
Hierarchical Multi-label
Classification for tree and DAG Hierarchies

By:

Mallinali Ramírez Corona

Thesis submitted as partial fulfillment
of the requirement for the degree of:

MASTER OF SCIENCE IN COMPUTER SCIENCE

at

Instituto Nacional de Astrofísica, Óptica y Electrónica
October, 2014

Tonantzintla, Puebla

Advisors:

Dr. Luis Enrique Sucar Succar
Dr. Eduardo Morales Manzanares

c©INAOE 2014

All rights reserved
The author grants to INAOE the right to

reproduce and distribute copies of this dissertation

Agradecimientos

Primero que nada quiero agradecer a mi familia por siempre estar cerca,
echarme porras y preguntarme ¿cómo vas?, ¿cuándo terminas?. A mis papás,
hermana, abuelos (aunque mis abuelas me miran desde el cielo), tíos y primos.

A Miguel de Jesús Osorio Ramos por tolerarme tantas veces en modo tesis,
aguantar que le ignorara y tener que escuchar mis interminables soliloquios,
ademas de aportarme sus opiniones e ideas y en general su apoyo y amor
incondicionales que me dieron fuerza para esta etapa.

A mis compañeros del INAOE muy especialmente a los del Chavira con
quienes conviví y comí muchas veces. A a los de las retas de fútbol de los
jueves por dejarme jugar y tratar de no pegarme con la pelota, además de
los momentos de diversión fuera de la cancha que compartimos. También a
mis amigos de la vida Citlalli, Dianita, Isa, Ernesto y más a quienes no es
necesario ver para saber que me mandan sus buena vibras.

A mis asesores Dr. Luis Enrique Sucar Succar y Dr. Eduardo Morales
Manzanares, por convertir mis ideas a medio cocinar en algo mas tangible
digno de escribirse, por impulsarme y exigirme para lograr publicar mi
trabajo y por leer y releer mis intentos de artículos y tesis. Al Dr. Morales
especialmente por escuchar mis inseguridades sobre los objetivos, contenido y
hasta el color de los pósters y, claro, recibirme cada vez que lo fui a buscar.
Al Dr. Sucar por su paciencia, apoyo y la presión que de vez en cuando me
ponía a prueba (para el lunes terminar la entrega y escribir un articulo). Al
Dr. Orihuela por sus duros comentarios y observaciones que finalmente se
convertían en explicaciones y apoyo para este trabajo. A los Dres. Montes y
Villaseñor por sus comentarios al revisar mi tesis.

Al INAOE por las facilidades y apoyos brindados, al CONACYT por la
beca número 401412/280088 que permitió que dedicara todo este tiempo
únicamente a la maestría.

El agradecimiento más especial es para Edith Corona Sánchez y Armando
Ramírez Medina por convencerme que lo que me proponga hacer es posible.
Gracias por su amor, confianza y apoyo que me han traído de la mano desde
niña.

III

Abstract

The core of supervised classification consists in assigning to an object or
phenomenon one of a previously specified set of categories or classes. There
are more complex problems where, instead of a single label, a set of labels
are assigned to each instance, this is called multi-label classification. When
the labels in a multi-label classification problem are ordered in a predefined
structure, typically a tree or a Direct Acyclic Graph (DAG); the task is called
Hierarchical Multi-label Classification (HMC).

There are HMC methods that create a global model which take advantage
of the relations (predefined structure) of the labels. However these methods
tend to create too complex models unusable for large scale data. Other
methods divide the problem in a set of subproblems, which usually does not
benefit from the predefined structure.

This thesis addresses the problem of hierarchical classification for tree and
DAG structures considering large datasets with a considerable number of
labels. A local classifier per parent node is trained for each non-leaf node
in the hierarchy. Our method exploits the correlation of the labels with its
ancestors in the hierarchy and evaluates each possible path from the root to a
leaf node, taking into account the level of the predicted labels to give a score
to each path and finally return the one with the best score.

In some cases there are instances whose labels do not reach a leaf node, for
this cases we developed an extension of the base method for Non Mandatory
Leaf Node Prediction (NMLNP); in which a pruning phase is performed
before selecting the best path.

We noticed that many evaluation measures scored the short paths that
only predict the most general cases better than longer more specific paths,
that is why we also propose a new evaluation measure that avoids the bias
toward conservative predictions in the case of NMLNP.

We tested our methods with 18 datasets with tree and DAG structured
hierarchies against a number of state-of-the-art methods. The evaluation
shows the advantages of these methods, in terms of predictive performance,
execution time and scalability compared with other methods for hierarchical

V

VI

classification. Our methods proved to obtain superior results when dealing
with deep hierarchies and competitive with shallower hierarchies.

INAOE Computer Science Department

Resumen

La parte medular de la clasificación supervisada es asignar a un objeto o
fenómeno un elemento de un conjunto previamente definido de clases o
categorías. Hay problemas más complejos donde se asigna un conjunto de
clases en vez de una sola, a este tipo de problemas se les llama multi-etiqueta.
Cuando las etiquetas de un problema multi-etiqueta están ordenadas en una
estructura predefinida, usualmente un árbol o un Grafo Acíclico Dirigido
(DAG), se le denomina Clasificación Jerárquica Multi-Etiqueta (HMC).

Existen métodos de HMC que aprovechan las relaciones entre las etiquetas
(estructura predefinida), sin embargo estos métodos tienden a crear modelos
demasiado complejos que serían imposibles de utilizar en datos de gran
escala. Otro grupo de métodos divide el problema en varios sub-problemas
que usualmente no aprovechan la información de la estructura predefinida.

Esta tesis aborda el problema de clasificación jerárquica para estructuras
de árbol y DAG considerando datos de gran escala y con muchas etiquetas.
Por cada nodo no hoja en la jerarquía se entrena un clasificador local. Nuestro
método explota las relaciones de las etiquetas con sus ancestros en la jerarquía
y evalúa cada camino posible de la raíz a un nodo hoja, tomando en cuenta el
nivel de la etiquetas predichas para asignar una calificación a cada camino y
finalmente regresar el que tenga la mejor.

En algunos casos las etiquetas de las instancias no llegan a las etiquetas
más específicas, para estos casos desarrollamos una extensión de nuestro
método para predicción no obligatoria de nodos hoja, en la que se realiza un
fase de poda antes de seleccionar el mejor camino.

Durante la experimentación notamos que muchas medidas de evaluación
beneficiaban a las predicciones cortas que solo contienen las clases más genera-
les, por eso proponemos una nueva medida de evaluación que evita devolver
predicciones conservadoras (solo contienen las clases más generales de la
jerarquía) que no contribuyen a la tarea de clasificación.

Probamos nuestros métodos con 18 conjuntos de datos de estructuras de
árbol y DAGs contra varios métodos de estado del arte. La evaluación muestra
las ventajas de nuestros métodos en términos de desempeño, tiempo de

VII

VIII

ejecución y escalabilidad. Nuestros métodos obtuvieron resultados superiores
en los conjuntos de datos con jerarquías profundas y resultados competitivos
en jerarquías poco profundas.

INAOE Computer Science Department

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1

1.2 Research Issues . 3

1.2.1 Research questions . 3

1.3 Objectives . 4

1.3.1 Specific Objectives . 4

1.4 Proposed Solution . 4

1.5 Contributions . 5

1.6 Document Guide . 5

2 Theoretical Framework 7
2.1 Supervised Classification . 7

2.1.1 Algorithm Selection . 8

2.2 Multi-label Classification . 11

2.2.1 Algorithm Adaptation Methods 11

2.2.2 Problem Transformation Methods 12

2.3 Summary . 14

3 Related Work 15
3.1 Hierarchical Multi-label Classification 15

3.1.1 Flat Classification Approach 17

3.1.2 Local Classifiers Approach 17

3.1.3 Non-mandatory leaf node prediction and the blocking
problem . 25

3.1.4 Global Classifier (big-bang) approach 26

3.2 Evaluation Measures . 27

3.2.1 Analysis . 30

3.3 Summary . 30

i

ii

4 Chained Path Evaluation 31

4.1 Training . 31

4.2 Merging Rule . 33

4.3 Classification for MLNP . 35

4.4 Classification for NMLNP . 37

4.5 Gain-Loose Balance . 39

4.6 Summary . 41

5 Experiments and Results 43

5.1 Experimental Setup . 43

5.1.1 Datasets . 43

5.1.2 Data Topology . 46

5.2 Experiments . 48

5.2.1 Base Classifier . 49

5.2.2 Weighting Scheme . 50

5.2.3 MLNP . 53

5.2.4 Hierarchy depth effect over classification performance . 63

5.2.5 NMLNP . 65

5.2.6 Time . 68

5.3 Summary . 70

6 Conclusions 77

6.1 Conclusions . 77

6.1.1 Weighting Scheme . 78

6.1.2 Depth effect . 78

6.1.3 Comparing CPE against other methods 78

6.1.4 NMLNP . 79

6.2 Contributions . 79

6.3 Future Work . 80

References 81

A Base Classifier 91

B Weighting Scheme 97

B.1 RSM vs NW scheme . 97

B.2 RSM vs other weighting schemes 100

C Hierarchy depth effect over classification performance 107

D Comparison of MLNP approaches 113

D.1 Tree Structured Datasets . 113

D.2 DAG Structured Datasets . 117

INAOE Computer Science Department

iii

E Selection of the best NMLNP approach 121

F Comparison of NMLNP approaches 123
F.1 Tree Structured Datasets . 123

F.2 DAG Structured Datasets . 127

Hierarchical Multi-label Classification for tree and DAG Hierarchies

List of Figures

2.1 Examples of methods to learn Bayesian Networks 10

3.1 Example of a tree hierarchy structure. 15

3.2 Hierarchical structures used in HMC 16

3.3 Flat approach example . 17

3.4 Local Classifier per Node approach example 20

3.5 Top-Down approach example . 20

3.6 Local Classifier per Parent Node approach example 23

3.7 Local Classifier per Level approach example 24

3.8 Global Classifier approach example 27

4.1 Example of the selection of the training set 32

4.2 Example of the computation of the weight of the nodes 34

4.3 Example of the computation of the weight of the nodes with
two approaches . 34

4.4 Example of the application of the merging rule 36

4.5 Example of hierarchy where pruning was performed 41

5.1 Structure of cellcycle_FUN dataset for MLNP 44

5.2 Plots comparing the performance with hierarchies of different
depths . 64

C.1 Performance of CPE with hierarchies of different depths 108

C.2 Performance of TD with hierarchies of different depths 109

C.3 Performance of TD-C with hierarchies of different depths . . . 110

C.4 Performance of HIROM with hierarchies of different depths . . 111

D.1 CPE vs other MLNP methods for tree datasets 114

D.1 CPE vs other MLNP methods for tree datasets 115

D.1 CPE vs other MLNP methods for tree datasets 116

D.2 CPE vs other MLNP methods for DAG datasets 117

D.2 CPE vs other MLNP methods for DAG datasets 118

v

vi

D.2 CPE vs other MLNP methods for DAG datasets 119

D.2 CPE vs other MLNP methods for DAG datasets 120

F.1 CPE vs other NMLNP methods for tree datasets 124

INAOE Computer Science Department

List of Tables

5.1 Description of the datasets for the MLNP experiments 45

5.2 Description of the datasets for the NMLNP experiments 46

5.3 Dimensionality reduction for tree structured datasets 47

5.4 Dimensionality reduction for DAG structured datasets 48

5.5 Performance of the different base classifiers 49

5.6 RSM against a non weighted approach 51

5.7 RSM against other weighting schemes 52

5.8 Accuracy comparing our method against other MLNP methods 53

5.9 Hamming Accuracy comparing our method against other meth-
ods . 54

5.10 Exact Match comparing our method against other methods . . 54

5.11 F1-macro D comparing our method against other methods . . . 55

5.12 F1-macro L comparing our method against other methods . . . 55

5.13 H-loss comparing our method against other methods 56

5.14 Accuracy comparing our method against other methods 57

5.15 Hamming Accuracy comparing our method against other meth-
ods . 57

5.16 Exact Match comparing our method against other methods . . 58

5.17 F1-macro D comparing our method against other methods . . . 58

5.18 F1-macro L comparing our method against other methods . . . 58

5.19 H-loss comparing our method against other methods 59

5.20 Accuracy comparing CPE against Flat approach 60

5.21 Hamming Accuracy comparing CPE against Flat approach . . . 60

5.22 Exact Match comparing CPE against Flat approach 61

5.23 Exact Match comparing CPE against Flat approach 61

5.24 F1-macro L comparing CPE against Flat approach 62

5.25 H-loss comparing CPE against Flat approach 62

5.26 CPE-NMLNP against CPE-MLNP using MLNP datasets. 66

5.28 Accuracy comparison of NMLNP methods 67

5.27 CPE-NMLNP against CPE-MLNP using NMLNP datasets . . . 71

5.29 Hamming accuracy comparison of NMLNP methods 72

vii

viii

5.30 Exact Match comparison of NMLNP methods 72

5.31 F1-macro D comparison of NMLNP methods 73

5.32 F1-macro L comparison of NMLNP methods 73

5.33 H-loss comparison of NMLNP methods 74

5.34 Gain-Loose Balance comparison of NMLNP methods 74

5.35 CPE-NMLNP against another NMLNP method for DAG datasets 74

5.36 Time (seconds) required for training MLNP methods. 75

5.37 Time required for training NMLNP datasets. 75

5.38 Time (seconds) required for testing MLNP methods. 76

5.39 Time required for testing NMLNP datasets. 76

A.1 Accuracy using five different base classifiers. 91

A.2 Hamming Accuracy using five different base classifiers. 92

A.3 Exact Match using five different base classifiers. 93

A.4 F1-macro D using five different base classifiers. 94

A.5 F1-macro L using five different base classifiers. 95

A.6 H-loss using five different base classifiers. 96

B.1 Accuracy (%) of RSM vs NW scheme 97

B.2 Hamming Accuracy (%) of RSM vs NW scheme 98

B.3 Exact Approach (%) of RSM vs NW scheme 98

B.4 F1-macro D (%) of RSM vs NW scheme 99

B.5 F1-macro L (%) of RSM vs NW scheme 99

B.6 H-loss of RSM vs NW scheme . 100

B.7 Accuracy of RSM vs other weighting schemes 101

B.8 Hamming Accuracy of RSM vs other weighting schemes 102

B.9 Exact Match of RSM vs other weighting schemes 103

B.10 F1-macro D of RSM vs other weighting schemes 104

B.11 F1-macro L of RSM vs other weighting schemes 105

B.12 H-loss of RSM vs other weighting schemes 106

E.1 NGLB (%) for different approaches for pruning phase 122

F.1 Accuracy (%) comparison of MLNP methods. 127

F.2 Hamming Accuracy (%) comparison of MLNP methods. 127

F.3 Exact Match (%) comparison of MLNP methods. 128

F.4 F1-macro D (%) comparison of MLNP methods. 128

F.5 F1-macro L (%) comparison of MLNP methods. 128

F.6 H-loss comparison of MLNP methods. 129

F.7 NGLB (%) comparison of MLNP methods. 129

INAOE Computer Science Department

Abbreviations

BCC Bayesian Chain Classifier

BR Binary Relevance

BU Button-Up

CC Classifier Chain

CPE Chained Path Evaluation

CPE-MLNP Chained Path Evaluation for Mandatory Leaf Node Prediction

CPE-NMLNP Chained Path Evaluation for Non-Mandatory Leaf Node Pre-
diction

DAG Directed Acyclic Graph

GLB Gain-Loose Balance

GO Gene Onthology

H-loss Hierarchical Loss

HMC Hierarchical Multi-Label Classification

IQR Interquartile Range

LCL Local Classifier per Level

LCN Local Classifier per Node

ix

x

LCPN Local Classifier per Parent Node

LP Label Power Set

MBC Multi-dimensional Bayesian network Classifier

MLNP Mandatory Leaf Node Prediction

MPP Multiple Path Prediction

NB Naïve Bayes

NMLNP Non-Mandatory Leaf Node Prediction

NN Nearest Neighbors

PCA Principal Component Analysis

RSM Ramirez, Sucar, Morales weighting scheme

SPP Single Path Prediction

SVM Support Vector Machine

TD Top-Down

INAOE Computer Science Department

Chapter 1

Introduction

Many important real-world problems are naturally cast as a hierarchical
classification task, where the set of classes to be predicted is organized with an
underlying, predefined class hierarchy, typically a tree or a Directed Acyclic
Graph (DAG). The goal is to make predictions for a problem that has an
underlying structure. There is a very large amount of research in conventional,
non hierarchical classification problems. However, the problems where the
classes are hierarchically organized, make the classification problem much
more challenging because the predicted classes have restrictions about the
combination of labels that can be predicted to make sense inside the hierarchy.

1.1 Motivation

The task of making a prediction incorporating the underlying structure of
the labels into the decision making process is called Hierarchical Multi-Label
Classification (HMC). This approach can achieve better classification rates
than approaches that do not take into account the structure and return a set
of labels that makes sense inside the hierarchy.

Some of the fields and applications where hierarchical classification has
been successfully applied are described below.

Text Categorization

The task of text categorization is to assign categories to describe the content
of a document in order to have a standardized, universal way for referring or
describing the text.

An example of the application of HMC in text categorization can be
found in the categorization of articles. Ruiz and Srinivasan (2002) classified
biomedical articles from the Medline library into one or several keywords from
a specified tree structure named Medical Subject Headings (MeSH); MeSH
is a manually built controlled vocabulary for the biomedical domain where
terms are arranged into several hierarchical structures called MeSH Trees.

1

2 Motivation

The Reuters-21578 dataset has been widely used for research, even though
this is a rather small and tidy collection, Reuters-21578 dataset appeared on
the Reuters news wire in 1987 and has been used in the works of Koller and
Sahami (1997), Weigend et al. (1999) and Hernandez et al. (2013) among others.
Other interesting application is in the categorization of contents in the web,
Labrou and Finin (1999) used a collection of names of Yahoo! as the set of
labels, McCallum et al. (1998) used a set of web pages classified in a hierarchy
of industry sectors and the Yahoo! dataset as well.

Image Classification

Automatic image annotation consist in automatically assigning metadata in
the form of captions or keywords to a digital image. A single image may
contain different meanings organized semantically in a hierarchy.

An application in the medical field is the classification of x-ray images,
in the work of Dimitrovski et al. (2011) the database is accessed via textual
information through the standard picture archiving and communication sys-
tem (PACS). The same author (Dimitrovski et al., 2012) performed automatic
diatom images classification. Diatoms are a large and ecologically important
group of unicellular or colonial organisms (algae) of different kinds. The
importance of classifying diatoms lie in the variety of uses, such as water
quality monitoring, paleoecology and forensics.

Other interesting task is the photo annotation, where the goal is to predict
which visual concepts are present in each image, examples are the works
of Dimitrovski et al. (2010), Binder et al. (2010) and Hernandez et al. (2013)
among others.

Protein Function Prediction

Assigning functions for unknown proteins is particularly interesting given the
large increase in the number of uncharacterized proteins available for analysis.

As proteins often have multiple functions which are described hierar-
chically, the use of multi-label hierarchical techniques for the induction of
classification models in Bioinformatics is a promising research area. Assigning
functions for every protein with traditional experimental techniques could take
decades, but the currently accumulated data from different biological sources
make it possible to generate automated predictions that guide laboratory
experiments and speed up the annotation process.

The biological functions that can be performed by proteins are defined in a
structured, one standardized dictionary of terms is called Gene Ontology (GO).
Costa and Lorena (2008); Alves et al. (2008); Otero et al. (2010) predict protein
functions from information associated with the protein’s primary sequence.

INAOE Computer Science Department

Introduction 3

Secker et al. (2010) addresses the same problem but considering the functional
classification of G-Protein-Coupled Receptors (GPCRs).

1.2 Research Issues

HMC incorporates the structure of the labels by using different approaches.
Below we describe the two existing approaches.

The first is a global approach where a single classification model is built
from the training set; the global approach is effective taking into account the
relations of the labels but as the number of attributes and classes increases
the model become more and more complex and thus time consuming. Some
global approaches are specific to a classification algorithm and can not be
adapted to the necessities of the datasets unlike local approaches.

The second is a local approach that divides the problem in several subprob-
lems according to a strategy (can be a local classifier per level, per node or per
non leaf node). The main problem of this approach is that it does not incor-
porate the relations (underlying structure) in the local classification. Another
problem is that some of them make local decisions that can not be corrected in
further levels, causing a propagation of the error. Some approaches optimize
a function to reduce the errors using the local predictions. The limiting factor
of these methods is that the resulting predictions do not necessarily optimize
the scores of other evaluation measures, focusing on a single aspect in the
selection of the best prediction.

Our method belongs to the local approaches to include the advantages over
large scale datasets but avoiding its problems. To incorporate the relations it
adds an extra attribute with the prediction of the parent node and includes
a weighting scheme that assigns more value to the predictions of the more
general classes than those of the more particular classes. To avoid error
propagation we score all the paths to select the better one when we have a
complete overview of the possible predictions.

We noticed that the current evaluation measures benefit conservative
predictions that return just the most general classes over the predictions that
return more specific labels.

1.2.1 Research questions

This thesis will examine the following research questions:

1. How to incorporate the relations between the labels in local classification
to improve the performance of HMC?

2. How to develop a new method that does not necessarily return the
most specific classes in the hierarchy and thus prune the predictions but

Hierarchical Multi-label Classification for tree and DAG Hierarchies

4 Proposed Solution

maintains as much information as possible?

3. How to evaluate HMC that does not return the most specific labels as
classification to avoid conservative predictions?

1.3 Objectives

The aim of this thesis is to develop a new approach for hierarchical multi-label
classification able to take into account the relations of the labels in an efficient
manner to deal with large hierarchies with tree and DAG structures.

1.3.1 Specific Objectives

• Develop a local HMC approach able to deal with both tree and DAG
hierarchies. This novel approach should be able to:

– incorporate the relations of the labels based on chain classifiers;

– handle large, deep hierarchies (with many nodes and many levels).

• Incorporate the possibility to predict paths that lead to an intermediate
node in the hierarchy (Non mandatory Leaf Node Prediction) by pruning
the prediction in the node/label where no more information can be
extracted.

• Prepare a new evaluation measure that minimizes the bias toward con-
servative predictions.

1.4 Proposed Solution

We propose a novel HMC local approach, Chained Path Evaluation (CPE-
MLNP), to predict single paths in tree and multiple paths in DAG hierarchies
(paths from the root down to a leaf node). In the classification stage, the
predictions of all the local classifiers are combined, to estimate the probability
of all paths in the hierarchy.

We develop an extension of the base method for Non Mandatory Leaf
Node Prediction (CPE-NMLNP); in which a pruning phase is performed
to select the best path. Additionally, we propose a new evaluation metric
for NMLNP hierarchical classifiers, that avoids the bias toward conservative
predictions. In general, the closer the predicted class is to the root of the
hierarchy, the lower the classification error tends to be. On the other hand,
such classification becomes less specific and, as a consequence, less useful.

The proposed approach was experimentally evaluated with 10 tree and
8 DAG hierarchical datasets in the domain of protein function prediction.

INAOE Computer Science Department

Introduction 5

We contrasted: (i) the best classifier for the datasets, (ii) the impact of the
weighting scheme, (iii) CPE-MLNP against several state of the art approaches,
(iv) the hierarchy depth effect over the classification performance, (v) CPE-
MLNP vs. CPE-NMLNP, (vi) CPE-NLNP against several state of the art
approaches.

1.5 Contributions

This thesis addresses the task of HMC with local classifiers, where the problem
is divided in various subproblems. This scheme allows the usage of any classi-
fier allowing the local classifiers to be selected according to the application, the
dataset or another project requirements (e.g., users require a comprehensible
model).

This thesis contributes with a method for prediction of the most specific
labels in the hierarchy (MLNP) [Ramírez et al. 2014a]; and one for interme-
diate labels in the hierarchy (NMLNP) [Ramírez et al. 2014b]. Both methods
improve the predicting performance over related methods, specially for deep
hierarchies. The main contributions are:

1. A method for HMC that incorporates several novel aspects:

• A cost is assigned to each node depending on the level it has in
the hierarchy, giving more weight to correct predictions at the
top levels; the weight is shared linearly along the structure. This
assigned cost tries to incorporate information of the structure in
the prediction.

• The relations between the nodes in the hierarchy are considered by
incorporating the parent label as in chained classifiers.

• The possibility to handle tree or DAG structures interchangeably.

2. An extension of the method for NMLNP.

3. A new hierarchical measure designed for non mandatory leaf node
prediction which avoid conservative predictions.

Our claims are supported by experimental analysis and comparisons to related
methods with a large collection of datasets under multiple measures for
predictive performance.

1.6 Document Guide

This document is structured as follows:

• Chapter 2 provides an overview of the general classification problem.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

6 Document Guide

• Chapter 3 discusses the relevant work in the hierarchical multi-label
classification literature.

• Chapter 4 introduces our hierarchical multi-label classification approach.

• Chapter 5 includes the experimental setup and the performed experi-
ments as well as discussion of the results.

• Chapter 6 provides the concluding remarks and the future work.

INAOE Computer Science Department

Chapter 2

Theoretical Framework

In this chapter we present the concepts and existing theories that will allow to
comprehend the content of the thesis.

2.1 Supervised Classification

The core of supervised classification is to build a model or general rule that
segment the domain into regions that can be associated with the classes of
interest to a particular application, it is used to classify new objects from which
we do not know the class. In practice those regions may overlap. Different
methods vary in the way they identify and describe the regions in the space
(Richards and Jia, 1999).

More formally, supervised classification consists of assigning to an object
or phenomenon one of a previously specified categories or classes (Araújo,
2006). Suppose that we have a set of predictor variables X = {x1, x2, ..., xN}

and a y variable that represents the real class. The real class is a member of
the set of possible labels L. If |L|=2 , then the learning problem is called a
binary classification problem. In a database D there are collected N cases of
the problem, in which we know the class to which class they belong, in the
form D = {(X1,yi), (X2,y2), ..., (XN,yN)}, in a problem of |L| different classes.
These systems are capable to learn from the existing data to generalize and
deal with new cases.

Supervised classification have been used to solve numerous problems like
tumor detection (Mithun and Raajan, 2013), concede or reject bank credits
(Bee Wah and Ibrahim, 2010), bankruptcy prediction (Aghaie and Saeedi,
2009), hand-written character recognition (Huang et al., 1991), chromosome
abnormality detection (Karvelis et al., 2009), etc.

In the classification problem there are two possible cases to express the
complexity of the problem. There are problems where the classes are totally
separable, when all the objects with similar characteristics belong to the same
class. There are more complex problems where the different classes are not

7

8 Supervised Classification

separable. It is produced when objects with similar characteristics belong to
different classes.

The process to design a usable pattern recognition system involves the
following elements (Kotsiantis, 2007):

1. Collection of the dataset. An expert in the area can suggest the most in-
formative features. If there is not an expert, a commonly used approach
is to measure every feature available, this is called brute force. However,
brute force often does not retrieve data directly suitable for classification.
In most cases it contains noise and missing feature values, and therefore
it requires preprocessing.

2. Pre-processing data. This stage handles and cleans the dataset to make
the classification stage more robust and generalizable and let the algo-
rithms work faster and more effectively. Some of the task in this stage
are: handle missing values, sample instances from large datasets, etc.

3. Variables selection and extraction: Selection of a feature subset to remove
irrelevant and redundant features.

4. Decision making. Involves selecting the algorithm and the evaluation of
the classification process.

2.1.1 Algorithm Selection

A large number of techniques for supervised classification have been devel-
oped. There are three main groups: geometric (template matching), logical
(syntactic/symbolic) and statistical (Bayesian Networks, Instance-based tech-
niques)(Jain and Duin, 2000; Flach, 2012; Tsoumakas and Katakis, 2007).

2.1.1.1 Geometric Models

The instance space is the set of all possible instances, whether they are present
in our dataset or not. A geometric model is constructed directly in the instance
space, using geometric concepts such as lines, planes and distances.

Linear Discriminant Analysis (LDA) and the related Fisher’s linear dis-
criminant are simple methods used in statistics and machine learning to find
the linear combination of features which best separate two or more classes
of objects (Friedman, 1989). LDA works when the measurements made on
each observation are continuous quantities. When dealing with categorical
variables, the equivalent technique is Discriminant Correspondence Analysis
(Mika et al., 1999).

A very useful geometric concept in classification is the notion of distance.
Two instances are similar if the distance between them is small, and so nearby
instances would be expected to receive the same classification, or belong to

INAOE Computer Science Department

Theoretical Framework 9

the same cluster. Some examples of the usage of the distance are: Nearest
Neighbors (NN) proposed by Cover and Hart (1967) and k-Nearest Neighbors
(k-NN) proposed by Fix and Hodges Jr (1951).

Support vector machines (SVM), proposed by (Cortes and Vapnik, 1995),
are a powerful kind of linear classifier. The main idea of SVMs is to find the
optimal separating hyperplane between the classes by maximizing the margin
between the classes closest points, the points lying on the boundaries of the
margin are those called support vectors.

Template matching applications include image retrieval (Grujic et al.,
2008), image recognition (Omachi and Omachi, 2007), image mosaicing and
registration (Ding et al., 2001), object detection (Lin and Davis, 2010), and
stereo matching (Huan et al., 2011).

2.1.1.2 Logical Models

Logical models adopt a perspective where a pattern is viewed as being com-
posed of simple sub-patters which are composed themselves by simpler
sub-patterns. The simplest sub-patterns are called primitives, and the complex
pattern is represented in terms of the relations between the primitives. This
sub patterns can be ordered in a list or in a hierarchy.

There are two important groups of logical learning methods: decision trees
and rule-based classifiers.

Decision trees (Murthy, 1998) classify instances by sorting them based on
feature values. Each node in a decision tree represents a feature in an instance
to be classified, and each branch represents a value that the node can assume.
An object X is classified by passing it through the tree starting at the root node.
The test at each internal node along the path is applied to the attributes of X,
to determine the next arc along which X should go down. The label at the leaf
node at which X ends up is output as its classification.

Perhaps, the most well-known algorithm in the literature for building
decision trees is the C4.5 (Quinlan, 1993). C4.5 is an extension of Quinlan’s
earlier ID3 algorithm (Quinlan et al., 1979).

Decision trees can be translated into a set of rules by creating a separate
rule for each path from the root to a leaf in the tree (Quinlan, 1993). However,
rules can also be directly induced from training data using a variety of rule-
based algorithms.

The symbolic rule learning algorithms are also called separate-and-conquer
or covering algorithms. All members of this family share the same top-level
loop: search for a rule that explains a part of its training instances, separate
these examples, and recursively conquer the remaining examples by learning
more rules until no examples remain (Fürnkranz, 1999). RIPPER is a well-
known rule-based algorithm (William et al., 1995).

Hierarchical Multi-label Classification for tree and DAG Hierarchies

10 Supervised Classification

2.1.1.3 Statistical Models

Statistical approaches are characterized by having an explicit underlying
probability model, which yields the probability that an instance belongs to
each class, rather than simply a classification.

Maximum entropy is one general technique for estimating probability
distributions from data. The underlying principle in maximum entropy is that
when nothing is known, the distribution should be as uniform as possible,
that is, have maximal entropy (Csiszár, 1996).

Bayesian networks (BN) are the quintessential instances of statistical learn-
ing algorithms (Jensen, 1996). These models capitalize on Bayes theorem
(Equation (2.1)) where B would be the label to predict and A the observed
attributes.

P(B|A) =
P(A|B)P(B)

P(A)
(2.1)

A BN is a graphical model for probability relationships among a set of
variables (features). The BN structure S is a directed acyclic graph (DAG) and
the nodes in S are in one-to-one correspondence with the features X. The arcs
represent casual influences among the features while the lack of possible arcs
in S encodes conditional independencies.

Naive Bayesian classifier (NB) are the most simple BN which S has only
one parent (the label y) and several children (features X)(Good, 1950).

Two common methods to learn a BN are TAN (Tree Augmented Naïve-
Bayes) and BAN (BN Augmented Naïve-Bayes). TAN starts creating a NB net
and then incorporates dependencies between attributes by the construction
of a tree between them. BAN incorporates a net to model the dependencies
between attributes.

C

A
1

A
2 ... A

n

(a) Naïve Bayes

C

A
1

A
2

...

A
n

(b) Bayes Net TAN in-
duced

C

A
1

A
2

...

A
n

(c) Bayes Net BAN in-
duced

Figure 2.1: Examples of methods to learn Bayesian Networks

Statistical approaches have been successfully used in semiautomatic nav-
igation during endoscopies Sucar and Gillies (1994), ozone prediction on
Mexico City Sucar et al. (1995) and crime analysis Oatley and Ewart (2003)
among others.

INAOE Computer Science Department

Theoretical Framework 11

2.2 Multi-label Classification

The traditional classification task deals with problems where each example
X is associated with a single label y ∈ L, where L is the set of classes, |L| > 1.
However, some classification problems are more complex and multiple labels
are needed (|L| > 2). This is called multi-label classification. A multi-label
dataset D is composed of N instances (X1, Y1) , (X2, Y2), ..., (XN, YN) where
Yi ⊆ L.

Examples of multi-label tasks can be found in text categorization and
medical diagnosis. Text documents usually belong to more than one class. For
example, a news story about the marriage between Shakira and Pique can be
classified as sports and entertainment (De Comité et al., 2003). Similarly, in
medical diagnosis, a patient may be suffering, for example, flu and asthma at
the same time (Perotte et al., 2014).

Nowadays, multi-label classification methods are increasingly required by
modern applications, such as protein function classification (Zhang et al., 2005),
music categorization (Li and Ogihara, 2003), and semantic scene classification
(Boutell et al., 2004). In semantic scene classification, a photograph can contain
several objects at the same time, e.g. a photograph of a beach can contain sea,
palm trees, people. Similarly, in music categorization, a song may belong to
more than one genre. For example, a song can be categorized as pop and rock.

Existing methods for multi-label classification are grouped into two main
categories (Tsoumakas and Katakis, 2007): a) problem transformation methods
and b) algorithm adaptation methods. We define problem transformation
methods as those methods that transform the multi-label classification problem
either into one or more single-label classification or regression problems. We
define algorithm adaptation methods as those methods that extend specific
learning algorithms in order to handle multi-label data directly.

2.2.1 Algorithm Adaptation Methods

There is a group of algorithms that has been adapted to handle multi-label
data (Tsoumakas et al., 2010). Examples in this group of algorithms are:

The original C4.5 algorithm was adapted for multi-label data (Clare and
King, 2001) by modifying the formula for entropy, it is calculated as a weighted
sum of the entropy for each subset where weighted sum means if an item
appears twice in a subset because it belongs to two classes then we count
it twice. A separate rule will be generated for each class at the leafs of the
decision tree.

Adaboost.MH and Adaboost.MR (Schapire and Singer, 2000) are two ex-
tensions of AdaBoost (Freund and Schapire, 1997) for multi-label classification.
They both apply AdaBoost on weak classifiers. In AdaBoost.MH, if the sign

Hierarchical Multi-label Classification for tree and DAG Hierarchies

12 Multi-label Classification

of the output of the weak classifiers is positive for a new example X and a
label yi, then we consider that this example can be labelled with yI; while if
it is negative, then this example is not labelled with yi. In AdaBoost.MR, the
output of the weak classifiers is considered for ranking each of the labels in L.

ML-kNN (Zhang and Zhou, 2005) is an adaptation of the kNN lazy learn-
ing algorithm for multi-label data. Actually this method follows the One-
Against-All paradigm. In essence, ML-kNN uses the kNN algorithm indepen-
dently for each label: It finds the k nearest examples to the test instance and
considers those that are labelled at least with yi as positive and the rest as
negative.

Elisseeff and Weston (2001) presented a ranking algorithm for multi-label
classification. Their algorithm follows the philosophy of support vector ma-
chines (SVMs). It is a linear model that minimizes a cost function, while
maintains a large separating margin. The cost function they use is ranking
loss, which is defined as the average fraction of pairs of labels that are ordered
incorrectly.

Godbole and Sarawagi (2004) present two improvements for the SVM
classifier in conjunction with the One-Against-All approach for multi-label
classification. The main idea is to extend the original data set with |L| extra
features containing the predictions of each binary classifier. Then a second
round of training |L| new binary classifiers takes place, this time using the
extended data sets. For the classification of a new example, the binary clas-
sifiers of the first round are initially used, and their output is appended to
the features of the example and then classified by the binary classifiers of the
second round.

MMAC (Thabtah et al., 2004) is an algorithm that follows the paradigm of
associative classification, which deals with the construction of classification
rule sets using association rule mining, removes the examples associated
with this rule set, and recursively learns a new rule set from the remaining
examples until no further frequent items are left. These multiple rule sets
might contain rules with similar preconditions but different labels on the right
hand side.

2.2.2 Problem Transformation Methods

There exist several simple transformations that can be used to convert a
multi-label data set to a single-label dataset with the same set of labels.

The most common approaches of problem transformation are the One-
Against-One, the One-Against-All schemes (Lorena et al., 2008) and Label
Power set (LP).

One-Against-One approach builds one classifier for each pair of classes.
Thus, for a problem with |L| classes, |L|(|L|−1)

2 classifiers are trained to distin-

INAOE Computer Science Department

Theoretical Framework 13

guish the samples of one class from the samples of another class. Usually,
classification of an unknown pattern is done according to a voting scheme
where each classifier votes for one class.

Binary relevance (BR) is an example of One-Against-All scheme. It trans-
forms any multi-label problem into one binary problem for each label. Hence
this method trains |L| binary classifiers C1,C2, ...,C|L|. Each classifier Cj is
responsible for predicting the 0/1 association for each corresponding label
yj ∈ L. For the classification of a new instance, BR outputs the union of the
labels that are positively predicted by the |L| classifiers.

LP considers each unique set of labels that exists in a multi-label training
set as one of the classes of a new single-label classification task. It combines
the entire label sets into atomic (single) labels to form a single-label problem
for which the set of possible single labels represents all distinct label subsets
in the original multi-label representation. Each (X, Y) is transformed into
(X,yi) where yi is the atomic label representing a distinct label subset. Given
a new instance, the single-label classifier of LP outputs the most probable
class, which is actually a set of labels.

Two current problem transformation methods are explained below.

2.2.2.1 Multi-dimensional Bayesian Network Classifiers

Multi-dimensional Bayesian network Classifiers (MBCs), initially proposed
by Gaag and Waal (2006), include one or more class variables and one or
more feature variables. It models the relationships between the variables by
acyclic directed graphs over the class variables and over the feature variables
separately, and further connects the two sets of variables by a bipartite directed
graph.

Bielza et al. (2011) extended MBC. Their probabilistic graphical model
organizes class and feature variables as three different subgraphs: class sub-
graph, feature subgraph, and bridge (from class to features) subgraph. Under
the standard 0–1 loss function, the most probable explanation (MPE) is com-
puted. Under other loss functions defined in accordance with a decomposable
structure, they derived theoretical results on how to minimize the expected
loss.

2.2.2.2 Chain Classifiers

One important notion we have used to include the relations of the parent
nodes is the idea of chain classifiers proposed by Read et al. (2011) and further
extended by Zaragoza et al. (2011b,a); Sucar et al. (2014).

The Classifier Chain model (CC) proposed by Read et al. (2011) involves
|L| binary classifiers as in Binary Relevance methods (see Section 2.2.2). The

Hierarchical Multi-label Classification for tree and DAG Hierarchies

14 Summary

classifiers are linked along a chain where each classifier deals with the binary
classification problem associated with a label yj ∈ L.

A chain C1, ...,C|L| of binary classifiers is formed. Each classifier Cj in
the chain is responsible for learning and predicting the binary association
of label yj given the feature space, augmented by all prior binary relevance
predictions in the chain y1, ...,yj−1 .The classification process begins at C1

and propagates along the chain: C1 determines P(y1|x) and every follow-
ing classifier C2, ...,C|L| predicts P(yj|xi,y1, ...,yj−1). This chaining method
passes label information between classifiers, allowing CC to take into account
label correlations.

The order of the labels in the chain is critical. Although there exist several
possible heuristics for selecting a chain order for CC, the authors propose
to make an ensemble calling it Ensemble Classifier Chains (ECC). It uses a
different random chain ordering for each iteration in the building process.

Zaragoza et al. (2011b); Sucar et al. (2014); Zaragoza et al. (2011a) proposed
a Bayesian Chain Classifier (BCC), which obtains a class dependency structure
out of the data. This structure determines the order of the chain, so that the
order of the class variables in the chain is consistent with the structure found
in the first stage.

The order of the classes is based in the dependencies between classes given
the features. They assume that the dependencies can be represented as a
Bayesian Network (DAG) such that they build classifiers starting from the
root and propagating the predictions downwards. They consider conditional
independencies between classes to create simpler classifiers, constructing |L|

classifiers considering only the parent class of each class. For multi-label
classification problems where there can be a large number of classes, they
considered a small subset of related classes that produce competitive results
against a more expensive strategy that uses all the previous classes in the
chain.

2.3 Summary

In this thesis we will address the problem of multi-label classification with
the particularity that the labels follow a predefined structure, typically a tree
or a Direct Acyclic Graph (DAG), the task is called Hierarchical Multi-label
Classification (HMC).

This chapter has presented an overview of the general classification task,
starting form supervised classification. It describes the pattern recognition
system designing process and the main techniques of classification. Multi-
label classification is introduced and the main groups in which it is divided
are explained.

INAOE Computer Science Department

Chapter 3

Related Work

This chapter presents a review of the work closely related to the HMC problem.
It identifies and discuss past approaches and identify similar solutions to the
proposed one.

3.1 Hierarchical Multi-label Classification

When the labels in a multi-label classification problems are ordered in a pre-
defined structure, typically a tree or a Direct Acyclic Graph (DAG), the task is
called Hierarchical Multi-label Classification (HMC). The class structure rep-
resent an “IS-A” relationship, these relations in the structure are asymmetric
(e.g., all cats are animals, but not all animals are cats) and transitive (e.g., all
Siameses are cats, and all cats are animals; therefore all Siameses are animals).

Animal

Mammal

Canine Feline

Dog Cat

...

...

... ...

Siamese ...
Siberian

Husky
...

Figure 3.1: Example of a tree hierarchy structure.

By taking into account the hierarchical organization of the classes, the
classification performance may be boosted. In hierarchical classification,
an example that belongs to certain class automatically belongs to all its
superclasses (hierarchy constraint). When a prediction fulfill the hierarchy
constraint it is called a consistent prediction. An example (using the hierarchy
in Figure 3.1) of a consistent prediction would be Animal, Mammal, Feline,

15

16 Hierarchical Multi-label Classification

Cat, Siamese; and and example of an inconsistent prediction would be Animal,
Mammal, Feline, Dog, Siberian Husky.

Some major applications of HMC can be found in the fields of text cate-
gorization (Rousu et al., 2006; Sun and Lim, 2001; Kiritchenko et al., 2004),
protein function prediction (Silla Jr. and Freitas, 2009a; Otero et al., 2010; Alves
et al., 2008), music genre classification (Silla Jr. and Freitas, 2009b; Li and
Ogihara, 2003), phoneme classification (Dekel et al., 2005, 2004), etc.

According to Freitas and de Carvalho (2007); Sun and Lim (2001) hier-
archical classification methods differ according to four criteria: hierarchical
structure, depth of the classification, number of paths returned, and explo-
ration policy.

The first criterion is the type of hierarchical structure used. This structure
is based on the problem structure and it typically is either a tree or a DAG
(Figure 3.2).

root

1 4

2 3 5 6

(a) Tree structure

root

1 4

2 3 5 6

(b) DAG structure

Figure 3.2: Hierarchical structures used in HMC

The second criterion is related to how deep the classification in the hi-
erarchy is performed. That is, the hierarchical classification method can be
implemented in a way that will always return a classification that includes a
leaf node, referred as mandatory leaf-node prediction (MLNP), MLNP can
be easily transformed into a flat problem by just taking into account the leaf
labels (see Subsection 3.1.1). On the other hand the method can consider
stopping the classification at any node in any level of the hierarchy, referred
to as Non-Mandatory Leaf Node Prediction (NMLNP).

The third criterion refers to the number of paths returned, if the classifier
returns one path from the root to a leaf node in the hierarchy, it is called
Single Path Prediction (SPP); if it returns more than one path in the hierarchy
from the root to different nodes, it is called Multiple Path Prediction (MPP).

Finally, the last criterion is related to how the hierarchical structure is
explored. The current literature often refers to top-down (or local) classifiers,
when the system employs a set of local classifiers; big-bang (or global) classi-
fiers, when a single classifier coping with the entire class hierarchy is used; or
flat classifiers, which ignore the class relationships, typically predicting only
the leaf nodes, that is, a common multi-label classifier.

INAOE Computer Science Department

Related Work 17

root

1 4

2 3 5 8

6 7 9

Figure 3.3: Flat Approach Example. A classifier that predicts only leaf nodes

3.1.1 Flat Classification Approach

The flat classification approach (Figure 3.3), is the simplest way to deal with
hierarchical classification problems. It involves ignoring the class hierarchy
completely, typically predicting only classes at the leaf nodes (MLNP). Tradi-
tional multi-label classification algorithms conform this approach. However,
it provides an indirect solution to the problem of hierarchical classification;
because when a leaf class is assigned to an example, one can consider that
all its ancestor classes are also implicitly assigned to that instance. However,
this very simple approach has the serious disadvantage of having to build a
classifier to discriminate among a possibly large number of classes (all the leaf
nodes), without exploiting information about parent-child class relationships
present in the class hierarchy.

3.1.2 Local Classifiers Approach

In the local classifier approach the hierarchy is taken into account by using a
local information perspective. This approach, can be grouped based on how
the local information is grouped and the classifiers are built. More precisely,
there are three main ways of using the local information: a local classifier per
node (LCN), a local classifier per parent node (LCPN), and a local classifier
per level (LCL).

The three types of local hierarchical classification algorithms differ signifi-
cantly in their training phase but many of them share a very similar top-down
approach in their testing phase. In this top-down approach, for each new
example in the test set, the system first predicts its root-level (most generic)
class, then it uses the predicted class to narrow the choices of classes at the
next level (the only valid candidate second-level classes are the children of the
class predicted at the first level), and so on, until the most specific prediction

Hierarchical Multi-label Classification for tree and DAG Hierarchies

18 Hierarchical Multi-label Classification

is made.
A disadvantage of the top-down class-prediction approach (which is shared

by all the three types of local classifiers) is that an error at a certain class level
is going to be propagated downwards the hierarchy, unless some procedure
for avoiding this problem is used.

If the problem is non-mandatory leaf node prediction, a blocking approach
(where an example is passed down to the next lower level only if the confidence
on the prediction at the current level is greater than a threshold) can avoid
misclassifications to be propagated downwards, at the expense of providing
the user with less specific (less useful) class predictions.

3.1.2.1 Training set selection

There are different ways to define the set of positive and negative examples
for training the local classifiers, the most common are described below.

Exclusive Policy (Eisner et al., 2005). The training set of classifier Cj consists
of two subsets: one is the positive training set (Tr+(Cj)) where only the
examples explicitly labeled as class yj as the most explicit label are selected as
part of it, while everything else belong to the negative training set (Tr−(Cj)).
In Figure 3.4, for the node 5 (j = 5), Tr+(C5) includes all the examples which
more specific class is 5; and Tr−(C5) includes those examples which most
specific class is 1, 2, 3, 4, 6, 7, 8, 9. This approach has several limitations. First,
it does not consider the hierarchy when creating the training sets. Second, it is
limited to problems that include examples with the most specific class at each
node of the hierarchy. Third, using the descendants of yj (des(yj) as negative
examples is contrary to the notion that they also belong to yj class. Fourth, it
creates unbalanced training sets with few positive examples.

Less Exclusive Policy (Eisner et al., 2005). Tr+(Cj) consists of the examples
which most explicit label is yj and Tr−(Cj) includes the rest of the instances
except those which most specific label is part of des(yj). In Figure 3.4, for
j = 5, Tr+(C5) is the set of examples which most specific class is 5, and
Tr−(C5) includes those examples which most specific class is 1, 2, 3, 4, 8,
9. This policy considers the hierarchy and assumes that the descendants of
a label also belong to the positive training set, but the second and fourth
problems of the previous approach still remain.

Less Inclusive Policy (Eisner et al., 2005; Fagni and Sebastiani, 2007). Tr+(Cj)

consists of the examples which most explicit label is yj or one in the set des(yj)
and Tr−(Cj) includes the rest of the instances except those which most specific
label is yj or des(yj). In Figure 3.4, for j = 5, Tr+(C5) is the set of examples
which most specific class is 5, 6, 7, and Tr−(C5) includes those examples

INAOE Computer Science Department

Related Work 19

which most specific class is 1, 2, 3, 4, 8, 9. This approach then is not limited to
problems that include examples with the most specific class at each node of
the hierarchy.

Inclusive Policy (Eisner et al., 2005). Tr+(Cj) consists of the examples
which most explicit label is yj or des(yj) and Tr−(Cj) includes the instances
which most specific label is not yj, des(yj) or ancestor of yj (anc(yj)). In
Figure 3.4, for j = 5, Tr+(C5) is the set of examples which most specific class
is 5, 6, 7, and Tr−(C5) includes those examples which most specific class is 1,
2, 3, 8, 9.

Siblings (Fagni and Sebastiani, 2007; Ceci and Malerba, 2007) Tr+(Cj)

consists of the examples which most explicit label is yj or des(yj), and Tr−(Cj)

includes the instances which most specific label is sibling of yj (sib(yj)) or
des(sib(yj)). In Figure 3.4, for j = 5, Tr+(C5) is the set of examples which
most specific class is 5, 6, 7, and Tr−(C5) includes those examples which most
specific class is 8, 9.

Exclusive Siblings (Ceci and Malerba, 2007). Tr+(Cj) consists of the exam-
ples which most explicit label is yj and Tr−(Cj) includes the instances which
most specific label is a sib(yj). In Figure 3.4, for j = 5, Tr+(C5) is the set of
examples which most specific class is 5 and Tr−(C5) includes those examples
which most specific class is 8.

3.1.2.2 Local classifier per node approach (LCN)

The local classifier per node approach (Figure 3.4), also called top-down
approach, is one of the most used approaches in the literature. The LCN
approach trains one binary classifier for each node of the class hierarchy
(except the root node).

During the testing phase, regardless of how the positive and negative
examples are defined, the output of each binary classifier will be a prediction
indicating whether or not a given test example belongs to the classifier’s
predicted class. One advantage of this approach is that it is naturally multi-
label in the sense that it is possible to predict multiple labels per class level. In
the case of single-label, a problem that requires only one path of classes in the
hierarchy, it is possible to enforce the prediction of a single class label per level
by assigning just the class with the highest confidence from the classifier at a
level. This approach, however, can lead to inconsistencies in class predictions,
as one can predict a class which father has not been predicted. Therefore a
correction method should be taken into account. Some of the most common
correction approaches are explained below.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

20 Hierarchical Multi-label Classification

root

1 4

2 3 5 8

6 7 9

Figure 3.4: Local Classifier per Node approach example. A binary classifier is trained
for each non-root node.

Koller and Sahami (1997) proposed the top-down approach. Its essential
characteristic is in the testing phase in a top-down fashion. This method is
forced to predict a leaf node. For example, in Figure 3.5, at the top level, the
output of the local classifier for class 4 is true, and the output of the local
classifier for class 1 is false. At the next level, the system will only consider
the output of classifiers predicting classes which are children of class 4, labels
5 and 8. The main problem of this approach is that misclassifications at higher
levels are propagated toward lower levels.

root

1 4

2 3 5 8

6 7 9

Figure 3.5: Top-Down approach example. The class predicted in a level is based on
the class predicted at the parent level.

To deal with inconsistencies generated by the LCN approach, Wu et al.
(2005) proposed the “Banalized Structured Label Learning” (BSLL). This
method stops the classification once the binary classifier for a given node
returns a negative prediction. For example, in Figure 3.5, if the output for
the binary classifier of class 4 is true, and the outputs of the binary classifiers

INAOE Computer Science Department

Related Work 21

for classes 5 and 8 are false, then this approach ignores the answer of all the
lower level classifiers predicting classes that are descendants of classes 5 and
8 and outputs the class 4 to the user. This approach makes it more difficult to
propagate the errors but does not completely solves the problem.

Dumais and Chen (2000) propose two class-membership inconsistency
correction methods based on thresholds. In order for a class to be assigned
to a test example, the probabilities for the predicted class are used. In the
first method, they use a binary condition where the posterior probability of
the classes at the first and second levels must be higher than a user specified
threshold value, in the case of a two-level class hierarchy. The second method
uses a multiplicative threshold value that takes into account the product of
the posterior probabilities of the classes at the first and second levels. The
limitation of this approach is that it is only designed for two-level hierarchies.

The main problem with the approaches that use threshold values is that
the selection of a threshold is made by an expert, who is not always available
or is unable to provide an adequate numerical value as they use empirical
knowledge to perform the task. Otherwise a strategy of automatic threshold
selection should be implemented.

DeCoro et al. (2007); Barutcuoglu and DeCoro (2006); Barutcuoglu et al.
(2006) proposed a method for inconsistency correction based on a Bayesian
aggregation of the output of the base binary classifiers. The method takes
the class hierarchy into account by transforming the hierarchical structure
of the classes into a Bayesian network. In Barutcuoglu and DeCoro (2006)
two baseline methods for conflict resolution are proposed: the first method
propagates negative predictions downward (i.e., the negative prediction at
any class node is used to overwrite the positive predictions of its descendant
nodes) while the second baseline method propagates the positive predictions
upward (i.e., the positive prediction at any class node is used to overwrite the
negative predictions of all its ancestors).

Valentini and Cesa-Bianchi (2008); Valentini (2009); Valentini and Re (2009)
propose another approach for class-membership inconsistency correction
based on the output of all classifiers, where the positive decisions for a
node influence the decisions of the parents (bottom-up) turning them positive.
Negative predictions in a node turn all its descendants negative. This approach
is called True Path, latter upgraded to Weighted True Path (the nodes acquire
a weight in the hierarchy). This method can propagate the errors, this time in
a bottom-up fashion.

Bennett and Nguyen (2009) propose a technique called expert refinements.
The refinement consists of using cross-validation in the training phase to
obtain a better estimate of the true probabilities of the predicted classes. The
refinement technique is then combined with a bottom-up training approach,
which consists of training the leaf classifiers using refinement and passing this

Hierarchical Multi-label Classification for tree and DAG Hierarchies

22 Hierarchical Multi-label Classification

information to the parent classifiers. They include the false positive instances
which have been misclassified at its ancestor nodes, hoping that these instances
will be be rejected by the current classifier and the misclassification errors will
not be further propagated to the low level nodes. These instances have the
risk of becoming noise at the low level nodes, making the trained classifiers
weaker.

Alaydie et al. (2012) developed HiBLADE (Hierarchical multi-label Boost-
ing with LAbel DEpendency); an LCN algorithm that takes advantage of, not
only the predefined hierarchical structure of the labels, but also exploits the
hidden correlation among the classes that is not shown through the hierarchy.
This algorithm attaches the predictions of the parent nodes as well as the
related classes. A common problem of this approach is that appending that
amount of attributes can create models that over-fit the data.

The previous approaches have issued the problem in the context of a single
label (per level) problem with a tree-structured class hierarchy. There are
other methods that can handle classification of multiple-label, DAG-structured
hierarchies. An example is the work of Bi and Kwok (2012, 2011) where they
propose HIROM, a method that uses the local predictions (independently
of the way they are trained) to search for the optimal consistent multi-label
using a greedy strategy. Using Bayesian decision theory, they derive the
optimal prediction rule by minimizing the conditional risk. A limitation of
this approach is that it optimizes a function that does not necessarily performs
well in other evaluation measures.

3.1.2.3 Local Classifier per Parent Node Approach (LCPN)

The Local Classifier per Parent Approach (Figure 3.6) trains a multi-class
classifier, for each parent node in the class hierarchy, to distinguish between
its child nodes. In order to train the classifiers the “siblings” policy, as well as
the “exclusive siblings” policy, both presented in the Subsection 3.1.2.2, are
adequate for this approach. During the testing phase, this approach can also
be coupled with a top-down prediction approach.

Usually in the LCPN approach the same classification algorithm is used
throughout all the class hierarchy but Secker et al. (2007) proposes a selective
top-down approach. This approach produces a tree of classifiers, at each
node the training data for that node is split into training and validation sets
with randomly selected instances. Different classifiers are trained using this
training data and tested using the validation set. The classifier with the highest
classification accuracy in the validation set is selected as the classifier for the
node. The classifier is retrained using both training and validation sets.

Extending the notion of selecting the training algorithm for each node,
Holden and Freitas (2008) used a swarm intelligence algorithm for this pur-

INAOE Computer Science Department

Related Work 23

root

1 4

2 3 5 8

6 7 9

Figure 3.6: Local Classifier per Parent Node approach example, a classifier is trained
for level of the hierarchy.

pose. This method optimizes the classification accuracy of the entire hierarchy
on the validation set instead of optimizing each classifier separately and thus
takes into account interaction among classifiers at different classifier nodes.

Silla Jr. and Freitas (2009b) proposed an LCPN algorithm combined with
two selective methods for training. The first method selects the best features
to train the classifiers, the second selects both, the best classifier and the
best subset of features simultaneously, showing that selecting a classifier and
features improves the classification performance. Secker et al. (2010) developed
a similar method where, for each node in the hierarchy, the attributes and the
classifier are chosen.

The main problem with these methods that train several classifiers for each
node, is the huge increment in the training time specially in large hierarchies.

Bi and Kwok (2011, 2012) proposed HIROM, a method that uses the
local predictions (independently of the way they are trained) to search for
the optimal consistent multi-label using a greedy strategy. Using Bayesian
decision theory, they derive the optimal prediction rule by minimizing the
conditional risk. The limitation of this approach is that it optimizes a function
that does not necessarily maximizes the performance in other evaluation
measures.

The approach of Hernandez et al. (2013), used for tree structured tax-
onomies, learns an LCPN. In the classification phase, it classifies a new
instance with the local classifier at each node, and combines the results of
all of them to obtain a score for each path from the root to a leaf-node. Two
fusion rules were used to achieve this: product rule and sum rule. Finally
it returns the path with the highest score. This approach however does not
consider that the length of the paths can affect the score; given that the method
penalizes/favors longer paths with the product/sum rule. Also, it does not

Hierarchical Multi-label Classification for tree and DAG Hierarchies

24 Hierarchical Multi-label Classification

root

1 4

2 3 5 8

6 7 9

Figure 3.7: Local Classifier per Level approach example. A classifier is trained for level
of the hierarchy (dotted squares).

take into account the relations of the nodes when classifying an instance.

The previous approaches fall into the category of single label problems
(a single path from the root note to another node), with tree structured class
hierarchies.

3.1.2.4 Local Classifier per level Approach (LCL)

The local classifier per level approach (Figure 3.7) consists on training one
multi-class classifier for each level of the class hierarchy. The creation of the
training sets here is implemented in the same way as in the local classifier per
parent node approach.

One possible (although very naïve) way of classifying test examples using
classifiers trained by this approach is to get the output of all classifiers (one
classifier per level) and use this information as the final classification. The
major drawback of this class-prediction approach is that it can cause class-
membership inconsistency. Hence, if this approach is used, it should be
complemented by a post-processing method to try to correct the prediction
inconsistency. To avoid this problem a top-down approach can be used.
In this context, the classification is done in a top-down fashion (similar to
the standard top-down class-prediction approach), restricting the possible
classification output at a given level only to the child nodes of the class node
predicted at the previous level (in the same way as it is done in the LCPN
approach).

This approach is the least used of the local approaches, it was used as
a baseline comparison method in Clare and King (2003) and Costa et al.
(2007). Cerri et al. (2013) used this approach combined with neural networks.
Predictions made by a neural network at a given level are used as inputs
to the network of the next level. The labels are predicted using a threshold

INAOE Computer Science Department

Related Work 25

value. Finally, a post processing phase is used to correct inconsistencies. One
problem with this approach is the selection of appropriate threshold values
since Cerri et al. set a given threshold of 0.5 and Clare and King; Costa et al.
do not specify it but the most probable is that they used 0.5 as well.

3.1.3 Non-mandatory leaf node prediction and the blocking
problem

The Non-Mandatory Leaf Node (NMLNP) prediction problem, allows the
most specific class predicted to any given instance to be a class at any level
i.e., internal or leaf node; of the class hierarchy, and was introduced by Sun
and Lim (2001). A simple way to deal with the NMLNP problem is to use
a threshold value at each class node, if the confidence score or posterior
probability of the classifier at a given class node for a given test example is
lower than this threshold, the classification stops for that example. A method
for automatically computing these thresholds was proposed by Ceci and
Malerba (2007).

The use of thresholds can lead to what is called the blocking problem.
Blocking occurs when, during the top-down process of classification of a test
example, the classifier at a certain level in the class hierarchy predicts that the
example in question does not have the class associated with that classifier. In
this case the classification of the example will be blocked, meaning that the
example will not be passed to the descendants of that classifier.

Three strategies to avoid blocking are discussed by Sun et al. (2003):

Threshold reduction method: This method consists of lowering the thresholds
of the subtree classifiers. Reducing the thresholds allows more ex-
amples to be passed to the classifiers at lower levels. The challenge
associated with this approach is how to determine the threshold
value of each subtree classifier. This method can be easily used
with both tree-structured and DAG-structured class hierarchies.

Restricted Voting: This method consists of creating a set of secondary classi-
fiers that will link a node and its grandparent node. The restricted
voting approach gives the low-level classifiers a chance to access
these examples before they are rejected. This method was originally
designed for tree-structured class hierarchies and extending it to
DAG-structured hierarchies would make it considerably more com-
plex and more computationally expensive, as in a DAG-structured
class hierarchy each node might have multiple parent nodes.

Extended multiplicative thresholds: This method is an extension of the mul-
tiplicative threshold proposed by Dumais and Chen (2000), which

Hierarchical Multi-label Classification for tree and DAG Hierarchies

26 Hierarchical Multi-label Classification

originally only worked for a 2-level hierarchy. The extension con-
sists of establishing thresholds recursively for every two levels.

Recently Hernandez et al. (2013) proposed a new approach to achieve NMLNP
and avoid the blocking problem. First the best path of classes in the hierarchy
is obtained and afterwards the path is pruned in a bottom-up fashion, if there
is not information gain (IG) from a child node to its parent.

A problem with using IG as pruning strategy is that, when applied in
button-up (BU) fashion, it does not prune many nodes because there is no
gain from children to parent, and often just the leaf nodes are pruned. When
applied in top-down fashion it behaves too aggressively, it prunes the majority
of the nodes, because there is no gain from parents to children. This is because
IG is a difficult condition to comply.

3.1.4 Global Classifier (big-bang) approach

Global classifiers have two main characteristics: they consider the entire class
hierarchy at once and they lack the kind of modularity for local training of
the classifier that is a core characteristic of the local classifier approach.

The global approach learns a single global model for all classes. This
kind of approach is known as the big-bang approach. In the global classifier
approach, a single classification model is built from the training set, taking into
account the class hierarchy as a whole during a single run of the classification
algorithm. When used during the test phase, each test example is classified by
the induced model, a process that can assign classes at potentially every level
of the hierarchy to the test example.

Silla Jr. and Freitas (2009a) proposed an extension of the Naïve Bayes
algorithm for flat classification, where a single global classification model is
built by considering all the classes in the hierarchy.

Vens et al. (2008); Blockeel et al. (2006); Blockeel and Bruynooghe (2002)
presented a global HMC method. It is a decision tree induction algorithm that
is based on Predictive Clustering Trees (PCT) in which a distance measure is
employed to calculate how similar are the training examples in the classifica-
tion tree. PCT were also used by Dimitrovski et al. (2010). They constructed
ensembles of PCT to improve the predictive performance in the detection of
visual concepts and annotation of images.

Otero et al. (2009) proposed an ant colony optimization (ACO) hierarchical
classification algorithm, hAnt-Miner. This method discovers classification
rules for DAG hierarchies with single path classification for NMLNP. Later
they proposed a similar method that works for multiple paths in the hierarchy,
hmAnt-Miner (Otero et al., 2010). The main problem of this approaches is the
compromise between the time it spends creating the model and the accuracy
obtained.

INAOE Computer Science Department

Related Work 27

root

1 4

2 3 5 8

6 7 9

Figure 3.8: Global Classifier approach example. One classifier (dotted square) is trained
for the complete hierarchy.

3.2 Evaluation Measures

Generally, the evaluation measures in classification problems are defined from
a matrix with the numbers of examples correctly and incorrectly classified for
each class, named confusion matrix where the false positive, false negative,
true positive, true negative examples are represented. In the case of HMC
the definition of this terns is not straightforward since the predictions can be
partially correct. If the set of predicted labels is considered as a whole and
must match exactly with the real labels the measure can be too demanding,
since even a single error makes the prediction incorrect. If each label is
evaluated as a separate example, this measure tends to be too soft due to
the typical sparsity of labels in multi-label data. For this reason measures
for conventional classification are not adequate for hierarchical multi-label
problems. Specific measures for HMC have been proposed.

In the multi-label space, predictive performance can be measured in many
ways, two of which are:

1. Label-set based evaluation. Each label set is evaluated separately (e.g.
exact match, accuracy and F1-macro D).

2. Label-based evaluation. The binary relevance of each individual label is
evaluated separately (e.g. hamming-loss and F1 macro L).

Different classifiers perform better under different evaluation measures. Since

Hierarchical Multi-label Classification for tree and DAG Hierarchies

28 Evaluation Measures

it is possible to select evaluation measures to benefit certain methods, in this
thesis, we used multiple evaluation measures.

The cardinality of set of labels is represented by |L|, N is the number of
instances in the training set. The labels of an instance are represented in a
vector of size |L| where the predicted/real labels are marked with 1 and the
rest with 0. Yi represents the real set of labels and Ŷi the predicted set of
labels.

Exact Match

Exact match (Equation (3.1)), also known as label-set based accuracy, repre-
sents the proportion of the instances that were correctly predicted from the
complete testing set.

ExactMatch =
1

N

N∑
i=1

1Yi=Ŷi
(3.1)

Exact Match is a flat performance measure and thus does not considers
the problem’s hierarchical class structure and ignore that the difficulty of
classification usually increases with the depth of the classes to be predicted
because they become more similar. Despite that fact, this measure, shows the
effectiveness of the method to return complete correct paths.

Accuracy

Accuracy as multi-label measure was introduced by Godbole and Sarawagi
(2004) (Equation (3.2)). This is the ratio of the size of the intersection and union
of the predicted and actual label sets (represented by the logical AND and OR
operations in bit-vector notation, respectively), taken for each example, and
averaged over the number of examples.

Accuracy =
1

N

N∑
i=1

∣∣Yi ∧ Ŷi
∣∣∣∣Yi ∨ Ŷi
∣∣ (3.2)

This measure is less harsh than exact match because it consider the correctly
classified labels but also ignores the the fact that the classification difficulty
tends to increase for deeper levels of the class.

Hamming Loss and Hamming Accuracy

Hamming Loss, depicted in Equation (3.3), where Yi ⊕ Ŷi is the symmetrical
difference between Yi and Ŷi (the logical XOR operation), it is a label-based

INAOE Computer Science Department

Related Work 29

evaluation measure. Hamming Loss evaluates the frequency that an example-
label pair is misclassified.

HammingLoss =
1

N|L|

N∑
i=1

∣∣Yi ⊕ Ŷi
∣∣ (3.3)

Hamming accuracy is defined as HammingAccuracy = 1−HammingLoss.

F1-measure

F1 measure for multi-label classification, is defined as the scalar F1-measure
(Equation (3.4)) but redefining precision and recall:

• precision as the fraction of predicted labels which are actually part of
the true set of labels |zi∧ẑi|

|ẑi|
; and

• recall as the fraction of true labels which are also predicted |zi∧ẑi|
|zi|

.

F1 =
2× precision× recall

precision+ recall
(3.4)

We have specified a vector z instead of the yi vector, because in the multi-
label context there are several ways to average this measure, for this thesis in
particular two of them are used:

F1-macro D (Equation (3.5)) is averaged by example (macro-averaged); N

vectors of zi ≡ yi. This measure as averaged for instances

F1macroD =
1

N

N∑
i=0

F1(zi, ẑi) (3.5)

F1-macro L (Equation (3.6)) is averaged by label (macro-averaged); M vectors
of zi ≡ [y1i , ...,yNi].

F1macro L =
1

|L|

|L|∑
i=0

F1(zi, ẑi) (3.6)

Precision and recall measures do take into account the hierarchical re-
lationships between classes. The F1-macro L measure is a per class mean
performance measure, the F1-macro D measure is a per instance mean perfor-
mance measure.

Hierarchical Loss (H-loss)

Is a loss function, proposed by Cesa-Bianchi et al. (2006), that takes into
account the hierarchical structure . The term yi represents the real ith label
ŷi the predicted ith labels, and anc(i) the set of ancestors of node i.

Hloss =
1

N

N∑
i=0

|L|∑
j=0

{
ŷj 6= yj ∧ ŷk = yk,k ∈ anc(j)

}
(3.7)

Hierarchical Multi-label Classification for tree and DAG Hierarchies

30 Summary

All paths in the hierarchy from a root down to a leaf are examined and,
whenever a node i is encountered such that ŷi 6= yi, then 1 is added to the
loss, while all the loss contributions in the subtree rooted at i are discarded.

At the point where the error is discovered it is known that the predicted
path is not equal to the real one, but the error propagation problem present in
hierarchical classification is not taken into account.

3.2.1 Analysis

These six evaluation measures capture different aspects of the rightness of
a predictions, exact match captures the complete correct paths, accuracy
captures the rate of the real labels in the predicted set, Hamming loss (and
thus Hamming accuracy) captures the error rate by number of labels, F1-macro
D captures the compromise between precision and recall along the instances
and thus the behavior along the dataset, F1-macro L does the same but for
classes, H-loss captures the opposite to exact match, the paths which had an
error.

Since an exact prediction is difficult to obtain in HMC, the current existing
measures try to describe the rightness of a prediction. They capture some
of the characteristics that are needed to determine if the prediction is good
or bad, like the number of correctly predicted set labels and the real set of
labels; but they ignore some crucial information obtained from the structure
itself that allow conservative predictions to obtain good scores. The level on
which the error was made and the number of siblings of a node are some
examples. This lack of information causes that, in average, current measures
to score conservative predictions better than more specific ones that are closer
to real set of labels. We propose a new metric to avoid these problems, the
new metric is described in Section 4.5.

3.3 Summary

This chapter described the approaches to tackle the HMC problem and collect
the main works in the area. It also described common evaluation measures
used for multi-label and hierarchical multi-label predictions, we found a gap
in current evaluation measures that favor conservative predictions.

Next chapter describes a novel HMC approach and a new evaluation
measure that tries to avoid favoring conservative predictions.

INAOE Computer Science Department

Chapter 4

Chained Path Evaluation

We developed a hierarchical classification method, named Chained Path
Evaluation (CPE), that exploits the relation of the labels with its ancestors
in the hierarchy. We evaluate each possible path from the root to a leaf or
intermediate node using a merging rule that takes into account the level of the
predicted labels to give a score to each path and finally return the one with
the best score.

The method has two variants, one for Mandatory Leaf Node Prediction
(MLNP) and one for Non Mandatory Leaf Node Prediction (NMLNP). The
difference between them is a pruning step performed before emitting the final
prediction included in NMLNP. They both have the same training process.

This chapter explains in detail the training and classification procedure
we used for the proposed method, and the extension for NMLNP, as well a a
novel metric proposed for NMLNP evaluation.

4.1 Training

Let D be a training set with N examples, ee = (Xe, Ye), where Xe is a d-
dimensional feature vector and Ye ⊂ L, L = {y1,y2, ...,y|L|} is a finite set of
|L| possible labels or classes. It bears mentioning that regularly Ye is a small
set compared with |L|. Ye is represented as a 0/1 vector Ye ∈ {0, 1}|L|, where
yi = 1 if and only if yi ∈ Ye else yi = 0.

A multi-class classifier Ci is trained for each non leaf node yi (LCPN),
henceforth called base classifier. Any classifier can be used as base classifier as
long as it return a probability or its output can be converted to a probability.
The classes in Ci are the labels of the children of yi (child(yi)) plus an
“unknown” label that corresponds to the instances that do not belong to
child(yi). To select the instances in the training set of Ci we use a modification
of the siblings policy (see Subsection 3.1.2.2).

As in multidimensional classification, the class of each node in the hierar-
chy is not independent from the other nodes. To incorporate these relations,

31

32 Training

inspired by chain classifiers, we include the class predicted by the parent
node(s) as an additional attribute in the LCPN classifier. That is, the feature
space of each node in the hierarchy is extended with the 0/1 label associated
to the parent (tree structure) or parents (DAG structure) of the node, as in a
Bayesian Chain Classifier (Section 2.2.2.2).

The set of positive training examples (Tr+(Ci)) consists of the instances
where child(yi) = 1, that is, all the instances that include a children of yi in
their set of classes (child(yi) ∈ Ye). Each instance in this set will be labeled
with the corresponding child(yi) label. In this set, the added features of the
parents will have the value true since all the instances are their children.

root

y1 y4

y2 y3 y5 y8

y6 y7 y9

Tr+(C5): instances in y6 and y7

Tr+(C5) = {∀x|x∈child(y5)}

Labels: y6 and y7

Instances: 6

Tr-(C5): subset of

instances

in y8

Tr-(C5)= {∃x|

x∈sib(y5)}

Label: "unknown"

Instances:

average(child(y5))

(3+3)/2=3

Training set for C5

Tr(C5)= Tr
+(C5) U Tr

-(C5)

Labels: y6, y7 and

"unknown"
Instances: 9

5 inst 6 inst

11 inst 12 inst

6 inst 6 inst

3 inst 3 inst 6 inst

Figure 4.1: Example of the selection of the training set for the classifier (C5) in node
y5 . The positive set (Tr+(C5)) consists of the instances where child(y5) =

{y6,y7} = 1, labeled with the corresponding child(y5) label. The negative
set (Tr−(C5)) consists of the instances in sib(y5) = {y8}, this set will be
labeled as “unknown”. This set is under-sampled to make the number of
instances proportional to the average of the training examples for child(y5).

The negative training set (Tr−(Ci)) consists of the instances in the siblings
of yi (sib(yi)) or, in the case that yi has no siblings, the uncles (sib(pa(yi)).
The siblings include all the children nodes of the parents of yi (pa(yi)) except
yi. This set will be labeled as “unknown”. This set is under-sampled to
create a balanced training set, to obtain the highest balanced accuracy (Qiong
Wei, Roland L. Dunbrack, 2013). The number of under-sampled instances is
proportional to the mean of the training examples for each e ∈ child(yi). In
this set the labels of the associated parent attributes have a zero value, the

INAOE Computer Science Department

Chained Path Evaluation 33

idea is to reduce the probability of an instance which parent is predicted as
zero. Figure 4.1 depicts an example of the training process.

4.2 Merging Rule

The rule that merges the predictions of each local classifier into one score
considers the level in the hierarchy of the node to determine the weight that
this node will have in the overall score. Misclassifications at the upper hierar-
chy levels (which correspond to more generic concepts) are more expensive
than those at the lower levels (which correspond to more specific concepts).
The intuition behind the selection of the weights is that, in the upper levels
there are more examples and the classes are more different, then there is more
information to discriminate the classes. Also, an error in the upper levels will
cause a wrong path from the beginning, if it is in lower levels just part of the
path will be wrong.

To achieve this task, the weight of a node (w(yi)) is defined by Equation
4.2, where level(yi) is the level at which the node yi is placed in the hierarchy
(Equation 4.1). For a tree structure it is simply the level of its parent plus one
(to avoid the last level to have weight equal to zero), and for DAG structures
it is computed as the mean of the levels of the m parents (pa(yi)) of the
node (yi) plus one. Finally, maxLevel is the length of the longest path in the
hierarchy (see Figure 4.2). This way of computing the weight of each node
assures that the weights are well distributed along the hierarchy; so that the
weights of the lower levels do not tend rapidly to zero (Bi and Kwok, 2011), or
decrease very slow (Vens et al., 2008).

level(yi) = 1+

∑m
j=1 level(pa(yi)j)

|pa(yi)|
(4.1)

w(yi) = 1−
level(yi)

maxLevel+ 1
(4.2)

Equation 4.3 describes the merging rule which is the sum of the logarithms
of the probabilities on the nodes along the path; where p is the number of
nodes in the path, yi is the ith node in the path and P(yi = 1|xe,pa(yi)) is
the probability of the node yi to be predicted as true by the local classifier.
Taking the sum of logarithms is used to ensure numerical stability, in other
words minimize approximation errors, when computing the probability for
long paths. Figure 4.4 depicts the classification procedure.

score =

p∑
i=1

w(yi) ∗ log(P(yi|xe,pa(yi))) (4.3)

Hierarchical Multi-label Classification for tree and DAG Hierarchies

34 Merging Rule

root

1 6

2 3

4

7 10

5

8 9

1 1

2 2 2 2

2.5 3 3

3.5

maxLevel = 3

(a) Fetch the level of each node and the
maximal depth of the hierarchy

root

1 6

2 3

4

7 10

5

8 9

1-(1/4) =

0.75
0.75

1-(2/4) =

0.5
0.5 0.5 0.5

1-(2.5/4) =

0.375

1-(3/4) =

0.25
0.25

1-(3.5/4) =

0.125

(b) Compute the weight for each node using the
information obtained in (a)

Figure 4.2: Example of the computation of the weight of the nodes of CPE.

root

1 6

2 3

4

7 10

5

8 9

0.5 0.5

0.25 0.25 0.160.16

0.08 0.080.41

0.41

(a) Bi and Kwok (2011) approach

root

1 6

2 3

4

7 10

5

8 9

0.75 0.75

0.56 0.56 0.560.56

0.42 0.420.49

0.37

(b) Vens et al. (2008) approach

Figure 4.3: Example of the computation of the weight of the nodes using two different
approaches.

To simplify the computation, this scheme assumes independence between
the labels, although in an indirect way the dependencies with the parent
nodes are considered by incorporating them as additional attributes. As in
bayesian chain classifiers, this scheme looks for a balance between classification
accuracy and computational complexity.

For DAG structures there might be numerous paths from the root to one

INAOE Computer Science Department

Chained Path Evaluation 35

leaf node. In that case, all the paths that end in that leaf node are returned.

A detailed representation of the classification phase of the algorithm is
given in Algorithm 4.1. In the algorithm the confidences of each node are
obtained by calling the local classification process described in Algorithm 4.2
for MNLP and in Algorithm 4.3 for NMLNP, then all the possible paths are
obtained and stored in allPaths. Finally, a score is associated with each path
and the better is returned as final prediction.

Algorithm 4.1 CPE. Algorithm for classifying a new instance.

Require: x (test example), H (hierarchical structure)
Ensure: path, a set of classes that describes a path from the root to a leaf

node
1: confidences = LC(H.root)
2: allPaths←get all the paths from the root to a leaf node in the hierarchy

H

3: maxScore← −∞
4: path← null

5: for all pi ∈ allPaths do
6: score← compute score for pi using equation Equation (4.3)
7: if score > maxScore then
8: maxScore = score

9: path = pi

10: end if
11: end for

4.3 Classification for MLNP

The classification phase consists in calculating, for each new instance with
feature vector Xe, the probability of a label yi to occur given the feature vector
and the prediction of the parents of each label P(yi = 1|Xe,pa(yi)).

When the structure of the dataset is a DAG it is possible that we obtain
more than one prediction for one class, then the associated prediction is the
average of all the predictions for that class, in other words the average of the
prediction of all the parents for that class, this is because the path to a node
includes all its ancestors.

Algorithm 4.2 gives an overview of the local classification process for
MLNP.

After computing a probability for each node, the predictions are merged
using the rule explained in Section 4.2 to obtain a score for each path.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

36 Classification for MLNP

root

y1 y6

y2 y3

y4

y7 y10

y5

y8 y9

P(y1=1|xe)

=0.4

P(y6=1|xe)

=0.5

P(y2=1|xe,y1)

=0.3

P(y3=1|xe,y1)

=0.4

P(y4=1|xe,y3,y6)

=0.7

P(y5=1|xe,y4)

=0.5

P(y8=1|xe,y7)

=0.1

P(y9=1|xe,y7)

=0.5

P(y7=1|xe,y6)

=0.4

P(y10=1|xe,y6)

=0.2

(a) Each node has an associated probability P(yi|xe,pa(i))

root

0.75*log(0.4) 0.75*log(0.5)

0.5*log(0.3) 0.5*log(0.4)

0.375*log(0.7)

0.5*log(0.4) 0.5*log(0.2)

0.125*log(0.5)

0.25*log(0.1) 0.25*log(0.5)

+ +

+

+

+

+ +

+ +
=

=

= =

-0.560

-0.819

-0.675 -0.5

-0.575

=

(b) The probability is used to compute the overall score of
the path, the path with the best score is returned as final
prediction.

Figure 4.4: Example of the application of the merging rule. Figure 4.2 shows the wj of
the nodes. The best path is marked by the bold, grey nodes in (b).

INAOE Computer Science Department

Chained Path Evaluation 37

Algorithm 4.2 LC. Algorithm that describes the local classification process for
the MLNP version.
Require: xi (test example), yi (root node of the hierarchical structure), C (set

of classifiers, one for each non leaf node)
Ensure: confidences (an array with the confidences of each node)

1: if yi is not a leaf and has not been visited before then
2: if all pa(yi) have been visited then
3: mark yi visited
4: for all yj ∈ child(yi) do
5: confidences[j] = P(yj = 1|xj,yi)/|pa(yj)| {use Ci to compute the

probabilities for the children}
6: LC(yj)

7: end for
8: end if
9: end if

4.4 Classification for NMLNP

Sometimes the information available is not sufficient to estimate the class of
an instance at the lower levels in the hierarchy, so it could be better to truncate
the predicted path at some previous level, this is known as non-mandatory
leaf node prediction (NMLNP). The set of labels of the instances contained in
this kind of datasets does not necessarily contain a leaf node. We introduce a
pruning phase to obtain NMLNPs. We consider three decisions that need to
be considered for pruning: direction, time and condition.

Pruning time

Determines when to perform the pruning stage:

1. Prune & Choose. Prunes the hierarchy before computing the score to
choose the best path.

2. Choose & Prune. Prunes the path that obtained the best score in the
classification phase.

Pruning direction

Determines the way the hierarchy is traversed to prune:

1. Top-Down. The hierarchy is traversed starting from the root node. When
the pruning condition is met in one node, the traversing is stopped and
the descendants of the node are pruned.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

38 Classification for NMLNP

2. Bottom-Up. The hierarchy is traversed starting from the leaf nodes.
When the pruning condition is met in one node, the traversing is stopped
and the node and its descendants are pruned.

Pruning condition

Establishes the condition to prune a node. In this thesis we considered the
following options:

1. Sum of children probabilities (SUM). Prunes if the sum of the prob-
abilities of the children is less than the probability of the “unknown”
label.

2. Most probable child (BEST). Prunes if the probability of the most proba-
ble child is less than the probability of the “unknown” label.

3. Information Gain (IG). Prunes if there is no information gain when
including the child in the prediction.

We compared the different pruning decisions experimentally (Appendix E).
The better approach for the task was to Prune & Choose in a Top-Down fashion,
using the most probable child (BEST) as the condition to prune a node. We
think this is because Prune & Choose allow our method to choose from the
nodes that really have probabilities to appear in the real label set and avoid
that the labels/nodes that does not have probability and thus decrease the
score of a correct path that does not reach a leaf node; regarding to Top-Down
decision it privileges to cut the first label that does not provide information
to the prediction instead of deleting the last one as in Bottom-Up, finally the
pruning condition BEST is more conservative than SUM because it is needed
the only one node has the sufficient probability to surpass the unknown label,
in the SUM approach even if all the probabilities of the nodes are not very
high the sum could surpass the unknown label, IG proved to be the worst
because it is rarely fulfilled.

Algorithm 4.3 gives an overview of the local classification process for
NMLNP adding the pruning step.

The root of some hierarchies has just one child, node “1” in Figure 4.5.
During the pruning experimentation we noticed that one pruning combina-
tion returned as prediction just node “1”, which does not contribute to the
discrimination of the classes (since all the instances belong to that node); the
interesting thing is that all the evaluation measures explained in Section 3.2
assigned the best scores to that conservative approach and the rest pruning
approaches did not had a clear difference in any evaluation measure. That is
why we propose a new evaluation measure that avoids that kind of bias by
considering the number of children that a node has.

INAOE Computer Science Department

Chained Path Evaluation 39

Algorithm 4.3 LC. Algorithm that describes the local classification process for
the NMLNP version.
Require: xi (test example), yi (root node of the hierarchical structure), C (set

of classifiers, one for each non leaf node)
Ensure: confidences (an array with the confidences of each node)

1: if yi is not a leaf and has not been visited before then
2: if all pa(yi) have been visited then
3: mark yi visited
4: maxConfidence← 0

5: totalConfidence← 0

6: bestChild← null

7: for all yj ∈ child(yi) do
8: confidences[j] = P(yj = 1|xj,yi)/|pa(yj)| {use Ci to compute the

probability }
9: totalConfidence← totalConfidence+ confidences[j]

10: if confidences[j] > maxConfidence then
11: maxConfidence← confidences[j]

12: bestChild← j

13: end if
14: end for
15: unknown← 1− totalConfidences

16: if maxConfidence > unknown then
17: for all yj ∈ child(yi) do
18: LC(yj)

19: end for
20: end if
21: end if
22: end if

4.5 Gain-Loose Balance

In this thesis we propose a new evaluation measure for hierarchical classifiers
that avoids conservative predictions when using NMLNP. Gain-Loose Balance
(GLB) determine the rewards and penalties using the number of siblings of
the node and the depth of the node in the hierarchy.

Based on the notion that discriminating few categories is much easier than
discriminating many of them, a correctly classified node with few siblings has
a minor impact on the rewards than one with many. On the other hand, a
misclassified node with few siblings has a mayor impact on the penalty than
one with many.

A correctly classified node that belongs to a deep level in the hierarchy has

Hierarchical Multi-label Classification for tree and DAG Hierarchies

40 Gain-Loose Balance

more impact on the rewards than one in shallow levels, because reaching the
most specific node of the real labels is the goal of the prediction. In contrast,
a misclassified node in a deep level of the hierarchy has less impact in the
penalty than one in shallow levels, because an error in the last levels of the
hierarchy will produce a prediction more similar to the real set of labels.

Equation (4.4) describes the GLB measure, where np is the number of
correct classified labels, nfp is the number of false positive errors, nfn is the
number of false negative errors, nt is the number of true labels, N represents
the number of siblings plus one (the node that is being evaluated), and wi is
the weight of the node (see Equation (4.2)). The first term represent the gains
and the second the loses, there are two kinds of losses: false positive and false
negative which are represented by the summations.

GLB =

∑np

i=0(1−
1
N)(1−wi)∑nt

i=0(1−
1
N)(1−wi)

−

(nfp∑
i=0

1

N
wi +

nfn∑
i=0

1

N
wi

)
(4.4)

Gain-Loose Balance ranges from 1 (when the predicted path is equal to
the real path) to −maxL

2 (see Equation (4.5)), where maxL is the maximum
number of levels in the hierarchy (see Equation (4.1)). The worst case scenario,
when the loss is bigger (the second term in Equation (4.4)), is where not one
label is correctly classified and an incorrect path down to the deepest leaf
node has been predicted, if each node of this path has just one sibling the
error will reach the maximum value, because an error in a node with less
siblings is more expensive, then N was set to N = 2.

min = −2

maxL∑
i=1

1

N
wi (4.5)

= −2

maxL∑
i=1

1

2

(
1−

i

maxL+ 1

)

= −2

(
maxL∑
i=1

1

2
−

1

2(maxL+ 1)

maxL∑
i=1

i

)

= −2

(
1

2

maxL∑
i=1

1−
1

2(maxL+ 1)

(
maxL(maxL+ 1)

2

))

= −2

(
maxL

2
−

maxL

4

)
= −maxL+

maxL

2

= −
maxL

2

As we know the maximum and minimum values of the GLB measure we
transformed it into a (0, 1) range maintaining the ratio. Then Normalized GLB

INAOE Computer Science Department

Chained Path Evaluation 41

is described by NGLB = f(GLB), f(GLB) is defined in Equation (4.6), where
max = 1 and min is defined in Equation (4.5).

f(GLB) =
(GLB−min)

max−min
(4.6)

root

1

2 41 43 47 53 55

3 4 5 8 20

6

7

9 12 14

10

11

13 15 18 19

16

17

21 22 26 27

23 24

25

28

35

29

30

31

32

33

34

42 44 45

46

48 52

49 51

50

54 5636 37

38

39

40

Figure 4.5: Example of the hierarchy cellcycle_GO where the pruning conditions were
tested.

4.6 Summary

This chapter has described the proposed HMC method: Chained Path Evalua-
tion (CPE). Our method computes the probability of each label using a local
classifier in each non leaf node, unlike previous approaches, we proposed that
this predictions were linked with the prediction of the parent node to take
into account the relations of the nodes. A score for each path from the root to
a leaf node is computed considering the level of the nodes in the path with
a novel weighting scheme; finally the best path is selected and returned as
prediction. If we need a NMLNP we perform a pruning phase in a top-down

Hierarchical Multi-label Classification for tree and DAG Hierarchies

42 Summary

fashion deleting the nodes where the probability of unknown is greater than
the probability of the most probable node.

Lastly we propose a new evaluation metric that try to avoid the bias
towards conservative predictions.

INAOE Computer Science Department

Chapter 5

Experiments and Results

We carried out several experiments on a number of datasets in the field of
functional genomics.

First we present the experimental setup, that contains the description and
topology of the datasets. Next we present a set of experiments to evaluate
several aspects of our method.

5.1 Experimental Setup

This section outlines the framework for the experiments.

5.1.1 Datasets

Eighteen datasets were used in the tests, these datasets are from the field of
functional genomics1. They were selected because of the relevance of the field
and because they perfectly fit the hierarchical approach we are dealing with.
Another reason is that they are available online, and accessible for free.

The different data sets describe different aspects of the genes in the yeast
genome. They include five types of bioinformatic data: sequence statistics,
phenotype and expression. Below, we describe each data set:

pheno contains phenotype data, which represents the growth or lack of
growth of knock-out mutants that are missing the gene in question. The
gene is removed or disabled and the resulting organism is grown with
a variety of media to determine what the modified organism might be
sensitive or resistant to. The attributes are discrete, and the data set is
sparse, since not all knock-outs have been grown under all conditions.

seq records sequence statistics that depend on the amino acid sequence of
the protein for which the gene codes. These include amino acid ratios,
sequence length, molecular weight and hydrophobicity. Attributes are

1http://dtai.cs.kuleuven.be/clus/hmcdatasets/

43

44 Experimental Setup

mostly real valued, with a few exceptions (like chromosome number or
strand) being discrete.

other The use of microarrays to record the expression of genes is popular in
biology and bioinformatics. Microarray chips provide the means to test
the expression levels of genes across an entire genome in a single exper-
iment. Many expression data sets exist for yeast, and several of these
were used. Attributes for these data sets are real valued, representing
fold changes in expression levels.

There are two versions of most of the datasets. The input attributes are identi-
cal in both versions, but the classes are taken from two different classification
schemes. In the first version, they are from FunCat (Ruepp et al., 2004), a
scheme for classifying the functions of gene products developed by MIPS (Mu-
nich Information Center for Protein Sequences). FunCat is a tree-structured
class hierarchy. In the second version of the data sets, the genes are annotated
with terms from the Gene Ontology (GO) (Ashburner et al., 2000), which
forms a directed acyclic graph instead of a tree: each term can have multiple
parents.

root

1

0

2 3 4

5

6

7 8

9

10 11 12

13

14

15

16

17

18 22

19

20 21

23

24

25 28 31 32

29 30 33

34

35

Figure 5.1: Structure of cellcycle_FUN dataset for MLNP

Since the labels of the instances in the datasets included more than one
path, and this paths were NMLNP, the labels have been trimmed to get
instances with no more than one path in the hierarchy from the root to a leaf
node (if one node has two parents both are part of the path). We selected the
first path that appeared in each instance.

For the set of experiments regarding MLNP the labels in the datasets were
trimmed to get paths that reached one leaf node. Only the leaf nodes with
enough instances to train were considered, more than 70 for tree hierarchies
and more than 50 for DAG hierarchies to avoid overfitting (little general-
ization, difficult to apply to new data); thus having a hierarchical tree like
structure with up to four levels of increasing specificity and a DAG structure
of maximum 11 levels. The datasets are described in Table 5.1.

INAOE Computer Science Department

Experiments and Results 45

Table 5.1: Description of the datasets for the MLNP experiments. |L| = Number of
Labels, LC = Label Cardinality (average number of labels relevant to each
instance), A = Number of Attributes, N = Number of Instances and D =
Maximum Depth

(a) Tree Datasets

Dataset |L| LC A N D

cellcylcle_FUN 36 2.47 78 2339 4

church_FUN 36 2.45 28 2340 4

derisi_FUN 37 2.48 64 2381 4

eisen_FUN 25 2.26 80 1681 3

expr_FUN 36 2.46 552 2346 4

gasch1_FUN 36 2.47 174 2356 4

gasch2_FUN 36 2.46 53 2356 4

pheno_FUN 17 1.94 70 1162 3

seq_FUN 39 2.43 479 2466 4

spo_FUN 36 2.47 81 2302 4

(b) DAG datasets

Dataset |L| LC A N D

cellcycle_GO 53 4.28 78 1708 11

church_GO 53 4.28 28 1711 11

derisi_GO 54 4.46 64 1746 11

expr_GO 53 4.34 552 1720 11

gasch1_GO 53 4.33 174 1716 11

gasch2_GO 53 4.37 53 1720 11

seq_GO 52 4.26 479 1711 11

spo_GO 53 4.31 81 1685 11

For the set of experiments for NMLNP the instances in the datasets were
trimmed to get paths that not necessarily reached a leaf node. Only the
nodes with more than 50 instances to train were considered. The datasets are
described in Table 5.2. Since the pruning is not so strict these datasets have
more instances and labels.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

46 Experimental Setup

Table 5.2: Description of the datasets for the NMLNP experiments. |L| = Number of
Labels, LC = Label Cardinality (average number of labels relevant to each
instance), A = Number of Attributes, N=Number of Instances and D =
Maximum Depth

(a) Tree datasets

Dataset |L| LC A N D

cellcylcle_FUN 49 2.45 78 3602 4

church_FUN 49 2.45 28 3603 4

derisi_FUN 49 2.44 64 3675 4

eisen_FUN 35 2.26 80 2335 4

expr_FUN 49 2.44 552 3624 4

gasch1_FUN 49 2.45 174 3611 4

gasch2_FUN 49 2.48 53 3624 4

pheno_FUN 22 1.96 70 1462 3

seq_FUN 51 2.40 479 3765 4

spo_FUN 49 2.45 81 3553 4

(b) DAG datasets

Dataset |L| LC A N D

cellcycle_GO 56 3.38 78 3516 11

church_GO 56 3.37 28 3515 11

derisi_GO 57 3.41 64 3485 11

expr_GO 56 3.39 552 3537 11

gasch1_GO 56 3.38 174 3524 11

gasch2_GO 56 3.44 53 3537 11

seq_GO 59 3.45 479 3659 11

spo_GO 56 3.39 81 3466 11

5.1.2 Data Topology

To discover the topology of the datasets we tested the capacity of dimension-
ality reduction of the datasets to approximate the linearity or non-linearity
of the problems. This is because the dependencies in many complex systems
have been found to be better approximated by relationships where every time
you double one quantity the other one is multiplied by a number which is
not two (non-linear relationships) than by linear relationships. A non-linear
relation is a more general form of relationship and for this reason it should be
a better approximation for a complex system (Bar-Yam, 2011). However, there
are cases where complex systems are represented by linear relationships and
vice versa.

INAOE Computer Science Department

Experiments and Results 47

We used two different methods to find the intrinsic dimension. The
intrinsic dimension of a problem is the number of independent variables that
explain satisfactorily that problem. A problem which is in appearance high-
dimensional, and thus complex, can actually be governed by a few simple
variables (Campbell, 1988; Carreira-Perpiñan, 1997).

The first method is a linear approach called Principal Component Analysis
(PCA) (Jolliffe, 1986). The method generates a new set of variables, called
principal components. Each principal component is a linear combination of
the original variables. The full set of principal components is as large as the
original set of variables. But it is commonplace for the sum of the variances of
the first few principal components to exceed 80% of the total variance of the
original data, this is the configuration we used.

The second method is a non linear approach, IsoMap (Tenenbaum et al.,
2000). It construct a complete weighted graph with all the attributes, then
prunes the graph by using k nearest neighbors, next it uses Floyd’s algorithm
to compute the shortest paths and reconstruct the graph, finally applies
MDS. IsoMap was tested using from 3 to 12 neighbors to find the intrinsic
dimensionality that best suited the data. The number of neighbors (k) that
best explained the data is reported along with the dimensionality reduction
for each method.

For both methods the intrinsic dimensionality is reported as well as the
percentage of the data explained by that dimensionality.

Table 5.3: Dimensionality reduction for tree structured datasets. The percentage of
data explained by each method is reported after the number of reduced
attributes. A = Number of Attributes or Explicit Dimensionality

Dataset A
Linear Intrinsic
Dimensionality

[Abs (%)]

Non-Linear
Intrinsic

Dimensionality
[Abs (%)]

Linearity

cellcycle_FUN 78 40 (89.84%) 4 (60.12%) k=11 Non-linear

church_FUN 28 1 (85.12%) 2 (72.06%) k=10 Linear

derisi_FUN 64 2 (87.55%) 4 (76.75%) k=10 Linear

eisen_FUN 80 27 (89.83%) 3 (48.06%) k=7 Non-linear

expr_FUN 552 6 (88.29%) 4 (71.89%) k=4 Unclear

gasch1_FUN 174 45 (89.99%) 4 (55.47%) k=9 Non-linear

gasch2_FUN 53 21 (89.62%) 4 (59.04%) k=4 Non-linear

pheno_FUN 70 2 (87.18%) 4 (76.50%) k=4 Linear

seq_FUN 479 1 (99.99%) 4 (27.74%) k=8 Linear

spo_FUN 81 6 (89.31%) 3 (80.58%) k=12 Unclear

Hierarchical Multi-label Classification for tree and DAG Hierarchies

48 Experiments

From Table 5.3, it can be inferred that the datasets church_FUN and
seq_FUN are two datasets that have a lot of irrelevant or redundant infor-
mation. derisi_FUN and pheno_FUN are linear problems (most probably
non complex problems). expr_FUN and spo_FUN are problems with unclear
linearity. While cellcycle_FUN, eisen_FUN, gasch1_FUN and gasch2_FUN are
non-linear problems due to the large intrinsic dimensionality and thus most
probably the most complex of the group.

Table 5.4: Dimensionality reduction for DAG structured datasets. The percentage of
data explained by each method is reported after the number of reduced
attributes (%). A = Number of Attributes or Explicit Dimensionality

Dataset A
Linear Intrinsic
Dimensionality

[Abs (%)]

Non-Linear
Intrinsic

Dimensionality
[Abs (%)]

Linearity

cellcycle_GO 78 40 (89.56%) 6 (75.05%) k=11 Non-linear

church_GO 28 1 (86.79%) 2 (73.08%) k=9 Linear

derisi_GO 64 2 (88.52%) 4 (69.33%) k=3 Linear

expr_GO 552 6 (89.32%) 3 (60.95%) k=3 Unclear

gasch1_GO 174 39 (89.92%) 3 (47.52%) k=9 Non-linear

gasch2_GO 53 20 (89.35%) 6 (74.80%) k=5 Non-linear

seq_GO 479 1 (99.99%) 4 (28.77%) k=11 Linear

spo_GO 81 6 (89.69%) 3 (80.26%) k=12 Unclear

From the results it for DAG structured datasets, in Table 5.3, can be inferred
that the datasets church_GO, seq_GO and derisi_GO are linear problems.
While cellcycle_GO, gasch1_GO and gasch2_GO are non-linear problems with
the probability in complexity that it entail.

5.2 Experiments

We performed a set of experiments:

• to determine the best base classifier for the datasets,

• to compare the effectiveness of the proposed weighting scheme,

• to compare the MLNP version of our algorithm against other MLNP
methods,

• to determine the effect of depth over the classification performance,

• to contrast the NMLNP version of our algorithm against the MLNP
version,

INAOE Computer Science Department

Experiments and Results 49

• to compare the NMLNP version of our algorithm against other NMLNP
methods and

• to estimate training and testing time.

5.2.1 Base Classifier

An experiment was designed to select the base classifier that best suits the
datasets used to test our method and select the base classifier for the rest of
the experiments. The experiment was performed over the 18 datasets using
a ten-cross-fold validation scheme. We compared the performance of our
method with six different hierarchical measures (see Section 3.2), using as
base classifier five common methods selected from the techniques described
in Subsection 2.1.1, the base classifiers were set with the default parameters of
Weka.

1. Decision Tables (DT). Accuracy was the measure used to evaluate the
attribute combinations which were selected by Best First method.

2. C4.5. The confidence factor used for pruning was 0.25. The minimum
number of instances per leaf was set to 2.

3. Support Vector Machines (SVMs). The kernel used was a PolyKernel
(k(x,y) = 〈x,y〉p or k(x,y) = (〈x,y〉+ 1)p)

4. Naïve Bayes (NB). Numeric estimator precision values are chosen based
on analysis of the training data.

5. Random Forest (RF). Generated 10 trees, and selected log2(A) + 1 at-
tributes, where A is the number of attributes.

The results are depicted in Table 5.5. The results represented as the mean over
all the datasets. The complete set of results for each dataset is in Appendix A.

Table 5.5: Performance (mean [std]) of the different base classifiers along the evaluation
metrics. The best results are marked with bold letter.

Evaluation
Measures

DT C4.5 SVM NB RF

Accuracy 19.5 [11.73] 22.03 [6.6] 19.42 [10.7] 26.09 [9.08] 30.69 [9.41]

Exact Match 8.34 [2.38] 7.1 [3.32] 11.42 [3.64] 17.5[5.99] 20.26 [5.67]

Hamming
Accuracy

90.76 [1.91] 90.55 [1.94] 90.31 [1.75] 89.47 [2.32] 91.07 [1.98]

F1-macro D 25.68 [17.68] 30.08 [11.94] 24.52 [15.61] 31.48 [12.39] 36.67 [12.69]

F1-macro L 3.91 [2.19] 2.86 [0.6] 3.77 [1.75] 13.45 [5.39] 14.02 [4.63]

H-loss 1.847 [0.05] 1.871 [0.08] 1.789 [0.06] 1.675 [0.12] 1.611 [0.11]

Hierarchical Multi-label Classification for tree and DAG Hierarchies

50 Experiments

Using Random Forest as base classifier improves the classification perfor-
mance of our method and even though the standard deviation does intersect
when the results are averaged by datasets it does not intersect in most of the
cases when the datasets are evaluated separately (see Appendix Chapter A).

Discussion

The reason of RF’s better performance could be that RF is efficient for big
datasets, can handle many variables and works well in the presence of redun-
dant attributes which is the case of many of the datasets. This suggests that
Random Forest is the best base classifier for this set of datasets.

We used RF for as base classifier for further experiments. We tested all
the methods using the same base classifier (RF) because we are testing the
performance of the approaches by giving them the same base conditions. Also
we used it because most of the methods were reported to use RF as base
classifier, also the selection of the base classifier was reported to depend on
the application for each method.

5.2.2 Weighting Scheme

Two experiments were designed to verify that the proposed weighting scheme
(see 4.2), that now on will be addressed by the name of Ramirez, Sucar,
Morales (RSM), improves the classification performance.

The first experiment compares RSM against a non weighted scheme. The
second compares RSM against two different weighting schemes.

5.2.2.1 RSM vs Non-weighted scheme

The first experiment verifies that RSM improves the performance of our
method compared against a Non-Weighted (NW) scheme, where the weight
for each node was set to one. The experiment was performed using a ten-cross-
fold validation over the 18 datasets. The summary of the results is depicted in
Table 5.6, we report the mean along the datasets. The mean of the folds for
each dataset is reported in Appendix B.1.

Even though the difference is barely distinguished in the table because the
results are averaged along the datasets, the proposed weighting scheme (RSM)
outperforms the non-weighted scheme in five out of six measures in many
cases with a significant difference (see Appendix B.1). The evaluation measure
where the non-weighted scheme obtains better result is hamming accuracy.

Discussion

There is evidence that suggests that using the RSM weighting scheme improves
the performance of our method compared with the non weighted scheme.

INAOE Computer Science Department

Experiments and Results 51

Table 5.6: RSM against a non weighted approach (mean [std]) along the evaluation
metrics. The best results are marked in bold letter.

Evaluation Measures RSM NW

Accuracy 30.36 [9.35] 29.37 [9.82]

Exact Match 19.95 [5.52] 19.36 [5.6]

Hamming Accuracy 91.03 [2.01] 91.13 [1.98]
F1-macro D 36.33 [12.7] 35.15 [13.38]

F1-macro L 13.8 [4.19] 12.51 [4.23]

H-loss 1.617 [0.11] 1.629 [0.11]

This is because RSM adds extra information based in the position of the node
in the hierarchy, since most general nodes are easier to distinguish because the
instances are more different they have more weight in the overall score and
the most specific where it is more difficult to distinguish the classes have less
weight. NW lead RSM in hamming accuracy, as hamming accuracy deducts
the errors, it means there are more false positives and false negatives in RSM
predictions than in NW ones, this means that RSM is returning longer paths.
In the rest of the evaluation measures RSM obtains best results, this means it
has more true positives and true negatives than NW.

5.2.2.2 RSM vs other weighting schemes

The second experiment verifies that our method improves the classification
compared against two other weighting schemes:

1. Vens et al. (2008) (V). This weighting scheme defines the weight as
w(yi) = w0

(∑
(pa(yi))
|pa(yi)|

)
and w0 = 0.75.

2. Bi and Kwok (2012) (BK). This weighting scheme proposes that the
weight w(yi) for the class c is w(yi) =

∑
j∈pa(yi)

w(j)
|child(j)| if it is a

non-root class in the hierarchy, else w(root) = 1.

The summary of the results results is depicted on Table 5.7. The results are
averaged over the datasets. The complete set of results is in Appendix B.2.

BK obtains usually the best result in the shallowest, tree hierarchies (al-
though with a slight difference) while V usually obtains the best results in the
deepest, DAG hierarchies (see Appendix B.2). This can be seen in accuracy,
hamming accuracy and F1-macro D metrics. In the case of H-loss V is in most
cases the winner, specially in deep hierarchies. In F1-macro L measure RSM
is the best method for shallow hierarchies followed by V in deep hierarchies
but the difference is not significative. Generally RSM gets the intermediate or
better scores along the compared schemes, when it obtains the worst score,
the difference with the intermediate approach is very slight.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

52 Experiments

Table 5.7: RSM against other weighting schemes (mean [std]) along the evaluation
metrics. The best results are marked in bold letter.

(a) Tree structured datasets

Evaluation Measures RSM V BK

Accuracy 23.66 [5.61] 23.55 [5.86] 25.16 [5.31]
Exact Match 18.41 [4.7] 18.4 [5.07] 17.99 [4.54]

Hamming-accuracy 90.11 [2.29] 90.18 [2.23] 90.15 [2.19]

F1-macro D 26.31 [6.11] 26.16 [6.32] 28.78 [5.81]
F1-macro L 13.83 [3.83] 13.25 [4.05] 12.05 [3.16]

H-loss 1.632 [0.09] 1.632 [0.1] 1.64 [0.09]

(b) DAG structured datasets

Evaluation Measures RSM V BK

Accuracy 38.73 [5.27] 28.52 [5.39] 29.07 [4.44]

Exact Match 21.88 [6.16] 22.15 [6.25] 17.74 [5.25]

Hamming-accuracy 92.19 [0.55] 92.20 [0.58] 91.50 [0.46]

F1-macro D 48.86 [4.57] 49.46 [4.71] 48.16 [3.83]

F1-macro L 13.77 [4.88] 14.38 [5.00] 13.54 [3.66]

H-loss 1.599 [0.13] 1.594 [0.13] 1.68 [0.11]

Discussion

RSM approach does not obtain the best results when competing with V and
BK. Since BK and V does not take into account the total number of levels
they propagate the weights decreasing in certain rate. BK weights decrease
very fast then with less levels it does not get to the lowest values, where
the predictions of the lower nodes would not count in the global score, then
BK works better in shallow hierarchies than in deep hierarchies. V weights
decrease slow, the deep levels get relatively high values then the predictions
in lower nodes really affect the overall score then obtaining better results
in deeper levels. The advantage of RSM compared with BK is that it RSM
weighting scheme is more stable over the two kinds of datasets because RSM
takes into account the total number of levels and propagates the weights
according to this information, this causes that all the nodes have a weight that
assures they affect the final score in a way they does not control the score but
affect enough to get good predictions. RSM is at least as good as V with no
significant difference in any measure.

INAOE Computer Science Department

Experiments and Results 53

5.2.3 MLNP

The proposed method, Chained Path Evaluation (CPE), was evaluated ex-
perimentally with a number of tree and DAG structured hierarchies and
compared with various hierarchical classification techniques. The results were
obtained by a stratified 10-fold cross-validation. The six evaluation measures
are reported in different tables for each dataset.

The base classifier used for all the methods was Random Forest because
it was the classifier that obtained the best results in the first experiment (see
Subsection 5.2.1).

Median and Interquartile Range (IQR) are reported. A Friedman test was
carried out to find statistical significance in the results with a confidence level
of 95% using Tukey’s honestly significant difference criterion.

5.2.3.1 Comparison Against Other MLNP Methods

Tree Structured Datasets For tree structured hierarchies, we used ten hier-
archical datasets and compared CPE against four HMC methods:

1. Top-Down LCPN (TD). Proposed by Koller and Sahami (1997), this
method trains a LCPN and selects at each level the most probable node.
Only the children of this node are explored to preserve the consistency
of the prediction. The training set is obtained by a siblings policy.

2. Multidimensional Hierarchical Classifier (MHC). Proposed by Hernan-
dez et al. (2013).

3. HIROM. Proposed by Bi and Kwok (2012).

Table 5.8: Accuracy (median [IQR]) comparing the performance of the MLNP version
our method against other MLNP methods. The best results are marked in
bold. Statistically different results compared with CPE are marked with ↑ if
they are superior and ↓ if they are inferior.

Dataset CPE TD MHC HIROM

cellcycle_FUN 22.93 [3.21] 20.00 [1.79] 19.52 [3.31] 2.99 [0.44]↓
church_FUN 11.68 [9.22] 10.58 [9.84] 19.12 [2.67] 3.80 [2.99]↓
derisi_FUN 18.19 [2.31] 12.95 [3.11] 19.75 [3.20] 2.94 [1.26]↓
eisen_FUN 27.08 [11.31] 25.30 [7.74] 22.75 [3.37] 1.78 [0.60]↓
expr_FUN 30.24 [2.30] 23.31 [6.22] 20.15 [3.00]↓ 1.91 [1.69]↓

gasch1_FUN 28.12 [5.42] 20.72 [3.57] 19.54 [3.44]↓ 1.70 [0.85]↓
gasch2_FUN 18.32 [10.87] 17.85 [11.60] 19.78 [2.54] 0.50 [4.68]↓
pheno_FUN 18.97 [2.08] 23.56 [2.84]↓ 22.13 [1.91] 6.90 [3.45]↓

seq_FUN 28.70 [9.38] 31.24 [2.63] 17.44 [3.65]↓ 2.70 [1.23]↓
spo_FUN 19.92 [3.17] 15.25 [2.62]↓ 19.78 [3.56] 3.43 [1.45]↓

Hierarchical Multi-label Classification for tree and DAG Hierarchies

54 Experiments

Table 5.9: Hamming accuracy (median [IQR]) comparing the performance of the
MLNP version our method against other MLNP methods. The best re-
sults are marked in bold. Statistically different results compared with CPE
are marked with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE TD MHC HIROM

cellcycle_FUN 90.98 [0.39] 88.75 [0.19]↓ 90.36 [0.39] 84.82 [0.30]↓
church_FUN 90.50 [1.13] 85.43 [3.77]↓ 90.19 [1.08] 84.75 [0.89]↓
derisi_FUN 90.71 [0.33] 87.16 [0.81]↓ 90.54 [0.28] 85.52 [0.28]↓
eisen_FUN 88.40 [1.81] 86.80 [1.52] 87.49 [1.64] 79.95 [0.38]↓
expr_FUN 91.28 [0.43] 88.97 [0.91]↓ 90.38 [0.42] 84.81 [0.25]↓

gasch1_FUN 91.45 [0.78] 88.68 [0.50]↓ 90.34 [0.47] 84.87 [0.14]↓
gasch2_FUN 90.81 [1.24] 88.50 [1.51] 90.18 [0.93] 85.04 [0.63]↓
pheno_FUN 84.13 [1.08] 83.67 [0.71] 83.54 [0.87] 78.35 [0.46]↓

seq_FUN 91.77 [0.72] 91.18 [0.56] 90.76 [0.32]↓ 86.31 [0.16]↓
spo_FUN 90.64 [0.41] 87.84 [0.32]↓ 90.39 [0.33] 85.07 [0.22]↓

Table 5.10: Exact match (median [IQR]) comparing the performance of the MLNP
version our method against other MLNP methods. The best results are
marked in bold. Statistically different results compared with CPE are
marked with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE TD MHC HIROM

cellcycle_FUN 17.74 [5.13] 16.92 [2.14] 9.40 [3.85] 2.99 [0.44]↓
church_FUN 8.97 [9.40] 8.76 [9.40] 9.40 [2.56] 3.42 [2.99]↓
derisi_FUN 13.00 [3.36] 10.50 [2.94] 9.45 [2.89] 2.94 [1.26]↓
eisen_FUN 18.69 [13.10] 21.13 [9.52] 10.42 [4.17]↓ 1.78 [0.60]↓
expr_FUN 24.20 [1.69] 20.13 [5.51] 10.19 [2.54]↓ 1.91 [1.69]↓

gasch1_FUN 21.74 [4.68] 17.27 [3.34] 9.36 [4.22]↓ 1.70 [0.85]↓
gasch2_FUN 13.35 [12.34] 12.29 [11.91] 10.83 [2.93] 0.42 [4.68]↓
pheno_FUN 15.09 [2.59] 12.07 [2.67] 9.44 [1.72] 6.90 [3.45]↓

seq_FUN 23.28 [10.24] 26.72 [2.33] 8.70 [2.40] 2.64 [1.21]↓
spo_FUN 14.35 [2.17] 11.96 [3.48] 9.54 [3.86]↓ 3.26 [1.74]↓

INAOE Computer Science Department

Experiments and Results 55

Table 5.11: F1-macro D (median [IQR]) comparing the performance of the MLNP
version our method against other MLNP methods. The best results are
marked in bold. Statistically different results compared with CPE are
marked with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE TD MHC HIROM

cellcycle_FUN 25.55 [1.95] 21.81 [1.38] 24.98 [2.65] 2.99 [0.44]↓
church_FUN 14.03 [9.79] 11.69 [9.72] 24.51 [4.62] 3.87 [2.99]↓
derisi_FUN 21.18 [2.33] 14.33 [2.81] 25.08 [3.34] 2.94 [1.26]↓
eisen_FUN 31.31 [11.71] 27.35 [7.74] 28.57 [5.36] 1.78 [0.60]↓
expr_FUN 32.97 [2.61] 25.02 [6.65] 25.40 [3.52]↓ 1.91 [1.69]↓

gasch1_FUN 31.36 [5.47] 22.26 [3.85]↓ 24.82 [2.85] 1.70 [0.85]↓
gasch2_FUN 20.79 [10.11] 20.69 [11.45] 24.95 [3.26] 0.53 [4.68]↓
pheno_FUN 20.73 [1.89] 29.27 [2.91] 28.88 [2.59]↑ 6.90 [3.45]

seq_FUN 31.65 [8.41] 33.57 [2.52] 21.98 [3.69] 2.74 [1.23]↓
spo_FUN 22.86 [3.63] 16.83 [2.26] 25.30 [3.45] 3.48 [1.39]↓

Table 5.12: F1-macro L (median [IQR]) comparing the performance of the MLNP
version our method against other MLNP methods. The best results are
marked in bold. Statistically different results compared with CPE are
marked with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE TD MHC HIROM

cellcycle_FUN 13.74 [3.32] 17.78 [3.18] 2.09 [0.25] 0.49 [0.12]↓
church_FUN 6.47 [4.55] 6.75 [4.45] 2.06 [0.24] 0.75 [0.73]↓
derisi_FUN 12.43 [2.97] 10.47 [1.06] 2.04 [0.23]↓ 0.47 [0.20]↓
eisen_FUN 20.27 [3.37] 17.51 [4.30] 3.33 [0.36]↓ 0.45 [0.19]↓
expr_FUN 18.53 [2.54] 20.12 [6.67] 2.12 [0.24] 0.32 [0.27]↓

gasch1_FUN 17.82 [2.67] 16.11 [4.00] 2.08 [0.26]↓ 0.28 [0.07]↓
gasch2_FUN 6.43 [7.97] 10.05 [5.02] 2.11 [0.23] 0.10 [0.76]↓
pheno_FUN 10.98 [2.90] 9.95 [2.06] 4.81 [0.31]↓ 3.91 [1.51]↓

seq_FUN 15.85 [2.56] 20.60 [5.05] 1.79 [0.27] 0.49 [0.30]↓
spo_FUN 11.56 [1.58] 12.61 [1.68] 2.11 [0.27]↓ 0.64 [0.41]↓

Hierarchical Multi-label Classification for tree and DAG Hierarchies

56 Experiments

Table 5.13: H-loss (median [IQR]) comparing the performance of the MLNP version
our method against other MLNP methods. The best results are marked in
bold. Statistically different results compared with CPE are marked with ↑
if they are superior and ↓ if they are inferior.

Dataset CPE TD MHC HIROM

cellcycle_FUN 1.645 [0.1] 1.662 [0.04] 1.812 [0.08] 1.94 [0.01]↓
church_FUN 1.821 [0.19] 1.825 [0.19] 1.812 [0.05] 1.923 [0.06]↓
derisi_FUN 1.74 [0.07] 1.79 [0.06] 1.811 [0.06] 1.941 [0.03]↓
eisen_FUN 1.626 [0.26] 1.577 [0.19] 1.792 [0.08]↓ 1.964 [0.01]↓
expr_FUN 1.516 [0.03] 1.598 [0.11] 1.796 [0.05]↓ 1.962 [0.03]↓

gasch1_FUN 1.565 [0.09] 1.655 [0.07] 1.813 [0.08]↓ 1.966 [0.02]↓
gasch2_FUN 1.733 [0.25] 1.754 [0.24] 1.783 [0.06] 1.989 [0.09]↓
pheno_FUN 1.698 [0.05] 1.759 [0.05] 1.811 [0.03] 1.862 [0.07]↓

seq_FUN 1.534 [0.2] 1.466 [0.05] 1.826 [0.05] 1.945 [0.02]↓
spo_FUN 1.713 [0.04] 1.761 [0.07] 1.809 [0.08]↓ 1.93 [0.03]↓

Discussion

In tree structured datasets CPE outperforms the other methods in most
datasets along all the measures and in some cases with statistical signifi-
cance (see Section D). CPE obtains in most of the datasets better results in
accuracy then it has a higher rate of real labels from the predicted set. In
hamming accuracy CPE obtains the best results of the bunch then having the
lower error rate from the total number of labels. In exact match also obtains
most of the best results which is good because it return more correct complete
paths than the other methods. In the case of F1-macro D shares the best results
with MHC which means they both get a good compromise between precision
and recall along the instances, but MHC obtains really low rate regarding
F1-macro L which means there are labels that are very bad predicted in MHC
method. In F1-macro L CPE shares the best results with TD but TD has a
lower rate in F1-macro D than CPE then even though CPE is not the best in
F1-macro D and F1-macro L it obtains competitive result in both measures
unlike other methods that obtains high results in one measure and low in the
other.

DAG Structured Datasets For DAG structured datasets, we used eight
hierarchical datasets and compared CPE against tree HMC methods:

1. Top-Down LCPN (TD). Proposed by Koller and Sahami (1997), this
method trains a LCPN and selecting at each level the most probable
node. Only the children of this node are explored to preserve the

INAOE Computer Science Department

Experiments and Results 57

consistency of the prediction. The training set is obtained by siblings
policy.

2. Top-Down LCPN Corrected (TD-C). The only difference between this
method and TD is that when a leaf node is reached, all the paths to that
node are appended to the final prediction. TD returns a single path.

3. HIROM. Proposed by Bi and Kwok (2012), the variant for DAG struc-
tures.

Table 5.14: Accuracy (median [IQR]) in percentage comparing our method against
other methods. Statistically different results compared with CPE are
marked with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE TD TC-C HIROM

cellcycle_GO 36.95 [4.79] 34.07 [4.88] 33.83 [4.52] 14.76 [0.90]↓
church_GO 32.13 [3.59] 30.82 [1.94] 30.62 [2.10] 16.49 [1.12]↓
derisi_GO 33.15 [3.10] 31.69 [2.27] 31.56 [2.11] 15.02 [0.96]↓
expr_GO 42.36 [2.31] 37.76 [4.79] 37.65 [4.67]↓ 14.20 [0.32]↓

gasch1_GO 42.43 [4.97] 39.19 [2.62] 39.01 [2.65] 14.02 [1.51]↓
gasch2_GO 39.83 [3.55] 37.03 [2.75] 36.76 [3.29]↓ 15.39 [1.11]↓

seq_GO 48.87 [2.26] 46.23 [4.57] 46.76 [4.57] 13.85 [1.17]↓
spo_GO 34.06 [0.96] 32.52 [2.51] 32.50 [2.73]↓ 15.19 [1.50]↓

Table 5.15: Hamming Accuracy (median [IQR]) in percentage comparing our method
against other methods. Statistically different results compared with CPE
are marked with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE TD TD-C HIROM

cellcycle_GO 92.11 [0.98] 90.02 [0.79] 89.65 [0.76]↓ 85.83 [0.76]↓
church_GO 91.37 [0.43] 89.65 [0.38] 89.36 [0.43]↓ 87.01 [1.51]↓
derisi_GO 91.58 [0.34] 89.65 [0.30] 89.35 [0.24]↓ 85.99 [0.84]↓
expr_GO 92.46 [0.56] 90.56 [0.75] 90.30 [0.81]↓ 85.90 [0.29]↓

gasch1_GO 92.43 [0.76] 90.82 [0.64] 90.52 [0.60]↓ 85.98 [0.60]↓
gasch2_GO 92.39 [0.59] 90.52 [0.64] 90.00 [0.65]↓ 86.26 [0.28]↓

seq_GO 93.38 [1.14] 91.76 [0.86] 91.68 [0.77]↓ 84.67 [0.48]↓
spo_GO 91.64 [0.32] 89.94 [0.23] 89.57 [0.42]↓ 86.10 [0.66]↓

Hierarchical Multi-label Classification for tree and DAG Hierarchies

58 Experiments

Table 5.16: Exact Match (median [IQR]) in percentage comparing our method against
other methods. Statistically different results compared with CPE are
marked with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE TD TD-C HIROM

cellcycle_GO 19.30 [2.92] 15.25 [6.94] 15.84 [6.43] 0.00 [0.00]↓
church_GO 13.45 [4.68] 12.28 [1.75] 12.28 [2.34] 0.58 [1.17]↓
derisi_GO 15.43 [2.95] 13.51 [2.21] 13.79 [2.29] 0.00 [0.00]↓
expr_GO 27.33 [2.91] 21.51 [5.81]↓ 21.51 [6.40] 0.00 [0.00]↓

gasch1_GO 27.11 [5.68] 21.93 [2.91] 22.16 [3.95] 0.00 [0.00]↓
gasch2_GO 22.67 [5.23] 19.77 [4.07]↓ 20.06 [4.65] 0.00 [0.00]↓

seq_GO 33.63 [3.51] 28.86 [5.85]↓ 31.19 [5.85] 0.00 [0.00]↓
spo_GO 16.57 [1.79] 13.35 [1.19]↓ 13.35 [1.70] 0.00 [0.00]↓

Table 5.17: F1-macro D (median [IQR]) in percentage comparing our method against
other methods. Statistically different results compared with CPE are
marked with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE TD TD-C HIROM

cellcycle_GO 47.42 [4.57] 44.98 [4.02] 44.65 [3.74] 24.55 [1.38]↓
church_GO 43.50 [3.01] 41.88 [1.48] 41.60 [1.78] 27.30 [1.31]↓
derisi_GO 43.88 [3.24] 42.67 [2.28] 42.43 [2.33] 24.91 [1.39]↓
expr_GO 51.67 [2.77] 47.73 [3.98] 47.56 [3.90]↓ 23.97 [0.44]↓

gasch1_GO 51.71 [4.59] 49.19 [1.67] 48.88 [1.71] 23.87 [1.78]↓
gasch2_GO 49.74 [3.25] 47.37 [2.45] 46.99 [2.82]↓ 25.33 [1.30]↓

seq_GO 57.90 [2.51] 55.35 [3.92] 55.56 [3.68] 23.33 [1.54]↓
spo_GO 44.74 [1.22] 43.41 [3.06] 43.31 [3.38] 25.25 [1.93]↓

Table 5.18: F1-macro L (median [IQR]) in percentage comparing our method against
other methods. Statistically different results compared with CPE are
marked with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE TD TD-C HIROM

cellcycle_GO 10.73 [1.68] 13.43 [3.00] 14.68 [2.54]↑ 2.52 [0.19]

church_GO 8.84 [2.57] 10.51 [1.64] 10.53 [1.64] 2.71 [0.57]↓
derisi_GO 9.40 [2.42] 12.76 [2.17] 13.26 [2.48]↑ 2.66 [0.27]

expr_GO 17.00 [3.56] 16.41 [5.75] 17.01 [5.09] 2.38 [0.18]↓
gasch1_GO 16.82 [5.07] 18.01 [3.19] 18.10 [3.22] 2.35 [0.36]↓
gasch2_GO 12.87 [3.40] 14.95 [2.79] 15.16 [3.42] 2.58 [0.42]

seq_GO 22.46 [3.70] 27.31 [2.36] 31.61 [3.49]↑ 2.48 [0.28]

spo_GO 9.79 [1.79] 11.89 [3.28] 11.85 [3.18] 2.73 [0.49]

INAOE Computer Science Department

Experiments and Results 59

Table 5.19: H-loss (median [IQR]) comparing our method against other methods.
Statistically different results compared with CPE are marked with ↑ if they
are superior and ↓ if they are inferior.

Dataset CPE TD TD-C HIROM

cellcycle_GO 1.67 [0.08] 1.693 [0.19] 1.736 [0.09] 3.044 [0.06]↓
church_GO 1.787 [0.1] 1.798 [0.06] 1.807 [0.05] 2.737 [0.39]↓
derisi_GO 1.728 [0.03] 1.751 [0.05] 1.765 [0.04]↓ 3.014 [0.12]↓
expr_GO 1.486 [0.08] 1.596 [0.12] 1.619 [0.12]↓ 3.111 [0.08]↓

gasch1_GO 1.504 [0.13] 1.597 [0.08] 1.62 [0.07]↓ 3.056 [0.06]↓
gasch2_GO 1.584 [0.1] 1.642 [0.12] 1.651 [0.12]↓ 2.927 [0.08]↓

seq_GO 1.351 [0.06] 1.411 [0.11] 1.414 [0.08] 3.234 [0.09]↓
spo_GO 1.712 [0.05] 1.766 [0.02] 1.786 [0.03]↓ 2.973 [0.08]↓

Discussion

In DAG-structured hierarchies our method is superior to the other approaches,
and the difference is statistically significant in practically all the measures and
datasets (see Section D.2). The exception is F1-macro L measure, where the
results are averaged by labels, that means that there are probably a few labels,
which does not have many instances classified, where our method tend to
obtain bad results.

There are different factors that could explain this difference for DAG
structures. One could be that our method was developed considering this type
of hierarchies, while TD was not. That is why we tested with TD-C version
which proved no to be as good as TD, it even causes more errors. However,
HIROM also considers DAG structures, and our method is superior.

Another possible explanation is that our approach is better for deeper
hierarchies, as the tree datasets have a maximum depth of 3 or 4 levels, while
the DAG datasets have a maximum depth of 11 levels. The weighting scheme
per level in our method could be one of the reasons for this difference.

5.2.3.2 Comparison Against the Flat Approach

We compared our method against the flat approach (explained at 3.1.1). A
non-paired, one-tail t-test was carried out to find statistical significance in the
results with a confidence level of 95%.

Discussion

CPE is not a competitor for the Flat approach in shallow hierarchies because in
almost every shallow dataset along most of the metrics, Flat approach obtains
significantly better results. Exceptions are redundant datasets (eisen_FUN,
expr_FUN,pheno_FUN and seq_FUN), where CPE obtain better scores (not

Hierarchical Multi-label Classification for tree and DAG Hierarchies

60 Experiments

Table 5.20: Accuracy percentage (mean [std]) comparing our method against flat ap-
proach. Statistically inferior results against CPE are marked with ↑ and
statistically superior results are marked with ↓.

(a) Tree datasets

Dataset CPE Flat

cellcycle_FUN 22.76 [2.41] 25.15 [2.25]↑
church_FUN 14.24 [8.01] 18.09 [6.39]
derisi_FUN 18.58 [2.15] 21.86 [1.54]↑
eisen_FUN 31.07 [9.28] 28.80 [9.14]

expr_FUN 29.46 [2.66] 29.64 [1.72]
gasch1_FUN 28.39 [2.87] 30.61 [2.82]↑
gasch2_FUN 22.32 [8.68] 26.15 [7.75]
pheno_FUN 18.39 [3.02] 21.44 [3.64]↑

seq_FUN 30.52 [6.68] 29.32 [5.94]

spo_FUN 20.57 [1.94] 23.24 [2.29]

(b) DAG datasets

Dataset CPE Flat

cellcycle_GO 36.60 [2.68] 36.92 [3.10]
church_GO 32.09 [1.94] 31.16 [2.70]

derisi_GO 33.42 [1.76] 34.22 [1.61]
expr_GO 42.80 [1.98] 40.00 [2.46]

gasch1_GO 42.03 [3.17] 41.18 [2.39]

gasch2_GO 39.53 [2.10] 38.76 [1.84]

seq_GO 48.99 [2.87] 47.54 [2.79]

spo_GO 34.45 [1.54] 34.13 [1.64]

Table 5.21: Hamming Accuracy percentage (mean [std]) comparing our method against
flat approach. Statistically inferior results against CPE are marked with ↑
and statistically superior results are marked with ↓.

(a) Tree datasets

Dataset CPE FLAT

cellcycle_FUN 91.03 [0.32] 90.38 [0.29]↓
church_FUN 90.51 [0.74] 89.14 [1.48]↓
derisi_FUN 90.64 [0.25] 90.17 [0.33]↓
eisen_FUN 88.79 [1.44] 88.06 [1.49]

expr_FUN 91.27 [0.41] 90.94 [0.27]↓
gasch1_FUN 91.27 [0.44] 91.02 [0.38]

gasch2_FUN 91.00 [1.26] 90.40 [1.28]

pheno_FUN 84.26 [0.63] 83.31 [0.61]↓
seq_FUN 91.98 [0.75] 91.34 [0.75]↓
spo_FUN 90.69 [0.29] 90.14 [0.34]↓

(b) DAG datasets

Dataset CPE FLAT

cellcycle_GO 91.98 [0.62] 90.88 [0.57]↓
church_GO 91.52 [0.35] 89.47 [1.36]↓
derisi_GO 91.57 [0.26] 90.51 [0.42]↓
expr_GO 92.56 [0.34] 91.33 [0.38]↓

gasch1_GO 92.51 [0.49] 91.36 [0.59]↓
gasch2_GO 92.31 [0.31] 91.00 [0.40]↓

seq_GO 93.33 [0.57] 92.52 [0.51]↓
spo_GO 91.71 [0.30] 90.52 [0.27]↓

INAOE Computer Science Department

Experiments and Results 61

Table 5.22: Exact Match percentage (mean [std]) comparing our method against flat
approach. Statistically inferior results against CPE are marked with ↑ and
statistically superior results are marked with ↓.

(a) Tree datasets

Dataset CPE FLAT

cellcycle_FUN 17.53 [2.61] 18.30 [2.72]
church_FUN 11.20 [7.00] 12.48 [6.35]
derisi_FUN 13.27 [2.19] 14.87 [1.47]↑
eisen_FUN 23.32 [9.91] 20.71 [9.74]

expr_FUN 23.47 [2.31] 20.75 [7.51]

gasch1_FUN 22.12 [2.72] 24.34 [2.42]↑
gasch2_FUN 17.49 [8.94] 19.48 [8.16]
pheno_FUN 14.90 [3.47] 13.26 [3.89]

seq_FUN 25.26 [7.14] 24.13 [6.44]

spo_FUN 14.73 [1.68] 16.38 [2.19]↑

(b) DAG datasets

Dataset CPE FLAT

cellcycle_GO 19.26 [2.19] 20.90 [3.73]
church_GO 13.79 [2.85] 14.78 [3.07]
derisi_GO 15.41 [1.83] 17.18 [2.02]↑
expr_GO 27.33 [2.51] 24.36 [2.87]↓

gasch1_GO 26.28 [3.69] 25.53 [2.81]

gasch2_GO 22.62 [2.56] 22.79 [1.85]
seq_GO 33.31 [3.32] 32.55 [3.13]

spo_GO 16.97 [2.20] 17.27 [2.05]

Table 5.23: F1-macro D percentage (mean [std]) comparing our method against flat
approach. Statistically inferior results against CPE are marked with ↑ and
statistically superior results are marked with ↓.

(a) Tree datasets

Dataset CPE FLAT

cellcycle_FUN 25.40 [2.44] 28.63 [2.11]↑
church_FUN 15.77 [8.58] 20.93 [6.51]
derisi_FUN 21.27 [2.22] 25.37 [1.66]↑
eisen_FUN 34.98 [9.04] 32.89 [8.91]

expr_FUN 32.47 [2.86] 33.12 [1.64]
gasch1_FUN 31.53 [2.95] 33.78 [3.01]
gasch2_FUN 24.76 [8.58] 29.54 [7.57]
pheno_FUN 20.16 [2.83] 25.56 [3.72]↑

seq_FUN 33.17 [6.44] 31.96 [5.74]

spo_FUN 23.49 [2.22] 26.73 [2.35]↑

(b) DAG datasets

Dataset CPE FLAT

cellcycle_GO 47.03 [2.70] 46.77 [2.77]

church_GO 43.24 [1.61] 41.47 [2.51]↓
derisi_GO 44.25 [1.67] 44.55 [1.52]
expr_GO 52.14 [1.72] 49.51 [2.20]↓

gasch1_GO 51.52 [2.80] 50.60 [2.17]

gasch2_GO 49.60 [1.83] 48.43 [1.75]

seq_GO 57.94 [2.60] 56.27 [2.54]

spo_GO 45.12 [1.26] 44.45 [1.38]

Hierarchical Multi-label Classification for tree and DAG Hierarchies

62 Experiments

Table 5.24: F1-macro L percentage (mean [std]) comparing our method against flat
approach. Statistically inferior results against CPE are marked with ↑ and
statistically superior results are marked with ↓.

(a) Tree datasets

Dataset CPE FLAT

cellcycle_FUN 14.34 [2.50] 14.52 [2.10]
church_FUN 7.72 [6.22] 9.53 [5.39]
derisi_FUN 11.54 [1.76] 12.95 [1.30]↑
eisen_FUN 19.59 [3.15] 17.25 [3.73]

expr_FUN 18.45 [2.19] 18.31 [2.31]

gasch1_FUN 17.24 [1.85] 19.76 [2.99]↑
gasch2_FUN 8.74 [4.17] 9.99 [3.16]
pheno_FUN 11.14 [3.11] 14.16 [3.06]↑

seq_FUN 17.21 [3.36] 17.00 [2.66]

spo_FUN 11.97 [1.36] 13.43 [2.60]

(b) DAG datasets

Dataset CPE FLAT

cellcycle_GO 10.45 [1.21] 16.12 [3.75]↑
church_GO 8.72 [1.29] 10.54 [2.13]↑
derisi_GO 9.50 [1.26] 14.33 [2.15]↑
expr_GO 17.45 [1.90] 18.24 [3.08]

gasch1_GO 16.70 [2.34] 18.48 [3.03]
gasch2_GO 12.52 [1.90] 15.82 [2.08]↑

seq_GO 24.28 [4.25] 32.88 [4.74]↑
spo_GO 9.79 [1.24] 12.71 [1.90]↑

Table 5.25: H-loss (mean [std]) comparing our method against flat approach. Sta-
tistically inferior results against CPE are marked with ↑ and statistically
superior results are marked with ↓.

(a) Tree datasets

Dataset CPE FLAT

cellcycle_FUN 1.649 [0.05] 1.634 [0.05]
church_FUN 1.776 [0.14] 1.750 [0.13]
derisi_FUN 1.735 [0.04] 1.703 [0.03]↑
eisen_FUN 1.534 [0.20] 1.586 [0.19]

expr_FUN 1.531 [0.05] 1.485 [0.17]

gasch1_FUN 1.558 [0.05] 1.513 [0.05]↑
gasch2_FUN 1.650 [0.18] 1.610 [0.16]
pheno_FUN 1.702 [0.07] 1.735 [0.08]

seq_FUN 1.495 [0.14] 1.517 [0.13]

spo_FUN 1.705 [0.03] 1.672 [0.04]↑

(b) DAG dataset

Dataset CPE FLAT

cellcycle_GO 1.654 [0.05] 1.638 [0.07]
church_GO 1.766 [0.06] 1.783 [0.09]

derisi_GO 1.729 [0.03] 1.706 [0.04]
expr_GO 1.483 [0.05] 1.563 [0.06]↓

gasch1_GO 1.509 [0.08] 1.541 [0.07]

gasch2_GO 1.584 [0.06] 1.597 [0.04]

seq_GO 1.361 [0.07] 1.393 [0.07]

spo_GO 1.704 [0.04] 1.710 [0.03]

INAOE Computer Science Department

Experiments and Results 63

significant) in most metrics. An special case is eisen_FUN dataset which in
addition to be redundant it is also a complex dataset, this is the one shallow
dataset where CPE obtains significantly better results.

In the case of deep hierarchies in many cases CPE obtains better results
than the Flat approach. As in shallow datasets it obtains significantly better
results in redundant datasets.

Hamming Accuracy metric is one metric where in every dataset CPE
obtains better significantly better results against the Flat approach, this metric
is like an error ratio, this means that if CPE does not get the complete path it
at least obtain a more similar path than the Flat approach.

These results are due to the fact that in presence of few leaf nodes the Flat
approach will return good results, when there are more labels it becomes diffi-
cult to difference between them with a single classifier. In shallow hierarchies
there are approximately 15 labels but in shallow hierarchies the number of
labels increases to 24 therefore our method return better results.

5.2.4 Hierarchy depth effect over classification performance

An experiment was set to determine the effect of the depth of the hierarchy
in the classification performance of our method. To achieve this task the
hierarchy of the DAG datasets was pruned from 11 to 2 levels maintaining
the same instances, this means that the starting structures are DAGs but
in shallower levels became trees due to the elimination of nodes. This is
the reason why TD-C obtains exactly the same results as TD at shallower
hierarchies. We performed a ten-cross fold-validation at each level. The results
are depicted in Figure 5.2. Each plot represents a different evaluation measure
performance (y-axis) and the number of levels (x-axis), the lines represent the
performance along the different classification methods averaged along all the
datasets.

When there are less levels, there is also a decrease in the number of labels.
In general it is easier to classify when there are less labels. The performance
decreases in a lower rate in the deeper hierarchies because less nodes/labels
are pruned in the deeper levels, in other words the difference between the
number of labels between levels 8 and 10 is lower than the difference between
levels 2 and 4.

Discussion

The classification performance of all the methods in accuracy, exact match, F1-
macro D and F1-macro L metrics drop off on the first two or three levels, then
it steadily falls approximately on the 4th or 5th levels and then it stabilizes. In

Hierarchical Multi-label Classification for tree and DAG Hierarchies

64 Experiments

CPE TD TD−C HIROM

(a) Legend

2 4 6 8 10
0

20

40

60

80

100

Number of Levels

A
c
c
u

ra
c
y

(b) Accuracy

2 4 6 8 10
0

20

40

60

80

100

Number of Levels

H
a
m

m
in

g
 A

c
c
u

ra
c
y

(c) Hamming Accuracy

2 4 6 8 10
0

20

40

60

80

100

Number of Levels

E
x
a
c
t

M
a
tc

h

(d) Exact Match

2 4 6 8 10
0

20

40

60

80

100

Number of Levels

F
1
−

M
a
c
r
o

 D

(e) F1-macro D

2 4 6 8 10
0

20

40

60

80

100

Number of Levels

F
1
−

M
a
c
r
o

 L

(f) F1-macro L

2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

Number of Levels

H
−

L
o

s
s

(g) H-loss

Figure 5.2: Plots comparing the performance of CPE, TD, TD-C and HIROM with
hierarchies of different depths, using different metrics.

INAOE Computer Science Department

Experiments and Results 65

the case of H-loss the behavior is similar but inverted since it is a loss function,
the smaller the better.

We expected hamming accuracy to behave as the first metrics but it in-
creased with the number of levels. Hamming accuracy (Equation (3.1)) comes
from Hamming loss function (Equation (3.3)), this function evaluates how
many times a set of labels for an example is misclassified normalized by the
number of labels. The growth in the measure when there are more levels can
be due to this normalization, while there are more labels an error cost less
than an error when there are fewer labels.

Other methods perform equal or better than CPE with shallow hierarchies,
but CPE stabilizes sooner when the number of levels starts to grow which
allows our method to outperform the rest of them whose performance drop
rapidly after four levels.

From this analysis we consider that our method works well with deep
hierarchies since its performance is less affected when there are many levels.

5.2.5 NMLNP

Since NMLNP is the general case of MLNP we developed an extension for
CPE called CPE-NMLNP. CPE-NMLNP and CPE-MLNP obtain almost the
same performance when classifying MLNP datasets (Table 5.1). The results
of NMLNP are slightly better for tree datasets and slightly worst for DAG
than MLNP in any case significant. This suggest that our method is pruning
less nodes when the datasets are MLNP which means it can be used for both
MLNP and NMLNP because it has about the same performance. The pruning
is even avoiding some errors specially in tree structures where is obtaining
an slight (not significant) advantage. In larger paths, like the ones in DAG
structures it is pruning more nodes and thus obtaining an slight disadvantage.

5.2.5.1 CPE-NMLNP vs CPE-MLNP

We compared the variant for NMLNP of CPE method against MLNP using the
NMLNP datasets described in Table 5.2, to determine if it is worth to prune
the predicted paths. Table 5.27 depicts the results. A non-paired, one-tail t-test
was carried out to find statistical significance in the results with a confidence
level of 95%.

Discussion

In the case of tree datasets the difference between both methods is not very
clear, in fact, in neither of the databases the results are significant different. In
every DAG dataset the results obtained by NMLNP version are significantly
superior compared to the MLNP version for NMLNP datasets. This means

Hierarchical Multi-label Classification for tree and DAG Hierarchies

66 Experiments

Table 5.26: Comparing CPE-NMLNP against CPE-MLNP using MLNP datasets (mean
[std]).

(a) Tree datasets

Evaluation
Measure

NMLNP MLNP

Accuracy 23.86 [5.76] 23.65 [5.97]

Hamming
Accuracy

90.15 [2.23] 90.12 [2.22]

Exact
Match

18.57 [4.83] 18.48 [5.09]

F1-macro D 26.53 [6.31] 26.26 [6.46]

F1-macro L 14.1 [4.2] 14.05 [4.4]

H-loss 1.629 [0.1] 1.63 [0.1]

NGLB 61.89 [2.62] 61.76 [2.77]

(b) DAG datasets

Evaluation
Measure

NMLNP MLNP

Accuracy 38.83 [5.51] 39.12 [5.59]
Hamming
Accuracy

92.18 [0.6] 92.21 [0.6]

Exact
Match

22.07 [6.35] 22.47 [6.38]

F1-macro D 48.88 [4.82] 49.11 [4.88]
F1-macro L 13.69 [4.8] 14.16 [5.24]

H-loss 1.596 [0.13] 1.587 [0.13]

NGLB 78.18 [1.92] 78.28 [1.93]

that the pruning works better in the presence of deeper hierarchies like the
DAG ones.

5.2.5.2 Comparison Against Other NMLNP Methods

The proposed method, CPE-NMLNP, was evaluated experimentally with a
number of tree and DAG structured hierarchies and compared with various
hierarchical classification techniques. The results were obtained by a stratified
10-fold cross-validation.

The four evaluation measures are reported in different tables for each
dataset. A Friedman test was carried out to find statistical significance in
the results with a confidence level of 95% using Tukey’s honestly significant
difference criterion.

Tree Structured Datasets For tree structured hierarchies, we used ten hier-
archical datasets and compared CPE against three HMC-NMLNP methods:

1. HIROM. Proposed by Bi and Kwok (2012).

2. True Path Rule (TPR) by Valentini (2009). Using a threshold of 0.5.

3. Weighted True Path Rule (TPRw) by Valentini (2009). Using a threshold
of 0.5 and a parent weight (wp) of 0.5 as well. We tried to obtain the
best trade off between precision and recall, the authors report that it is
achieved with 0.5 6 wp 6 0.8. We performed several tests obtaining the
best results with 0.5.

INAOE Computer Science Department

Experiments and Results 67

Table 5.28: Accuracy (median [IQR]) percentage comparison of MLNP methods. Sta-
tistically different results compared with CPE are marked with ↑ if they
are superior and ↓ if they are inferior.

Dataset CPE HIROM TPR TPRw

cellcycle_FUN 16.55 [0.84] 2.98 [0.74]↓ 12.16 [2.67] 11.89 [2.68]↓
church_FUN 7.89 [6.23] 3.63 [2.47] 6.28 [6.41] 6.45 [9.74]↓
derisi_FUN 13.92 [1.68] 3.10 [0.38]↓ 9.67 [2.01] 9.89 [1.27]↓
eisen_FUN 18.86 [8.46] 1.86 [1.85]↓ 13.78 [6.39]↓ 14.19 [6.83]↓
expr_FUN 21.38 [2.41] 2.48 [0.27]↓ 14.75 [1.77]↓ 14.93 [1.17]

gasch1_FUN 21.62 [3.57] 2.03 [0.37]↓ 14.81 [2.95]↓ 15.68 [3.14]

gasch2_FUN 14.26 [7.10] 0.69 [4.97]↓ 10.34 [3.33] 10.07 [5.59]

pheno_FUN 12.97 [4.11] 5.57 [1.83]↓ 10.06 [2.67] 10.32 [1.93]

seq_FUN 23.29 [5.28] 3.08 [0.84]↓ 16.21 [3.61]↓ 16.78 [4.73]

spo_FUN 13.82 [2.47] 3.36 [1.04]↓ 11.28 [1.57] 10.97 [1.93]↓

Hierarchical Multi-label Classification for tree and DAG Hierarchies

68 Experiments

DAG Structured Datasets For DAG structured hierarchies, we used ten
hierarchical datasets and compared CPE against three HMC-NMLNP methods:

1. HIROM. Proposed by Bi and Kwok (2012).

Discussion

The results on tree structured datasets (see Section F.1) are statistically signif-
icant against all the compared methods on accuracy, exact match, F1macro
D and NGLB. Regarding to Hamming-accuracy CPE is statistically superior
to HIROM and TPR but TPRw is statistically superior in datasets with more
redundancy as cellcycle_FUN, expr_FUN, gasch1_FUN and seq_FUN, and in
the cases of problems with medium complexity CPE obtains the best results.
F1-macro L metric does not have a clear winner: CPE, TPR and TPRw obtain
almost the same low results compared to F1-macro D which means that there
are some labels that are very bad classified; HIROM obtain the lower values.
TPRw method obtains the best results in the H-loss metric.

Regarding to DAG structured datasets (see Section F.2) CPE obtains the
best results with statistical significancy, it is only compared against HIROM.

5.2.6 Time

We tested the training and testing time required by our method against the
time required by other methods. This test was performed using an OS X
version 10.9.3 personal computer with a 1.4 GHz Intel Core 2 Duo processor
and 5GB 1067 MHz DDR3 memory. This is an empirical evaluation which is
not generalizable but we performed it to provide a framework of the training
and testing times in comparison with other methods.

For MLNP datasets we tested with approximately 1956 training instances
and 217 testing instances depending on the dataset for each fold in tree
datasets; and approximately 1543 training instances and 171 testing instances
for each fold in DAG datasets. The results were averaged along the 10 folds.
The results are depicted in Tables 5.36 and 5.38.

For NMLNP datasets we tested with approximately 2948 training instances
and 328 testing instances depending on the dataset for each tree dataset; and
approximately 3177 training instances and 353 testing instances for each DAG
dataset. We performed a ten-fold cross-validation.

Discussion

Regarding the training time, the Flat approach spends around 3 times less
time, TD and TD-C around 1.5 times less and MHC almost spends the same
time than CPE. As for testing time the difference is much more significant Flat
approach spends approximately 10 times less time than CPE, TD around 6

INAOE Computer Science Department

Experiments and Results 69

times less, TD-C close to 5 times less and MHC spends similar time. In MLNP
CPE is outperformed by most of the methods but, as the time is measured in
seconds, the difference is not very relevant.

Those results were the expected ones because the Flat approach trains just
one classifier with as many labels as the leaf nodes of the hierarchy, and same
for testing. TD is the simplest hierarchical approach where not even all the
labels/nodes are visited during testing phase; its training phase does not take
into account the relations which makes the selection of the training set, an
easier task. As TD-C performs an extra step where the paths are completed is
spends more time than normal TD but not as much as CPE. A more complex
approach MHC spends almost the same time as CPE.

With respect to HIROM approach it is a complex method where a function
is optimized using a greedy approach. This causes the training and testing
time to be at least twice as long as CPE in both MLNP and NMLNP.

In general local classifiers spend less time than global classifiers, since all
the compared methods are local ones the difference is small. For example one
global method (hAntMiner) spent approximately 6 hours to train one of the
datasets used in this thesis.

CPE spends more time than the most simple approaches but performs
better, it does not spend so much time as the complex approach and also
outperforms them.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

70 Summary

5.3 Summary

In this chapter we performed a series of experiments from which we concluded
that our method, using a novel weighting scheme (RSM), performs better with
deep, DAG hierarchies and redundant, complex datasets. Our method spends
a reasonable amount of time in training a classification tasks. Our methods is
competitive against methods of the state of the art.

INAOE Computer Science Department

Experiments and Results 71

Table 5.27: Normalized Gain-Loose Balance (mean [std]) percentage comparing
NMLNP against MLNP. Statistically inferior results against NMLNP are
marked with ↑ and statistically superior results are marked with ↓.

(a) Tree datasets

Dataset NMLNP MLNP

cellcycle_FUN 58.96 [0.55] 58.88 [0.97]

church_FUN 56.40 [1.89] 56.29 [2.48]

derisi_FUN 57.66 [1.00] 57.51 [0.83]

eisen_FUN 60.96 [3.02] 61.23 [2.98]
expr_FUN 60.48 [1.09] 60.44 [1.44]

gasch1_FUN 60.69 [1.13] 60.97 [1.09]
gasch2_FUN 59.26 [3.19] 59.21 [3.10]

pheno_FUN 59.60 [1.55] 59.61 [2.09]
seq_FUN 62.16 [1.44] 61.88 [1.90]

spo_FUN 57.90 [0.94] 57.77 [0.99]

(b) DAG datasets

Dataset NMLNP MLNP

cellcycle_GO 83.83 [0.43] 79.91 [0.44]↓
church_GO 83.57 [0.67] 79.16 [1.43]↓
derisi_GO 83.73 [0.53] 78.98 [0.43]↓
expr_GO 83.55 [0.65] 81.17 [0.40]↓

gasch1_GO 83.96 [0.59] 81.03 [0.65]↓
gasch2_GO 84.12 [1.56] 80.00 [1.62]↓

seq_GO 84.01 [0.53] 82.26 [0.61]↓
spo_GO 83.84 [0.53] 79.59 [0.42]↓

Hierarchical Multi-label Classification for tree and DAG Hierarchies

72 Summary

Table 5.29: Hamming accuracy (median [IQR]) percentage comparison of MLNP meth-
ods. Statistically different results compared with CPE are marked with ↑ if
they are superior and ↓ if they are inferior.

Dataset CPE HIROM TPR TPRw

cellcycle_FUN 92.69 [0.11] 89.25 [0.24]↓ 89.78 [0.42] 93.13 [0.39]
church_FUN 92.67 [0.50] 89.33 [0.33]↓ 88.79 [3.59]↓ 91.92 [1.18]

derisi_FUN 92.49 [0.29] 89.23 [0.13]↓ 87.49 [1.04]↓ 91.58 [0.48]

eisen_FUN 90.59 [0.90] 85.29 [0.23]↓ 86.65 [1.46]↓ 90.71 [1.14]
expr_FUN 92.56 [0.34] 89.24 [0.14]↓ 90.18 [0.52] 93.45 [0.46]

gasch1_FUN 92.79 [0.33] 89.26 [0.12]↓ 89.77 [0.57] 93.39 [0.38]
gasch2_FUN 92.60 [0.69] 89.19 [0.99]↓ 88.98 [0.66]↓ 92.59 [1.35]

pheno_FUN 86.02 [1.03] 79.19 [0.39]↓ 84.13 [2.24]↓ 84.88 [1.65]

seq_FUN 93.07 [0.50] 89.78 [0.17]↓ 90.94 [0.83] 93.80 [0.26]
spo_FUN 92.56 [0.34] 89.36 [0.10]↓ 89.42 [0.72]↓ 92.48 [0.43]

Table 5.30: Exact Match (median [IQR]) percentage comparison of NMLNP methods.
Statistically different results compared with CPE are marked with ↑ if they
are superior and ↓ if they are inferior.

Dataset CPE HIROM TPR TPRw

cellcycle_FUN 10.68 [1.39] 1.94 [0.83]↓ 4.58 [1.39]↓ 5.28 [0.82]

church_FUN 4.71 [5.81] 2.50 [1.93] 0.97 [4.72]↓ 1.25 [5.00]↓
derisi_FUN 8.66 [0.86] 2.23 [0.57]↓ 2.66 [1.40]↓ 3.63 [1.39]

eisen_FUN 12.42 [9.44] 0.86 [1.28]↓ 5.79 [8.17]↓ 6.65 [8.61]

expr_FUN 13.66 [1.66] 1.38 [1.10]↓ 6.77 [1.64]↓ 7.59 [1.38]

gasch1_FUN 13.85 [1.97] 1.25 [0.55]↓ 5.54 [2.49]↓ 7.06 [1.94]

gasch2_FUN 7.86 [8.30] 0.41 [3.04]↓ 2.49 [5.81]↓ 3.31 [8.29]

pheno_FUN 7.85 [2.74] 4.44 [1.37]↓ 3.42 [1.36]↓ 3.75 [2.07]↓
seq_FUN 14.74 [4.52] 1.99 [0.54]↓ 8.36 [3.99]↓ 9.42 [4.22]

spo_FUN 8.86 [2.79] 2.39 [0.85]↓ 3.80 [1.97]↓ 4.22 [1.41]

INAOE Computer Science Department

Experiments and Results 73

Table 5.31: F1-macro D (median [IQR]) percentage comparison of NMLNP methods.
Statistically different results compared with CPE are marked with ↑ if they
are superior and ↓ if they are inferior.

Dataset CPE HIROM TPR TPRw

cellcycle_FUN 19.14 [1.01] 3.42 [0.86]↓ 15.18 [3.01] 14.35 [2.93]↓
church_FUN 10.12 [7.59] 4.09 [2.76]↓ 9.21 [6.91] 9.12 [10.90]

derisi_FUN 16.27 [2.32] 3.53 [0.43]↓ 12.73 [2.08] 12.35 [1.23]↓
eisen_FUN 21.89 [7.08] 2.21 [2.17]↓ 17.06 [5.91] 16.85 [6.19]↓
expr_FUN 24.68 [2.57] 2.96 [0.30]↓ 18.20 [1.59] 17.78 [1.07]↓

gasch1_FUN 24.98 [4.39] 2.49 [0.44]↓ 18.91 [3.32] 18.86 [3.72]↓
gasch2_FUN 17.46 [6.20] 0.80 [5.77]↓ 14.21 [2.86] 12.83 [4.50]

pheno_FUN 15.39 [4.54] 6.08 [1.92]↓ 12.62 [3.22] 12.87 [2.46]

seq_FUN 27.20 [5.12] 3.49 [1.02]↓ 19.74 [3.53] 19.56 [4.61]↓
spo_FUN 16.68 [2.93] 3.80 [0.87]↓ 14.61 [2.02] 13.75 [2.29]↓

Table 5.32: F1-macro L (median [IQR]) percentage comparison of NMLNP methods.
Statistically different results compared with CPE are marked with ↑ if they
are superior and ↓ if they are inferior.

Dataset CPE HIROM TPR TPRw

cellcycle_FUN 12.12 [2.60] 0.36 [0.08]↓ 11.48 [1.72] 11.54 [2.92]

church_FUN 4.96 [3.78] 0.58 [0.61]↓ 6.35 [2.96] 4.97 [3.98]

derisi_FUN 8.66 [0.57] 0.38 [0.05]↓ 8.62 [1.48] 8.44 [1.22]

eisen_FUN 12.81 [4.79] 0.43 [0.45]↓ 14.74 [5.36] 15.48 [6.90]
expr_FUN 16.34 [1.17] 0.30 [0.03]↓ 15.17 [1.58] 15.21 [2.16]

gasch1_FUN 15.65 [0.83] 0.24 [0.06]↓ 15.61 [2.40] 16.22 [2.04]
gasch2_FUN 8.45 [4.14] 0.14 [0.98]↓ 10.36 [2.45] 10.50 [2.83]
pheno_FUN 9.87 [3.77] 1.64 [0.61]↓ 12.24 [5.09] 11.96 [3.88]

seq_FUN 16.52 [2.10] 0.37 [0.17]↓ 14.36 [2.30] 14.78 [2.19]

spo_FUN 9.70 [1.55] 0.43 [0.13]↓ 10.46 [1.44] 9.97 [2.44]

Hierarchical Multi-label Classification for tree and DAG Hierarchies

74 Summary

Table 5.33: H-loss (median [IQR]) comparison of MLNP methods. Statistically different
results compared with CPE are marked with ↑ if they are superior and ↓ if
they are inferior.

Dataset CPE HIROM TPR TPRw

cellcycle_FUN 1.753 [0.03] 1.933 [0.02] 1.513 [0.05] 1.285 [0.06]↑
church_FUN 1.897 [0.11] 1.922 [0.05] 1.696 [0.14] 1.520 [0.14]↑
derisi_FUN 1.804 [0.03] 1.93 [0.01] 1.759 [0.06] 1.508 [0.1]↑
eisen_FUN 1.72 [0.18] 1.957 [0.04] 1.451 [0.12] 1.286 [0.15]↑
expr_FUN 1.668 [0.03] 1.944 [0] 1.444 [0.05] 1.236 [0.05]↑

gasch1_FUN 1.672 [0.06] 1.95 [0.01] 1.472 [0.09] 1.256 [0.06]↑
gasch2_FUN 1.808 [0.18] 1.985 [0.11] 1.581 [0.13] 1.351 [0.17]↑
pheno_FUN 1.823 [0.07] 1.881 [0.03] 1.647 [0.2] 1.582 [0.16]↑

seq_FUN 1.647 [0.07] 1.935 [0.02] 1.404 [0.12] 1.202 [0.06]↑
spo_FUN 1.803 [0.04] 1.927 [0.02] 1.592 [0.05] 1.383 [0.06]↑

Table 5.34: Gain-Loose Balance (median [IQR]) percentage comparison of NMLNP
methods. Statistically different results compared with CPE are marked
with ↑ if they are superior and ↓ if they are inferior.

Dataset CPE HIROM TPR TPRw

cellcycle_FUN 59.00 [0.62] 40.36 [0.93]↓ 50.92 [0.79]↓ 57.32 [1.66]

church_FUN 55.82 [1.98] 40.86 [1.74]↓ 46.73 [8.63]↓ 51.65 [4.35]

derisi_FUN 57.61 [1.18] 40.31 [0.31]↓ 45.32 [1.99]↓ 53.15 [1.11]

eisen_FUN 59.94 [3.43] 38.95 [0.69]↓ 52.54 [4.27]↓ 57.57 [3.60]

expr_FUN 60.30 [2.03] 40.07 [0.94]↓ 53.06 [1.52]↓ 59.28 [0.91]

gasch1_FUN 61.09 [1.81] 39.91 [0.53]↓ 51.79 [2.87]↓ 59.17 [1.57]

gasch2_FUN 58.42 [3.50] 38.95 [4.95]↓ 48.99 [2.83]↓ 55.98 [4.83]

pheno_FUN 59.30 [3.08] 47.78 [0.63]↓ 56.90 [3.38]↓ 57.41 [1.82]

seq_FUN 62.02 [2.75] 40.82 [0.84]↓ 54.15 [2.63]↓ 60.00 [2.07]

spo_FUN 57.88 [0.58] 40.76 [0.29]↓ 49.85 [2.96]↓ 55.84 [1.12]

Evaluation Measure CPE HIROM

Accuracy 32.29 [3.14] 14.92 [0.45]↓
Hamming Accuracy 93.15 [0.38] 84.99 [0.24]↓

Exact Match 9.31 [2.76] 0.02 [0.03]↓
F1-macro D 44.68 [2.91] 24.81 [0.59]↓
F1-macro L 8.56 [2.76] 3.33 [0.21]↓

H-loss 1.604 [0.07] 3.021 [0.06]↓
NGLB 80.18 [1.20] 64.03 [0.41]↓

Table 5.35: Comparison of CPE-NMLNP against another NMLNP method for DAG
datasets.

INAOE Computer Science Department

Experiments and Results 75

Table 5.36: Time (seconds) required for training MLNP methods.
(a) Tree datasets

Dataset CPE Flat TD MHC HIROM

cellcycle_FUN 3.12 [0.74] 1.30 [0.26] 1.74 [0.26] 2.50 [0.44] 6.21 [0.75]

church_FUN 1.54 [0.16] 0.49 [0.03] 0.85 [0.12] 1.28 [0.09] 3.83 [0.26]

derisi_FUN 2.91 [0.34] 1.56 [0.10] 1.79 [0.02] 2.58 [0.09] 7.12 [0.76]

eisen_FUN 1.48 [0.05] 0.72 [0.04] 0.90 [0.05] 1.39 [0.19] 3.23 [0.32]

expr_FUN 7.49 [0.36] 2.92 [0.14] 4.28 [0.14] 7.77 [1.44] 16.30 [0.60]

gasch1_FUN 4.08 [0.61] 1.58 [0.05] 2.20 [0.16] 3.21 [0.14] 8.26 [0.54]

gasch2_FUN 3.04 [0.42] 1.38 [0.03] 2.08 [0.65] 3.17 [0.80] 5.76 [0.12]

pheno_FUN 0.73 [0.04] 0.30 [0.01] 0.47 [0.05] 0.90 [0.19] 1.76 [0.09]

seq_FUN 7.19 [0.64] 2.57 [0.10] 5.07 [0.82] 6.23 [0.72] 17.03 [2.89]

spo_FUN 3.37 [0.42] 1.40 [0.03] 2.24 [0.04] 2.50 [0.14] 8.72 [3.00]

(b) DAG datasets

Dataset CPE Flat TD TD-C HIROM

cellcycle_GO 2.45 [0.53] 1.01 [0.25] 1.79 [0.40] 3.19 [0.85] 5.93 [1.63]

church_GO 1.21 [0.16] 0.38 [0.07] 0.92 [0.16] 1.03 [0.19] 3.57 [0.26]

derisi_GO 2.60 [0.24] 1.06 [0.03] 1.73 [0.04] 2.08 [0.35] 5.83 [0.43]

expr_GO 11.01 [1.74] 2.16 [0.08] 5.72 [0.20] 8.64 [2.03] 16.46 [2.44]

gasch1_GO 4.75 [0.36] 1.14 [0.04] 2.57 [0.07] 3.65 [0.78] 7.61 [0.80]

gasch2_GO 2.74 [0.56] 0.97 [0.06] 1.53 [0.02] 1.77 [0.17] 4.94 [0.46]

seq_GO 7.00 [0.46] 1.79 [0.26] 4.78 [0.13] 6.39 [1.07] 12.14 [0.97]

spo_GO 2.41 [0.11] 1.07 [0.07] 1.77 [0.02] 2.29 [0.70] 5.37 [0.43]

Table 5.37: Time required for training NMLNP datasets.
(a) Tree datasets

Dataset CPE HIROM

cellcycle_FUN 3.81 [0.68] 13.66 [1.59]

church_FUN 1.78 [0.11] 8.90 [1.11]

derisi_FUN 3.91 [0.14] 15.27 [1.40]

eisen_FUN 1.96 [0.08] 6.29 [0.34]

expr_FUN 10.70 [0.17] 35.62 [1.78]

gasch1_FUN 5.10 [0.11] 18.69 [1.37]

gasch2_FUN 3.35 [0.06] 13.20 [1.35]

pheno_FUN 0.75 [0.05] 2.77 [0.30]

seq_FUN 9.37 [0.35] 35.35 [1.61]

spo_FUN 3.74 [0.09] 14.78 [0.86]

(b) DAG datasets

Dataset CPE HIROM

cellcycle_GO 3.83 [0.80] 13.36 [1.34]

church_GO 1.85 [0.21] 10.76 [1.25]

derisi_GO 3.87 [0.20] 15.14 [0.68]

expr_GO 13.36 [0.45] 38.08 [2.74]

gasch1_GO 5.57 [0.52] 18.09 [1.74]

gasch2_GO 3.24 [0.09] 11.55 [1.01]

seq_GO 12.46 [1.68] 37.77 [7.37]

spo_GO 5.03 [0.48] 13.70 [0.43]

Hierarchical Multi-label Classification for tree and DAG Hierarchies

76 Summary

Table 5.38: Time (seconds) required for testing MLNP methods.

Dataset CPE Flat TD MHC HIROM

cellcycle_FUN 0.25 [0.18] 0.04 [0.03] 0.03 [0.01] 0.20 [0.14] 0.37 [0.21]

church_FUN 0.11 [0.02] 0.01 [0.01] 0.02 [0.01] 0.09 [0.01] 0.17 [0.02]

derisi_FUN 0.16 [0.02] 0.02 [0.01] 0.02 [0.00] 0.14 [0.01] 0.33 [0.13]

eisen_FUN 0.06 [0.01] 0.01 [0.00] 0.01 [0.00] 0.05 [0.01] 0.10 [0.02]

expr_FUN 0.87 [0.09] 0.10 [0.01] 0.14 [0.02] 0.96 [0.21] 1.58 [0.34]

gasch1_FUN 0.44 [0.07] 0.04 [0.00] 0.06 [0.03] 0.31 [0.04] 0.60 [0.08]

gasch2_FUN 0.21 [0.05] 0.02 [0.00] 0.05 [0.05] 0.20 [0.07] 0.29 [0.11]

pheno_FUN 0.02 [0.01] 0.01 [0.00] 0.01 [0.01] 0.02 [0.01] 0.05 [0.01]

seq_FUN 1.13 [0.17] 0.11 [0.01] 0.19 [0.04] 0.98 [0.13] 1.79 [0.56]

spo_FUN 0.25 [0.05] 0.02 [0.01] 0.05 [0.01] 0.19 [0.05] 0.47 [0.23]

(a) Tree datasets

Dataset CPE Flat TD TD-C HIROM

cellcycle_GO 0.25 [0.09] 0.04 [0.03] 0.04 [0.01] 0.07 [0.02] 0.47 [0.22]

church_GO 0.15 [0.02] 0.02 [0.01] 0.03 [0.00] 0.03 [0.00] 0.29 [0.03]

derisi_GO 0.25 [0.05] 0.02 [0.00] 0.04 [0.00] 0.06 [0.03] 0.42 [0.05]

expr_GO 1.90 [0.47] 0.10 [0.01] 0.22 [0.02] 0.40 [0.24] 2.23 [0.19]

gasch1_GO 0.78 [0.12] 0.04 [0.01] 0.09 [0.01] 0.15 [0.04] 0.87 [0.07]

gasch2_GO 0.32 [0.15] 0.02 [0.01] 0.03 [0.01] 0.06 [0.02] 0.46 [0.07]

seq_GO 1.17 [0.14] 0.11 [0.03] 0.21 [0.02] 0.28 [0.05] 1.96 [0.34]

spo_GO 0.28 [0.03] 0.03 [0.01] 0.05 [0.01] 0.07 [0.01] 0.48 [0.05]

(b) DAG datasets

Table 5.39: Time required for testing NMLNP datasets.
(a) Tree datasets

Dataset CPE HIROM

cellcycle_FUN 0.39 [0.12] 0.98 [0.32]

church_FUN 0.25 [0.07] 0.77 [0.30]

derisi_FUN 0.34 [0.03] 0.92 [0.16]

eisen_FUN 0.15 [0.02] 0.32 [0.07]

expr_FUN 2.00 [0.13] 4.22 [0.31]

gasch1_FUN 0.75 [0.02] 1.67 [0.16]

gasch2_FUN 0.35 [0.04] 0.90 [0.12]

pheno_FUN 0.04 [0.01] 0.11 [0.02]

seq_FUN 1.97 [0.15] 4.66 [0.59]

spo_FUN 0.43 [0.02] 1.12 [0.19]

(b) DAG datasets

Dataset CPE HIROM

cellcycle_GO 0.62 [0.27] 1.23 [0.24]

church_GO 0.31 [0.03] 0.96 [0.23]

derisi_GO 0.57 [0.06] 1.23 [0.16]

expr_GO 3.72 [0.37] 5.85 [0.56]

gasch1_GO 1.20 [0.08] 2.12 [0.26]

gasch2_GO 0.55 [0.05] 1.11 [0.26]

seq_GO 3.72 [0.69] 6.60 [1.31]

spo_GO 0.98 [0.21] 1.28 [0.12]

INAOE Computer Science Department

Chapter 6

Conclusions

This thesis addressed the Hierarchical Multi-label Classification problem,
where examples can be associated to multiple labels and these labels belong
to a predefined structure.

We have presented a novel approach for hierarchical multi-label classifi-
cation for tree and DAG structures. The method estimates the probability of
each path by combing LCPNs, incorporating two additional features: (i) a
weighting scheme that gives more importance to correct predictions at the top
levels; (ii) an extension of the chain idea for hierarchical classification, incorpo-
rating the label of the parent nodes as additional attributes. Experiments with
18 tree and DAG hierarchies were performed. Our method obtained superior
results when dealing with deep hierarchies and competitive performance with
shallower hierarchies when compared to state-of-the-art algorithms.

A version for NMLNP of our method was developed; we compared several
pruning approaches varying the pruning direction, pruning time and pruning
condition; we discovered that the best prune was obtained in a top-dow fash-
ion, pruning the hierarchy and then selecting the best path and pruning when
the unknown probability surpass the most probable node al a local classifier.
We tested with 18 tree and DAG structured datasets Our method resulted
superior against several state of the art methods in DAG and competitive for
tree structures.

A new metric was introduced to avoid conservative classifications, this
metric takes into account the level of the labels and the number of siblings in
the hierarchy in order to include extra information in the evaluation of the
predictions and obtain predictions that contribute with relevant information
and not just the most general.

6.1 Conclusions

The proposed method was evaluated empirically and compared with several
state of the art methods.

77

78 Conclusions

The experimental evaluation of this thesis provides an empirical analysis
with respect to the number and variety of evaluation measures (including
the introduction of Gain-Loose Balance metric), the number of datasets used
in experimentation and the evaluation of the characteristics of the method.
This framework allowed a more conscious evaluation and comparison of the
performance of existing methods in the literature. Next we summarize our
findings.

6.1.1 Weighting Scheme

We proposed a weighting scheme (RSM) which takes into account the level
of the nodes and divides the weight linearly along the levels, it improves the
results in most metrics compared with a non-weighted scheme. Our weighting
scheme showed to be more consistent than other current approach along both
shallow and deep hierarchies, when combined with the proposed method and
at least as good as other current approach.

6.1.2 Depth effect

When there are more levels in the hierarchy, hence more classes, the classifica-
tion performance decreases, this is because as the number of labels increases
the complexity of separating their spaces grow. The performance suffers a
drop and then stabilizes when the number of levels increases, this can be due
to the fact that in the last levels less nodes are eliminated from the hierarchy.
The proposed method reaches the stabilization point slightly sooner than the
other methods with which it was compared. Our method is a good alternative
when dealing with deep hierarchies.

It is worth mentioning that HIROM was the method that stabilized sooner
(approximately at 4 levels) in all the evaluation measures though it obtained
the lower performance in the bunch.

6.1.3 Comparing CPE against other methods

By including information of the hierarchy, in the form of taking into account
the prediction of the parent node and the position of the label in the hierarchy
the performance of the HMC using local classifiers can be boosted. This
resulted in CPE outperforming in many cases other classifiers and even
returned better results when dealing with redundant and complex (many
relevant attributes) datasets with deep hierarchies and many labels.

Interestingly, HIROM was the most stable of the methods obtaining ap-
proximately the same performance along all the datasets in all the evaluation
measures.

INAOE Computer Science Department

Conclusions 79

6.1.4 NMLNP

We proposed a pruning condition for NMLNP that tries to minimize the
reduction of the specificity of the predictions. Our method tries to prune the
prediction in the moment where no more information can be extracted, thus
reducing specificity errors and returning too general predictions that does not
provide enough information.

6.2 Contributions

This thesis identified the scarcity of HMC methods based on local classifiers
that exploit the relationships between the nodes and the relevance of the labels
according to the level.

The major contributions include a novel hierarchical classification method
applicable for both MLNP and NMLNP, problems with tree or DAG hierarchy
structures. This method fills a gap in local HMC methods in the literature.

Another contribution is the proposal of a new evaluation measure designed
for NMLNP which deals with the bias towards conservative predictions.

The versatility of our method for a variety of conditions and the scalability
ensures that it can remain relevant in the hierarchical multi-label classification
task.

The proposed CPE method, where the relations of the labels are taken into
account even when the approach divide the classification problem, can be
powerful when dealing with problems with deep hierarchies structures, but
is not so effective in shallow hierarchies (surpassed performance by simpler
approaches when dealing with less than 3 levels of specificity). Furthermore,
this method performs well in the presence of redundant and complex datasets.

CPE incorporates the relations of the labels in the hierarchy by adding the
parent prediction as an appended attribute and by taking into account the
level at which the label is placed assigning a weight to each level. Our method
combines the modularity of local classifiers with the overall view of global
classifiers.

As compared with other methods in the literature, CPE:

• keeps a training and classifying time in the range of simpler classifiers;

• achieves competitive performance with shallow structured dataset; and

• superior performance with deep structured datasets.

The CPE-NMLNP deals with the problem of not necessarily selecting the
most specific label by making a pruning step before returning the prediction.
Pruning is performed before choosing the best path (prune the whole set

Hierarchical Multi-label Classification for tree and DAG Hierarchies

80 Future Work

of possible paths in the hierarchy), in a top-down fashion, using the most
probable child as the condition to prune a node.

The NMLNP variant of our method is competitive with other methods in
the literature. The two variants of our method are able to use different base
classifiers; to fit the domain and complexity of the datasets.

During this research we developed an extension to the multi-label frame-
work Meka1, to implement and evaluate our methods and other methods from
the literature.

6.3 Future Work

Hierarchical multi-label classification is becoming a trend for big datasets with
a large number of labels which have a predefined structure.

This thesis has discussed an alternative for taking advantage of the pre-
defined structure of the labels to boost the performance of the classification.
As future work we would like to deal with multiple paths from the root to
different nodes in the hierarchy by using automatically selected thresholds
obtained from the data.

1http://sourceforge.net/projects/meka/

INAOE Computer Science Department

References

Aghaie, A. and Saeedi, A. (2009). Using bayesian networks for bankruptcy
prediction: Empirical evidence from iranian companies. In International
Conference on Information Management and Engineering, 2009. ICIME ’09.,
pages 450–455.

Alaydie, N., Reddy, C. K., and Fotouhi, F. (2012). Exploiting Label Dependency
for Hierarchical Multi-label Classification. Advances in Knowledge Discovery
and Data Mining, 7301:294–305.

Alves, R., Delgado, M., and Freitas, A. a. (2008). Multi-label hierarchical
classification of protein functions with artificial immune systems. Advances
in Bioinformatics and Computational Biology, pages 1–12.

Araújo, B. S. (2006). Aprendizaje automático: conceptos básicos y avanzados.
Pearson Prentice Hall.

Ashburner, M., Ball, C. A., and Blake, J. A. (2000). Gene Ontology: tool for the
unification of biology. Nature Genetics, 25:25–29.

Bar-Yam, Y. (2011). Concepts: Linear and nonlinear. http://necsi.edu/

guide/concepts/linearnonlinear.html.

Barutcuoglu, Z. and DeCoro, C. (2006). Hierarchical shape classification using
Bayesian aggregation. IEEE International Conference on Shape Modeling and
Applications, 2006. SMI 2006.

Barutcuoglu, Z., Schapire, R., and Troyanskaya, O. (2006). Hierarchical multi-
label prediction of gene function. Bioinformatics, 22(7):830–6.

Bee Wah, Y. and Ibrahim, I. (2010). Using data mining predictive models to
classify credit card applicants. In 6th International Conference on Advanced
Information Management and Service (IMS), pages 394–398.

Bennett, P. N. and Nguyen, N. (2009). Refined experts: Improving classification
in large taxonomies. In Proceedings of the 32nd Annual ACM SIGIR Conference,
pages 11–18. Association for Computing Machinery, Inc.

81

http://necsi.edu/guide/concepts/linearnonlinear.html
http://necsi.edu/guide/concepts/linearnonlinear.html

82 Future Work

Bi, W. and Kwok, J. T. (2011). Multi-label classification on tree-and dag-
structured hierarchies. In Proceedings of the 28th International Conference on
Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2,
2011, pages 17–24.

Bi, W. and Kwok, J. T. (2012). Hierarchical Multilabel Classification with
Minimum Bayes Risk. 2012 IEEE 12th International Conference on Data Mining.

Bielza, C., Li, G., and Larranaga, P. (2011). Multi-dimensional classifica-
tion with Bayesian networks. International Journal of Approximate Reasoning,
52(6):705–727.

Binder, A., Kawanabe, M., and Brefeld, U. (2010). Efficient classification of
images with taxonomies. Computer Vision–ACCV 2009.

Blockeel, H. and Bruynooghe, M. (2002). Hierarchical multi-classification.
pages 21–35.

Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., and Clare, A. (2006). Decision
trees for hierarchical multilabel classification: A case study in functional
genomics. In Knowledge Discovery in Databases: PKDD 2006, 10th European
Conference on Principles and Practice of Knowledge Discovery in Databases, pages
18–29.

Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. (2004). Learning multi-label
scene classification. Pattern recognition, 37(9):1757–1771.

Campbell, D. J. (1988). Task Complexity: A Review and Analysis. Academy of
Management Review, 13(1):40–52.

Carreira-Perpiñan, M. A. (1997). A Review of Dimension Reduction Tech-
niques. Technical report, Department of Computer Science. University of
Sheffield. Tech. Rep. CS-96-09.

Ceci, M. and Malerba, D. (2007). Classifying web documents in a hierarchy of
categories: a comprehensive study. Journal of Intelligent Information Systems,
28(1):37–78.

Cerri, R., Barros, R. C., and Carvalho, A. C. (2013). Hierarchical multi-label
classification using local neural networks. Journal of Computer and System
Sciences, 1:1–18.

Cesa-Bianchi, N., Gentile, C., and Zaniboni, L. (2006). Incremental algorithms
for hierarchical classification. The Journal of Machine Learning Research, 7:31–
54.

Clare, A. and King, R. (2003). Predicting gene function in Saccharomyces
cerevisiae. Bioinformatics, 19:ii42–ii49.

INAOE Computer Science Department

Conclusions 83

Clare, A. and King, R. D. (2001). Knowledge discovery in multi-label pheno-
type data. In Principles of data mining and knowledge discovery, pages 42–53.
Springer.

Cortes, C. and Vapnik, V. (1995). Support-Vector Networks. Intelligent Systems
and their Applications, 297:273–297.

Costa, E. and Lorena, A. (2008). Top-down hierarchical ensembles of classifiers
for predicting g-protein-coupled-receptor functions. In Advances in Bioinfor-
matics and Computational Biology, Third Brazilian Symposium on Bioinformatics,
BSB, pages 35–46.

Costa, E. P., Lorena, A. C., Carvalho, A. C., Freitas, A. A., and Holden, N.
(2007). Comparing several approaches for hierarchical classification of
proteins with decision trees. In Advances in Bioinformatics and Computational
Biology, pages 126–137. Springer.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27.

Csiszár, I. (1996). Maxent, mathematics, and information theory. In Maximum
entropy and Bayesian methods, pages 35–50. Springer.

De Comité, F., Gilleron, R., and Tommasi, M. (2003). Learning multi-label
alternating decision trees from texts and data. In Perner, P. and Rosenfeld,
A., editors, Machine Learning and Data Mining in Pattern Recognition, volume
2734 of Lecture Notes in Computer Science, pages 35–49. Springer Berlin
Heidelberg.

DeCoro, C., Barutcuoglu, Z., and Fiebrink, R. (2007). Bayesian Aggregation
for Hierarchical Genre Classification. In Proceedings of the 8th International
Conference on Music Information Retrieval, ISMIR 2007, pages 77–80.

Dekel, O., Keshet, J., and Singer, Y. (2004). Large margin hierarchical classi-
fication. Twenty-first international conference on Machine learning - ICML ’04,
page 27.

Dekel, O., Keshet, J., and Singer, Y. (2005). An online algorithm for hierarchical
phoneme classification. Machine Learning for Multimodal Interaction, pages
146–158.

Dimitrovski, I., Kocev, D., Loskovska, S., and Džeroski, S. (2010). Detection
of visual concepts and annotation of images using ensembles of trees for
hierarchical multi-label classification. Recognizing patterns in signals, speech,
images and videos, pages 152–161.

Dimitrovski, I., Kocev, D., Loskovska, S., and Džeroski, S. (2011). Hierarchical
annotation of medical images. Pattern Recognition, 44(10-11):2436–2449.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

84 Future Work

Dimitrovski, I., Kocev, D., Loskovska, S., and Džeroski, S. (2012). Hierarchical
classification of diatom images using ensembles of predictive clustering
trees. Ecological Informatics, 7(1):19–29.

Ding, L., Goshtasby, A., and Satter, M. (2001). Volume image registration by
template matching. Image and Vision Computing, 19(12):821–832.

Dumais, S. and Chen, H. (2000). Hierarchical classification of Web content. In
SIGIR, pages 256–263.

Eisner, R., Poulin, B., Szafron, D., Lu, P., and Greiner, R. (2005). Improving pro-
tein function prediction using the hierarchical structure of the gene ontology.
In Proceedings of the 2005 IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology, 2005. CIBCB’05., pages 1–10. IEEE.

Elisseeff, A. and Weston, J. (2001). A kernel method for multi-labelled classifi-
cation. In NIPS, volume 14, pages 681–687.

Fagni, T. and Sebastiani, F. (2007). On the selection of negative examples for
hierarchical text categorization. Proceedings of LTC-07, pages 24–28.

Fix, E. and Hodges Jr, J. L. (1951). Discriminatory analysis-nonparametric
discrimination: consistency properties. Technical report, DTIC Document.

Flach, P. (2012). The Art and Science of Algorithms that Make Sense of Data,
volume 2010. Cambridge University Press.

Freitas, A. A. and de Carvalho, A. (2007). A Tutorial on Hierarchical Classification
with Applications in Bioinformatics. IGI Publishing.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119–139.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the
American statistical association, 84(405):165–175.

Fürnkranz, J. (1999). Separate-and-conquer rule learning. Artificial Intelligence
Review, 13(1):3–54.

Gaag, L. V. D. and Waal, P. D. (2006). Multi-dimensional Bayesian Network
Classifiers. Probabilistic graphical models, pages 107–114.

Godbole, S. and Sarawagi, S. (2004). Discriminative methods for multi-labeled
classification. In Dai, H., Srikant, R., and Zhang, C., editors, Advances
in Knowledge Discovery and Data Mining, volume 3056 of Lecture Notes in
Computer Science, pages 22–30. Springer Berlin Heidelberg.

Good, I. J. (1950). Probability and the Weighing of Evidence. Charles Griffin.

INAOE Computer Science Department

Conclusions 85

Grujic, N., Ilic, S., Lepetit, V., and Fua, P. (2008). 3d facial pose estimation by
image retrieval. In 8th IEEE Internationall Conference on Automatic Face and
Gesture Recognition, pages 1–6.

Hernandez, J., Sucar, L. E., and Morales, E. F. (2013). A Hybrid Global-Local
Approach for Hierarchical Classification. In Twenty-Sixth International Florida
Artificial Intelligence Research Society Conference, pages 432–437.

Holden, N. and Freitas, A. A. (2008). Improving the Performance of Hier-
archical Classification with Swarm Intelligence. Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatics, pages 48–60.

Huan, M., Wang, K., Zuo, W., and Li, Z. (2011). Template based stereo
matching using graph-cut. In Instrumentation, Measurement, Computer, Com-
munication and Control, 2011 First International Conference on, pages 303–306.
IEEE.

Huang, S.-C., Huang, Y. F., and Jou, I.-C. (1991). Analysis of perceptron
training algorithms and applications to hand-written character recognition.
In International Conference on Acoustics, Speech, and Signal Processing, 1991.
ICASSP-91., pages 2153–2156 vol.3.

Jain, A. K. and Duin, P. (2000). Statistical pattern recognition: a review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37.

Jensen, F. V. (1996). An introduction to Bayesian networks, volume 210. UCL
press London.

Jolliffe, I. T. (1986). Principal Component Analysis. Springer Series in Statistics.

Karvelis, P. S., Fotiadis, D., Tsalikakis, D., and Georgiou, I. (2009). Enhance-
ment of multichannel chromosome classification using a region-based classi-
fier and vector median filtering. IEEE Transactions on Information Technology
in Biomedicine, 13(4):561–570.

Kiritchenko, S., Matwin, S., and Famili, F. (2004). Hierarchical text cate-
gorization as a tool of associating genes with gene ontology codes. In
Proceedings of the Second European Workshop on Data Mining and Text Mining
for Bioinformatics, pages 26–30.

Koller, D. and Sahami, M. (1997). Hierarchically classifying documents using very
few words. Stanford InfoLab.

Kotsiantis, S. (2007). Supervised machine learning: a review of classification
techniques. Informatica (03505596).

Hierarchical Multi-label Classification for tree and DAG Hierarchies

86 Future Work

Labrou, Y. and Finin, T. (1999). Yahoo! as an ontology: using Yahoo! categories
to describe documents. In Proceedings of the eighth international conference on
Information and knowledge management., pages 180–187.

Li, T. and Ogihara, M. (2003). Detecting emotion in music. In ISMIR, volume 3,
pages 239–240.

Lin, Z. and Davis, L. S. (2010). Shape-based human detection and segmentation
via hierarchical part-template matching. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(4):604–618.

Lorena, A. C., De Carvalho, A. C., and Gama, J. M. (2008). A review on the
combination of binary classifiers in multiclass problems. Artificial Intelligence
Review, 30(1-4):19–37.

McCallum, A., Rosenfeld, R., Mitchell, T., and Ng, A. (1998). Improving Text
Classification by Shrinkage in a Hierarchy of Classes. ICML.

Mika, S., Ratsch, G., Weston, J., Scholkopf, B., and Muller, K. (1999). Fisher
discriminant analysis with kernels. In Neural Networks for Signal Processing
IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop.,
pages 41–48.

Mithun, P. and Raajan, N. R. (2013). Neural Network Based Augmented
Reality for Detection of Brain Tumor. International Journal of Engineering &
Technology (0975-4024), 5(2):1688–1692.

Murthy, S. K. (1998). Automatic construction of decision trees from data: A
multi-disciplinary survey. Data mining and knowledge discovery, 2(4):345–389.

Oatley, G. C. and Ewart, B. W. (2003). Crimes analysis software: ‘pins in
maps’, clustering and bayes net prediction. Expert Systems with Applications,
25(4):569 – 588.

Omachi, S. and Omachi, M. (2007). Fast template matching with polynomials.
IEEE Transactions on Image Processing, 16(8):2139–2149.

Otero, F. E. B., Freitas, A. A., and Johnson, C. (2009). A hierarchical classifica-
tion ant colony algorithm for predicting gene ontology terms. Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics, pages 68–79.

Otero, F. E. B., Freitas, A. a., and Johnson, C. G. (2010). A hierarchical multi-
label classification ant colony algorithm for protein function prediction.
Memetic Computing 2.3, 2(3):165–181.

Perotte, A., Pivovarov, R., Natarajan, K., Weiskopf, N., Wood, F., and Elhadad,
N. (2014). Diagnosis code assignment: models and evaluation metrics.
Journal of the American Medical Informatics Association, 21(2):231–237.

INAOE Computer Science Department

Conclusions 87

Qiong Wei, Roland L. Dunbrack, J. (2013). The Role of Balanced Training
and Testing Data Sets for Binary Classifiers in Bioinformatics. PLoS ONE,
8(7):e67863.

Quinlan, J. R. (1993). C4. 5: programs for machine learning, volume 1. Morgan
kaufmann.

Quinlan, J. R. et al. (1979). Discovering rules by induction from large collections of
examples. Expert systems in the micro electronic age. Edinburgh University
Press.

Ramírez, M., Sucar, L. E., and Morales, E. F. (2014a). Chained Path Evaluation
for Hierarchical Multi-label Classification. In Proceedings of the Twenty-
Seventh International Florida Artificial Intelligence Research Society Conference,
FLAIRS 2014, Pensacola Beach, Florida, May 21-23, 2014., pages 502–507.

Ramírez, M., Sucar, L. E., and Morales, E. F. (2014b). Multi-label classification
for tree and directed acyclic graphs hierachies. In van der Gaag, L. and
Feelders, A., editors, Probabilistic Graphical Models, volume 8754 of Lecture
Notes in Computer Science, pages 409–425. Springer International Publishing.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011). Classifier chains for
multi-label classification. Machine Learning, pages 254–269.

Richards, J. A. and Jia, X. (1999). Remote sensing digital image analysis, volume 3.
Springer.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. (2006). Kernel-based
learning of hierarchical multilabel classification models. Journal of Machine
Learning Research, 7:1601–1626.

Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko,
I., Güldener, U., Mannhaupt, G., Münsterkötter, M., and Mewes, H. W.
(2004). The FunCat, a functional annotation scheme for systematic classifica-
tion of proteins from whole genomes. Nucleic acids research, 32(18):5539–45.

Ruiz, M. E. and Srinivasan, P. (2002). Hierarchical text categorization using
neural networks. Information Retrieval, pages 87–118.

Schapire, R. E. and Singer, Y. (2000). Boostexter: A boosting-based system for
text categorization. Machine learning, 39(2-3):135–168.

Secker, A., Davies, M., and Freitas, A. (2007). An experimental comparison
of classification algorithms for hierarchical prediction of protein function.
Expert Update (Magazine of the British Computer Society’s Specialist Group on
AI) 9.3, pages 17–22.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

88 Future Work

Secker, A., Davies, M., and Freitas, A. (2010). Hierarchical classification of
G-Protein-Coupled Receptors with data-driven selection of attributes and
classifiers. International journal of data mining and bioinformatics 4.2.

Silla Jr., C. N. and Freitas, A. A. (2009a). A Global-Model Naive Bayes Ap-
proach to the Hierarchical Prediction of Protein Functions. IEEE International
Conference on Data Mining, pages 992–997.

Silla Jr., C. N. and Freitas, A. A. (2009b). Novel top-down approaches for
hierarchical classification and their application to automatic music genre
classification. IEEE International Conference on Systems, Man, and Cybernetics,
(October):3499–3504.

Sucar, L. E., Bielza, C., Morales, E. F., Hernandez-Leal, P., Zaragoza, J. H., and
Larrañaga, P. (2014). Multi-label classification with bayesian network-based
chain classifiers. Pattern Recognition Letters, 41(0):14 – 22. Supervised and
Unsupervised Classification Techniques and their Applications.

Sucar, L. E. and Gillies, D. F. (1994). Probabilistic reasoning in high-level vision.
Image and Vision Computing, 12(1):42 – 60.

Sucar, L. E., Perez-Brito, J., and Ruiz-Suárez, J. (1995). Induction of dependence
structures from data and its application to ozone prediction. In Proceed-
ings Eight International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems (IEA/AIE), pages 57–63. DTIC
Document.

Sun, A. and Lim, E. (2001). Hierarchical text classification and evaluation. In
Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on,
pages 521–528.

Sun, A., Lim, E., and Ng, W. (2003). Performance measurement framework for
hierarchical text classification. Journal of the American Society for Information
Science and Technology, 54:1014–1028.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science (New York, N.Y.),
290(5500):2319–23.

Thabtah, F. A., Cowling, P., and Peng, Y. (2004). Mmac: A new multi-
class, multi-label associative classification approach. In Data Mining, 2004.
ICDM’04. Fourth IEEE International Conference on, pages 217–224. IEEE.

Tsoumakas, G. and Katakis, I. (2007). Multi-Label Classification: An Overview.
International Journal of Data Warehousing and Mining, 3:1–13.

Tsoumakas, G., Katakis, I., and Vlahavas, I. (2010). Mining multi-label data.
Data mining and knowledge discovery handbook.

INAOE Computer Science Department

Conclusions 89

Valentini, G. (2009). True path rule hierarchical ensembles. In Multiple Classifier
Systems, volume 5519 of Lecture Notes in Computer Science, pages 232–241.
Springer Berlin Heidelberg.

Valentini, G. and Cesa-Bianchi, N. (2008). HCGene: a software tool to support
the hierarchical classification of genes. Bioinformatics, 24(5):729–31.

Valentini, G. and Re, M. (2009). Weighted True Path Rule: a multilabel
hierarchical algorithm for gene function prediction. In European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases: 1st International Workshop on learning from Multi-Label Data, pages
132–145.

Vens, C., Struyf, J., Schietgat, L., Džeroski, S., and Blockeel, H. (2008). Decision
trees for hierarchical multi-label classification. Machine Learning, 73(2):185–
214.

Weigend, A., Wiener, E., and Pedersen, J. (1999). Exploiting hierarchy in text
categorization. Information Retrieval.

William, C. et al. (1995). Fast effective rule induction. In Twelfth International
Conference on Machine Learning, pages 115–123.

Wu, F., Zhang, J., and Honavar, V. (2005). Learning classifiers using hier-
archically structured class taxonomies. In Abstraction, Reformulation and
Approximation, pages 313–320. Springer.

Zaragoza, J. H., Sucar, L., and Morales, E. (2011a). A Two-Step Method to
Learn Multidimensional Bayesian Network Classifiers Based on Mutual
Information Measures. FLAIRS Conference, pages 644–649.

Zaragoza, J. H., Sucar, L. E., Morales, E. F., Bielza, C., and Larra, P. (2011b).
Bayesian Chain Classifiers for Multidimensional Classification. IJCAI,
11:2192–2197.

Zhang, M.-L. and Zhou, Z.-H. (2005). A k-nearest neighbor based algorithm
for multi-label classification. In Conference on Granular Computing, 2005 IEEE
International, volume 2, pages 718–721. IEEE.

Zhang, Y., Zincir-Heywood, N., and Milios, E. (2005). Narrative text classifi-
cation for automatic key phrase extraction in web document corpora. In
Proceedings of the 7th annual ACM international workshop on Web information
and data management, pages 51–58. ACM.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

Appendix A

Base Classifier

The individual behavior for each dataset using different base classifiers along
the six accuracy measures used in this thesis. The results were obtained using
a ten-fold cross-validation, the mean and standard deviation along the folds is
reported.

Table A.1: Accuracy percentage (mean [std]) using five different base classifiers.

Dataset DT C4.5 SVM NB RF

cellcycle_FUN 5.84 [1.21] 16.69 [2.65] 9.33 [0.99] 20.14 [1.29] 22.24 [2.94]
church_FUN 8.75 [3.79] 10.55 [4.35] 6.71 [2.62] 12.73 [6.34] 14.65 [7.54]
derisi_FUN 4.44 [1.41] 17.02 [1.62] 10.06 [2.95] 13.42 [2.14] 19.20 [2.13]
eisen_FUN 11.70 [2.99] 20.66 [2.80] 22.05 [2.63] 27.31 [8.88] 29.87 [9.33]
expr_FUN 10.47 [2.57] 17.74 [1.56] 7.49 [1.61] 23.18 [3.54] 30.37 [1.63]

gasch1_FUN 9.54 [2.19] 18.12 [1.58] 9.65 [2.30] 20.03 [2.89] 29.57 [3.31]
gasch2_FUN 8.74 [1.73] 17.33 [3.61] 9.83 [2.85] 19.27 [7.95] 23.41 [8.33]
pheno_FUN 15.43 [3.65] 13.03 [2.94] 13.54 [3.24] 18.20 [3.29] 18.87 [2.62]

seq_FUN 13.74 [5.45] 18.45 [4.72] 10.20 [7.10] 32.74 [4.97] 30.93 [5.95]

spo_FUN 7.00 [1.62] 16.22 [1.49] 6.90 [1.10] 15.20 [1.48] 21.26 [2.29]
cellcycle_GO 30.98 [1.79] 28.87 [1.63] 30.10 [2.36] 35.18 [3.04] 38.05 [2.74]
church_GO 31.40 [1.70] 28.86 [1.08] 30.77 [1.89] 26.57 [2.34] 31.89 [1.57]
derisi_GO 30.16 [2.32] 28.76 [1.10] 29.92 [2.51] 27.48 [2.57] 35.00 [2.20]
expr_GO 31.97 [1.84] 28.83 [1.29] 29.74 [2.12] 35.93 [2.68] 42.25 [3.17]

gasch1_GO 32.74 [2.36] 28.85 [1.40] 30.53 [2.35] 33.67 [3.18] 41.93 [2.34]
gasch2_GO 33.04 [2.28] 28.83 [1.74] 30.09 [1.90] 34.99 [1.71] 38.88 [2.24]

seq_GO 33.90 [1.69] 28.74 [1.59] 32.06 [2.81] 45.80 [2.30] 49.15 [2.65]
spo_GO 31.20 [1.93] 28.92 [1.40] 30.63 [3.23] 27.76 [2.29] 34.97 [1.86]

91

92

Table A.2: Hamming Accuracy percentage (mean [std]) using five different base classi-
fiers.

Dataset DT C4.5 SCM NB RF

cellcycle_FUN 90.55 [0.19] 90.34 [0.37] 90.34 [0.22] 89.10 [0.28] 90.90 [0.33]
church_FUN 90.51 [0.40] 90.54 [0.42] 90.12 [0.19] 86.03 [2.16] 90.49 [0.77]

derisi_FUN 90.75 [0.19] 90.57 [0.22] 90.56 [0.24] 87.71 [0.55] 90.66 [0.31]

eisen_FUN 87.34 [0.58] 87.40 [0.98] 87.73 [0.90] 87.07 [1.48] 88.58 [1.51]
expr_FUN 90.71 [0.33] 90.35 [0.34] 90.49 [0.22] 88.80 [0.54] 91.35 [0.32]

gasch1_FUN 90.68 [0.18] 90.37 [0.22] 90.21 [0.26] 88.85 [0.43] 91.43 [0.46]
gasch2_FUN 90.59 [0.44] 90.32 [0.57] 90.06 [0.60] 89.01 [1.30] 91.12 [1.27]
pheno_FUN 84.59 [0.68] 84.16 [0.56] 84.27 [0.60] 83.72 [0.51] 84.32 [0.66]

seq_FUN 91.59 [0.56] 91.09 [0.55] 91.55 [0.64] 91.51 [0.73] 92.03 [0.68]
spo_FUN 90.64 [0.19] 90.32 [0.14] 90.27 [0.19] 88.04 [0.40] 90.74 [0.25]

cellcycle_GO 91.89 [0.41] 91.83 [0.36] 91.22 [0.58] 91.50 [0.59] 92.13 [0.53]
church_GO 91.92 [0.28] 91.84 [0.25] 91.32 [0.38] 90.60 [0.39] 91.51 [0.28]

derisi_GO 91.71 [0.34] 91.82 [0.26] 91.17 [0.33] 90.70 [0.26] 91.76 [0.31]

expr_GO 91.95 [0.30] 91.83 [0.28] 91.26 [0.35] 91.50 [0.25] 92.48 [0.43]
gasch1_GO 92.07 [0.17] 91.84 [0.22] 91.31 [0.34] 91.38 [0.40] 92.53 [0.37]
gasch2_GO 92.07 [0.37] 91.83 [0.36] 91.25 [0.31] 91.57 [0.30] 92.22 [0.32]

seq_GO 92.09 [0.28] 91.61 [0.31] 91.24 [0.31] 92.62 [0.32] 93.34 [0.48]
spo_GO 91.95 [0.35] 91.82 [0.34] 91.28 [0.53] 90.69 [0.37] 91.73 [0.31]

INAOE Computer Science Department

Base Classifier 93

Table A.3: Exact Match percentage (mean [std]) using five different base classifiers.

Dataset DT C4.5 SCM NB RF

cellcycle_FUN 5.47 [1.07] 9.06 [3.08] 7.82 [0.90] 17.23 [1.54] 16.38 [2.84]

church_FUN 6.62 [2.16] 7.09 [2.36] 6.20 [2.27] 10.85 [6.23] 11.28 [6.91]
derisi_FUN 4.41 [1.42] 8.99 [2.16] 7.64 [1.94] 10.71 [2.09] 13.78 [1.40]
eisen_FUN 6.72 [2.60] 10.47 [3.00] 15.17 [2.96] 23.44 [8.95] 21.10 [9.82]

expr_FUN 7.72 [2.12] 9.59 [1.49] 7.13 [1.59] 19.90 [3.59] 24.36 [1.10]
gasch1_FUN 7.08 [1.41] 10.02 [2.31] 8.74 [2.28] 17.09 [2.89] 23.83 [3.44]
gasch2_FUN 6.79 [1.98] 9.51 [3.43] 8.15 [2.57] 15.75 [8.59] 18.64 [8.92]
pheno_FUN 14.29 [3.21] 12.74 [3.07] 13.08 [3.02] 10.68 [2.59] 15.41 [2.80]

seq_FUN 11.19 [5.51] 11.88 [5.09] 10.13 [7.12] 28.18 [4.99] 25.71 [6.02]

spo_FUN 6.34 [1.75] 8.56 [2.01] 5.65 [1.20] 12.42 [1.48] 16.16 [2.33]
cellcycle_GO 7.90 [2.08] 3.75 [2.24] 14.23 [2.46] 20.37 [3.63] 21.08 [3.42]
church_GO 8.77 [3.36] 3.74 [1.24] 14.61 [2.27] 11.92 [2.83] 13.50 [2.19]

derisi_GO 8.53 [4.21] 3.67 [0.95] 14.26 [2.87] 12.49 [2.94] 17.18 [2.39]
expr_GO 9.48 [2.51] 3.72 [0.96] 13.08 [2.38] 21.51 [3.21] 26.22 [3.94]

gasch1_GO 9.97 [3.51] 3.73 [1.46] 14.34 [2.88] 19.06 [3.59] 25.82 [3.17]
gasch2_GO 10.93 [3.51] 3.72 [1.76] 13.95 [2.80] 20.06 [2.77] 22.21 [3.49]

seq_GO 10.17 [2.39] 3.74 [1.49] 16.83 [3.49] 30.74 [3.41] 33.43 [3.79]
spo_GO 7.66 [3.23] 3.74 [1.94] 14.60 [3.36] 12.58 [2.62] 18.16 [2.38]

Hierarchical Multi-label Classification for tree and DAG Hierarchies

94

Table A.4: F1-macro D percentage (mean [std]) using five different base classifiers.

Dataset DT C4.5 SCM NB RF

cellcycle_FUN 6.03 [1.30] 20.56 [2.55] 10.08 [1.18] 21.61 [1.22] 25.21 [3.08]
church_FUN 9.83 [4.81] 12.31 [5.53] 6.97 [2.82] 13.81 [6.32] 16.37 [7.93]
derisi_FUN 4.45 [1.41] 21.10 [1.44] 11.29 [3.54] 14.91 [2.19] 21.95 [2.60]
eisen_FUN 14.19 [3.25] 25.76 [3.19] 25.49 [2.62] 29.34 [8.85] 34.05 [9.14]
expr_FUN 11.85 [2.82] 21.88 [1.66] 7.68 [1.63] 24.82 [3.57] 33.37 [2.01]

gasch1_FUN 10.78 [2.64] 22.23 [1.38] 10.11 [2.33] 21.52 [2.95] 32.47 [3.28]
gasch2_FUN 9.74 [1.70] 21.31 [3.81] 10.68 [3.04] 21.09 [7.64] 25.81 [8.07]
pheno_FUN 16.01 [3.93] 13.17 [2.89] 13.77 [3.37] 21.97 [4.22] 20.64 [2.57]

seq_FUN 15.05 [5.50] 21.86 [4.58] 10.24 [7.09] 35.06 [4.99] 33.57 [5.86]

spo_FUN 7.34 [1.57] 20.12 [1.51] 7.54 [1.15] 16.57 [1.52] 23.86 [2.37]
cellcycle_GO 43.85 [1.59] 42.67 [1.37] 40.54 [2.24] 44.86 [2.65] 48.26 [2.44]
church_GO 44.10 [1.35] 42.66 [0.98] 41.24 [1.65] 36.83 [2.01] 43.07 [1.26]

derisi_GO 42.64 [1.92] 42.57 [1.08] 40.24 [2.23] 37.76 [2.24] 45.69 [2.04]
expr_GO 44.55 [1.68] 42.63 [1.33] 40.51 [1.89] 45.40 [2.33] 51.80 [2.69]

gasch1_GO 45.37 [1.81] 42.66 [1.28] 41.05 [2.01] 43.39 [2.81] 51.56 [2.03]
gasch2_GO 45.44 [1.98] 42.63 [1.63] 40.63 [1.49] 44.75 [1.31] 48.92 [1.73]

seq_GO 46.82 [1.39] 42.53 [1.49] 42.18 [2.36] 54.76 [1.77] 58.09 [2.19]
spo_GO 44.26 [1.51] 42.73 [1.17] 41.08 [2.98] 38.13 [2.03] 45.37 [1.58]

INAOE Computer Science Department

Base Classifier 95

Table A.5: F1-macro L percentage (mean [std]) using five different base classifiers.

Dataset DT C4.5 SCM NB RF

cellcycle_FUN 0.96 [0.36] 2.46 [0.45] 2.96 [0.41] 18.12 [2.22] 13.49 [1.82]

church_FUN 1.47 [0.90] 1.85 [0.90] 1.47 [0.79] 7.21 [3.69] 7.14 [5.35]

derisi_FUN 0.48 [0.15] 2.31 [0.24] 2.61 [0.73] 10.72 [1.37] 11.98 [2.14]
eisen_FUN 2.96 [0.51] 3.64 [0.64] 6.84 [0.95] 17.67 [3.85] 18.24 [3.29]
expr_FUN 2.84 [0.85] 2.58 [0.21] 2.59 [1.02] 20.09 [4.03] 19.48 [1.60]

gasch1_FUN 2.32 [0.59] 2.70 [0.32] 3.20 [0.97] 16.08 [2.75] 19.22 [3.13]
gasch2_FUN 1.99 [0.38] 2.49 [0.55] 3.15 [1.02] 10.75 [3.41] 8.84 [3.58]

pheno_FUN 3.71 [1.81] 1.61 [0.36] 2.28 [0.81] 7.60 [1.58] 11.68 [2.99]
seq_FUN 3.16 [0.95] 2.86 [0.96] 1.67 [1.42] 21.28 [3.36] 17.54 [3.08]

spo_FUN 1.55 [0.42] 2.27 [0.24] 2.00 [0.40] 12.34 [1.30] 13.09 [1.54]
cellcycle_GO 5.72 [0.59] 3.33 [0.11] 4.73 [0.40] 12.98 [2.18] 11.30 [1.26]

church_GO 5.42 [0.78] 3.33 [0.07] 3.34 [0.26] 6.14 [0.67] 8.77 [1.25]
derisi_GO 5.91 [0.71] 3.30 [0.05] 3.68 [0.58] 8.05 [1.72] 10.51 [1.29]
expr_GO 6.37 [0.67] 3.33 [0.06] 5.50 [0.86] 15.93 [3.73] 16.40 [3.00]

gasch1_GO 6.61 [0.88] 3.33 [0.11] 5.18 [0.70] 12.78 [2.59] 16.51 [1.78]
gasch2_GO 6.71 [0.72] 3.33 [0.10] 4.51 [0.61] 12.17 [1.25] 13.44 [1.73]

seq_GO 6.38 [1.00] 3.40 [0.10] 7.85 [1.60] 24.73 [3.99] 24.76 [4.41]
spo_GO 5.87 [0.75] 3.34 [0.06] 4.24 [0.69] 7.52 [2.00] 9.89 [2.14]

Hierarchical Multi-label Classification for tree and DAG Hierarchies

96

Table A.6: H-loss (mean [std]) using five different base classifiers.

Dataset DT C4.5 SCM NB RF

cellcycle_FUN 1.89 [0.02] 1.82 [0.06] 1.84 [0.02] 1.66 [0.03] 1.67 [0.06]

church_FUN 1.87 [0.04] 1.86 [0.05] 1.88 [0.05] 1.78 [0.12] 1.77 [0.14]
derisi_FUN 1.91 [0.03] 1.82 [0.04] 1.85 [0.04] 1.79 [0.04] 1.72 [0.03]
eisen_FUN 1.87 [0.05] 1.79 [0.06] 1.70 [0.06] 1.53 [0.18] 1.52 [0.27]

expr_FUN 1.85 [0.04] 1.81 [0.03] 1.86 [0.03] 1.60 [0.07] 1.51 [0.02]
gasch1_FUN 1.86 [0.03] 1.80 [0.05] 1.83 [0.05] 1.66 [0.06] 1.52 [0.07]
gasch2_FUN 1.86 [0.04] 1.81 [0.07] 1.84 [0.05] 1.69 [0.17] 1.63 [0.18]
pheno_FUN 1.71 [0.06] 1.75 [0.06] 1.74 [0.06] 1.79 [0.05] 1.69 [0.06]

seq_FUN 1.78 [0.11] 1.76 [0.10] 1.80 [0.14] 1.44 [0.10] 1.49 [0.12]

spo_FUN 1.87 [0.04] 1.83 [0.04] 1.89 [0.02] 1.75 [0.03] 1.68 [0.05]
cellcycle_GO 1.87 [0.05] 1.95 [0.05] 1.75 [0.06] 1.65 [0.07] 1.62 [0.07]
church_GO 1.86 [0.08] 1.96 [0.03] 1.74 [0.05] 1.82 [0.07] 1.77 [0.05]

derisi_GO 1.86 [0.09] 1.96 [0.02] 1.75 [0.05] 1.81 [0.06] 1.69 [0.05]
expr_GO 1.84 [0.05] 1.96 [0.03] 1.78 [0.05] 1.63 [0.06] 1.51 [0.08]

gasch1_GO 1.83 [0.07] 1.96 [0.03] 1.76 [0.06] 1.68 [0.08] 1.52 [0.07]
gasch2_GO 1.81 [0.08] 1.96 [0.04] 1.76 [0.06] 1.65 [0.05] 1.59 [0.07]

seq_GO 1.82 [0.04] 1.95 [0.03] 1.71 [0.06] 1.43 [0.07] 1.36 [0.08]
spo_GO 1.88 [0.07] 1.96 [0.05] 1.74 [0.06] 1.80 [0.06] 1.68 [0.05]

INAOE Computer Science Department

Appendix B

Weighting Scheme

B.1 RSM vs NW scheme

The individual behavior for each dataset using a RSM and non weighted
scheme along the six accuracy measures used in this thesis. We performed a
paired t-test with a confidence level of 95%.

Table B.1: Accuracy percentage (mean[std]) using the proposed weighting scheme
against a non weighted approach, statistically superior results compared
with RSM scheme are marked with ↑ and statistically inferior with ↓.

(a) Tree datasets

Dataset RSM NW

cellcycle_FUN 22.39 [2.77] 20.20 [1.57]↓
church_FUN 14.72 [8.50] 13.36 [7.29]↓
derisi_FUN 19.37 [2.01] 18.38 [2.43]

eisen_FUN 29.92 [9.74] 27.92 [10.32]↓
expr_FUN 29.73 [2.28] 27.23 [2.81]↓

gasch1_FUN 28.16 [2.31] 26.50 [2.73]↓
gasch2_FUN 22.62 [7.81] 20.90 [8.08]↓
pheno_FUN 18.02 [2.63] 17.45 [2.19]

seq_FUN 30.54 [5.76] 29.66 [4.92]

spo_FUN 21.11 [1.51] 19.39 [2.11]↓

(b) DAG datasets

Dataset RSM NW

cellcycle_GO 37.19 [2.97] 36.84 [3.63]

church_GO 31.62 [1.18] 32.57 [2.25]
derisi_GO 34.35 [1.62] 34.55 [1.84]
expr_GO 42.35 [1.70] 41.76 [1.90]

gasch1_GO 42.13 [3.67] 41.57 [3.64]

gasch2_GO 39.34 [2.71] 38.57 [1.49]

seq_GO 47.86 [2.73] 48.13 [2.78]
spo_GO 34.97 [1.68] 33.61 [1.70]↓

97

98 RSM vs NW scheme

Table B.2: Hamming Accuracy percentage (mean[std]) using the proposed weighting
scheme against a non weighted approach, statistically superior results
compared with RSM scheme are marked with ↑ and statistically inferior
with ↓.

(a) Tree datasets

Dataset RSM NW

cellcycle_FUN 90.90 [0.39] 91.06 [0.25]↑
church_FUN 90.56 [0.79] 90.66 [0.70]
derisi_FUN 90.71 [0.25] 90.91 [0.32]↑
eisen_FUN 88.57 [1.63] 88.67 [1.63]
expr_FUN 91.30 [0.31] 91.39 [0.43]

gasch1_FUN 91.18 [0.43] 91.44 [0.35]↑
gasch2_FUN 91.03 [1.28] 91.15 [1.19]
pheno_FUN 84.09 [0.57] 84.23 [0.55]

seq_FUN 91.99 [0.66] 92.27 [0.52]↑
spo_FUN 90.76 [0.16] 90.98 [0.30]↑

(b) DAG datasets

Dataset RSM NW

cellcycle_GO 92.06 [0.53] 92.09 [0.70]
church_GO 91.48 [0.14] 91.56 [0.41]
derisi_GO 91.65 [0.25] 91.74 [0.22]
expr_GO 92.54 [0.27] 92.55 [0.27]

gasch1_GO 92.52 [0.56] 92.55 [0.54]
gasch2_GO 92.27 [0.43] 92.24 [0.36]

seq_GO 93.17 [0.53] 93.25 [0.57]
spo_GO 91.81 [0.37] 91.67 [0.35]↓

Table B.3: Exact Match percentage (mean[std]) using the proposed weighting scheme
against a non weighted approach, statistically superior results compared
with RSM scheme are marked with ↑ and statistically inferior with ↓.

(a) Tree datasets

Dataset RSM NW

cellcycle_FUN 16.63 [2.59] 15.65 [1.58]↓
church_FUN 11.50 [7.73] 10.51 [6.40]

derisi_FUN 14.24 [2.33] 13.61 [2.24]

eisen_FUN 22.43 [9.86] 21.36 [9.71]

expr_FUN 23.51 [2.39] 21.90 [2.70]↓
gasch1_FUN 22.64 [2.61] 21.19 [2.93]↓
gasch2_FUN 17.57 [8.17] 16.72 [8.41]

pheno_FUN 14.81 [2.75] 14.46 [2.49]

seq_FUN 25.34 [6.19] 25.50 [5.25]
spo_FUN 15.42 [1.55] 14.68 [1.66]

(b) DAG datasets

Dataset RSM NW

cellcycle_GO 20.03 [3.26] 19.50 [3.88]

church_GO 13.21 [1.94] 14.61 [2.41]↑
derisi_GO 17.01 [2.08] 16.78 [2.11]

expr_GO 26.34 [2.66] 25.76 [2.64]

gasch1_GO 26.11 [4.41] 25.82 [4.13]

gasch2_GO 22.85 [3.69] 21.57 [1.95]

seq_GO 32.08 [2.74] 32.67 [3.77]
spo_GO 17.39 [1.89] 16.26 [2.47]

INAOE Computer Science Department

Weighting Scheme 99

Table B.4: F1-macro D percentage (mean[std]) using the proposed weighting scheme
against a non weighted approach, statistically superior results compared
with RSM scheme are marked with ↑ and statistically inferior with ↓.

(a) Tree datasets

Dataset RSM NW

cellcycle_FUN 25.28 [2.97] 22.50 [1.63]↓
church_FUN 16.35 [8.96] 14.81 [7.91]↓
derisi_FUN 21.98 [2.06] 20.80 [2.61]

eisen_FUN 33.68 [9.80] 31.20 [10.72]↓
expr_FUN 32.84 [2.34] 29.91 [2.94]↓

gasch1_FUN 30.98 [2.17] 29.21 [2.66]↓
gasch2_FUN 25.18 [7.64] 23.02 [7.97]↓
pheno_FUN 19.66 [2.66] 18.95 [2.21]

seq_FUN 33.19 [5.54] 31.82 [4.77]↓
spo_FUN 23.96 [1.65] 21.75 [2.36]↓

(b) DAG datasets

Dataset RSM NW

cellcycle_GO 47.56 [2.75] 47.29 [3.35]

church_GO 42.85 [0.97] 43.55 [2.23]
derisi_GO 44.99 [1.40] 45.26 [1.66]
expr_GO 51.92 [1.32] 51.38 [1.60]

gasch1_GO 51.68 [3.22] 51.12 [3.24]

gasch2_GO 49.28 [2.33] 48.74 [1.45]

seq_GO 56.97 [2.59] 57.06 [2.39]
spo_GO 45.65 [1.56] 44.29 [1.39]↓

Table B.5: F1-macro L percentage (mean[std]) using the proposed weighting scheme
against a non weighted approach, statistically superior results compared
with RSM scheme are marked with ↑ and statistically inferior with ↓.

(a) Tree datasets

Dataset RSM NW

cellcycle_FUN 14.06 [1.97] 12.08 [1.34]↓
church_FUN 7.99 [7.49] 5.84 [3.81]

derisi_FUN 11.76 [1.84] 10.54 [1.43]↓
eisen_FUN 18.33 [3.69] 16.30 [4.13]↓
expr_FUN 18.18 [1.51] 15.20 [1.50]↓

gasch1_FUN 17.25 [2.79] 15.37 [2.61]

gasch2_FUN 8.83 [4.46] 7.59 [4.37]↓
pheno_FUN 12.21 [3.52] 10.32 [3.36]↓

seq_FUN 17.37 [3.12] 15.26 [2.58]↓
spo_FUN 12.27 [1.12] 11.22 [1.91]

(b) DAG datasets

Dataset RSM NW

cellcycle_GO 11.82 [1.58] 10.03 [1.26]↓
church_GO 8.71 [1.24] 8.68 [0.96]

derisi_GO 9.91 [0.99] 10.13 [1.28]
expr_GO 16.59 [2.15] 15.87 [2.17]

gasch1_GO 16.07 [2.54] 16.01 [3.15]

gasch2_GO 13.19 [1.53] 12.08 [1.65]

seq_GO 23.59 [4.46] 23.69 [4.17]
spo_GO 10.29 [1.29] 8.94 [1.01]↓

Hierarchical Multi-label Classification for tree and DAG Hierarchies

100 RSM vs other weighting schemes

Table B.6: H-loss (mean[std]) using the proposed weighting scheme against a non
weighted approach, statistically superior results compared with RSM
scheme are marked with ↑ and statistically inferior with ↓.

(a) Tree datasets

Dataset RSM NW

cellcycle_FUN 1.667 [0.05] 1.687 [0.03]↓
church_FUN 1.770 [0.15] 1.790 [0.13]

derisi_FUN 1.715 [0.05] 1.728 [0.04]

eisen_FUN 1.551 [0.20] 1.573 [0.19]

expr_FUN 1.530 [0.05] 1.562 [0.05]↓
gasch1_FUN 1.547 [0.05] 1.576 [0.06]↓
gasch2_FUN 1.649 [0.16] 1.666 [0.17]

pheno_FUN 1.704 [0.05] 1.711 [0.05]

seq_FUN 1.493 [0.12] 1.490 [0.11]
spo_FUN 1.692 [0.03] 1.706 [0.03]

(b) DAG datasets

Dataset RSM NW

cellcycle_GO 1.634 [0.07] 1.645 [0.08]

church_GO 1.781 [0.04] 1.748 [0.06]↑
derisi_GO 1.702 [0.04] 1.701 [0.04]
expr_GO 1.505 [0.05] 1.517 [0.05]

gasch1_GO 1.514 [0.09] 1.522 [0.08]

gasch2_GO 1.583 [0.08] 1.610 [0.05]

seq_GO 1.381 [0.06] 1.377 [0.07]
spo_GO 1.694 [0.04] 1.717 [0.05]

B.2 RSM vs other weighting schemes

The individual behavior for each dataset using a RSM and other weighting
schemes along the six accuracy measures used in this thesis. Median and IQR
are reported. The best results are marked with green, the worst with red and
the rest in yellow. We performed a Friedman test with a confidence level of
95% using Tukey’s honestly significant difference criterion.

INAOE Computer Science Department

Weighting Scheme 101

Table B.7: Accuracy (median [IQR]) percentage using the proposed weighting scheme
against other weighting schemes. Statistically inferior results against CPE
are marked with ↑ and statistically superior results are marked with ↓.

(a) Tree datasets

Dataset RSM V BK

cellcycle_FUN 22.52 [3.24] 23.20 [4.05] 24.55 [0.72]

church_FUN 12.26 [10.19] 12.02 [10.43] 12.82 [7.80]

derisi_FUN 19.18 [2.46] 19.41 [4.59] 22.07 [2.17]↑
eisen_FUN 28.19 [10.12] 26.07 [9.25] 29.19 [8.06]

expr_FUN 29.58 [2.84] 29.45 [3.79] 29.62 [4.29]

gasch1_FUN 28.26 [3.05] 28.24 [3.34] 30.40 [4.11]

gasch2_FUN 21.18 [9.26] 19.96 [9.08] 24.45 [5.09]

pheno_FUN 18.46 [2.01] 19.11 [3.25] 19.96 [2.73]

seq_FUN 29.15 [7.11] 28.96 [6.67] 29.96 [7.70]

spo_FUN 20.96 [1.64] 19.88 [2.75] 24.46 [3.91]↑

(b) DAG datasets

Dataset RSM V BK

cellcycle_GO 36.93 [3.84] 37.48 [5.42] 35.60 [3.06]↓
church_GO 31.49 [1.50] 31.93 [1.78] 31.76 [1.87]

derisi_GO 34.50 [2.50] 34.39 [4.68] 33.44 [2.26]

expr_GO 42.96 [3.22] 42.70 [2.53] 39.09 [2.98]↓
gasch1_GO 42.69 [5.06] 42.82 [3.65] 39.66 [3.56]

gasch2_GO 38.77 [3.61] 40.75 [3.45] 37.73 [2.91]

seq_GO 47.61 [4.33] 48.80 [2.04] 45.53 [5.24]

spo_GO 34.96 [3.57] 34.60 [1.68] 34.34 [1.59]

Hierarchical Multi-label Classification for tree and DAG Hierarchies

102 RSM vs other weighting schemes

Table B.8: Hamming Accuracy (median [IQR]) percentage using the proposed weight-
ing scheme against other weighting schemes. Statistically inferior results
against CPE are marked with ↑ and statistically superior results are marked
with ↓.

(a) Tree datasets

Dataset RSM V BK

cellcycle_FUN 90.89 [0.44] 91.16 [0.33] 90.91 [0.40]

church_FUN 90.47 [1.06] 90.38 [1.13] 90.22 [0.61]

derisi_FUN 90.68 [0.30] 90.73 [0.37] 90.76 [0.20]

eisen_FUN 88.32 [1.50] 88.35 [1.52] 88.52 [1.21]

expr_FUN 91.30 [0.26] 91.17 [0.65] 91.29 [0.49]

gasch1_FUN 91.20 [0.54] 91.34 [0.63] 91.41 [0.81]

gasch2_FUN 90.89 [0.86] 90.95 [1.31] 90.92 [1.18]

pheno_FUN 84.18 [0.61] 84.53 [0.72] 84.28 [0.41]

seq_FUN 91.91 [0.58] 91.86 [0.44] 91.78 [0.56]

spo_FUN 90.71 [0.24] 90.69 [0.10] 90.90 [0.52]

(b) DAG datasets

Dataset RSM V BK

cellcycle_GO 92.05 [0.66] 91.89 [0.97] 91.46 [0.66]↓
church_GO 91.45 [0.27] 91.49 [0.67] 91.26 [0.57]↓
derisi_GO 91.65 [0.31] 91.71 [0.36] 90.83 [0.41]↓
expr_GO 92.53 [0.40] 92.40 [0.49] 91.50 [0.74]↓

gasch1_GO 92.50 [0.68] 92.49 [0.69] 91.74 [0.58]↓
gasch2_GO 92.25 [0.49] 92.53 [0.44] 91.74 [0.57]↓

seq_GO 93.14 [0.87] 93.27 [0.79] 92.32 [0.79]↓
spo_GO 91.90 [0.46] 91.67 [0.25] 91.15 [0.30]↓

INAOE Computer Science Department

Weighting Scheme 103

Table B.9: Exact Match (median [IQR]) percentage using the proposed weighting
scheme against other weighting schemes. Statistically inferior results against
CPE are marked with ↑ and statistically superior results are marked with ↓.

(a) Tree datasets

Dataset RSM V BK

cellcycle_FUN 16.45 [5.13] 16.70 [4.70] 16.03 [1.71]

church_FUN 7.91 [9.83] 8.33 [9.83] 7.48 [5.98]

derisi_FUN 14.08 [2.94] 14.47 [4.20] 14.29 [2.10]

eisen_FUN 19.05 [10.21] 18.45 [10.12] 18.45 [7.74]

expr_FUN 23.35 [3.81] 23.36 [4.24] 21.82 [3.91]

gasch1_FUN 23.19 [3.83] 22.77 [2.56] 21.96 [5.02]

gasch2_FUN 15.47 [11.49] 14.41 [10.69] 16.77 [4.32]

pheno_FUN 15.09 [2.59] 15.52 [2.59] 14.66 [3.45]

seq_FUN 23.94 [8.50] 23.17 [6.48] 24.09 [9.43]

spo_FUN 15.00 [1.30] 14.53 [2.61] 16.09 [3.48]

(b) DAG datasets

Dataset RSM V BK

cellcycle_GO 19.35 [4.68] 19.94 [5.39] 15.25 [2.34]↓
church_GO 13.45 [0.58] 13.45 [3.51] 12.87 [2.92]

derisi_GO 17.71 [3.45] 16.86 [5.06] 12.64 [2.86]↓
expr_GO 27.33 [4.65] 26.74 [2.91] 20.06 [4.65]↓

gasch1_GO 26.74 [6.84] 26.82 [5.85] 21.51 [4.22]↓
gasch2_GO 21.80 [3.49] 23.84 [4.07] 18.90 [4.07]↓

seq_GO 31.87 [4.68] 33.24 [4.09] 27.49 [6.43]↓
spo_GO 17.80 [2.96] 17.21 [3.66] 13.35 [2.89]↓

Hierarchical Multi-label Classification for tree and DAG Hierarchies

104 RSM vs other weighting schemes

Table B.10: F1-macro D (median [IQR]) percentage using the proposed weighting
scheme against other weighting schemes. Statistically inferior results
against CPE are marked with ↑ and statistically superior results are marked
with ↓.

(a) Tree datasets

Dataset RSM V BK

cellcycle_FUN 25.71 [3.36] 26.06 [3.92] 28.79 [0.56]↑
church_FUN 14.81 [10.94] 14.10 [10.78] 16.09 [9.62]

derisi_FUN 21.67 [3.06] 21.94 [4.70] 26.12 [1.82]↑
eisen_FUN 32.04 [10.71] 30.51 [10.17] 34.57 [8.93]

expr_FUN 32.70 [2.21] 32.55 [4.18] 33.37 [4.33]

gasch1_FUN 30.89 [3.28] 31.39 [4.11] 34.48 [3.64]↑
gasch2_FUN 24.00 [8.07] 22.64 [7.74] 28.00 [4.93]↑
pheno_FUN 20.60 [2.33] 20.99 [2.67] 22.66 [2.84]↑

seq_FUN 31.99 [6.19] 31.94 [6.62] 33.01 [6.84]

spo_FUN 23.87 [2.62] 22.56 [2.70] 28.62 [4.22]↑

(b) DAG datasets

Dataset RSM V BK

cellcycle_GO 47.32 [2.79] 47.82 [4.73] 47.03 [2.70]

church_GO 42.76 [1.11] 43.40 [1.53] 43.23 [1.49]

derisi_GO 44.71 [1.73] 45.05 [3.42] 44.87 [2.09]

expr_GO 52.21 [2.50] 52.13 [2.22] 49.54 [2.76]

gasch1_GO 52.11 [4.56] 52.26 [2.82] 50.39 [3.49]

gasch2_GO 49.05 [3.02] 50.62 [3.29] 48.82 [2.51]

seq_GO 56.58 [3.46] 57.67 [1.91] 55.38 [4.23]

spo_GO 45.66 [2.75] 45.30 [1.48] 45.99 [1.30]

INAOE Computer Science Department

Weighting Scheme 105

Table B.11: F1-macro L (median [IQR]) percentage using the proposed weighting
scheme against other weighting schemes. Statistically inferior results
against CPE are marked with ↑ and statistically superior results are marked
with ↓.

(a) Tree datasets

Dataset RSM V BK

cellcycle_FUN 14.26 [1.76] 13.78 [2.03] 11.53 [1.66]↓
church_FUN 6.16 [5.14] 6.66 [5.66] 5.47 [3.56]

derisi_FUN 11.56 [3.08] 10.70 [1.51] 10.64 [0.78]

eisen_FUN 19.33 [3.41] 17.02 [5.37] 13.47 [7.30]↓
expr_FUN 17.68 [2.00] 17.17 [4.28] 15.18 [1.82]↓

gasch1_FUN 17.14 [2.67] 16.94 [2.51] 16.28 [3.45]

gasch2_FUN 7.56 [7.39] 6.54 [6.50] 8.21 [3.94]

pheno_FUN 12.62 [4.55] 12.77 [2.08] 10.54 [2.76]↓
seq_FUN 16.11 [3.05] 15.04 [3.98] 15.39 [1.81]↓
spo_FUN 12.14 [1.73] 12.38 [1.33] 11.41 [1.92]

(b) DAG datasets

Dataset RSM V BK

cellcycle_GO 11.92 [1.39] 10.91 [1.82] 11.24 [3.11]

church_GO 8.75 [1.93] 9.47 [1.20] 9.67 [1.34]

derisi_GO 9.86 [1.36] 10.92 [1.44] 10.32 [1.95]

expr_GO 16.53 [2.81] 17.15 [2.88] 14.45 [4.73]

gasch1_GO 15.67 [3.43] 16.60 [2.53] 15.84 [3.47]

gasch2_GO 12.63 [1.93] 14.55 [2.73] 13.75 [0.89]

seq_GO 21.82 [3.61] 24.51 [3.15] 20.09 [3.18]

spo_GO 10.25 [1.84] 10.11 [2.22] 10.88 [2.70]

Hierarchical Multi-label Classification for tree and DAG Hierarchies

106 RSM vs other weighting schemes

Table B.12: H-loss (median [IQR]) using the proposed weighting scheme against other
weighting schemes. Statistically inferior results against CPE are marked
with ↑ and statistically superior results are marked with ↓.

(a) Tree datasets

Dataset RSM V BK

cellcycle_FUN 1.671 [0.1] 1.666 [0.09] 1.68 [0.03]

church_FUN 1.842 [0.2] 1.833 [0.2] 1.85 [0.12]

derisi_FUN 1.719 [0.06] 1.711 [0.08] 1.714 [0.04]

eisen_FUN 1.619 [0.2] 1.631 [0.2] 1.631 [0.15]

expr_FUN 1.533 [0.08] 1.533 [0.08] 1.564 [0.08]

gasch1_FUN 1.536 [0.08] 1.545 [0.05] 1.561 [0.1]

gasch2_FUN 1.691 [0.23] 1.712 [0.21] 1.665 [0.09]

pheno_FUN 1.698 [0.05] 1.69 [0.05] 1.707 [0.07]

seq_FUN 1.521 [0.17] 1.537 [0.13] 1.518 [0.19]

spo_FUN 1.700 [0.03] 1.709 [0.05] 1.678 [0.07]

(b) DAG datasets

Dataset RSM V BK

cellcycle_GO 1.634 [0.11] 1.635 [0.15] 1.721 [0.07]

church_GO 1.763 [0.05] 1.775 [0.08] 1.781 [0.06]

derisi_GO 1.693 [0.04] 1.703 [0.07] 1.771 [0.04]

expr_GO 1.483 [0.09] 1.494 [0.06] 1.625 [0.08]↓
gasch1_GO 1.513 [0.14] 1.494 [0.13] 1.599 [0.11]

gasch2_GO 1.602 [0.06] 1.57 [0.12] 1.660 [0.10]

seq_GO 1.386 [0.11] 1.376 [0.07] 1.471 [0.13]↓
spo_GO 1.68 [0.08] 1.701 [0.08] 1.775 [0.03]↓

INAOE Computer Science Department

Appendix C

Hierarchy depth effect over classification

performance

The individual behavior for each dataset along hierarchies with different levels
evaluated by four different classifiers, are described in this section. We report
the six accuracy measures used in this thesis, a ten-cross fold-validation for
each dataset was performed per level, the mean per level is reported in the
plots. Figure C.1 depicts the behavior of CPE, Figure C.2 of TD, Figure C.3 of
TD-C and Figure C.4 of HIROM.

107

108

cellcycle GO church GO derisi GO expr GO gasch1 GO gasch2 GO seq GO spo GO

(a) Legend

2 4 6 8 10
30

35

40

45

50

55

60

65

70

75

Number of Levels

A
c
c
u

ra
c
y

(b) Accuracy

2 4 6 8 10
85

86

87

88

89

90

91

92

93

94

Number of Levels

H
a
m

m
in

g
 A

c
c
u

ra
c
y

(c) Hamming Accuracy

2 4 6 8 10
10

20

30

40

50

60

Number of Levels

E
x
a
c
t

M
a
tc

h

(d) Exact Match

2 4 6 8 10
40

45

50

55

60

65

70

75

80

Number of Levels

F
1
−

M
a
c
r
o

 D

(e) F1-macro D

2 4 6 8 10
5

10

15

20

25

30

35

40

45

Number of Levels

F
1
−

M
a
c
r
o

 L

(f) F1-macro L

2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

Number of Levels

H
−

L
o

s
s

(g) H-loss

Figure C.1: Plots of the performance of CPE with hierarchies of different depths.

INAOE Computer Science Department

Hierarchy depth effect over classification performance 109

cellcycle GO church GO derisi GO expr GO gasch1 GO gasch2 GO seq GO spo GO

(a) Legend

2 4 6 8 10
30

35

40

45

50

55

60

65

70

75

Number of Levels

A
c
c
u

ra
c
y

(b) Accuracy

2 4 6 8 10
85

86

87

88

89

90

91

92

Number of Levels

H
a
m

m
in

g
 A

c
c
u

ra
c
y

(c) Hamming Accuracy

2 4 6 8 10
10

20

30

40

50

60

Number of Levels

E
x
a
c
t

M
a
tc

h

(d) Exact Match

2 4 6 8 10
40

45

50

55

60

65

70

75

80

Number of Levels

F
1
−

M
a
c
r
o

 D

(e) F1-macro D

2 4 6 8 10
10

15

20

25

30

35

40

45

Number of Levels

F
1
−

M
a
c
r
o

 L

(f) F1-macro L

2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

Number of Levels

H
−

L
o

s
s

(g) H-loss

Figure C.2: Plots of the performance of TD with hierarchies of different depths.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

110

cellcycle GO church GO derisi GO expr GO gasch1 GO gasch2 GO seq GO spo GO

(a) Legend

2 4 6 8 10
30

35

40

45

50

55

60

65

70

75

Number of Levels

A
c
c
u

ra
c
y

(b) Accuracy

2 4 6 8 10
85

86

87

88

89

90

91

92

Number of Levels

H
a
m

m
in

g
 A

c
c
u

ra
c
y

(c) Hamming Accuracy

2 4 6 8 10
10

20

30

40

50

60

Number of Levels

E
x
a
c
t

M
a
tc

h

(d) Exact Match

2 4 6 8 10
40

45

50

55

60

65

70

75

80

Number of Levels

F
1
−

M
a
c
r
o

 D

(e) F1-macro D

2 4 6 8 10
10

15

20

25

30

35

40

45

Number of Levels

F
1
−

M
a
c
r
o

 L

(f) F1-macro L

2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

2

Number of Levels

H
−

L
o

s
s

(g) H-loss

Figure C.3: Plots of the performance of TD-C with hierarchies of different depths.

INAOE Computer Science Department

Hierarchy depth effect over classification performance 111

cellcycle GO church GO derisi GO expr GO gasch1 GO gasch2 GO seq GO spo GO

(a) Legend

2 4 6 8 10
10

15

20

25

30

35

Number of Levels

A
c
c
u

ra
c
y

(b) Accuracy

2 4 6 8 10
30

40

50

60

70

80

90

Number of Levels

H
a
m

m
in

g
 A

c
c
u

ra
c
y

(c) Hamming Accuracy

2 4 6 8 10
0

0.5

1

1.5

2

2.5

Number of Levels

E
x
a
c
t

M
a
tc

h

(d) Exact Match

2 4 6 8 10
20

25

30

35

40

45

50

Number of Levels

F
1
−

M
a
c
r
o

 D

(e) F1-macro D

2 4 6 8 10
0

5

10

15

20

25

30

35

40

Number of Levels

F
1
−

M
a
c
r
o

 L

(f) F1-macro L

2 4 6 8 10
1

1.5

2

2.5

3

3.5

Number of Levels

H
−

L
o

s
s

(g) H-loss

Figure C.4: Plots of the performance of HIROM with hierarchies of different depths.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

Appendix D

Comparison of MLNP approaches

The results are depicted in Sub-sections Section D.1 and D.2. The central
mark of the plots is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers (lines) extend to the most extreme data points not
considered outliers, and outliers are plotted individually and marked with a
circle.

D.1 Tree Structured Datasets

For tree structured hierarchies, we used ten hierarchical datasets and compared
CPE against four HMC methods:

1. Top-Down LCPN (TD).

2. Multidimensional Hierarchical Classifier (MHC).

3. HIROM.

113

114 Tree Structured Datasets

0

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

A
c

c
u

ra
c

y
 (

%
)

HIROM MHC TD CPE

(a) Accuracy (%)

0

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

H
a

m
m

in
g

 A
c

c
u

ra
c

y
 (

%
)

HIROM MHC TD CPE

(b) Hamming Accuracy (%)

Figure D.1: Comparison of CPE against other MLNP methods for tree datasets.

INAOE Computer Science Department

Comparison of MLNP approaches 115

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

E
x

a
c

t
M

a
tc

h
 (

%
)

HIROM MHC TD CPE

(c) Exact Match (%)

0

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

F
1

−
m

a
c

r
o

 D
 (

%
)

HIROM MHC TD CPE

(d) F1-macro D (%)

Figure D.1: Comparison of CPE against other MLNP methods for tree datasets.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

116 Tree Structured Datasets

0

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

F
1

−
m

a
c

r
o

 L
 (

%
)

HIROM MHC TD CPE

(e) F1-macro L (%)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

H
−

lo
s

s
 (

%
)

HIROM MHC TD CPE

(f) H-loss (%)

Figure D.1: Comparison of CPE against other MLNP methods for tree datasets.

INAOE Computer Science Department

Comparison of MLNP approaches 117

D.2 DAG Structured Datasets

For DAG structured datasets, we used eight hierarchical datasets and com-
pared CPE against tree HMC methods:

1. Top-Down LCPN (TD).

2. Top-Down LCPN Corrected (TD-C).

3. HIROM.

0

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
G

O

c
h

u
rc

h
_

G
O

d
e

ri
s
i_

G
O

e
x
p

r_
G

O

g
a

s
c
h

1
_

G
O

g
a

s
c
h

2
_

G
O

s
e

q
_

G
O

s
p

o
_

G
O

Datasets

A
c

c
u

ra
c

y
 (

%
)

HIROM TD−C TD CPE

(g) Accuracy (%)

Figure D.2: Comparison of CPE against other MLNP methods for DAG datasets.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

118 DAG Structured Datasets

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
G

O

c
h

u
rc

h
_

G
O

d
e

ri
s
i_

G
O

e
x
p

r_
G

O

g
a

s
c
h

1
_

G
O

g
a

s
c
h

2
_

G
O

s
e

q
_

G
O

s
p

o
_

G
O

Datasets

H
a

m
m

in
g

 A
c

c
u

ra
c

y
 (

%
)

HIROM TD−C TD CPE

(h) Hamming Accuracy (%)

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
G

O

c
h

u
rc

h
_

G
O

d
e

ri
s
i_

G
O

e
x
p

r_
G

O

g
a

s
c
h

1
_

G
O

g
a

s
c
h

2
_

G
O

s
e

q
_

G
O

s
p

o
_

G
O

Datasets

E
x

a
c

t
M

a
tc

h
 (

%
)

HIROM TD−C TD CPE

(i) Exact Match (%)

Figure D.2: Comparison of CPE against other MLNP methods for DAG datasets.

INAOE Computer Science Department

Comparison of MLNP approaches 119

0

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
G

O

c
h

u
rc

h
_

G
O

d
e

ri
s
i_

G
O

e
x
p

r_
G

O

g
a

s
c
h

1
_

G
O

g
a

s
c
h

2
_

G
O

s
e

q
_

G
O

s
p

o
_

G
O

Datasets

F
1

−
m

a
c

r
o

 D
 (

%
)

HIROM TD−C TD CPE

(j) F1-macro D (%)

0

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
G

O

c
h

u
rc

h
_

G
O

d
e

ri
s
i_

G
O

e
x
p

r_
G

O

g
a

s
c
h

1
_

G
O

g
a

s
c
h

2
_

G
O

s
e

q
_

G
O

s
p

o
_

G
O

Datasets

F
1

−
m

a
c

r
o

 L
 (

%
)

HIROM TD−C TD CPE

(k) F1-macro L (%)

Figure D.2: Comparison of CPE against other MLNP methods for DAG datasets.

Hierarchical Multi-label Classification for tree and DAG Hierarchies

120 DAG Structured Datasets

1

1.5

2

2.5

3

3.5

c
e

llc
y
c
le

_
G

O

c
h

u
rc

h
_

G
O

d
e

ri
s
i_

G
O

e
x
p

r_
G

O

g
a

s
c
h

1
_

G
O

g
a

s
c
h

2
_

G
O

s
e

q
_

G
O

s
p

o
_

G
O

Datasets

H
−

lo
s

s
 (

%
)

HIROM TD−C TD CPE

(l) H-loss (%)

Figure D.2: Comparison of CPE against other MLNP methods for DAG datasets.

INAOE Computer Science Department

Appendix E

Selection of the best NMLNP approach

The pruning approaches described in Section 4.4 for the NMLNP version of
CPE were tested to select the best. In the case of DAG structured datasets the
root of the hierarchy has only one child and this child (l0) is parent of the rest
of the nodes of the hierarchy. The problem in this kind of hierarchies is that
most measures score the conservative classifications as the better ones. In this
case, the method “Top-Down, Select & Prune, IG” predict just l0 node for every
new instance, this classification is useless due to the fact that every instance
belongs to l0 and nevertheless is the one that is better scored.

Gain-Loose Balance deals with this problem and gives better scores to other
methods that return relevant predictions. For that reason, and the fact that
the other measures were inconsistent along the databases and the different
structures, the methods were compared using Gain-Loose Balance. The results
for the NMLNP approaches are depicted on Table E.1.

Discussion

We observe that “Top-Down, Prune & Select, BEST” method obtains in most of
the cases the better score in both, tree and DAG structures.

The datasets have approximately 16% percent of instances which real label
set is just the label l0 . Since the average number of labels per instance is three,
when a method predict only l0 it already has 1/3 of the correct answer. This
can be one of the reasons why the rest of the metrics give the best scores to
the “Top-Down, Select & Prune, IG” method, even when this method predict
just the l0 label in every single instance it classifies.

121

122

Table
E.1:N

G
LB

(%
)

of
the

different
approaches

for
pruning

N
M

LN
P

in
tree

and
D

A
G

structured
datasets.

D
ataset

Top-D
ow

n
Bottom

-U
p

Prune
&

Select
Select

&
Prune

Prune
&

Select
Select

&
Prune

SU
M

BEST
IG

SU
M

BEST
IG

SU
M

BEST
IG

SU
M

BEST
IG

cellcycle_FU
N

6
0.

5
3

60.91
5

9.
2

6
5

9.
3

8
5

9.
9

1
5

8.
8

6
5

9.
5

9
6

0.
1

9
5

8.
7

7
5

9.
3

0
5

9.
4

3
5

8.
9

2

church_FU
N

5
9.

5
2

5
9.

5
3

5
6.

5
1

5
7.

3
9

5
7.

6
3

5
6.

3
4

5
9.

6
3

59.83
5

6.
4

2
5

7.
5

5
5

7.
7

5
5

6.
4

8

derisi_FU
N

6
0.

2
9

60.70
5

7.
4

3
5

9.
0

2
5

9.
0

4
5

6.
9

0
5

9.
3

3
5

9.
7

3
5

7.
0

8
5

8.
3

4
5

8.
5

2
5

7.
7

0

eisen_FU
N

6
2.

1
7

6
2.

6
6

6
1.

4
4

6
1.

6
1

6
2.

0
2

6
0.

0
6

6
2.

0
5

62.87
6

1.
3

4
6

1.
7

8
6

1.
6

7
6

0.
8

0

expr_FU
N

6
0.

6
6

61.62
6

0.
7

7
6

1.
0

5
6

1.
4

5
6

0.
3

4
6

0.
9

8
6

0.
6

8
6

1.
2

6
6

0.
8

9
6

0.
7

8
6

0.
5

6

gasch
1_FU

N
6

1.
2

0
62.45

6
0.

6
3

6
1.

0
7

6
1.

4
8

5
9.

9
8

6
0.

6
2

6
1.

0
9

6
0.

4
6

6
1.

2
2

6
1.

1
2

6
0.

6
8

gasch
2_FU

N
6

1.
2

9
61.30

5
9.

4
3

6
0.

0
5

6
0.

1
1

5
8.

7
6

6
0.

7
4

6
1.

1
6

5
9.

1
4

6
0.

1
9

5
9.

9
3

5
8.

9
1

pheno_FU
N

6
3.

4
3

63.85
5

9.
5

7
6

0.
6

0
6

0.
4

6
5

9.
7

2
6

3.
7

2
6

3.
6

8
5

8.
8

7
6

0.
5

5
6

0.
6

9
5

9.
4

1

seq_FU
N

6
2.

4
2

62.81
6

2.
0

2
6

2.
6

9
6

2.
7

5
6

2.
1

6
6

2.
4

3
6

2.
1

9
6

2.
0

5
6

2.
7

4
6

2.
4

2
6

2.
0

5

spo_FU
N

6
0.

4
6

61.05
5

7.
9

6
5

9.
1

2
5

9.
4

8
5

7.
6

0
5

9.
3

6
6

0.
0

5
5

8.
2

6
5

8.
7

7
5

9.
1

9
5

7.
8

6

cellcycle_G
O

8
3.

3
4

83.83
7

9.
9

1
8

1.
6

3
8

2.
2

5
8

2.
1

5
8

2.
0

6
8

2.
4

2
8

0.
0

1
8

1.
4

3
8

1.
7

6
8

0.
0

7

church_G
O

8
3.

4
8

83.57
7

9.
0

8
8

1.
6

7
8

1.
6

3
8

2.
1

4
8

2.
1

9
8

2.
2

7
7

9.
1

5
8

1.
5

6
8

1.
7

8
7

8.
9

4

derisi_G
O

8
3.

5
6

83.73
7

8.
9

4
8

1.
6

7
8

2.
0

7
8

2.
0

8
8

1.
9

6
8

2.
1

2
7

9.
1

6
8

0.
9

4
8

1.
4

9
7

8.
9

5

expr_G
O

8
2.

3
5

83.55
8

1.
1

0
8

1.
3

0
8

2.
0

5
8

2.
1

6
8

1.
8

3
8

2.
2

1
8

1.
2

1
8

1.
5

0
8

1.
6

1
8

1.
1

3

gasch
1_G

O
8

3.
0

3
83.96

8
0.

9
6

8
1.

7
5

8
2.

5
7

8
2.

1
4

8
2.

1
8

8
2.

5
0

8
1.

0
7

8
1.

5
5

8
2.

0
9

8
0.

7
9

gasch
2_G

O
8

3.
9

2
84.12

8
0.

0
0

8
2.

1
6

8
2.

1
7

8
2.

1
6

8
2.

5
6

8
2.

7
6

8
0.

0
3

8
1.

5
3

8
2.

0
0

7
9.

8
3

seq_G
O

8
3.

3
2

84.01
8

2.
2

5
8

2.
7

5
8

3.
3

4
8

1.
9

1
8

2.
9

0
8

3.
0

9
8

2.
3

1
8

2.
7

7
8

3.
0

9
8

2.
0

8

spo_G
O

8
3.

4
2

83.84
7

9.
4

9
8

1.
2

7
8

1.
6

7
8

2.
1

1
8

2.
0

6
8

2.
1

7
7

9.
6

1
8

1.
1

9
8

1.
6

5
7

9.
2

4

INAOE Computer Science Department

Appendix F

Comparison of NMLNP approaches

F.1 Tree Structured Datasets

The results are depicted in the following figures, the central mark of the
plots is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers (lines) extend to the most extreme data points not considered
outliers, and outliers are plotted individually and marked with a circle.

For tree structured hierarchies, we used ten hierarchical datasets and
compared CPE against three HMC-NMLNP methods:

1. HIROM.

2. True Path Rule (TPR).

3. Weighted True Path Rule (TPRw).

123

124 Tree Structured Datasets

Figure F.1: Comparison of CPE against other NMLNP methods for tree datasets.
(a) Accuracy (%)

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

A
c

c
u

ra
c

y
 (

%
)

TPRw TPR HIROM CPE

(b) Hamming Accuracy (%)

0

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

H
a

m
m

in
g

 A
c

c
u

ra
c

y
 (

%
)

TPRw TPR HIROM CPE

INAOE Computer Science Department

Comparison of NMLNP approaches 125

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

E
x

a
c

t
M

a
tc

h
 (

%
)

TPRw TPR HIROM CPE

(c) Exact Match (%)

0

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

F
1

−
m

a
c

r
o

 D
 (

%
)

TPRw TPR HIROM CPE

(d) F1-macro D (%)

Hierarchical Multi-label Classification for tree and DAG Hierarchies

126 Tree Structured Datasets

10

20

30

40

50

60

70

80

90

100

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

F
1

−
m

a
c

r
o

 L
 (

%
)

TPRw TPR HIROM CPE

(e) F1-macro L (%)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

c
e

llc
y
c
le

_
F

U
N

c
h

u
rc

h
_

F
U

N

d
e

ri
s
i_

F
U

N

e
is

e
n

_
F

U
N

e
x
p

r_
F

U
N

g
a

s
c
h

1
_

F
U

N

g
a

s
c
h

2
_

F
U

N

p
h

e
n

o
_

F
U

N

s
e

q
_

F
U

N

s
p

o
_

F
U

N

Datasets

H
−

lo
s

s
 (

%
)

TPRw TPR HIROM CPE

(f) H-loss (%)

INAOE Computer Science Department

Comparison of NMLNP approaches 127

F.2 DAG Structured Datasets

For DAG structured hierarchies, we used ten hierarchical datasets and com-
pared CPE against three HMC-NMLNP methods:

1. HIROM. Proposed by Bi and Kwok (2012).

Table F.1: Accuracy percentage (mean [std]) comparison of MLNP methods.

Dataset CPE HIROM

cellcycle_GO 41.08 [1.04] 14.82 [0.46]↓
church_GO 40.41 [2.90] 15.41 [1.14]↓
derisi_GO 40.98 [1.24] 15.30 [0.79]↓
expr_GO 39.15 [2.04] 14.69 [0.51]↓

gasch1_GO 40.82 [1.55] 14.73 [0.56]↓
gasch2_GO 42.14 [4.55] 15.03 [1.05]↓

seq_GO 40.90 [1.91] 14.04 [0.86]↓
spo_GO 41.19 [1.25] 15.31 [0.49]↓

Table F.2: Hamming Accuracy percentage (mean [std]) comparison of MLNP methods.

Dataset CPE HIROM

cellcycle_GO 95.46 [0.15] 84.66 [0.34]↓
church_GO 95.44 [0.30] 84.99 [0.87]↓
derisi_GO 95.49 [0.20] 85.17 [0.39]↓
expr_GO 94.68 [0.36] 84.83 [0.42]↓

gasch1_GO 95.16 [0.29] 84.85 [0.39]↓
gasch2_GO 95.56 [0.54] 85.20 [0.93]↓

seq_GO 95.13 [0.16] 85.37 [0.65]↓
spo_GO 95.43 [0.22] 84.85 [0.33]↓

Hierarchical Multi-label Classification for tree and DAG Hierarchies

128 DAG Structured Datasets

Table F.3: Exact Match percentage (mean [std]) comparison of NMLNP methods.

Dataset CPE HIROM

cellcycle_GO 3.61 [1.39] 0.00 [0.00]↓
church_GO 3.10 [3.45] 0.00 [0.00]↓
derisi_GO 4.10 [0.72] 0.06 [0.12]↓
expr_GO 8.76 [1.92] 0.00 [0.00]↓

gasch1_GO 7.01 [0.90] 0.00 [0.00]↓
gasch2_GO 5.00 [5.61] 0.00 [0.00]↓

seq_GO 9.65 [3.52] 0.00 [0.00]↓
spo_GO 4.53 [0.97] 0.06 [0.12]↓

Table F.4: F1-macro D percentage (mean [std])comparison of NMLNP methods.

Dataset CPE HIROM

cellcycle_GO 55.81 [0.98] 24.66 [0.58]↓
church_GO 55.27 [2.40] 25.47 [1.53]↓
derisi_GO 55.61 [1.23] 25.28 [0.97]↓
expr_GO 52.53 [1.99] 24.53 [0.68]↓

gasch1_GO 54.80 [1.60] 24.53 [0.65]↓
gasch2_GO 56.69 [3.77] 25.00 [1.43]↓

seq_GO 54.28 [1.46] 23.67 [1.14]↓
spo_GO 55.76 [1.26] 25.31 [0.63]↓

Table F.5: F1-macro L percentage (mean [std]) comparison of NMLNP methods.

Dataset CPE HIROM

cellcycle_GO 5.09 [0.87] 3.37 [0.20]↓
church_GO 3.77 [0.89] 3.52 [0.25]

derisi_GO 5.16 [0.41] 3.47 [0.15]↓
expr_GO 10.34 [1.36] 3.27 [0.11]↓

gasch1_GO 8.87 [1.18] 3.27 [0.14]↓
gasch2_GO 4.64 [1.41] 3.32 [0.29]↓

seq_GO 11.44 [2.48] 2.88 [0.18]↓
spo_GO 5.37 [0.38] 3.54 [0.20]↓

INAOE Computer Science Department

Comparison of NMLNP approaches 129

Table F.6: H-loss (mean [std]) comparison of MLNP methods.

Dataset CPE HIROM

cellcycle_GO 1.396 [0.04] 3.065 [0.07]↓
church_GO 1.400 [0.07] 2.949 [0.14]↓
derisi_GO 1.389 [0.03] 2.987 [0.06]↓
expr_GO 1.478 [0.05] 3.049 [0.10]↓

gasch1_GO 1.430 [0.05] 3.054 [0.08]↓
gasch2_GO 1.362 [0.10] 2.970 [0.17]↓

seq_GO 1.461 [0.05] 3.104 [0.15]↓
spo_GO 1.392 [0.03] 2.988 [0.09]↓

Table F.7: Normalized Gain-Loose Balance percentage (mean [std]) comparison of
NMLNP methods.

Dataset CPE HIROM

cellcycle_GO 83.83 [0.43] 63.65 [0.73]↓
church_GO 83.57 [0.67] 64.68 [1.96]↓
derisi_GO 83.73 [0.53] 64.10 [0.91]↓
expr_GO 83.55 [0.65] 63.87 [0.96]↓

gasch1_GO 83.96 [0.59] 63.79 [0.80]↓
gasch2_GO 84.12 [1.56] 64.50 [2.48]↓

seq_GO 84.01 [0.53] 63.49 [1.48]↓
spo_GO 83.84 [0.53] 64.13 [0.63]↓

Hierarchical Multi-label Classification for tree and DAG Hierarchies

	Front
	Agradecimientos
	Abstract
	Resumen
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Issues
	1.2.1 Research questions

	1.3 Objectives
	1.3.1 Specific Objectives

	1.4 Proposed Solution
	1.5 Contributions
	1.6 Document Guide

	2 Theoretical Framework
	2.1 Supervised Classification
	2.1.1 Algorithm Selection

	2.2 Multi-label Classification
	2.2.1 Algorithm Adaptation Methods
	2.2.2 Problem Transformation Methods

	2.3 Summary

	3 Related Work
	3.1 Hierarchical Multi-label Classification
	3.1.1 Flat Classification Approach
	3.1.2 Local Classifiers Approach
	3.1.3 Non-mandatory leaf node prediction and the blocking problem
	3.1.4 Global Classifier (big-bang) approach

	3.2 Evaluation Measures
	3.2.1 Analysis

	3.3 Summary

	4 Chained Path Evaluation
	4.1 Training
	4.2 Merging Rule
	4.3 Classification for MLNP
	4.4 Classification for NMLNP
	4.5 Gain-Loose Balance
	4.6 Summary

	5 Experiments and Results
	5.1 Experimental Setup
	5.1.1 Datasets
	5.1.2 Data Topology

	5.2 Experiments
	5.2.1 Base Classifier
	5.2.2 Weighting Scheme
	5.2.3 MLNP
	5.2.4 Hierarchy depth effect over classification performance
	5.2.5 NMLNP
	5.2.6 Time

	5.3 Summary

	6 Conclusions
	6.1 Conclusions
	6.1.1 Weighting Scheme
	6.1.2 Depth effect
	6.1.3 Comparing CPE against other methods
	6.1.4 NMLNP

	6.2 Contributions
	6.3 Future Work

	References
	A Base Classifier
	B Weighting Scheme
	B.1 RSM vs NW scheme
	B.2 RSM vs other weighting schemes

	C Hierarchy depth effect over classification performance
	D Comparison of MLNP approaches
	D.1 Tree Structured Datasets
	D.2 DAG Structured Datasets

	E Selection of the best NMLNP approach
	F Comparison of NMLNP approaches
	F.1 Tree Structured Datasets
	F.2 DAG Structured Datasets

