ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/233886208
A dynamic clustering algorithm for building overlapping clusters

Article in Intelligent Data Analysis - January 2012

DOI: 10.3233/IDA-2012-0520

CITATIONS READS
7 113

4 authors, including:

Airel Perez-Suarez José Francisco Martinez-Trinidad
7 Centro de Aplicaciones de Tecnologias de Avanzada < Instituto Nacional de Astrofisica, Optica y Electrénica (INAOE)
24 PUBLICATIONS 92 CITATIONS 230 PUBLICATIONS 1,258 CITATIONS
SEE PROFILE SEE PROFILE

José E. Medina Pagola
University of Information Sciences

62 PUBLICATIONS 260 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project MEASUREMENT AND INTELLIGENT PROCESSING OF PHYSICAL VARIABLES View project

Project Discovery of Frequent Similar Patterns for Association Rule Mining on Mixed Data View project

All content following this page was uploaded by José Francisco Martinez-Trinidad on 19 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/233886208_A_dynamic_clustering_algorithm_for_building_overlapping_clusters?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/233886208_A_dynamic_clustering_algorithm_for_building_overlapping_clusters?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MEASUREMENT-AND-INTELLIGENT-PROCESSING-OF-PHYSICAL-VARIABLES?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Discovery-of-Frequent-Similar-Patterns-for-Association-Rule-Mining-on-Mixed-Data?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Airel_Perez-Suarez?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Airel_Perez-Suarez?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Centro_de_Aplicaciones_de_Tecnologias_de_Avanzada?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Airel_Perez-Suarez?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Francisco_Martinez-Trinidad?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Francisco_Martinez-Trinidad?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Nacional_de_Astrofisica_Optica_y_Electronica_INAOE?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Francisco_Martinez-Trinidad?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Pagola?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Pagola?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Information_Sciences?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Pagola?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Francisco_Martinez-Trinidad?enrichId=rgreq-a1110f3acf45cb038f33eb98a54313b3-XXX&enrichSource=Y292ZXJQYWdlOzIzMzg4NjIwODtBUzoyMDg3NDg1Nzc1OTUzOTNAMTQyNjc4MDk0Nzg2OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Intelligent Data Analysis 16 (2012) 211-232 211
DOI 10.3233/IDA-2012-0520
IOS Press

A dynamic clustering algorithm for building
overlapping clusters

Airel Pérez-Sudrez®"*, José Fco. Martinez-Trinidad?, Jests A. Carrasco-Ochoa® and
José E. Medina-Pagola®

aComputer Science Department, National Institute of Astrophysics, Puebla, Mexico
bAdvanced Technologies Application Center, Siboney, Playa, Havana, Cuba

Abstract. Clustering is a Data Mining technique which has been widely used in many practical applications. In some of these
applications like, medical diagnosis, categorization of digital libraries, topic detection and others, the objects could belong to
more than one cluster. However, most of the clustering algorithms generate disjoint clusters. Moreover, processing additions,
deletions and modifications of objects in the clustering built so far, without having to rebuild the clustering from the beginning is
an issue that has been little studied. In this paper, we introduce DCS, a clustering algorithm which includes a new graph-cover
strategy for building a set of clusters that could overlap, and a strategy for dynamically updating the clustering, managing
multiple additions and/or deletions of objects. The experimental evaluation conducted over different collections demonstrates
the good performance of the proposed algorithm.

Keywords: Data mining, overlapping clustering, graph-based algorithms

1. Introduction

Nowadays, many applications using data mining techniques process datasets that could change over
time [38]. A data mining technique, which has been widely used in many applications, is clustering [29].
Some examples of applications involving clustering techniques are: image processing [8], analysis of
gene expression data [39], studies of some diseases; e.g., cancer [26], topic detection and tracking [10,
32], intrusion detection [25], spatial data-analysis [18,20,24], among others. Clustering is the process of
grouping a collection of objects into.a set of meaningful classes called clusters, so that objects belonging
to the same cluster should be more similar than objects belonging to different clusters [21].

There are some applications, like medical diagnosis, categorization of digital libraries, topic detection
and others, where some objects could belong to more than one cluster [3,5,33]. However, most clustering
algorithms do not allow objects to belong to more than one cluster; i.e., they build disjoint clusters.

As an example where building non disjoint clusters is needed, consider an application for a health care
facility where there are records describing the patient’s symptoms. Since a patient could have more than
one disease then, if clusters represent diseases, a patient could belong to more than one cluster. Similar
examples can be found in tasks like: news stream analysis [33], text segmentation [1], among others.

*Corresponding author: Airel Pérez-Sudrez, Computer Science Department, National Institute of Astrophysics, Optics and
Electronics Luis Enrique Erro #1, Sta. Maria Tonantzintla, Puebla, CP: 72840, Mexico. E-mail: airel @inaoep.mx.

1088-467X/12/$27.50 © 2012 — IOS Press and the authors. All rights reserved

212 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

Clustering algorithms can be classified according to different criteria such as their capability to process
changes that modify the dataset [15]. Static algorithms suppose that the entire dataset is available
before clustering; therefore, when objects are added or deleted from the dataset, these algorithms must
reprocess the whole dataset to build the set of clusters; i.e., they do not take advantage of the previous
clusters. On the other hand, incremental algorithms are able to process new objects added to the datasets
and consequently, they can update the set of clusters using the previous clusters. Finally, dynamic
algorithms, in addition to incremental ones, are able to update the clustering when some objects are
removed or modified (a modification can be viewed as a deletion followed by an addition and in this way,
modifications will be viewed in this work). Most the clustering algorithms reported in the literature, are
static. However, static clustering algorithms are useful only if it is granted that the dataset will not change
anymore. In other cases, for environments like the World Wide Web, news streams and others, where
the dataset changes frequently, static clustering algorithms become inefficient and dynamic algorithms
are more suitable.

The main contribution of this paper is a new dynamic clustering algorithm, called DCS, which
introduces a new graph-covering strategy that allows obtaining a‘set of clusters that could overlap.
Additionally, a new strategy for efficiently updating the clustering after multiple object additions and/or
deletions, is also introduced.

The experimental evaluation, conducted over different data collections, shows that our proposed
algorithm is faster than the Star algorithm [4] (which is the unique algorithm that faces the problem
of overlapping clustering in a dynamic context) for processing multiple additions and/or deletions,
maintaining a comparable and even better clustering quality according to the Fmeasure [6] and Jaccard-
-index [23] evaluation measures. In addition, our proposed algorithm obtains fewer clusters, which
is a desirable property in some real applications handling overlapping clustering such as information
organization [3], filtering [5], web document clustering [19], among others.

The remainder of this paper is organized as follows: in Section 2, the related work is outlined. In
Section 3, we introduce the DCS algorithm. The experimental evaluation, showing the performance of
the DCS algorithm on several document collections, is presented in Section 4. Finally, the conclusions
and some ideas about future work are presented in Section 5.

2. Related work

There are different clustering algorithms, reported in the literature, which are able to work with datasets
that could change over time [4,9,12,13,19,22,27,31,33,36,37,40]; however, most of these algorithms build
disjoint clusters or they are incremental ; i.e., they only process additions.

From the set of algorithms that can deal either with additions or deletions [4,9,12,13], only the Star
algorithm [4] faces the problem of overlapping clustering in a dynamic context, while Ant-Cluster [9],
DB-Colc [12] and Incremental DBSCAN [13] build disjoint clusters. Based on this fact, in this section we
just describe in detail the Star algorithm, which will be used for comparing the behavior of the algorithm
proposed in this work. The DHS algorithm reported in [15] was not included as related work because it
faces the problem of hierarchical clustering in a dynamic context, which is out of the scope of this paper.

Although our work seems to be close to algorithms developed for clustering data streams [2,17,28],
there are some differences that must be highlighted. First, since a data stream consists of a set of multi-
dimensional records X1, Xo,..., Xk, ... arriving at different time stamps, those algorithms proposed
for clustering data streams, like those introduced in [2,17,28], are just able to process additions. While,
dynamic algorithms, like the one we introduce in this work, are able to process additions, deletions and

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 213

1 1 1
3
3 3 a))
b); @ c b
1 1 bas,
® ® W
(a) A similarity graph Gp (b) Centers selected by the Star algorithm

Fig. 1. Illustrating one limitation of the Star algorithm.

modifications. Second, to the best of our knowledge, none of the algorithms developed for clustering
data stream faces the problem of overlapping clustering, which is the problem addressed in this work.
Based on the differences above explained, we decided do not include, as related work, algorithms facing
the data stream clustering problem, like those proposed in [2,17,28]:

The Star algorithm [4] is a graph-based clustering algorithm that has been used for filtering [5] and for
information organization tasks [3]. Star considers the collection of objects represented by its associated
thresholded similarity graph and, like many graph-based algorithms,. it builds a clustering through a
cover of this graph.

Given a collection of objects O = {o1,02,...,0,}, a user-defined parameter 5 and a similarity
function S such that Vo;,0; € O,0; # 05, S(0s,0;) = S(0j,0;); a thresholded similarity graph is an
undirected graph Gg = (V, Eg) where V = O and (0;,0;) € Eg if and only if S(0;,0;) > 3. A
star-shaped sub-graph is a sub-graph of m+-1 vertices, a special vertex c called center and m vertices
called satellites, such that there is an edge between the center and each satellite. When a star-shaped
sub-graph only contains the center then it is called degenerated. For the Star algorithm each star-shaped
subgraph is interpreted as a cluster.

Star builds a cover of Gz using star-shaped sub-graphs. This cover is obtained through a greedy
heuristic which selects in each iteration the most dense sub-graph; i.e., the sub-graph containing the
highest number of satellites. When some objects are added or deleted from the collection, some star-
shaped sub-graphs must be deleted, updated or created; therefore, the current clustering must be updated.

In order to update the clustering after a change, Star iteratively analyzes a list L initially containing
all the satellites adjacent to the added, or removed, vertex. In each iteration, the vertex v € L having the
highest degree is selected and if v has a.degree greater than any of its adjacent centers then v is promoted
to center and removed from L. After the promotion, each center ¢ adjacent to v is removed from the list
of centers and each vertex u € c.Adj is inserted into L. The aforementioned process finishes when L
becomes empty.

The Star algorithm has two main limitations. First of all, itis not able to process either multiple additions
or multiple deletions. It is important to clarify what we understand as multiple additions/deletions and
why it is important to deal with them. Let’s suppose that a set of objects O will be added to the dataset.
The Star algorithm adds the objects of O to the dataset one by one, updating the clusters after each
addition. Notice that, if more than one object is added to the same cluster then this strategy would
consume a long time. A better choice would be to allow the algorithm to add all the objects to the dataset
and after that to update the clusters that were affected by the additions. It is important to notice that the
previous situation could also happen with deletions or with a combination of additions and deletions.

Another limitation of Star is that it tends to build a lot of clusters, each one with few objects. It is
important to notice that, when a vertex v is selected as center, all its adjacent vertices are removed from

214 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

L. Let suppose that these removed vertices have a degree greater than any vertex remaining in L. Since
the remaining vertices covers less vertices than the one covered by the removed vertices, it is possible
that we need to select more centers than the ones we would need to select without removing the adjacent
vertices of v. This situation is described through an example in Fig. 1; in this figure the vertices appear
labeled with their degree. In Fig. 1, the vertices selected as center were highlighted using a dashed line.

As it can be seen in Fig. 1(b), when vertex a is selected as center, both vertices b and ¢ are removed
from the list of candidates. Therefore, Star will select vertices d, e, f and g as center for covering G 3.
In this way, the number of clusters is greater than the one that would be obtained if vertices b and ¢ were
not removed from L and consequently, they were selected by the algorithm. As it will be showed later
on in Subsection 3.2, our proposed algorithm overcomes this limitation.

The algorithm proposed in this work, named DCS, introduces a new graph-covering strategy that
allows us to obtain a set of overlapping clusters, together with a strategy that allows DCS to update the
clustering, by efficiently managing multiple additions and deletions.

3. Clustering based on strength

The presentation of the proposed dynamic clustering algorithm is divided into four subsections. First
of all, in Subsection 3.1, we give some basic concepts needed for introducing our algorithm. Second,
in Subsection 3.2 the new strategy proposed to cover G5 is introduced. Afterwards, in Subsection 3.3,
we introduce the new strategy for updating a clustering when multiple objects are added and/or deleted,
together with the pseudocode of the DCS algorithm. Finally, in Subsection 3.4 some characteristics of
the DCS algorithm are discussed.

3.1. Basic concepts

Let Gg = (V, Ej) be a thresholded similarity graph and v a vertex of Gg; the set of adjacent vertices
of v, denoted by v.Adj, is the set of vertices u € V, such that there is an edge (v, u) € Eg3. The vertices
having an empty set of adjacent vertices are known as isolated. Additionally, the cardinality of v.Adj is
known as the degree of v.

Let Gg = (V, Eg) be a thresholded similarity graph; a star-shaped sub-graph (s-graph) in G is a
sub-graph G'ﬁ = (V’, Elﬁ> such that V' cV, Elﬁ C Ej and there is a vertex ¢ € V' which meets
Yo e V', v # ¢, there is an edge (c,v) € Elﬁ The vertex c is called the center of the s-graph and the
remaining vertices are called satellites.

LetW = {GL,G%, ..., Gg} be a set of s-graphs which were built from a thresholded similarity graph
Gp = (V, Ep); the set W is a cover of G iff Vv € V, 3G = (V', E}) € W, such that v € V",

Let v,u € V be two vertices of G5 and Glﬁ = (V’, E’B> the s-graph where v is the center; we say that
v coversuiffu e V',

Let Gz = (V, E) be a thresholded similarity graph and M = {vy, v, ..., v} a set of vertices where
Vi=1..k,v; € V; M is a B-connected component iff it meets the following conditions:

i) Yvi,v; € M, v; # vj, there are v;;, viy, ..., v;, € M, suchthatVp = 1..¢ — 1, (vy,,vi,,,) € Eg
and Vi = Uy and 'Uiq =V; Or v;; = vy and Uiq = ;.
ii) There is not another set M’, satisfying condition 1), such that M C M’.

The set formed by a singleton isolated vertex of G is considered a degenerated 3-connected component.

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 215

(a) Using the degree as label (b) Using the strength as label.

Fig. 2. Illustrating the use of the strength in the covering of a graph Gg.
3.2. Building overlapping clusters using strength

Finding the minimum vertex cover of a graph G is a NP complete problem [14]; however, we can
build a cover of G 3, using s-graphs, that approximates the minimum cover. Since a s-graph is determined
by its center, the problem of finding a set W = {G%, G3,. .\ ,Gg} of s-graphs, which covers G, can

be seen as the problem of finding the set C' = {c!,c?,...;¢*} where Vi = 1..k, ¢’ is the center of the
s-graph Giﬁ € W. Since each vertex in GGg forms a s-graph then, initially, all vertices are candidates to
be included in C'; therefore, it would be useful to define a criterion to reduce the number of candidates
and also it is important to establish a selection order among the candidates. The proposed algorithm is
based on a property of the vertices called strength.

The strength of a vertex v € V, denoted by v.strength, is computed as follows:

v.strength = [{w € v.Adj | v.count > w.count}|,

where v.Adj is the set of adjacent vertices of v and v.count is the number of vertices z € v.Adj which
have a degree non greater than the degree of v; w.count is defined in the same way as v.count.

Ideally, iteratively selecting the vertex v with the highest degree (the one with the highest amount of
adjacent vertices) will lead to cover G as fast as possible; however, this could not always so. If the
vertex v, having the highest degree in the iteration ¢, is adjacent to d vertices which were selected in
previous iterations then, the amount of vertices that could be included in the cover of Gz by vertex v
will be |v.Adj| — d instead of |v.Ad]| as it was supposed. Therefore, if there was a vertex u such that:
(1) u is adjacent to ¢ previously selected vertices and (i7) |u.Adj| — q¢ > |v.Adj| — d then, even when
|u.Adj| < |v.Adj|, for covering G5 as fast as possible, selecting the vertex v in the iteration ¢ would be a
better choice than selecting v. By using the strength of the vertices instead of their degree in the covering
process we can solve the above mentioned problem.

An example, illustrating the previous situation, is given in Fig.2. In this figure, we show a graph where
the vertices appear labeled with their degree (see Fig. 2(a)) and a graph where the vertices appear labeled
with their strength (see Fig. 2(b)). As it can be seen from Fig. 2(a), after the selection of vertices i and k
(the vertices having the greatest degree) the vertex d is the remaining vertex having the highest degree;
however, if we select vertex d we still need to select vertex c to entirely cover the graph. On the contrary,
as it can be seen from Fig. 2(b), this problem does not appear when the strength is used, since vertex c
has a strength greater than vertex d.

216 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

Fig. 3. Centers selected for covering the graph of Fig. 2(b).

Intuitively, v.strength measures the amount of vertices that vertex v could include in the cover of G
if all the vertices, which could include more vertices than v, were selected before v.

From the previous analysis, we can conclude that the only vertices that need to be verified are those
having a strength greater than zero, besides the vertices should be selected in decreasing order according
to their strength value. All vertices having a strength greater than zero are added to a list of candidates
L. The isolated vertices of G/ are included directly in C'.

The candidates in the list L are analyzed in descending order according to the strength of the vertices;
in this way, the number of s-graphs needed to cover Gz could be reduced. Each vertex v € L is selected
as a center and added to C if it satisfies one of the following conditions:

1) v has not been covered yet; i.e., v ¢ C and § ¢ € C, such that (c,v) € Eg.

2) vis already covered by other vertices in L but it has at least one adjacent vertex which is not covered
yet. This condition avoids selecting centers that have all their satellites covered by previous selected
centers; i.e., centers that do not help to cover G3.

In Fig. 3, we show how the graph of Fig. 2(b) is covered using the above explained strategy. In this
figure, the vertices selected as center are highlighted using a dashed line.

Once the set C'is built, there could be some vertices belonging to C' which are not useful to cover Gg;
i.e., they could be removed from C' and G'3 would still be covered. In order to remove from C' all the
centers that are no longer useful to cover Gg, some additional steps must be done. First of all, the set C'
is sorted in ascending order according to the degree of the centers; after that, all redundant centers are
removed from C. A center ¢ € C' is redundant if it satisfies the following conditions:

a) c has an adjacent center whose degree is greater than the degree of c.
b) Each vertex u € c.Adj is a center or it has, at least, another adjacent center different from c.

Finally, after removing all redundant centers, the s-graphs formed by the centers in C' are the final
clusters.

In Fig. 4, we illustrate all the above explained ideas using an example. Fig. 4(a) shows a similarity
graph where all vertices are labeled with their strength. Figure 4(b) shows the centers that are selected
by our algorithm; the vertices selected as center are highlighted using a dashed line. In Figure 4(c) we
show the remaining centers after removing redundant centers. Finally, in Fig. 4(d) we showed the final
clusters obtained by the above process.

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 217

(c) Centers remaining after the filtering (d) Final set of clusters
process

Fig. 4. Illustrating the step for covering a graph G .

The above described strategy constitutes a static algorithm for clustering data. The pseudocode of this
algorithm is showed in Algorithm 1.

Algorithm 1: Covering G using strength

Input: O = {01,02,...,0,} - acollection of objects, 8 - a similarity
threshold
Output: SC - a set of clusters

“Build G from collection O using the similarity threshold 57;
“Calculate the strength of each vertex in Gg”;
C:={veV|vAdj =0}
L :={v € V| v.strength > 0};
“Sort L in descending order by strength”;
foreach vertexv.€ L do
| if v satisfies condition 1) or 2) then C:=CU{v};
end
“Sort C in ascending order by degree”;
“Remove from C' all redundant centers”;
SC = ()

© 0w NS U A ® N

o
= o

12 foreach center ¢ € C do
13 | SC:=8CU{{c}UcAdj};
14 end

It is important to notice that the strategy proposed in this subsection for covering Gz allows centers
to be adjacent each other. Besides, since we selected the vertices in descending order according to

218 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

0 0
~ 3
20 ’t *\
‘\ b_l;) '\@/’

Fig. 5. Centers selected for the graph of Fig. 1(a) following our proposed strategy.

their strength and we remove any unnecessary cluster, we obtain fewer clusters than the Star algorithm.
Following the ideas presented in this subsection, the graph of Fig. 1(a) can be covered using fewer
centers, as it is showed in Fig. 5. In this figure, the vertices selected as centers were highlighted using a
dashed line.

For determining the computational complexity of Algorithm 1, we will analyze each one of its steps.

Let n be the size of the object collection O = {01, 02,...,0,}; i.e., |O| = n. In Step 1, the similarity
between all pairs of objects is calculated. Therefore, the time spent in this step is Ty = n?, thus T} is
O(n?).

In Step 2, in order to compute the strength of each vertex, v.count must be calculated and then, using
it, v.strength is computed. Based on the definition of strength the time spent by Step 2 is T = 2 - n?;
i.e., the computational complexity of Step 2 is O(n?).

Steps 3 and 4 can be executed by checking the degree and the strength of all vertices in V. Thereby,
the time spent by these steps is 75 = n; thus, 73 is O(n). Since the strength of a vertex v is an integer in
[0,n — 1], following the pigeonhole principle, the sorting process of Step 5 can be done in a time Ty = n;
hence, Ty is O(n).

In order to verify if a candidate v € L satisfies condition 1 or condition 2 (see Steps 6-8) it is necessary
to visit all vertices in v.Adj; thus, the time of this process is 75 = n?. Given that T is O(nz), the
computational complexity of Steps 6-8 is O(n?).

Step 9, following the same explanation of Step 5, spends a time T = n; therefore, Tg is O(n). For
removing the redundant centers it is necessary to verity, for each center ¢ € C, the conditions a and b;
therefore, the time spent in this process is Ty = |C/| - n. Since, in the worst case, |C| = n, then Ty = n?,
thus T% is O(n?). As the final clusters are the s-graphs formed by each center ¢ € C, the set SC can be
built in a time Ty = n?; thus Ty is O(n?).

Finally, the time of the entire algorithm is 7} = 228:1 T;, where T;,7 = 1..8, are the times of each step
of the algorithm. By the rule of the sum, 7} is O(max (7; | i = 1..8)). From the the previous analysis
we can conclude that the complexity of Algorithm 1 is O(n?).

3.3. Updating the current clustering

Let’s suppose that we have a similarity graph G = (V, Ej3) covered using Algorithm 1 and that C is
the list of centers covering G 3. In order to update the current clustering when there are changes in the
collection, it is important to know, first of all, how these changes could affect the current cover of G.
In the analysis presented in this subsection, it will be assumed that: (7) more than one object could be
added to/deleted from G5 at the same time, and (¢7) it could be a combination of both operations.

It is important to mention that each addition or deletion impacts the topology of G'3. The addition of
an object to the collection implies the addition of a new vertex in Gg, and consequently to compute its

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 219

(¢) Second example (d) Third example

Fig. 6. Illustrating the situations that could happen when vertices are added to/removed from the graph.

similarity to all the other vertices in G 3. On the other hand, when an object is deleted from the collection,
the vertex that represents this object together with its associated edges are removed from Gg. In both
cases, the strength of some vertices in G 3 must be recomputed.

After some vertices are added to/removed from Gz there are two situations that could happen:

a) Some vertices become uncovered. This situation happens when at least one added vertex does not
have any center in its set of adjacent vertices, or when all the centers covering a specific vertex are
deleted.

b) The strength of some vertices changes and, as a consequence of that, there is at least one vertex v
which has a strength greater than: (i) at least one of the centers in v.Adj or (¢7) at least one center
covering vertices in v.Adj.

In Fig. 6, we showed an example where situations a) and b) happen. In Fig. 6(a), we showed an already
covered graph; in this graph, the selected centers are highlighted using dashed lines. In Fig. 6(b), we
showed the graph resulting from adding the vertex g to the graph of Fig. 6(a). As it can be seen from
Fig. 6(b), the vertex g is uncovered and therefore the vertex ¢ should be selected as a center for updating
the covering. After updating the covering of the graph in Fig. 6(b) if we add the vertex h then, we obtain
the graph of Fig. 6(c). Although all vertices of Fig. 6(c) are covered, the vertex h has higher strength
than vertex c therefore, vertex h should be selected as a center instead of vertex ¢. On the other hand,
after updating the covering of the graph in Fig. 6(b), if we remove the vertex c then, we obtain the graph
of Fig. 6(d) . As it can be seen from this graph, the vertex g became uncovered.

In order to update the clustering when situation a) happens some new centers must be selected and
included in C; therefore, for each uncovered vertex v one vertex u € v.Adj must be selected as a center.

Situation b), on the other hand, motivates a deeper analysis. A vertex v could change its strength if at
least one of the following conditions happens:

220 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

i) The value of v.count changes.
ii) There is at least one vertex v € v.Adj such that the value of u.count changes.

Following a similar reasoning, a vertex v could change its v.count only if at least one of the following
conditions happens:

i) One or more vertices are added to or removed from v.Adj.
ii) There is at least one vertex u € v.Adj such that one or more vertices are added to or removed from
u.Adj.

From the previous analysis we can conclude that the vertices that could change their strength belong
to the B-connected components that contain:

a) The vertices which were added to Gg.
b) The vertices which were adjacent to the vertices removed from Gg.

Therefore, we can update a clustering or covering of G by updating the covering of each 3-connected
component containing vertices that change their strength. Let G’ = (V. E”) be one of those 3-connected
components and C’ C V” the list of centers covering G’. For updating the covering of G’, first of all,
the strength of each vertex in V' must be recomputed. Afterwards, the list L' of vertices v € V"’ that are
candidates to be promoted to centers must be computed.

Let V! C V’ be the set of non centers vertices having a strength greater than zero; In order to compute
the list L/, the vertices v € VY and the vertices ¢ € C’ mustbe processed.

Each vertex v € V/ fulfilling at least one of the following conditions will be considered as candidate,
and consequently it will be included in L’:

1) v is uncovered.
ii) v has at least one adjacent vertex which is not covered.
iii) v has at least one adjacent vertex u such that the center w, adjacent to v and having the greatest
strength among all the adjacent centers of u, meets the condition that v.strength > w.strength.
In addition, all vertices like u are marked as activated; the vertices marked as activated are used
during the analysis of the list C”.

In the analysis of the list C’, the adjacent vertices of each center ¢ € C’ are visited. The vertices
v € c.Adj, such that v ¢ C' and v.strength > c.strength, are included in L’; all centers ¢ having at least
one adjacent vertex v, such that v ¢ C’ and v.strength > c.strength, are marked as weak. Once all the
adjacent vertices of c have been visited, if c is marked as weak or it has at least one satellite marked
as activated then, c is removed from C’ since it could be replaced by other vertices having a greater
strength. Finally, if c.strength > 0 then c is considered as a candidate and it is included in L.

Once the candidate list L’ is built, the cover of G’ is updated using the same cover strategy used in
the Steps 5—-10 of Algorithm 1. Afterwards, each vertex in the S-connected component is marked as
“processed” in order to guarantee that a vertex will not be processed more than once.

The above described strategy constitutes the DCS algorithm. The pseudocode of DCS is showed in
Algorithm 2.

Notice that, unlike previous algorithms, the DCS algorithm processes first all the changes in G5 and
after that it updates the current cover; thus, if there are two or more changes, additions or deletions that
were done to Gg, affecting the same clusters, then these clusters will be updated just once instead of
processing each change one by one as Star does. This last characteristic of DCS allows the algorithm to
save time being able to efficiently manage multiple additions and/or deletions of objects.

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 221

Algorithm 2: DCS algorithm
Input: Gg = (V, Ej) - a thresholded similarity graph, 3 - a similarity
threshold, RT - set of added objects, R~ - set of objects to be
removed
Output: Gg = (V, Ej) - the updated thresholded similarity graph, SC -
a set of clusters

M =0,

foreach vertex u € R~ do
M :=MU (u.Adj \ R™);
“Remove u from Gg”;
end

foreach vertez v € R* do
M = MU {v};

“Add v to Gg”;

end

foreach vertex v € M do
if v is not-processed then

© W NN AW N

o
= O

12 “Build the 3-connected component G' = (V' E') of v”;
13 if G’ is an isolated vertex then “Mark v as center”;
14 else

15 “Update strength for vertices in G'”;

16 “Build V/, C’ and then the candidate list L7

17 “Sort L’ in descending order by strength”

18 foreach vertex v € L' do

19 | if v satisfies condition 1) or2) then C’:=C’"U {v};
20 end

21 “Sort C" in ascending order by degree”;

22 “Remove from C” all redundant centers”;

23 end

24 “Mark vertices in G’ as processed’;

25 end

26 end

27 “Mark vertices in G as not-processed”;

28 SC = 0);

foreach vertex v € V. marked as center do
SC = SCU{{v} Uv.Adj};

W N
o ©

For determining the computational complexity of the DCS Algorithm, we will analyze each one of its
steps. Let n be the number of vertices of G5 in any step of the algorithm; i.e., n = |V|.

Steps 2-9 update G by processing first the set R~ and then the set R™; this order in the processing
of the added and/or removed objects avoids unnecessary calculation of the similarity between objets in
R and objets in R~. Steps 2-5 spend a time T} = w; thus, 77 is O(n?). Steps 6-9 spend a time
Ty = n?, then Ty is O(n?).

The time spent by Steps 10-26 depends on the time spent by Steps 12-24. The construction of
G' = (V', E') in Step 12 can be done in a time T3 = n?, where n; = |V’|. The time spent by Steps 13—
23 depends, in the worst case, on the time spent by Steps 15-22. Step 15, as explained for Algorithm 1,
spends a time Ty = 2 - n? The construction of L’ in Step 16 can be done in T5 = nf The time of
Steps 17-22, as explained for Algorithm 1,is T = 2 - n? + 2 - n; and the time of Step 24 is 17 = n;.

Based on the previous analysis the time of Steps 11-25 is 77195 = 6 - nf +3-n; Let M =
{v1,v2,..., v} be the set of vertices for which Steps 10-26 are executed. If the size of the f—connected

222 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

component G’ = (V' E’) generated by each vertex v; is n; then the time spent in Steps 10-26 is:

k

k k k k
Tio-26=» (6-n?+3-n;)=Y 6-nf+Y 3:m=6-> nf+3-Y n (1)
i=1 i=1 i=1 i=1

=1

Given that Zle n; = n, where n = |V|, then substituting in Eq. (1):

k k k
T10_26:6-Zn22+3-2m:6'Zn?+3-n
i=1 1=1 i=1

k
T10,26<6-(Zni)2+3-n<6-n2+3-n
i=1

then, the computational complexity of Steps 10—26 in the worst case is O(n?). The time spent by Step 27
is Tg = n and the time spent by Steps 28-30 is, in the worst case, Ty = n?; therefore, Tk is O(n) and Ty
is O(n?).

Finally, based on the aforementioned analysis the total time spent by the DCS algorithm is T} =
Ty + Ts + Ty9—26 + Ts + Ty. By the rule of the sum T} is O(max (T4, Ts, Tho—26, I3, Ty)); therefore,
Tt is O(TLZ)

3.4. Final considerations about the DCS algorithm

Our proposed algorithm, unlike other dynamic algorithms, is able to process multiple additions and/or
deletions. That is, when a set of additions and/or deletions must be processed at a given time, instead of
updating the clustering after each change, our algorithm process all changes and after that, the clustering
is updated. In this way, when some addition and/or deletion operations affect the same clusters, DCS
saves processing time because it update those clusters just once rather than several times.

Finally, as it can be noticed from Algorithm 2, the DCS algorithm supposes that there exists a graph
G 3, representing the current collection, which were previously covered. However, if there is no previous
collection and it is the first time that the collection will be clustered then, the graph Gg needed as
input parameter is an empty graph; in this way, DCS can process a collection without the existence of a
previous clustering.

4. Experimental results

In order to show the performance of the proposed algorithm, some experiments were done over
several overlapping collections. The experiments were divided into three types: those for comparing
the algorithms according to the quality of the clustering, those for evaluating the time spent by each
algorithm for processing of multiple additions and/or deletions, and finally, those for comparing the
algorithms according to the number of clusters.

In all these experiments we contrast our results against those obtained by the Star algorithm [4].
We used Star in our experiments because it is the unique clustering algorithm facing the problem of
overlapping clustering in a dynamic context. Both the Star and DCS algorithms were implemented in
C++. All the experiments presented in this subsection were performed on a PC with an Intel Core 2
Duo at 1.86 GHz CPU with 2 GB DDR2 RAM, running RedHat Enterprise Linux 5.3.

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 223

Table 1
Characteristics of the document collections

Collection #Documents #Classes #Terms

AFP 695 25 11785
Reu-Te 3587 100 15113
Reu-Tr 7780 115 21901
Reuter 11367 120 27083

TDT 16007 193 68019
TDT-1 8602 176 51764
TDT-2 7404 178 44610
TDT-3 10258 174 53706
TDT-4 10074 172 53036
TDT-5 11328 182 55923

4.1. Description of the collections

Since we are facing the problem of overlapping clustering, we decided to evaluate the algorithms in
the task of document clustering, where it is common for a document to belong to more than one topic.

The document collections used in the experiments were built from three benchmark text collections:
AFP, Reuters-21578 and TDT2. The AFP benchmark was downloaded from http://trec.nist.gov and it
contains news published by the AFP agency in 1994 and used in the TREC-5 conference. Reuters-
-21578 was downloaded from http://kdd.ics.uci.edu and it contains news published by Reuters during
1987. TDT2 was downloaded from http://www.nist.gov/speech/tests/tdt.html ant it contains news stories
collected from different sources from January 1998 to June 1998. AFP contains news in Spanish while
the other two benchmarks contain news in English.

Ten document collections were built from the aforementioned benchmarks: (1) AFP was built from the
AFP benchmark using all its news, (2) Reu-Te was built from Reuters benchmark using the news tagged
as “Test” that have been associated with at least one topic, (3) Reu-Tr was built from Reuters benchmark
using the news tagged as “Train” that have been associated with at least one topic, (3) Reuters, is the
union of Reu-Te and Reu-Tr, (4) TDT was built from TDT2 benchmark using the news that have been
associated with at least one topic and (5) five sub-collections of TDT called as TDT-1, TDT-2, TDT-3,
TDT-4 y TDT-5. In order to build these five sub-collections of TDT, the news contained in the TDT
collection were randomly arranged into 5 folds. Afterwards, each sub-collection was built by selecting
randomly three from the five folds.

The characteristics of the ten document collections are shown in Table 1. In Table 1, the column
labeled as “Classes” corresponds to the number of topics or classes which were manually identified by
experts for each document collection. The ground truth of each collection is distributed together with
the collection.

In our experiments, documents were represented using the Vector Space Model (VSM) [35]. The
index terms of the documents represent the lemmas of the words occurring at least once in the whole
collection; these lemmas were extracted from the documents using the Tree-tagger.! Stop words such
as: articles, prepositions and adverbs were removed.

The index terms of each document were statistically weighted using term frequency normalized by the
logarithm [16]. The cosine measure was used to calculate the similarity between two documents [7].

http://www.ims.uni-stuttgart.de/projekte/corplex/Tree Tagger.

224 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters
4.2. Evaluation measures

There are several measures proposed to evaluate the quality of the clusters obtained by a clustering
algorithm [29]. Most of these measures were developed to evaluate disjoint clusters; i.e., they are not
useful to evaluate clustering algorithms in scenarios where objects can belong to more than one cluster.
In our experiments, we use the Fmeasure [6] and Jaccard-index [23] which are external measures used
to evaluate overlapping clusterings [15,30].

We do not use internal measures like the Dunn index [11] and the silhouette width [34], because
this type of evaluation measures has not been defined for evaluating overlapping clusters, which is the
problem addressed in our paper. Moreover, a deep study is required in order to extend this type of
measures for evaluating overlapping clusters.

Both, Fmeasure and Jaccard-index, are external measures which evaluate quality based on how much
the set of clusters obtained by the algorithm resembles the set of classes manually labeled by experts;
the higher the value of each measure the better the clustering. These two measures evaluate the quality
of a clustering using statistics over pairs of objects.

Let G = {g1, 92, - .., gr} be the clusters obtained by a clustering algorithm and C' = {¢y, ¢, ..., ¢}
be the set of classes in which, according to the judgment of the experts, the collection should be clustered.

Let n1; be the number of pairs of objects belonging to the same cluster and class, 119 be the number
of pairs belonging to the same cluster but different class and ng; be the number of pairs belonging to the
same class but different cluster.

Given a set of clusters like G and a set of classes like C, the expressions that define the Jaccard-index
(J) and Fmeasure (F) are:

n11
J(G,C) = 2
(@,€) n1o + n11 + no1 o

prec(G,C) - rec(G,C)

F(G,C)=2 3
(@,€) prec(G,C) + rec(G,C) 3)
where:
prec(G,C) = — Y and rec(G,C)= ~8__
ni1 + nio n11 + no1

Both measures take values in [0,1] and, as it was mentioned before, the closer to 1 the value of each
measure is, the better the clustering is."Besides, Fmeasure and Jaccard-index measures take into account
the Homogeneity and Completeness of a clustering.

Homogeneity states that the clusters should not mix objects from different classes. Notice from Eq. (2)
that building a cluster of objects belonging to different classes increases the value of n;g and then the
value of J(G, C) will decrease; therefore, Jaccard-index takes into account the Homogeneity of clusters.

In order to show that Fmeasure takes into account the homogeneity of clusters, prec(G, C) and rec(G, C)
are substituted in Eq. (3):

2
n11 . ni11 USH!

_ niitnio niitnor (n11+n10)(n11+n01)
F(G’ C) =2 n11 n11 =2 ni1-(n11+no1)+ni1-(ni1+nio)
ni1+nio ni11+no1 (n11+n10)(n11+no1)
2.n2 2.n?
F(G, C) — 11 — 11

ni1 - (n11 +no1) +na - (R +n10) nar - (20 na + nio + not)

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 225

thus:

2-n1y
F(G,C) = 4
(©.0) 2 - n11 + nio + not @

It is easy to see from Eq. (4) that, if the value of n;g increases then the value of F(G,C) will decrease;
therefore, Fmeasure takes into account the homogeneity in a clustering.

Completeness, on the other hand, states that objects belonging to the same class should be grouped
together in the same cluster. If in a clustering, the objects belonging to the same class are clustered in
two or more clusters, then the value of nq; decreases and the value of ng; increases; hence, the value of
J(G, C) will decrease, showing in this way that Jaccard-index takes into account the completeness of a
clustering.

Working on Eq. (4) we have:

2- ni 1
(’) 2-n11 +n1o + no1 72“11;21‘;“101
and then:
1
F(G,C) = 5
Ot TE ”

As it can be noticed from Eq. (5), if the value of n1; decreases and the value of ng; increases then both
2’2& and % will increase and therefore, the value of F'(G, C') will decrease, showing in this way that
Fmeasure takes into account the completeness of a clustering.

Notice that both properties, homogeneity and completeness, are basic goals that a clustering algorithm
should accomplish: a clustering algorithm should keep objects from the same class together and objects
from different classes apart; thus, by using Fmeasure and Jaccard-index we will be able to evaluate the

quality of the resulting clusters.

4.3. Quality of the resulting clusters

In this experiment we compare the algorithms according to the quality, considering Jaccard-index and
Fmeasure, of the clustering they build. This experiment was conducted as follows.

First of all, since both algorithms depend on the data order, we built for each document collection C,
twenty collections C', Cs, ..., Cy in such a way that all these collections are different wrt. the order
of the documents. After that, we executed each algorithm over the twenty document collections of each
collection C' using values of 3 in [0.15,0.40] with an increment of 0.01; that is, we use 8 = 0.15, 0.16,
0.17 an so on.

After that, we computed the values of Jaccard-index and Fmeasure obtained by each algorithm on
each execution. In these experiments, we realized that for values of 3, greater than 0.40 and smaller than
0.15, the quality of the clustering decreases. For this reason, we do not use values of 3 out of the above
mentioned interval.

Then, we computed the average value of Fmeasure and Jaccard-index obtained by each algorithm, over
the twenty document collections of each collection C, for each value of 3 used in the above mentioned
executions. It is important to mention that, even when both algorithms depend on the data order, the
standard deviation of the values of Fmeasure and Jaccard-index obtained by each algorithm, over the

226 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

Table 2
Best average quality values obtained by each algorithm over each document collection
AFP Reu-Te Reu-Tr Reuter TDT
Alg. F J F J F J F J F J

Star 0.73 0.57 059 042 0.56 0.39 0.57 040 040 0.25
DCS 0.76 0.63 0.64 047 0.58 041 0.58 041 048 0.32

TDT-1 TDT-2 TDT-3 TDT-4 TDT-5
Alg. F J F J F J F J F J
Star 0.39 0.24 045 0.29 046 0.30 047 031 044 0.28

DCS 047 0.30 0.53 0.36 0.53 0.36 0.55 0.38 0.52 0.35

Table 3
Values of 3 where each algorithm obtains its best average
performance considering the Jaccard-index and the Fmeasure
AFP Reu-Te Reu-Tr Reuter TDT

Star 0.25 0.24 0.24 0.21 0.29
DCS 0.25 0.25 0.24 0.25 0.32

TDT-1 TDT-2 TDT-3 TDT-4 TDT-5

Star 0.30 0.29 0.29 0.29 0.30
DCS 0.32 0.32 0.32 0.30 0.31

Table 4
Percent improvements obtained by the DCS algorithm over the Star algorithm
Collections
Measure AFP Reu-Te Reu-Tr Reuter TDT
F 4.11 10.34 3.57 1.75 20.0
J 7.02 11.90 5.13 2.50 28.0
Collections
Measure TDT-1 TDT-2 TDT-3 TDT-4 TDT-5
F 20.51 17.78 15.22 17.02 18.18
J 25.0 24.14 20.0 22.58 25.0

twenty document collections of each collection C', was smaller than 0.01 for each value of § used. This
means that the Fmeasure and the Jaccard-index vary only a little for different orders.

Table 2 shows the best average values.of Fmeasure (F) and Jaccard-index (J) obtained by each algorithm
over each collection C'. Table 3 shows the values of 5 where each algorithm obtained, for each document
collection, the best average values of Jaccard-index and Fmeasure.

As it can be noticed from Table 2, DCS outperforms the Star algorithm, considering both evaluations
measures, in all the collections used in this experiment.

In addition, we show in Table 4 the improvement in percentage of the values of Fmeasure (F) and
Jaccard-index (J) obtained by our proposed algorithm wrt. the values obtained by Star considering the
same evaluation measures.

As it can be seen from Table 4, DCS gets improvements up to the 20.51% considering the Fmeasure
and the 28.0% considering the Jaccard-index.

4.4. Time spent for processing multiple operations

In these experiments we measure the time spent by each algorithm when multiple additions/deletions
are done over the two largest collections; i.e., Reuters and TDT.

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 227

—+Star -e-DCS 16 =-Star -=DCS

3 12

Time (secs.)
N B
o o

Time (secs.)
0

o

0

1 2 3 456 7 8 91011 2 4 6 8 10 12 14 16
Objects (1*103) Objects (1*103)

(a) Reuters, N,=1000 (b) TDT, N,=2000

Fig. 7. Behavior of the Star and DCS algorithms over Reuters and TDT for processing N, multiple additions.

The experimental results presented in this subsection are divided into three parts. In the first part,
the performance of each algorithm considering just multiple additions is presented. The second part
is focused on measuring the time spent by each algorithm when multiple deletions are done over the
collection and finally, the third part shows the behavior of each algorithm for multiple deletions followed
by multiple additions.

4.4.1. Behavior for multiple additions

In this experiment, we measure the time that Star and DCS spent for updating the clustering every
time a number N, of documents is added to each collection. When the first NV, documents are added to
the collection there is no previous clustering; therefore, these first NV, of added documents are clustered
by both algorithms from the beginning. From this point, every time N, documents are added to the
collection, both methods update the previous clustering.

In the experiment with the Reuters collection we used for IV, the value of 1000 (see Fig. 7(a)). In
the experiment with the TDT collection we used for N, the value of 2000 (see Fig. 7(b)). The values
of N, were chosen taking into account the size of each collection. It is important to notice, that a fair
comparison is only possible if both algorithms use the same value of 3 when they are processing the
same collection. The use of different values of 3 would produce different thresholded similarity graphs.
Therefore, we will not know if an algorithm has the best behavior because it has the best strategy or
because it processes a graph different from the one processed by the other algorithm. Therefore, in this
experiment we will use 8 = 0.25 and 3 = 0.30 for Reuters and TDT respectively.

In order to do a fair comparison, we built from each document collection ten different collections
such that they are different wrt. the order of the documents they contain. After that, we executed both
algorithms over all the collections created from Reuters and also over all the collections created from
TDT. In Fig. 7, the average performance of the Star and DCS algorithms over Reuters and TDT, for the
selected values of N, is shown.

As it can be seen from Fig. 7, our proposed algorithm has better average performance than Star when
multiple additions are processed over the Reuters and TDT collections. We conducted other experiments
using N, = 1500 and N, = 2000 for Reuters; and N, = 3000 and N, = 4000 for TDT. Using these
values for IV,, we observed a behavior similar to that observed in the experiment above described.

From these experiments we realized that the order in which the documents are clustered and the size of
the increment both have influence in the time spent by each algorithm for clustering the entire collection.
That is, the time spent by the algorithm for processing different orders and different increments could be
very different, depending on how difficult was to update the clustering after the changes. For example,
we noticed that the time spent by the Star algorithm for clustering the TDT collection varies too much
from one order to another when we use N, = 2000 and N, = 3000. However, the time spent by our

228 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

—4—Star -~-DCS —+Star -e-DCS

F)
(%]
[
(%]
 al

@ @

© 30 © 10

@ 15 o 5 |

£ £ °

Z 0 - T e v
1 2 3 4 5 6 7 8 9 10 2 4 6 8 10 12

Objects (1*103) Objects (1*103)

(a) Reuters, Ny=1000 (b) TDT, N4=2000

Fig. 8. Behavior of the Star and DCS algorithms over Reuters and TDT for processing /Ng multiple deletions.

algorithm for clustering TDT using N, = 2000 and N, = 3000, does not vary to much from one order
to another.

4.4.2. Behavior for multiple deletions

In these experiments, we measured the time spent by the Star and DCS algorithms for updating the
clustering built for Reuters and TDT, every time a number N, of documents is randomly removed. We
used for N, the same values used for N, in the experiment of Subsection 4.4.1; that is, Ny = 1000
for Reuters and N; = 2000 for TDT. For building the previous clustering for the Reuters and TDT
collections we used the same values of 3 chosen in Subsection 4.4.1; i.e., 3 = 0.23 for Reuters and 3 =
0.30 for TDT.

In order to do a fair comparison, in the same way as for multiple additions, we repeated this experiment
ten times for each value of Ny, for both collections. In Fig. 8, the average performances of the Star and
DCS algorithms, over Reuters and TDT, for the selected values of Ny, are shown.

As it can be seen from Fig. 8, our proposed algorithm clearly overcomes Star in the processing of
multiple deletions over the Reuters and TDT collections. We conducted other experiments using Ny =
1500 and N4 = 2000 for Reuters; and N; = 3000 and N; = 4000 for TDT. Using these values for Ny,
we observed a behavior similar to that observed in the experiment above described.

4.4.3. Behavior for multiple modifications

In these experiments, we measured the time each algorithm spent for multiple modifications. It is
important to remember that both the Star and the DCS algorithms process a modification by processing
a deletion followed by an addition.

First of all, we measured the time Star and DCS spent, for updating the clustering built for the Reuters
and TDT , when a number NV, of documents is randomly deleted and added again but increasing or
decreasing the weight of some terms belonging to the documents (i.e., modified).

We used for [V,,, the same values used in the previous experiments for N, and Ng; that is, N,,, = 1000
for Reuters and N,,, = 2000 for TDT. For building the previous clustering for Reuters and TDT we used
the same values of § chosen in Subsection 4.4.1; i.e., 8 = 0.23 for Reuters and 8 = 0.30 for TDT.

In order to do a fair comparison, in the same way as for multiple deletions, we repeated the experiment
ten times over both collections and for each value of N,,,. The behavior reported for each algorithm, is
the average time spent by each algorithm over the ten experiments for each value of N,,.

Figure 9 shows the average behavior of Star and DCS over Reuters (see Fig. 9(a)) and TDT (see
Fig. 9(b)) for the selected values of IV,,.

As it can be noticed from Fig. 9, DCS outperforms Star when multiple modifications are processed
over the Reuters and TDT collections. We conducted other experiments using N,,, = 1500 and N,,, =

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 229

Table 5
Number of clusters obtained by each algorithm for each document collection
Collections
Algorithms AFP Reu-Te Reu-Tr Reuter TDT
Star 162 544 727 668 2181
DCS 143 444 502 767 2122
Collections
Algorithms TDT-1 TDT-2 TDT-3 TDT-4 TDT-5
Star 1570 1173 1551 1432 1820
DCS 1414 1208 1501 1123 1226

—&-Star -e~DCS —&-Star -~DCS

. 150 ~75
§ 100 80 L et —"~
«2 «
o 50 o 25
£ .~ o oo o £ o N . e
'; 0 I T T T T T T T T 1 '; 0 =1 ‘l' T T 1

1 2 3 45 6 7 8 910 2 4 6 8 10 12

Objects (1*103) Objects (1*103)
(a) Reuters, N,,,=1000 (b) TDT, N,,=2000

Fig. 9. Behavior of the Star and DCS algorithms over Reuters and TDT for processing [V, multiple modifications.

2000 for Reuters; and NV,,, = 3000 and N,,, = 4000 for TDT. Using these values for N,,,, we observed a
behavior similar to that observed in the experiment above described.

4.5. Number of clusters

In this experiment, we compare the number of clusters built by each algorithm, for each document
collection, using the § values for which they.obtain their best average quality values; i.e., the § values
showed in Table 3.

Table 5 shows the number of clusters obtained by each algorithm, for each document collection, using
the aforementioned values of 3.

As it can be noticed from Table 5, ‘our proposed algorithm obtains, in almost all collections, less
clusters than Star.

It is important to mention that we prefer to obtain fewer clusters since the majority of the algorithms,
proposed in the state of the art for clustering overlapped collections, build a high number of clusters. If
we want to discover the relations or patterns hidden in a collection of objects, we would expect to obtain
a number of clusters reasonable smaller than the number of objects in the collection; in this way, we will
be able to analyze the resulting clusters. When the number of obtained clusters is very high, as occurs
with the majority of the algorithms, to analyze them could become as difficult as analyzing the entire
collection; therefore, it loses sense to apply a clustering algorithm over the collection.

5. Conclusions

In this paper, a new dynamic clustering algorithm for overlapping clustering has been proposed. This
algorithm, called DCS, builds a set of clusters which could overlap, applying a new graph-covering

230 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

strategy for covering the thresholded similarity graph that represents the collection of objects.

From the experiments, we conclude that our proposed algorithm obtains clusterings with a higher
quality, considering Fmeasure and Jaccard-index, than those obtained by the Star algorithm. The
experiments also showed that the strategy proposed in DCS, for processing multiple additions, deletions
as well as modifications of objects, is clearly faster than the one used by the Star algorithm which updates
the clusters processing the changes one by one. It is important to mention that Star needs to know what
clusters were affected after each addition/deletion in order to update the clusters; therefore, it can not
apply a strategy similar to DCS to process multiple additions/deletions.

Finally, the DCS algorithm obtains less clusters than the Star algorithm. This last characteristic could
be of great importance in those applications handling a large set of objects, since it reduces the amount
of analysis that must be done over the entire collection.

For all these reasons our algorithm is a better option than the Star algorithm for dynamic environments
where the data change frequently.

It is important to mention that, for applying our algorithm in a practical problem, the role of a domain
expert is very important. In our algorithm, the tuning of the § parameter could increase or decrease
the number of clusters. Therefore, the domain expert would decide, according to his experience and
knowledge, what would be a suitable value for this threshold and after that, he can judge the results
according to what he expect to obtain with the selected 3 value.

As future work, we will explore the use of the DCS algorithm in the problem of hierarchical clustering.
In this way, we will be able to discover not only what objects are grouped together in a cluster but what
relations could exist among the different clusters.

Acknowledgment

This work was partly supported by the National Council of Science and Technology of Mexico under
the project CB-2008-01-106443 and grant 32040.

References

[1] R. AbellaPérez and J.E. MedinaPagola, An incremental text segmentation by clustering cohesion. In Proceedings of
the International Workshop on Handling Concept Drift in Adaptive Information Systems: Importance, Challenges and
Solutions (HaCDAIS 2010), 2010, pages 65=72.

[2] C.C.Aggarwal,]J. Han, J. Wang and P.S. Yu, A framework for clustering evolving data streams. In Proceedings of the 29th
international conference on Very large data bases — Volume 29, VLDB °2003, VLDB Endowment, 2003, pages 81-92.

[3]1 J. Aslam, E. Pelekhov and D. Rus; The star clustering algorithm for static and dynamic information organization. Journal
of Graph Algorithms and Applications 8(1) (2004), 95-129.

[4] J. Aslam, K. Pelekhov and D. Rus, Static and dynamic information organization with star clusters. In Proceedings of the
Seventh International Conference on Information and knowledge Management, 1998, pages 208-217.

[5]1 J. Aslam, K. Pelekhov and D. Rus, Using star clusters for filtering. In Proceedings of the Ninth International Conference
on Information and Knowledge Management, USA, 2000, pages 306-313.

[6] A.Banerjee, C. Krumpelman, S. Basu, R. Mooney and J. Ghosh, A new graph-based algorithm for clustering documents.
In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
(KDD2005), 2005, pages 532-537.

[71 M. Berry, Survey of Text Mining, Clustering, Classification and Retrieval, Springer-Verlag, 2004.

[8] G.J. Bloy, Blind camera fingerprinting and image clustering, IEEE Transactions on Pattern Analysis and Machine
Intelligence 30(3) (March 2008), 532-534.

[9] L. Chen, L. Tuand Y. Chen, An ant clustering method for a dynamic database. In Proceedings of the ICMLC 2005, 2006,
pages 169-178.

(10]

(1]
[12]

[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]
[22]

[23]
[24]
[25]
[26]
[27]
(28]
[29]

[30]

[31]
[32]
[33]
[34]
[35]

[36]

[37]

A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters 231

G. Cselle, K. Albrecht and R. Wattenhofer, Buzztrack: Topic detection and tracking in email. In Proceedings of the 12th
International Conference on Intelligent User Interfaces (UI2007), 2007, pages 446—453.

J. Dunn, Well separated clusters and optimal fuzzy partitions, Journal of Cybernetics 4 (1974), 95-104.

H. Elghasel, H. Kheddouci, V. Deslandres and A. Dussauchoy, A partially dynamic clustering algorithm for data insertion
and removal, in: V. Corruble, M. Takeda and E. Suzuki, eds, DS 2007, LNAI 4755, 2007, pages 78-90.

M. Ester, H. Kriegel, J. Sander, M. Wimmer and X. Xu, Incremental clustering for mining in a data warehousing
environment. In Proceedings of the 24th Very Large Databases Conference, 1998, pages 323-333.

R.J. Gil-Garcia, J.M. Badia-Contelles and A. Pons-Porrata, Extended star clustering algorithm. In Proceedings of the Sth
Iberoamerican Congress on Pattern Recognition (CIARP2003), LNCS 2905, 2003, pages 480-487.

R.J. Gil-Garcia and A. Pons-Porrata, Hierarchical star clustering algorithm for dynamic document collections. In Pro-
ceedings of the XIII Iberoamerican Congress on Pattern Recognition (CIARP2008), Springer-Verlag Berlin Heidelberg,
2008, pages 187-194.

E. Greengrass, Information retrieval: A survey. Ed Greengrass. DOD Technical Report TR-R52-008-001, 2001.

S. Guha, N. Mishra, R. Motwani and L. O’Callaghan, Clustering data streams. In Proceedings of the IEEE FOCS
Conference, 2000, pages 359-366.

M. Halkidi and M. Vazirgiannis, Npclu: An approach for clustering spatially extended objects, Intelligent Data Analysis
12(6) (2008), 587-606.

K.M. Hammouda and M.S. Kamel, Efficient phrase-based document indexing for web document clustering, /EEE
Transactions on Knowledge and Data Engineering, 16(10) (2004), 1279-1296.

Y. He and L. Chen, A threshold criterion, auto-detection and its use in mst-based clustering, Intelligent Data Analysis
9(3) (2005), 253-271.

A.K. Jain, M.N. Murty and P.J. Flynn, Data clustering: a review, ACM Computing Surveys 31(3) (1999), 264-323.

S. Khy, Y. Ishikawa and H. Kitagawa, Novelty-based incremental document clustering for on-line documents. In Pro-
ceedings of 22nd International Conferencet On Data Enggineering Workshops (ICDEW’06), 2006, page 40.

L. Kuncheva and S. Hadjitodorov, Using diversity in cluster ensembles. In Proceedings of the 2004 IEEE International
Conference on Systems, Man and Cybernetics, 2004, pages 1214-1219.

A. Lazarevic and Z. Obradovic, Adaptive boosting techniques in heterogeneous and spatial databases, Intelligent Data
Analysis 5(4) (2001), 285-308.

Y.G. Liu, X.F. Liao, X.M. Li and Z.F. Wu, A tabu clustering algorithm for intrusion detection, Intelligent Data Analysis
8(4) (2004), 325-344.

P. Mahata, Exploratory consensus of hierarchical clusterings for melanoma and breast cancer. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, March 2008.

R. Nayak, Fast and effective clustering of xml data using structural information, Knowledge and Information Systems
14(2) (2008), 197-215.

L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha and R. Motwani, Streaming-data algorithms for high-quality clustering.
In Proceedings of the 18th International Conference on Data Engineering (ICDE ’02), 2002, pages 685-709.

M.G.H. Omran, A.P. Engelbrecht and A. Salman, An overview of clustering methods, Intelligent Data Analysis 11(6)
(2007), 583-605.

A. Pérez-Sudrez and J.E. Medina-Pagola, A clustering algorithm based on generalized stars. In Proceedings of the 5th
International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM 2007), LNAI 4571,
2007, pages 248-262.

A. Pons-Porrata, R. Berlanga-Llavori and J. Ruiz-Shulcloper, On-line event and topic detection by using the compact
sets clustering algorithm, Journal of Intelligent and Fuzzy Systems 12(3—4) (2002), 185-194.

A. Pons-Porrata, R. Berlanga-Llavori, J. Ruiz-Shulcloper and J.M. Pérez-Martinez, Jerartop: A new topic detection
system. In Proceedings of the 9th Iberoamerican Congress on Pattern Recognition, LNCS 3287, Springer-Verlag Berlin
Heidelberg, 2004, pages 446-453.

A. Pons-Porrata, J. Ruiz-Shulcloper, R. Berlanga-Llavori and Y. Santiesteban-Alganza, Un algoritmo incremental para
la obtencién de cubrimientos con datos mezclados. Reconocimiento de Patrones. Avances 'y Perspectivas. Research on
Computing Science, CIARP2002, 2002, pages 405—416.

Peter Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J Comput Appl Math
20 (November 1987), 53-65.

G. Salton, A. Wong and C.S. Yang, A vector space model for automatic indexing, Commun ACM 18(11) (1975), 613-620.
G. Sanchez-Diaz and J. Ruiz-Shulcloper, Mid mining: a logical combinatorial pattern recognition approach to clustering
in large data sets. In Proceedings of the 5th Iberoamerican Symposium on Pattern Recognition SIARP 2000, 2000,
pages 475-483.

G. Sanchez-Diaz and J. Ruiz-Shulcloper, A clustering method for very large mixed data sets. In Proceedings of the First
IEEE International Conference on Data Mining (ICDM’01), 2001, page 643.

232 A. Pérez-Sudrez et al. / A dynamic clustering algorithm for building overlapping clusters

[38] W.Siaand M. Lazarescu, Clustering large dynamic datasets using exemplar points. In Proceedings of the 3th International
Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM 2005), LNAI 3587, 2005, pages 163—
173.

[39] M. Vignes and F. Forbes, Gene clustering via integrated markov models combining individual and pairwise features.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, pages 260-270.

[40] O. Zamir and O. Etziony, Web document clustering: A feasibility demonstration. In Proceedings of the 21st Annual
International ACM SIGIR Conference, 1998, pages 46-54.

https://www.researchgate.net/publication/233886208

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

