon, Lavrenko, & Manmatha,
2003). These methods are based in the formalism of probabilistic
graphical models and, by introducing latent variables, they attempt
to model the regions-labels joint P rj;v l

j

� �
or conditional P v l

jjrj

� �

probability distributions (Barnard et al., 2007; Ghoshal et al., 2005;
Carbonetto et al., 2004; Jeon et al., 2003; Carbonetto, 2003). The main
advantage of these methods is that they require of weakly labeled
images for training; that is, images annotated at an image-level,
without any information about the explicit correspondence between
regions and labels. The main problem with these methods is that
their labeling accuracy is limited; also, gathering weakly annotated
images is not a trivial task.

Supervised methods, on the other hand, have reported better
performance than their semi-supervised1 counterparts. However,
they require of strongly labeled images, that is, images in which the
correspondence between regions and labels is specified (Escalante
et al., 2007; Hernandez & Sucar, 2007; Winn et al., 2005). Supervised
methods result in higher accuracy, and, therefore, it is worthwhile
spending time on creating training sets of annotated regions. Alter-
natively, we can take advantage of methods that use unlabeled data
(Laserre, Bishop, & Minka, 2006) and web-based approaches (Fergus,
Fei-Fei, Perona, & Zisserman, 2005) for building the required training
data sets.



Fig. 1. The main problems in AIA: visual-polysemy (left), visual-synonymy (center) and complications due to poor segmentation (right).
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2.2. One-vs-all classification

Supervised methods for AIA face the problem as one of (single-
label) multi-class classification, with as many classes as labels are
in the vocabulary. The goal is to find the best approximation to the
map v l

j ¼ f ðrjÞ, given a set of M – training region-labels pairs

D ¼ r1;v l1
1

� �
; . . . ; rM;v lM

M

� �n o
. There are several options for facing

the multi-class classification problem, a simple and widely tech-
nique is the so called OVA formulation (Bishop, 2006). OVA con-
sists of building jCj – binary classifiers, each classifier fi is
constructed by considering positive examples to regions of label
Ci and negative ones to the rest Cj – i. When a new region rT needs
to be classified, each classifier fi determines whether region rT be-
longs to the ith class or not; then a criterion is used to select a sin-
gle class for the region, starting from the outputs of the
jCj � classifiers.

OVA is the simplest approach one may try for multi-class
classification, yet, OVA has shown comparable, and even superior,
performance when compared to more complex schemes like the
all-vs-all, error-correcting output-codes and single-machine ap-
proaches (Rifkin & Klautau, 2004). Also, the OVA formulation is less
computationally expensive and hence this formulation is preferred
over other techniques.

For AIA the OVA formulation has been applied to data sets
involving a few labels (Vailaya et al., 1998; Szummer & Picard,
1998; Bradshaw, 2000). Its application to data sets with more than
10 labels is challenging because of the difficulty of the AIA task and
of the inherent limitations of OVA classification. The first limitation
of OVA is that some of the observations can be ambiguously classi-
fied, as some regions can be assigned to multiple classes simulta-
neously (Bishop, 2006); therefore, effective methods for selecting
a single output are required. A second drawback of the OVA formu-
lation is that the training sets for the individual classifiers are
highly imbalanced (e. g. if we have 10 classes, with an equal num-
ber of examples per class, for each of the 10 � classifiers we would
have 10% of positive examples and 90% of negative ones). A third
limitation, related to the difficulty of the AIA task, is that of obtain-
ing the best individual classifiers. In this respect, most researchers
have considered a single classifier with fixed parameters for all of
the classes. However, this is not a reliable strategy as different clas-
ses may require of different classification models. The latter is an
important issue in AIA, as the classes corresponding to the labels
are very different to each other; hence, different classifiers should
be considered for different concepts.

The methods described in this paper can deal, to some extent,
with the second and third limitations of OVA. On the one hand,
we consider a fitness function that is well suited for imbalanced
problems. Thus, models selected with PSMS will minimize the bal-
anced error, instead of the usual misclassification rate. On the
other hand, effective classifiers are selected for each label by
means of swarm optimization. What is more, the obtained classifi-
ers are specifically chosen for each label, which allows us modeling
each concept particularly. Regarding the first limitation of OVA, we
propose a simple heuristic that outperforms a widely used tech-
nique for selecting a single output for each region.

2.3. Particle swarm optimization

For this work we consider the basic PSO algorithm with adaptive
inertia weight (Engelbrecht, 2006; van den Bergh, 2001); this sec-
tion describes the basics of such a PSO algorithm, for a detailed
description we encourage the reader to follow the references
(Engelbrecht, 2006; van den Bergh, 2001; Kennedy & Eberhart,
2001). Under PSO, each solution to the problem at hand is called a
particle; at each time t, each particle, i, has a position in the search
space denoted by xt

i ¼ hxt
i;1; x

t
i;2; . . . ; xt

i;di, where d is the dimensional-
ity of the solutions; a set of particles S ¼ xt

1; . . . ;xt
m

� �
is called a

swarm. Particles have associated a velocity value that they use for
flying (exploring) through the search space. The velocity of particle
i at time t is given by vt

i ¼ hv t
i;1;v t

i;2; . . . ;v t
i;di, where v t

i;j is the velocity
for dimension j of particle i at time t. Particles adjust their flight tra-
jectories by using the following updating equations:

v tþ1
i;j ¼W � v t

i;j þ c1 � r1 � pi;j � xt
i;j

� �
þ c2 � r2 � pg;j � xt

i;j

� �
ð1Þ

xtþ1
i;j ¼ xt

i;j þ v tþ1
i;j ð2Þ

where pi,j is the jth dimension of the best solution found so far by
particle xt

i ; pi ¼ hpi;1; . . . ;pi;di is often called personal best of particle
xi.pg,j is the jth value of the best particle found so far in the swarm
S;pg = hpg,1, . . . ,pg,di is considered the leader particle. The global and
personal best particles are determined according to a fitness func-
tion that evaluates the goodness of solutions. Through pi and pg par-
ticles take into account individual and social information for
updating their velocity and position. c1; c2 2 R1 are values that
weight the contribution of the individual and social information
respectively. r1,r2 � U[0,1] are uniformly distributed random num-
bers. W is the so-called inertia weight, whose goal is to control
the impact of the history of the velocities of a particle over the cur-
rent velocity, influencing the local and global exploration abilities of
the algorithm (Engelbrecht, 2006; van den Bergh, 2001).

The swarm is initialized randomly, taking into account restric-
tions on the values that each dimension can take. Then, by using
Eqs. (1) and (2), particles in the swarm fly through the search space
until a stop criteria is met. Usually, the process stops when either a
maximum number of iterations (I) is reached or a minimum error
value is obtained by a particle in the swarm; eventually, a locally-
optimal solution is found.
3. Particle swarm model selection

For effectively using the OVA formulation for AIA we need to se-
lect the best classifier for each label in the annotation vocabulary.
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In this context, the best classifier is the one that offers better gen-
eralization performance, that is, the one that obtains the lowest
classification error in unseen data.

The task of selecting the best classifier2 is known as model selec-
tion. Several effective model selection techniques have been pro-
posed so far (Guyon e al., 2011; Bishop, 2006). However, most of
these methods are restricted to specific classification models; also,
the implementation of most of these methods requires domain
knowledge or significant expertise in machine learning, which limits
their applicability.

A broader view to this problem has been adopted recently, the
so-called full model selection (FMS) perspective (Escalante et al.,
2009). The FMS problem is as follows: given a pool of methods
for preprocessing, feature selection and classification, select the
combination of these that obtains the lowest classification error
for a given data set. This task also includes the optimization of
hyperparameters3 for the considered methods, resulting in a vast
search space to be explored, well suited for stochastic optimization
techniques.

In this article we have adopted the FMS view and used particle
swarm optimization (PSO) for the selection of the binary classifiers
required by OVA classification for AIA; the application of PSO to
FMS is known as particle swarm model selection (PSMS) (Escalante
et al., 2009). We consider the FMS approach because it has the fol-
lowing appealing features: different model types and many meth-
ods can be considered in the selection process; it can be used by
any non-expert on machine learning, as it does not require knowl-
edge on the subject; it can be applied to any classification problem
as it does not require domain knowledge; finally, and most impor-
tant, very competitive models can be obtained.

The nature of FMS (i.e. a combination of combinatoric-real func-
tion optimization problem with non-smooth surface and many lo-
cal minima), makes population-based search techniques well
suited for this task. Because of its simplicity and proved perfor-
mance PSO has been used for exploring this search space (Escalan-
te et al., 2009; Escalante, Montes, & Sucar, 2007). PSO is preferred
for FMS instead of other population-based techniques because of
its simplicity and generality as no ad hoc modification was made
to the based PSO algorithm for applying it to FMS. Furthermore,
in previous work we have found that the way the search is guided
in PSO allows PSMS to avoid overfitting, an important issue to deal
with in machine learning. The performance of PSMS in binary clas-
sification has been documented elsewhere (Guyon e al., 2011;
Escalante et al., 2009; Escalante et al., 2007; Guyon, Saffari, Dror,
& Cawley, 2007), this paper describes its application to AIA, a mul-
ti-class classification problem.

PSO has been widely used for parameter/hyperparameter opti-
mization. However most of the reported work is restricted to a sin-
gle algorithm or even to a single parameter-hyperparameter to
optimize (Kennedy & Eberhart, 2001). De Souza et al. have pro-
posed the use of PSO for multi-class model selection (de Souza,
de Carvalho, Calvo, & Ishii, 2006). They adopted the one-versus-
one formulation and allowed PSO to select hyperparameters for
each binary classifier. However, they only perform hyperparameter
optimization for a binary support vector machine classifier (SVM).
Particularly, they optimize the shrinkage and c parameters for a
fixed RBF kernel (de Souza et al., 2006). Note that in this article
we consider preprocessing and feature selection methods, different
2 In the rest of the paper we may refer to classifier, model and full-model
indistinctively.

3 Note that we make a distinction between parameters, those values that are
estimated by the model (e.g. the weights that a neural-network learns from data), and
hyperparameters, the parameters that are inherent to the model (e.g. the number of
units and the learning rate used by a neural-network classifier), with the goal of
highlighting the specific problems faced by PSMS.
learning algorithms and, even, more hyperparameters to optimize
for the SVM algorithm.
3.1. PSO for classifier selection

For FMS potential solutions are models, in consequence for
PSMS we represent the position of each particle i as follows:

xi ¼ hzi;1; y1
i;1...a; zi;2; y2

i;2;...b; . . . . . . zi;n; yn
i;1;...ci ð3Þ

Where each zi,j is a binary4 valued element that indicates the ab-
sence or presence of method j in particle (full-model) i; each entry
yj

i;1...h represents the h � parameters for method j in particle i, this
elements can be binary or real valued, depending on the parameters
of method j. In this representation we have n �methods, each with
their respective hyperparameters. Under this representation any
combination of preprocessing methods can be selected; however,
we restrict PSMS to select a single classifier and a single feature
selection method for each full model. In this respect, we have a sin-
gle zi,f for feature selection method and another one zi,c for classifier.
These are not binary but discrete valued, each discrete number cod-
ifies one of the available methods.

The goal of FMS is to select the full model that minimizes clas-
sification error. Accordingly, we consider a classification perfor-
mance measure as fitness function for PSO. Specifically, we
consider the balanced error rate (BER), defined as BER ¼ Eþ þ E�

2 ,
where E+ and E� are the misclassifications rates for the positive
and negative classes, respectively. We consider BER as fitness func-
tion because this measure takes into account misclassification
rates in both classes. As outlined in Section 2.2, the individual
models that compose an OVA classifier approach face classification
problems that are highly imbalanced. Thus, the choice of BER is
well suited for the problem at hand. Furthermore, BER has been
used in machine learning challenges as leading error measure for
ranking participants (Guyon et al., 2007; Escalante et al., 2007).

Estimating the BER from the training data will lead to obtain
models that overfit the training data (Guyon e al., 2011); thus,
when such models are evaluated in a different data set, their per-
formance would be rather poor, this issue is known as overfitting
(Bishop, 2006). To avoid overfitting we estimate the BER using
cross-validation (CV) instead of using the full training set. CV is a
hold-out technique that provides more reliable error estimates
than when the training set is used. CV consists of splitting the
training data into k � subsets, then k � rounds of training and test-
ing of the model are carried out. In each round, k � 1 subsets are
used for training the model and the trained model is tested in
the remaining k subset. The average over the k � rounds is the
CV estimate of performance.

For data sets with many instances the complexity of PSMS can
become intractable. Thus one must resort to heuristics that can
to alleviate this issue. Consequently, each time the fitness (i.e. a
model) is evaluated, we use a random subsample of the training
data (still with CV), instead of using all of the data. This strategy re-
duces considerably processing time and at the same time helps
PSMS to avoid overfitting because each time a different subset of
the data is used to evaluate the model, see Escalante et al. (2009)
for further details.

3.2. Classification methods considered

This section describes the the pool methods from which PSMS
can choose from. We have considered the set of methods available
4 Binary elements are indeed real valued elements that take the value 1 if a
threshold is exceed and 0 otherwise.



Table 1
Feature selection (FS) and preprocessing (Pre) methods available in CLOP. A brief description of the methods and their hyperparameters is presented.

Object name Type Hyperparameters Description

s2n FS fmax,wmin Feature ranking by signal-to-noise-ratio
relief FS fmax,wmin,knum Relief feature ranking criterion
gs FS fmax Forward feature selection with Gram-Schmidt orthogonalization
rffs FS fmax,wmin,child Random forest as feature selection filter
svcrfe FS fmax,child Recursive feature elimination using SVM
standardize Pre center Standardization of features
normalize Pre center Normalization of features
shift � scale Pre offset, factor, takelog Shifts and scales the data
pc � extract Pre fmax Principal component analysis

Table 2
Available learning objects with their respective hyperparameters in the CLOP
package.

Object
name

Hyperparameters Description

zarbi None Linear classifier
kridge Shrinkage, coef0, degree, gamma,

balance
Kernel ridge
regression

naive None Naive Bayes
neural Units number, shrinkage, maxiter,

balance
Neural network
(Netlab)

rf Units number, mtry Random forest
svc Shrinkage, coef0, degree, gamma SVM classifier

6 For some of the classes we had only 1 or 2 training regions, which imposed
technical difficulties (e. g. building a classifier with a single training sample is not
possible in CLOP). For this reason we generated artificial examples for classes with
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in CLOP5 (Saffari & Guyon, 2006), a MatlabR toolbox with implemen-
tations of several preprocessing, feature selection and classification
methods; the latest version of PSMS is also available in CLOP. Table
1 shows the list of methods for preprocessing and feature selection
available in the CLOP toolbox; whereas Table 2 shows the available
learning algorithms. Thus, for PSMS our pool of methods to select
from are those methods described in Tables 1 and 2.

We combine preprocessing, feature selection and classification
methods, through the CLOP’s chain object, which allows the serial
combination of methods. Thus, a typical model consists of the com-
bination of one (none) feature selection algorithm followed by a
(several/none) preprocessing method, in turn followed by a learn-
ing algorithm. For example, the model given by:

chainfgsðfmax ¼ 8Þ; standardizeðc ¼ 1Þ;neuralðunits ¼ 10; s

¼ 0:5; bal ¼ 1; iter ¼ 50Þg

uses gs for feature selection, selecting eight features at most, stan-
dardization of the data (previously centered) and a balanced neural
network classifier with 10 units, learning rate of 0.5, and trained for
50 iterations. In consequence, the search space in FMS consists of
every possible combination of methods and hyperparameters.

4. Multi-class PSMS for image annotation

For the application of PSMS to AIA we proceed as follows. We
consider a training data set of M region-label pairs D = {(r1,w1),
. . . , (rN,wM)}, where rj 2 Rd are vectors of features representing re-
gions and let wj 2 {1, . . . ,jVj} be random variables that take one of
jVj � values, the value of wj is the index in the annotation vocabu-
lary V = {v1, . . . ,vjVj} of the label used to describe region rj.

Fig. 2 depicts the methodology we have adopted. The first step
consists of creating jVj � data subsets, Di = {(r1,b1), . . . , (rM,bM)},
with i 2 {1, . . . ,jVj} and bj 2 [ � 1,1]; in each subset Di we assign
the positive class (i.e. bj = 1) to regions that belong to the ith label
5 http://clopinet.com/CLOP/
and the negative class (i.e. bj = �1) to the rest of regions6. Next we
apply PSMS to each of the data subsets, as described in Section 3,
obtaining a specific classifier per subset. Once selected, the obtained
classifiers are trained using all of the available training data.

A (test) set of regions without labels DT ¼ rT
1

� �
; . . . ; rT

L

� �� �
is pro-

vided and the trained classifiers are run on these data. For every

test region, rT
j , each classifier i returns an output fi rT

j

� �
2 ½�1;1�;

the positive outputs for the region are considered its ‘‘candidate’’
classes.

From these candidate classes a single label must be selected for
each region. This is a complicated task as the jVj � classifiers are
independent to each other and, therefore, there is no guarantee
that a single classifier is activated (i.e. that it returns a positive out-
put) for each region. Additionally, it may be possible that no clas-
sifier is activated for some regions. Thus this step is crucial for
obtaining positive results on AIA with OVA classification.

Diverse techniques have been proposed for assigning a single
class to each test region. The widely used approach consists of
selecting the class of the classifier that obtained the highest prob-
ability (Bishop, 2006). As we are not using probabilistic classifiers
this method is equivalent to select the class of the classifier that
obtained the the lowest classification error or the class of the clas-
sifier that obtained the highest confidence. However, since classifi-
ers are not correlated, neither classification error nor classifiers
confidence are reliable solutions (Bishop, 2006). Instead we assign
a weight to each candidate class based on the distance of the test
region rT

j to its k � nearest neighbors in the training set. The candi-
date class with the highest weight is assigned to the test region.

For each test instance, rT
j , we obtain its k � nearest neighbors in

the input space according to the Euclidean distance,

grT
j
¼ nT

j;1;n
T
j;2; . . . ;nT

j;k

n o
. The set of labels associated with these

k � regions wnT ¼ w1
nT ;w2

nT ; . . . ;wk
nT

� �
is used for assigning a weight

to each of the candidate classes obtained by the OVA classification.
A weight is assigned to each candidate label wT

l of region rT
j as

follows:

q wT
l

� �
¼
PjHl j

t¼1d�1 rT
j ;h

l
t

� �

Pk
q¼1d�1 rT

j ;n
T
q;1

� � ð4Þ

where Hl ¼ hl
1; . . . ;hl

jHl j

n o
is the subset of regions in grT

j
with

label l and d�1 is the inverse of the Euclidean distance between x
and y. As we can see the weight is assigned only to candidate labels
as considered by the OVA classifier, thus acting as a filter for labels
less than 5 examples. We obtained the mean of the available training regions for such
classes and added 20 copies of this ‘‘prototype’’ training region to the available
examples.

http://clopinet.com/CLOP/


Fig. 2. Graphical diagram of the proposed approach. The training set is used for creating jVj � subsets. PSMS is applied separately in each data subset, obtaining a classifier per
label. For testing, the jVj � classifiers classify each test instance and a heuristic is used for selecting a single label for the region.

Fig. 3. Sample image from the considered Corel subsets. Left, the original image is shown; middle, the same image split in patches of fixed size; right, the same image
segmented with normalized cuts (Shi & Malik, 2000).

Table 3
Statistics of the data sets considered in our experiments.

Data set Images Labels Training regs. Testing regs.

A-NCUTS 205 22 1280 728
A-GRID 205 23 3288 1632
B-NCUTS 299 38 2070 998
B-GRID 299 39 4776 2400
C-NCUTS 504 55 3328 1748
C-GRID 504 56 8064 4032
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appearing in the k � nearest neighbors. The weight takes into ac-
count the proximity of the training instances as well as the repeti-
tion of these within the k � nearest neighbors. We denote this
setting with PSMS-KNN, as it uses PSMS for obtaining candidate la-
bels and a KNN-based procedure for selecting a single label for
each region.

In the next section we report experimental results with PSMS-
KNN. Additionally, for comparison, we present results with two
baseline methods. First, we consider a widely used approach to se-
lect a single label in OVA classifiers: selecting the candidate label
corresponding to the classifier that obtained the lowest (CV) clas-
sification error. Intuitively, with this strategy we will be more con-
fident of classifiers that showed better performance during the
model selection process; we call this configuration PSMS-CV. The
second baseline, uses Eq. (4) for ranking all of the labels associated
to the nearest neighbors of the test regions; the label with the
highest weight is selected, we call this setting KNN. Note that with
this strategy the candidate labels, as obtained with PSMS, are not
considered.
5. Experiments and results

For the experiments reported in this section we consider 6 sub-
sets7 taken from the CorelTM collection, a widely used benchmark for
the evaluation of AIA methods (Datta et al., 2008; Barnard et al.,
2007; Carbonetto et al., 2004; Jeon et al., 2003; Carbonetto, 2003).
Images in these data sets have been segmented into patches of equal
size (GRID) or by using the normalized cuts (NCUTS) algorithm (Shi
& Malik, 2000); all of the regions are manually annotated according
to different vocabularies. Each data set has predefined partitions of
training and testing sets that have been used elsewhere (Carbonetto
et al., 2004; Hernandez & Sucar, 2007; Escalante et al., 2007). Fig. 3
shows sample images from data sets we consider and Table 3 shows
statistics of these data sets. The following features are used to repre-
sent each region: region area, mean and standard deviation in the x
http://www.cs.ubc.ca/�pcarbo/

http://www.cs.ubc.ca/~pcarbo/
http://www.cs.ubc.ca/~pcarbo/


Fig. 4. Left: training, CV and test BER of the models selected with PSMS for the A-GRID data set. The best annotation results were obtained in this data set, see Section 5.3.
Right: number of training examples available in this set for each class.

Fig. 5. Left: training, CV and test BER of the models selected with PSMS for the B-NCUTS data set. Right: number of training examples available in this set for each class.
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and y axis, boundary/area, convexity, average, standard deviation
and skewness in the CIE-Lab color space, for a total of 16 features.

In each data set we proceed as follows. For each label we run
PSMS8 for 50 iterations, using the training partition, to select a clas-
sifier for the label; in average it took about 3 min applying PSMS for
selecting each classifier. Once selected, the model is trained using all
of the training data. The trained classifiers are used to classify the re-
gions in the test partition. Then, a single label is selected for each test
region, from its set of candidate labels, according to the three tech-
niques described above.
8 Code with the latest PSMS implementation and related documentation can be
found at: http://ccc.inaoep.mx/�hugojair
We have divided the results in three parts: first, in Section 5.1,
we analyze the performance of the individual classifiers selected
with PSMS; next, in Section 5.2, we analyze the labeling accuracy
in the set of candidate labels obtained with PSMS; finally, in Sec-
tion 5.3, we analyze the multi-class performance of the OVA clas-
sifier composed of models selected with PSMS.
5.1. Individual performance of classifiers

We start by analyzing the individual models selected with
PSMS; our goal is to evaluate how good the classifiers selected
by PSMS are. For space limitations we consider for this analysis
the A-GRID and B-NCUTS data sets only as these are the data sets
in which we obtained the best and the worse results respectively,

http://ccc.inaoep.mx/~hugojair
http://ccc.inaoep.mx/~hugojair


Table 4
Models selected with PSMS for each of the classes in the A-NCUTS data set.

Class Preprocessing Feature
selection

Learning

‘airplane’ Standardize, normalize, shift-scale pc-extract SVC-RBF
‘bird’ Standardize, normalize, shift-scale s2n SVC-RBF
‘boat’ Standardize, normalize, shift-scale gs SVC-RBF
‘church’ Standardize, normalize, shift-scale relief SVC-RBF
‘cow’ Standardize, normalize, shift-scale s2n SVC-RBF
‘elephant’ Shift-scale pc-extract SVC-RBF
‘grass’ Standardize, shift-scale s2n SVC-RBF
‘ground’ Standardize, normalize, shift-scale s2n Zarbi
‘horse Normalize s2n SVC-RBF
‘house’ Standardize, normalize, shift-scale gs SVC-RBF
‘lion’ Normalize gs SVC-RBF
‘log’ Standardize, normalize, shift-scale gs SVC-RBF
‘mountains’ Standardize, normalize, shift-scale relief SVC-RBF
‘other’ Standardize, normalize s2n SVC-RBF
‘pilot’ – Relief SVC-RBF
‘road’ Standardize, normalize, shift-scale s2n SVC-RBF
‘rock’ Standardize, normalize s2n SVC-RBF
‘sand’ Standardize, normalize, shift-scale gs SVC-RBF
‘sheep’ Standardize, normalize, shift-scale pc-extract SVC-RBF
‘sky’ Standardize, shift-scale s2n SVC-RBF
‘trees’ Standardize, normalize, shift-scale gs Zarbi
‘water’ Standardize, normalize, shift-scale gs SVC-RBF
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see Section 5.3. For each label, we use PSMS for selecting a classi-
fier, the selected model is trained using the full training set. Using
the trained model we classify (i) the training regions, (ii) the train-
ing regions according CV, and (iii) the test regions, calculating the
BER accordingly. Fig. 4 shows the BER obtained in the training, CV
and test regions by each of the classifiers for the A-GRID data set as
well as the number of training regions per label.

From Fig. 4 (left) we can see that most classifiers obtained a BER
of 30% or less, which is a very positive result given the highly
imbalanced data sets. Overfitting seems not to be a problem for
most of the classes as the CV error is close to the test set error.
Although, for the labels ‘horse’ and ‘house’ it is a serious problem.
This is mainly due to number of examples available for these
Fig. 6. Training, CV and test BER of the models se
classes. Note that (Fig. 4, right) we have more than 1000 examples
of the label ‘sky’ and six classes with less than 10 examples. For the
classes ‘horse’ and ‘house’ we have 4 and 26 positive examples,
respectively. This means that we have 99.8% and 99.2% negative
examples and only 0.12% and 0.8% of positive ones, for these labels,
respectively. Therefore, even when we obtained a high test error
this is not surprising. On average the performance of models se-
lected with PSMS is very competitive.

Fig. 5 shows the BER of the models selected for the B-NCUTS.
From this plot we can see that the performance of 8 out of 38 clas-
sifiers is close to 50% (the worst possible result). This is, again, due
to the imbalanced data set. However, it is also due to the large
number of classes in this data set (i.e. 38). For this data set, overfit-
ting is a serious problem for the following classes: ‘astronaut’,
‘crab’, ‘earth’, ‘fox’, ‘mountain’, ‘rock’, ‘trunk’ and ‘wolf’. The number
of training examples for this classes is of 2, 2, 6, 27, 18, 40 and 4,
respectively. Thus, the percentages of positive examples for each
of these data sets is of 1%, 1%, 1.25%, 1.3%, 0.8%, 1.9% and 1.1%,
respectively. Therefore, the overfitting problems with PSMS are di-
rectly related to the number of instances available per class.

With the goal of giving insight into the type of models selected
by PSMS, Table 4 shows the models selected with PSMS for each la-
bel in the A-NCUTS data set. For clarity, we do not show the hyper-
parameters selected for each model, although we emphasize that
these were different for each of the classes. Also for clarity, we
show the models selected for the A-NCUTS data set, as this is the
data set with less labels. Fig. 6 shows the BER obtained by each
of the selected models.

As we can see, there is a strong preference for SVM classifiers
with a RBF kernel. Also, for most of the classes the triplet of ’stan-
dardize,normalize,shift-scale’ was selected for preprocessing. The
feature selection method was the only model type that varied
through the classes. It is interesting that for the ‘ground’ and ‘trees’
classes PSMS selected a simple linear classifier; the selection of
these classifiers gives evidence that the respective classes are line-
arly separable. It is also interesting that these linear classifiers out-
performed many models, even other classifiers for labels with more
training examples. For example, there are 30 training examples for
lected with PSMS for the A-NCUTS data set.



Table 5
Comparison of accuracy in the candidate labels for PSMS-CV, KNN and PSMS-KNN. We
show accuracy and between parentheses the first number shows the average number
of candidate labels for each test region and the second value shows the maximum
number of candidate labels for a region in each data set.

Data set PSMS-CV KNN PSMS-KNN

A-NCUTS 78.02% (2.96–7) 89.42% (6.44–13) 72.39% (2.32–7)
A-GRID 69.06% (3.02–8) 90.50% (4.95–12) 68.75% (2.22–8)
B-NCUTS 62.83% (4.14–10) 80.96% (7.49–14) 59.72% (2.68–10)
B-GRID 66.25% (4.82–13) 77.54% (5.94–15) 61.42% (2.70–13)
C-NCUTS 74.31% (4.94–13) 83.87% (7.53–16) 68.31% (2.95–13)
C-GRID 73.54% (6.34–17) 83.63% (5.99–17) 71.53% (3.96–17)
Average 70.67% (4.37–11.33)84.32% (6.39–14.50)67.02% (2.80–11.33)

H.J. Escalante et al. / Expert Systems with Applications 39 (2012) 11011–11021 11019
the label ’ground’ and 114 for the label ‘water’ for which a SVM was
used; however, the performance of both classifiers is very similar.

5.2. On the quality of candidate labels

In this section we evaluate the candidate labels for test regions
as obtained with PSMS. The goal is to evaluate how effective clas-
sifiers are for including the correct label for test regions in their set
of candidate labels; based on this analysis we can set an upper
bound in the maximum accuracy we can get in the multi-class task.
For this experiment, we consider that a region is correctly classified
if the correct label appears in the set of candidate labels for that re-
gion; we estimate accuracy as the percentage of regions that were
correctly classified. We include results with the KNN method for
comparison.

For PSMS-CV the candidate labels for a region are the classes
corresponding to the classifier that provided a positive output for
the region, see Section 4. For KNN we consider as candidate labels
to the labels assigned to the top9 k = 20 nearest neighbors of the test
regions. For PSMS-KNN we consider the set of labels that appear in
both candidate sets, that of PSMS-CV and that of KNN. Table 5 shows
results of this comparison.

As we can see the highest accuracy is obtained by the KNN
method; however, we emphasize that we are considering the la-
bels of the top �20 nearest neighbors to the test regions. In aver-
age, 6.39 out of 20, are different (i.e. some labels are repeated),
which represents the 18% of the average number of labels in the
annotation vocabularies. The average maximum number of candi-
date labels for a region is large, almost 15 labels, which represents
the 39.1% of the vocabulary. Having a large number of candidate la-
bels makes difficult the selection of a single correct label, and
hence affects the annotation performance. For high values of k,
say k = 80, we have almost perfect accuracy considering candidate
labels with KNN, however, almost all of the labels in the vocabulary
are considered candidate labels.

For the classifiers selected with PSMS, accuracy in the set of
candidate labels is not that good. However, we can see that the
number of candidate labels is rather small. For PSMS-CV we have
in average 4.37 candidate labels which represents 12% of the aver-
age size of the vocabulary. While for PSMS-KNN we have in aver-
age 2.8 candidate labels only, this represents the 7.3% of the total
of available labels. This is a clear advantage of methods that in-
volve PSMS as for selecting a single label for each region we will
have to choose from a small set of candidate labels. Therefore,
the probability of selecting the correct label is large. For example,
for PSMS-KNN by making random-uniform selections we will have
a probability of 0.36 of picking the correct label, while for KNN this
9 We considered this value because accuracy increases as more labels are
considered. A value of k = 20 provides a strong baseline to compare our approach.
Furthermore, the value k = 20 gives better results when combined with PSMS (i. e.
PSMS + KNN) than other values we have tried. Accuracy for values higher than k = 20
does not increase significantly, although the number of candidate labels does.
probability is reduced to 0.14, since we must choose from a set of a
higher cardinality.

From Table 5 we can also appreciate that by filtering the labels
returned by PSMS-CV using Eq. (4), i.e. PSMS-KNN, we have a small
loss of accuracy (3% in average). This result shows that the overlap
between candidate classes of PSMS-CV and KNN is high and that
PSMS-CV returns better labels, if accuracy is amortized by the
number of candidate labels. Results from this experiment reflect
the quality of the models selected with PSMS. Accuracy is not as
good as that of KNN we are considering only 2–4 candidate labels;
opposed to KNN in which 20 labels are considered. Accuracy of
KNN decreases as we consider less labels and the number of candi-
date labels increase as we consider more labels. Therefore, there is
a dependence on the value of k. For PSMS we always obtain good
classifiers and a few candidate classes only.
5.3. Multi-class classification performance

In the next experiment we evaluate the annotation accuracy of
the techniques we adopted for selecting a single label for each re-
gion. In this section we say a region is correctly annotated if the
single label selected by a method, from the set of candidate labels,
is the correct one. Fig. 7 shows results of this experiment.

From this figure, we can see that the best results are obtained by
the labels selected with PSMS-KNN. KNN outperforms PSMS-KNN
in a single data set (A-GRID); however, the difference is less than
1%, and then it can be neglected. In average, PSMS-KNN outper-
forms KNN by 2.7%, considering 41% less of candidate labels (i. e.
6.9 to 2.8). This is a very interesting result as the upper bound in
accuracy for KNN is 84% compared to that of PSMS-KNN which is
of 67%, this is a difference of 17.3%. This result, again, shows that
classifiers selected with PSMS are better than our strong baseline
(KNN). Furthermore, results show that our technique for the selec-
tion of a single label outperforms the widely used approach (i.e.
PSMS-CV). Note that the worst results with PSMS-KNN are ob-
tained in the B-NCUTS data set. As mentioned in Section 5.1 the
reduction in performance is due to the high classes-imbalance
and to the number of classes considered. These issues also affect
the performance of KNN.

In order to compare our results with state of the art methods we
considered the methods proposed by Carbonetto et al. (2004) and
Carbonetto (2003)) and compared them with ours. These are semi-
supervised methods trained using weakly-labeled images. These
methods were evaluated in the same data sets we have considered;
to the best of our knowledge, these are the only methods for which
region-level accuracy has been evaluated.

We used the parameter configurations proposed by the authors,
and even used the same code and error measure, see the caption of
Fig. 8. For this experiment, we consider the subsets A-NCUTS and
A-GRID due to space limitations and because these data sets have
been considered in other works (Carbonetto et al., 2004;
Carbonetto, 2003; Hernandez & Sucar, 2007; Escalante et al.,
2007). Fig. 8 shows results of the experiment.

In Fig. 8 error is calculated as follows:

e ¼ 1
N
PN
n¼1

1
Mn

1� d �anu ¼ amax
nu

� �� �
ð5Þ

where Mn is the number of regions in image n, N is the number of
images in the collection; and d is a function that is 1 if the predicted
annotation amax

nu is the same as the true label �anu. The semi-super-
vised methods were run for 10 trials, while ours where run a single
trial, since for all of our experiments the results with our methods
do not vary each trial.

PSMS-CV outperforms all of the semi-supervised techniques,
although it performs worst than KNN; showing that KNN is a



Fig. 7. Annotation accuracy of the considered methods: PSMS-CV (line, rhombic marker), KNN (dashed line, square marker) and PSMS-KNN (dotted line, circle marker); the
lower dotted-dashed line represents the accuracy we would obtain if we would pick labels from the predefined vocabulary at random.

Fig. 8. Annotation error (see Eq. (5)) of PSMS-CV, KNN and PSMS-KNN compared to other state of the art methods: dML1 (Barnard et al., 2007); dML1O, gML1, gMLO, gMAP1
(Carbonetto, 2003); gMAP1MRF (Carbonetto et al., 2004). A box-and-whisker plot is used. The central box represents the values from the 25 to 75 percentile, the line in the
middle of the box shows the average error; outliers are shown as separate points. Results are shown for the A-NCUTS data set (left) and for the A-GRID data set (right). The
dotted line represents the error obtained if labels were chosen randomly, while the dashed line represents a method that always assigns the same label to all regions.
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strong baseline. PSMS-KNN outperforms all other approaches in
both subsets. The difference with the semi-supervised methods is
large and illustrates the advantages of using strongly-labeled
images for training.

Results reported in Sections 5.2 and 5.3 are superior to other
supervised techniques that use spatial relationships information
(Hernandez & Sucar, 2007) and word co-occurrence (Escalante
et al., 2007) for improving AIA performance. To the best of our
knowledge the results presented in this paper are the best reported
so far for the considered data sets. Our results cannot be compared
directly with other methods proposed in the AIA literature, since
with exception (Carbonetto et al., 2004; Carbonetto, 2003;



H.J. Escalante et al. / Expert Systems with Applications 39 (2012) 11011–11021 11021
Hernandez & Sucar, 2007; Escalante et al., 2007) no method has
been properly evaluated in terms of region-level AIA performance.
Most techniques have been evaluated by looking at their image le-
vel performance only (Barnard et al., 2007; Ghoshal et al., 2005;
Jeon et al., 2003).
6. Conclusions

We have described the use of particle swarm model selection
(PSMS) for the task of region-level automatic image annotation
(AIA). PSMS is the application of the basic particle swarm optimi-
zation (PSO) algorithm for the problem of full model selection in
binary classification. For applying PSMS to AIA (a multi-class clas-
sification task) we have adopted the one-vs-all (OVA) strategy,
which consists of combining the outputs of several binary classifi-
ers, each one associated to a single label/class. Accordingly, PSMS is
used to select the individual models that compose the OVA classi-
fier, obtaining specific models for each label. Also, we have pro-
posed a new technique for combining the outputs of the
individual classifiers under OVA.

Experimental results in six data sets give evidence of the valid-
ity of the proposed techniques. In particular, we confirmed that
classifiers selected with PSMS were very effective for distinguish-
ing regions of their corresponding labels. When testing the individ-
ual models, we found that, in average, few classifiers were
activated yet achieving satisfactory performance. When evaluating
AIA, we found that the proposed technique for output combination
in OVA, obtained very good performance, outperforming KNN and
a traditional technique. Also, the proposed method outperforms by
a large margin a variety of semi-supervised AIA techniques. To the
best of our knowledge, the results reported herein are superior to
that described elsewhere, using supervised or semi-supervised
methods, where the same data sets have been considered.

Despite the application domain of PSMS is AIA, nothing restricts
us applying the methods described in this article to any other mul-
ti-class classification problem. The main benefits of adopting a
similar strategy are evident: one can obtain effective individual
classifiers and very good multi-class performance, in an acceptable
time; specific methods for preprocessing, feature selection and
classification are considered for each class, thus modeling classes
particularly; and no specialized knowledge is required for using
our methods.

Several future work directions can be outlined to extend the
proposed methods. From the point of view of swarm intelligence,
we can adopt more sophisticated or specialized PSO implementa-
tions that can improve the search process, for example, the use
of discrete or hybrid PSO algorithms is a direct extension for PSMS;
by adopting multi-swarm PSO strategies we can improve the
search process while making it more efficient; a parallelization of
the algorithm is also feasible. From a machine learning perspective
the method can be improved as well, for example, by introducing
prior domain knowledge for effectively dividing the search space
in a multi-swarm PSO implementation; by incorporating a penalty
term into the fitness function so that the aptitude of the individual
classifiers also depend on their multi-class performance; by con-
sidering the correlations between the individual classifiers for
selecting the final output of OVA classification; and by
implementing PSMS in other machine learning toolboxes (e.g. the
popular WEKA toolbox).
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