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1Abstract—This article empirically assesses a coarse-fine 

approach for diversity tuning in cellular Genetic Algorithms 
(cGAs). The coarse tuning is performed through the constant 
reconfiguration of the grid while the fine tuning is locally 
achieved through dynamic anisotropic selection which 
considers individuals' locations in the local neighborhood. 
Benchmark problems including continuous, real-world and 
combinatorial problems are evaluated. The experimental 
results show an improvement in cGAs performance when 
compared to having a fixed topology configuration or to 
independently applying dynamic lattice reconfiguration or 
dynamic anisotropic. 
 

Index Terms—Evolutionary computation, genetic 
algorithms, parallel algorithms, optimization, adaptive 
algorithm. 

I. INTRODUCTION 

Genetic Algorithms (GAs) are stochastic search 
techniques that have successfully tackled difficult 
optimization problems presenting characteristics such as 
multi-modality, epistasis, asymmetry and deceptiveness. 
Since the early years of GAs' development, parallel 
approaches also emerged. A general classification of 
Parallel GAs (PGAs) divides them by the population's grain 
in coarse and fine PGAs [1]-[4]. Fine grained PGAs are also 
known as cellular GAs (cGAs) and their main difference is 
the use of a structured and decentralized population [11]. 
Normally, cGAs are implemented using a lattice topology 
placing one individual per grid position. The lattice is 
connected in a toroidal way with wraparound edges. Other 
algorithmic parameters need to be configured such as the 
lattice's shape, the local neighborhood and its corresponding 
size and shape, among others. Those parameters directly 
affect the induced selective pressure applied during the 
search [5]-[7]. 

Previous studies have focused on using cGAs structure as 
a way of controlling selective pressure in order to balance 
population’s diversity [8]. Researchers have also proposed 
dynamically reconfiguring the population topology [9]. 
However, a form of migration occurs during the relocation 
of individuals, after grid re-arrangement, inducing a loss of 
the natural adjacency of individuals. In [10],[14], 
individuals are eliminated following predefined criteria, 
inducing disturbances in the landscape to create inner 
islands and modify population’s diversity. Several 
benchmark problems are assessed and results improve 
solutions’ accuracy but statistical analysis is not provided.  
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On the other hand, controlling the exploration-
exploitation trade-off using cGAs’ structure does not need to 
be an immediate response to changes in phenotypic or 
genotypic spaces. Instead, a constant internal topology 
reconfiguration leads to a significant algorithmic 
performance improvement [15]. Moreover, applying locally 
a method known as anisotropic selection allows a variable 
parameter to dynamically adjust selective pressure [17]-[18]. 
Both approaches take advantage of the structural properties 
of this evolutionary algorithmic technique. This article 
assesses algorithmic criteria that use global and local 
structural properties in order to improve cGAs performance 
in terms of efficiency and efficacy. Results obtained are 
statistically analyzed and compared to previously obtained 
results. 

In the following section, a detailed explanation of the 
effect of controlling selection pressure through internal 
lattice reconfiguration and the dynamic local selection 
criterion are presented. In Section III, the new proposed 
algorithmic approach is introduced. In Section IV, the 
experimental set-up including benchmark problems is 
provided. In Section V, results analysis including statistical 
tests is presented. Finally, Section VI draws conclusions 
based on results obtained. 

II. DIVERSITY TUNING MECHANISM 

Using structural properties of cellular GAs to control the 
exploration-exploitation trade-off has been a topic for 
research [19]-[20]. It was mentioned in Section I that 
dynamic lattice reconfiguration and dynamic anisotropic 
selection separately assessed showed an improvement in 
cGAs performance in most benchmark problems. 
Phenotypic diversity, considering the average population's 
fitness score, and the population's entropy were adaptively 
assessed as measures to trigger either a change in the 
topology configuration or to modify the selection 
probabilities of the neighbors through anisotropic selection 
[17]. Both measures did not show a significant difference in 
performance when compared to a constant and periodical 
application of either mechanism. Therefore the effect of 
internally modifying the topology configuration resulted in a 
coarse approach for diversity tuning and it does not need to 
be applied as a prompt response to changes in phenotypic or 
genotypic diversity. On the other hand, dynamic anisotropic 
selection directly affects the probabilities for selection of 
individuals within neighborhoods, and therefore it finely 
modifies the induced selective pressure from a local level. 
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In cGAs, the exploration and exploitation of landscapes is 
performed concurrently. Thus, exploration is mainly 
achieved throughout the grid while exploitation is locally 
promoted within neighborhoods. Dynamic lattice 
reconfiguration internally creates cellular sub-structures that 
would imply different levels of selective pressure that as a 
whole would modify the overall selection pressure. On the 
other hand, through dynamic anisotropic selection, distinct 
levels of selective pressure are locally achieved. The 
combination of both approaches in a coarse-fine diversity 
tuning mechanism aims to improve cGAs performance in 
terms of efficiency and efficacy. 

Figure 1. Coarsely, the overall selective pressure is modified by the lattice reconfiguration mechanism according to the local selection method. 
Finely, at local level, the   parameter for anisotropic selection is changed dynamically either constantly or adaptively 

A. Coarse Tuning – lattice reconfiguration 

Researchers have demonstrated that the exploration-
exploitation trade-off can be implicitly controlled in cGAs 
through the configuration of the population topology and the 
neighborhood [15]-[16]. A measure known as the 
neighborhood-grid ratio (NGR) has been defined in order to 
describe its behavior. The NGR was first introduced in [7]. 
Its calculation corresponds to measuring the dispersion of 
p points (each individual position) centered at   . A 

dispersion measure is used because other possible measures, 
such as the radius of a circle, would give the same value for 
different population topologies. The dispersion of a point 
pattern is calculated as follows: 
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In Fig. 1, three population configurations are drawn. 
Internally, smaller cellular structures imply a higher or 
lower NGR that as a whole would modify the search making 
it more exploitative or explorative. A configuration, 
where is the number of individuals per grid side, is the 
only topology which NGR directly represents its level of 

selective pressure. A 

nxn
n

n2( n)2  configuration divides a 

square grid in two rectangular topologies with n
2  

individuals on the shorter side. A n n4( )2 2 configuration 

divides a fully connected square topology in four smaller 

square toroidal grid configurations with n
2  individuals per 

side. These lattice configurations are used in the 
experimental set-up. 

For topologies in Fig. 1, a compact Von Neumann local 
neighborhood is used consisting of individuals located at 
North, East, South and West with a Manhattan distance of 
one from the central individual. As an example, for a 
population of 400 individuals, dispersion measure is 
D 0.8944  with local Von Neumann neighborhood. If 
individuals are distributed on a  square topology, 
corresponding NG ratios, as regards each independent 
cellular sub-structure, are:

20 20

nxnNGR 0.1093 , 

n n2
NGR 0.1380


 , n n

2 2
NGR 0.2169


. 

Different ratios mean having higher or lower selection 
pressures. Therefore, decentralized GAs are structurally 
capable of modifying selective pressure while changing the 
population's structural configuration. Lower ratios means 
more exploration is performed while higher ratios imply 
more exploitation. However, the NGR is a representation of 
the selective pressure in a fully connected structure or sub-
structure. Therefore, it does not reflect the overall induced 
selective pressure in topologies configurations formed by 
several cellular sub-structures, like those shown in Fig. 1. In 
order to analyze the levels of selective pressure that each 
topology configuration induces, an experimental assessment 
is carried out to calculate the take-over times following a 
constant lattice reconfiguration criterion. 

At local level, two different selection methods are 
applied; widely known binary tournament selection and 
constant anisotropic selection proposed in [17]. These 
selection methods induce distinctively opposite selective 
pressures. In order to characterize the selection pressure in 
cellular GAs, the take-over time concept (also refer to as the 
proportional growth of the best individual) is used. The 
take-over time reflects how long it takes for the best 
individual to spread its solution throughout the entire array 
when only selection is applied. Longer take-over times 
represent lower selection pressures and therefore more 
explorative search; and shorter take-over times correspond 
to higher selection pressures, equivalent to more exploitative 
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search. In Fig. 2, proportional growth curves for both 
selection methods are shown. A hundred experiments for a 
population of 400 individuals were performed when 
applying constant anisotropic selection with  and 
binary tournament selection. On a static 20  square 
topology, binary tournament shows higher selective pressure 
in comparison to constant anisotropic selectio  

0.8   which is more explorative. In the same figure, 
growth rates corresponding to constant lattice 
reconfiguration among population topologies drawn in Fig. 
1 are shown. Reconfiguring the grid allows internal cellular 
sub-structures to induce an overall higher or lower selective 
pressure. In Fig. 2, when locally applying binary tournament 
selection the overall induced selective pressure becomes 
lower and therefore more explorative. Constant anisotropic 
selection with  results in higher selective pressure 
and becomes more exploitative. In fact, binary tournament 
corresponds to applying uniform anisotropic selection, if 

 all neighbors have the same probability for 
selection. In the next subsection the fine tuning mechanism 
based on anisotropic selection is explained.  

0.8 
20

n with

0.8 

0.25 

B. Fine Tuning - dynamic anisotropic selection 

Anisotropic selection depends on the direction of an 
individual's location in a Von Neumann local neighborhood. 
It consists of individuals at the North, East, South and West 
positions, at a Manhattan distance of one from the central 
individual. Anisotropic selection chooses an individual 
following two probabilistic equations determined by an   

parameter:  and N S 0P  P P 1        E W 0P  P P 1 

0.25 

  

respectively. For example, if  and  uniform 
probability for all neighbors is applied. 

0.0 

Similar to previous approach, in Fig. 3, take-over times 
for anisotropic selection, considering  0.0,0.9

0.3

, are 

drawn. These curves are obtained from an average of 100 
experiments on a population of 400 individuals and a 
minimum  step of 0.1. Higher   values promote 
exploration while lower   values perform a more 
exploitative search. Moreover, for  take-over times 
are very similar. Thus, for these values the expected effect 
of controlling the selection pressure is null.  



 

The fine tuning mechanism consists in dynamically 
changing   from 0.0 to 0.9 and thus assigns higher or lower 
probabilities to individuals located at North/South or 
East/West positions. In Fig. 1, three internally different 
topology configurations are presented; a distinct   value is 
assigned to each cellular structure or sub-structure varying 
the induced selective pressure according to constant and 
adaptive criteria. 

Combining internal lattice reconfiguration and dynamic 
anisotropic selection in a coarse-fine mechanism for 
diversity tuning allows to improve cellular GAs' 
performance without significantly changing their 
algorithmic structure and therefore without increasing their 
computational cost. 

C. Coarse-Fine Diversity Tuning 

Reconfiguring the population topology as a mechanism 
for diversity tuning in cellular GAs was assessed in [15]. 
Four internally different topology configurations were used  

 
Figure 2. Growth rate for a fixed square topology and constant lattice 

reconfiguration when applying binary tournament or anisotropic ( =0.8) 
selection. 

 
Figure 3. Dynamic anisotropic selection growth rate on a square topology. 

 
including vertical and horizontal alignments for two of 
them. In this article, three of those configurations are used 
removing one that divides the population in linear cellular 
sub-structures and only vertical alignment is used for the 
topology configuration shown in the middle of Fig. 1. The 
conclusion of that article suggested that reconfiguring the 
population topology is a rough approach for diversity tuning 
and it does not need to be applied as a prompt response to 
diversity changes in phenotypic or genotypic spaces. In this 
study, diversity tuning is pursued at two levels, coarsely by 
constantly applying the lattice reconfiguration mechanism 
and finely by dynamic anisotropic local selection. 

Anisotropic selection makes use of individuals’ locations 
within neighbourhoods to assign probabilities for selecting 
the second parent as explained in previous subsection. This 
selection method is based on the structural configuration of 
cGAs' local neighbourhood. Dynamic modification of the 
parameter allows a wider span for adjusting the induced 
selective pressure as the growth rate curves drawn in Fig. 3 
show. It is expected that finely and independently tuning the 
parameter for each cellular sub-structure contribute in a 
better balance of the exploration-exploitation trade-off and 
therefore in an improvement of cGAs' performance. In the 
next section, the algorithmic details are presented. 

III. ALGORITHMIC APPROACH 

In Fig. 4 the proposed algorithmic approach is presented.  
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1:procedure CGA 
2: , ; //initial configuration n n 0.5 
3: (x) ;//initial population random();
4: ( ; //evaluation f ) evaluation(x);
5:while  generations do k 1
6: if  then//constant latt. 
reconf. 

k mod c 0

7:    if l  then //current 
lattice configuration 

attConf n n 

8:       nlattConf 2 n2        
9:    else if nlattConf 2 n2    then 
10        n nlattConf 4 2 2  ; 

11    else 
12       l  attConf n n 
13    end if; 
14  else 
15  end if; 
16: for i  do //reproduction 1, popSize

17:      n e s wf ' selection f , f , f , f

18:    ;  n e s wx ' selection x , x , x , x

19:      ;  1 2 0x , x recombination x , x '

20:       1 2 1 2x ' , x ' mutation x , x  

21:     0 1 2f ' evaluation(x , x ' , x ' );

22:     ;//replace if-better0 0x , f f '', x '' 
23: end for; 
24:   ;//synch.update temp tempx x , f f 

25: if f threshold  then 
26:   Break; 
27: else 
28:   [CDA|PDA(f)|GDA(x)];//fine tuning
29: end if; 
30:end while; 
31:end procedure; 

Figure 4. Coarse-fine diversity tuning cellular GA 
 

Evolution starts on a static square grid n n  and 
anisotropic selection is configured with    (line 2). 
The population evolves using topology configurations 
drawn in Fig. 1; the coarse diversity tuning mechanism 
through lattice reconfiguration occurs constantly every 
certain number of generations (lines 6-15). The main 
reproductive cycle follows a synchronous updating policy 
after the central individual is mated with an individual 
selected from its neighbors (lines 16-24). Single point 
crossover is used with probability  and offspring are 

mutated with probability . The current individual 

is replaced only if offspring achieve higher fitness scores. 

0.5

cP 1

0.02

.0

mP 

Once the whole population has evolved the population's 
average fitness score is compared to a threshold that secures 
a high accurate problem's solution. If the threshold has not 
been fulfilled, the fine tuning mechanism is executed either 
constantly or adaptively (lines 25-30). Thus, either constant 
(CDA), phenotypic (PDA) or genotypic (GDA), dynamic 
anisotropic selection are applied. 

Constant anisotropic selection (CDA) is detailed in Fig. 5. 

Every certain number of generations,   is increased by 
0.1  , once it has reached the highest value 0.9  , it is 

re-initialized to 0.1  . Constant anisotropic selection is 
evaluated similar to constant lattice reconfiguration 
criterion. Both methods are computationally less expensive 
in comparison to adaptive mechanisms that evaluate 
phenotypic or genotypic diversity to trigger dynamic 
changes either at lattice or local anisotropic selection levels. 
In this article, the population topology is constantly 
reconfigured in combination with constant and dynamic 
anisotropic local selection. 

 
1: procedure CDA 
2:if k mod c 0  then //c is a constant    
3:   if 0.9   then 
4:          0.1   //reinitialize      
5:       else 
6:          0.1    ;// increment   
7:       end if; 
8:   else 
9:   end if; 
10: end procedure; 

Figure 5. Constant anisotropic selection 

 
To tune dynamically the  parameter in anisotropic 

selection for each independent cellular structure 


 A B 1 4, | ,...,    showed in Fig. 1 diversity measures are 

calculated separately for each cellular structure formed once 
the lattice has been reconfigured. 

Dynamic anisotropic selection based on phenotypic 
diversity (PDA) is presented in Fig. 6, the difference in 
phenotypic entropy  PH  among consecutive generations is 

evaluated as follows: 

                                                      [3]  
N

P j
j 1

H f log


  jf

where  is the proportion of individuals in one generation 

having fitness  in exponential logarithm base [20]. Thus, 

the difference between  and 

jf

j

t 1P PH , H


 
t 2PH


  would 

determine if phenotypic diversity in current generation has 
or has not significantly changed with respect to previous 
generations; where . 

t tP PH H    
t 1PH


In order to determine genotypic diversity  GH
, the 

Hamming distance among chromosomes is used as a 
measure. In Fig. 6, details for GDA procedure are also 
presented. In line 2, the difference between current 

t tG G GH H H
t 1

 
  and previous t 1G G, H 

t 2
( H )

   
generations is calculated, in order to assess genotypic 
diversity changes. In a similar way to phenotypic diversity, 

if t tG G(H H )



1  difference is less than t 1 t 2G G(H H )

 


, 
diversity is being lost and exploration should be encouraged 
increasing  . On contrast, exploitation should be promoted 
by decreasing . If neither of those conditions is satisfied, 
the   parameter for anisotropic selection remains the same. 
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Figure 6. Phenotypic or genotypic based anisotropic selection. 

IV. EXPERIMENTAL SET-UP 

In Table I, benchmark problems are summarized. Three 
continuous problems: Rastrigin, Griewank and Langerman 
functions presenting characteristics such as multi-modality, 
epistasis and non-regularity are tackled [19],[21],[25]. 
Binary chromosomes encoding has been used with specific 
minimum step per variable. The aim is to evaluate difficult 
characteristics of theoretical continuous problems that are 
commonly found in real-world problems [13]. 

Three real-world problems: Frequency Modulation Sound 
(FMS) problem, GPS attitude determination problem 
[12],[23]-[24] and System of Linear Equations (SLE) are 
also tackled.[22]. Three combinatorial problems are also 
tackled: Massively Multi-modal Deceptive Problem 
(MMDP), Minimum Tardy Task Problem (MTTP) and P-
Peaks problem. 

A. Experimental constraints 

The following experimental constraints are evaluated: 
•A population size of 400 individuals is used for most 

problems, except for GPS and MTTP problems, where a 
population size of 64 and 100 individuals is used.  

•Local neighborhood configuration is Von Neumann 
composed by four individuals plus the central one. 

•100 independent runs are carried out per case. 
•A limit of 500 generations is defined for most problems, 

except for the Langerman function, the SLE and the MMDP 
problems where the limit is 700 generations.  

In order to statistically support the results, an initial 
normality test is performed on each set of experimental 
results regarding the convergence time. First, normality is 
determined by the Kolmorov-Smirnov test or the Lilliefors 
test, both at 5% significance. Lilliefors test is suitable when 
a fully-specified null distribution is unknown, contrary  to 
the Kolmorov-Smirnov test. After, an Analysis of Variance 
(ANOVA) is applied to results with normal distribution 
whereas Kruskal- Wallis is applied in any other case. To 
represent that 5% statistical significance difference has been 
found among convergence time results, a symbol (+) is used. 
On the contrary, a (*) symbol indicates that results are not 
statistically different, and therefore applying proposed 
dynamic criteria make no difference in terms of number of 
generations, when compared to a static cGA. On the other 
hand, having statistically different results does not mean the 
proposed approaches improve a static cGA performance;  

TABLE I. BENCHMARK PROBLEMS 

hence an individual analysis for each problem accompanies 
the interpretation of the results tables. Results are analyzed 
in terms of convergence time (efficiency) and search rate 
(efficacy). Search rate represents the number of experiments 
that succeeded in solving the problem, out of the total 
number of experiments which is set to a 100. On each table 
of results, bold fonts highlight the best performances. 
Results accuracy is high due to the stop condition which is 
for all problems highly accurate, see Table 1. The stop 
condition evaluates the average population fitness score 
versus a problem specific threshold. The performance of a 
square topology locally implementing binary tournament or 
anisotropic selection with 0.0  , and constant anisotropic 
selection with 0.8   are included as reference. However, 
the difference between both methods in terms of the induced 
selective pressure is significant and reflects directly in the 
algorithmic efficiency. These scenarios are not included in 
the statistical analysis in order to avoid results bias.  

The hit rate has been statistically evaluated as a Bernoulli 
trial. A random experiment whose result is either success or 
failure can be considered a Bernoulli trial [20]. Measuring 
the standard deviation of successful experiments 
percentages provides a numerical value that indicates how 
significantly different are these success search rates. The 
standard deviation for each experimental sample is 
calculated as follows: 

             

1:procedure PDA, GDA(f,x) 
2:   if ∆ ∆ ∆ then   (2tH  1

3:      if  then 
) (tH   2 )tH 

0.9
4:      else 
5:        //exploration 0.1; 
6:       end if; 
6:   else if ∆ ∆ ∆  then (2tH  1) (tH   2 )tH 

7:      If =0.0 
8:      else 
9:          ;//exploitation 0.1 
10:     end if; 
11:  else 
12:  end if; 
13:end procedure; 

Problem Fitness function 

Rastrigin 

q
2

i
i 1

f (x) 10q  (x cos(2 x ))


     

Tq 10, f 0.0005   

Griewank 

q 2
i i

i 1

x x
f (x) 1  ( cos( ))

4000 i

     

Tq 10, f 0.0001   

Langerman  

D
2

j ij
j 1

1
q (x a ) D

2
i j

i 1 j 1

f x c e cos( (x a ) )

 


 

   


  ij  

Tq 10, f 1.4990    

FMS 
     1 1 2 2 3 3f t a sin w t a sin w t a sin w t ;     

Tq 6, f 0.04   

SLE 
Ax b  

Tq 10, f 0.04   

GPS 
attitude 

 
m n 1j 1j

AB AB

i 1 j 1

DD DD ( , ,b)2
f , , b cos ( )

m(n 1) m(n 1)
 

    
        

  

Tq 3, f 0.993   

MMDP 
 

i

k

q

i 1

f q fitness


  

Tq 25, k subproblems, f 0.99    

MTTP 
 

i

q

x

i 1

f x weight


  

Tq 100, f 0.0051   

P-Peaks 
  P

i 1 i
1

f x max (Q Hamming(x, P ))
q    

TP 100, f 1.0   

ˆ ˆr p 1 p                            [4] 
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TABLE II. CONVERGENCE TIME 1 AND HIT RATE 2 RESULTS FOR CONTINUOUS AND THE FMS PROBLEMS THROUGH A FIXED LATTICE 

SHAPE, LATTICE RECONFIGURATION, DYNAMIC ANISOTROPIC SELECTION AND THE COMBINATION OF BOTH 
Fixed lattice shape Rastrigin Griewank Langerman FMS 

Binary tournament  

Square 
136.68±9.48 
100%, 0.0 

272±46.45 
89%, 3.12 

291.04±103.92 
21%, 4.07 

210.78±58.76 
41%, 4.91 

Constant anisotropic  

Square 
230.38±15.51 

100%, 0.0 
438.36±39.04 

68%, 4.66 
432.61±47.01 

21%, 4.07 
379.38±58.58 

52%,4.99 

Lattice reconfiguration  

Constant 
186.89±14.56 

%, 0.0 
370.11±45.66 

89%, 3.12 
316.62±66.14 

37%, 4.82 
305.24±61.08 

66%, 4.73 

Phenotypic 
198.14±14.03 

100%, 0.0 
392.32±48.94 

90%, 3.0 
365.42±79.82 

19%, 3.92 
307.37±58.32 
61%, 4.870 

Genotypic 
199.79±12.54 

100%, 0.0 
388.31±45.69 

91%, 2.86 
357.40±70.93 

25%, 4.33 
329.87±75.44 

66%, 4.73 

Dynamic anisotropic  

Constant 
194.15±13.65 

98%, 1.40 
398.59±42.02 

97%, 1.70 
346.31±71.83 

22%, 4.14 
324.31±51.37 

65%, 4.76 

Phenotypic 
199.98±14.33 

100%, 0.0 
379.81±47.55 

98%, 1.40 
359.60±70.98 

28%, 4.49 
315.38±68.09 

51%, 4.99 

Genotypic 
213.19±19.75 

100%, 0.0 
422.96±52.15 

84%, 3.66 
336.00±60.53 

28%, 4.49 
327.29±66.67 

51%, 4.99 

Lattice reconfiguration + 
Dynamic anisotropic 

 

Constant 
183.80±9.84 
100%, 0.0 

378.32±44.36 
97%, 1.7 

316.40±78.70 
32%, 4.66 

278.80±49.58 
70%, 4.58 

Phenotypic 
174.45±11.59 

100%, 0.0 
360.15±51.42 

92%, 2.71 
326.00±66.21 

34%, 4.70 
288.75±59.17 

64%, 4.80 

Genotypic 
261.51±20.84 

100%, 0.0 
365.29±39.76 

94%, 2.37 
308.65±75.48 

26%, 4.38 
284.73±49.28 

73%, 4.43 

ANOVA / K-W3     *   

1 Average number of generations and standard deviations are included. Underlined std. dev. corresponds to non-normal dist. 
2 Success search rates’ standards deviations are included next to the percentage. 
3 Statistical tests results: statistical difference is proved (+)/ is not proved( * ) 

where p̂  represents the probability of successful 

experiments and r  is the total number of experiments. 

V. RESULTS ANALYSIS 

Results corresponding to Rastrigin, Griewank and 
Langerman functions are presented in Table II. For the 
Rastrigin problem applying constant high selective pressure 
results in the best convergence time and hit rate is 100% in 
all cases. Although hard to solve, the Rastrigin problem is 
regular and separable thus is not as difficult as the other 
continuous problems. In the case of the Griewank problem, 
convergence time is reduced in approximately 75 
generations by the proposed coarse-fine approach in 

comparison to anisotropic selection with . The hit 
rate is significantly improved when applying dynamic 
anisotropic selection and the proposed coarse-fine approach; 
from 89% and 68% to 98% (dynamic anisotropic) and 97% 
(coarse-fine approach), corresponding to statistical 
significance values of 3.12 and 4.66 to 1.40 and 1.70 
respectively. For the Langerman function similar efficacy is 
obtained through binary tournament and anisotropic 

selection with  improving when constant lattice 
reconfiguration and the proposed coarse-fine approach are 
applied with reduced statistical significance (from 21% to 
37% and 34%). Binary tournament shows the best 

convergence time which is similar to the proposed coarse-
fine approach efficiency.  

0.8 

0.8 

In Tables II and III, results obtained for real problems are 
presented. Algorithmic efficiency is improved when 

applying anisotropic selection with . In general, 

binary tournament or anisotropic selection with 

0.8 
0.0   

provides the best convergence time but not the best hit rate. 
For the FMS problem a reduction in approximately 100 
generations is achieved by the proposed coarse-fine 
approach when comparing to anisotropic selection with 

0.8   together with an improvement in efficacy of around 
20%, both metrics with statistical difference. For the SLE 
problem convergence time is improved with respect to 

anisotropic selection with  in around 150 
generations by measuring phenotypic diversity. Higher 
success search rate (45%) is also obtained, although it is not 
significantly different to applying binary tournament 
selection (39%). Finally, the GPS problem presents a slight 
improvement in efficiency, with two algorithmic approaches 
presenting similar convergence times: dynamic anisotropic 
selection and the proposed combined approach, both while 
measuring phenotypic diversity. Hit rate is improved from 
57% (binary tournament or anisotropic selection) and 76% 

(anisotropic selection with 

0.8 

0.0  ) to 87%     (combined  
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TABLE III. CONVERGENCE TIME 1 AND HIT RATE 2 RESULTS FOR REAL AND COMBINATORIAL PROBLEMS THROUGH A FIXED 
LATTICE SHAPE, LATTICE RECONFIGURATION, DYNAMIC ANISOTROPIC SELECTION AND THE COMBINATION OF BOTH 

Fixed lattice shape SLE GPS MMDP MTTP P-Peaks 

Binary tournament   

Square 
297.28±72.56 

39%,4.87  
73.12±28.69 

57%,4.95 
431.31±38.45 

89%,3.12 
259.65±44.16 

99%,0.99 
169.46±19.99 

100%,0.00 

Constant anisotropic   

Square 
594.21±54.32 

19%, 3.92 
80.73±15.43 

76%,4.27 
568.98±54.01 

97%,1.70 
444.45±36.92 

31%,4.62 
286.19±35.95 

99%,0.99 

Lattice reconfiguration   

Constant 
469.50±114.32 

42%,4.93  
72.76±16.93 

78%,4.14 
550.86±55.63 

94%,2.37 
437.34±65.97 

100%,0.00 
256.77±28.67 

100%,0.00 

Phenotypic 
482.66±95.83 

33%, 4.70 
82.39±20.51 

78%,4.14 
602.77±52.03 

85%,3.57 
429.14±46.50 

81%,3.92 
277.00±46.50 

100%,0.00 

Genotypic 
511.00±118.66 

30%, 4.58 
86.01±22.22 

84%,3.66 
599.05±47.81 

92%,2.71 
432.82±37.70 

68%,4.66 
268.78±32.56 

100%,0.0 

Dynamic anisotropic   

Constant 
511.73±69.36 

38%,4.85  
68.93±16.75 

76%,4.27 
590.08±49.01 

92%,2.71 
394.42±48.42 

95%,2.17 
247.47±24.74 

100%,0.0 

Phenotypic 
509.70±93.72 

44%, 4.96 
65.71±11.38 

80%,4.00 
605.15±50.66 

94%,2.37 
400.81±50.42 

88%,3.24 
257.48±30.39 

100%,0.00 

Genotypic 
530.88±96.49 

27%,4.43  
74.51±21.58 

82%,3.84 
651.86±32.036 

45%,4.97 
440.00±35.62 

51%,4.99 
282.82±32.97 

100%,0.00 

Lattice reconfiguration + 
Dynamic anisotropic 

  

Constant 
460.09±94.86 

42%,4.93  
66.78±12.72 

82%,3.84 
538.81±44.33 

99%,0.99 
380.62±36.26 

97%,1.70 
252.47±26.20 

100%,0.00 

Phenotypic 
442.95±93.32 

45%, 4.97 
65.48±27.37 

87%,3.36 
537.77±48.60 

98%,1.40 
383.88±51.75 

94%,2.37 
256.00±29.38 

100%,0.00 

Genotypic 
447.11±96.63 

43%,4.95  
68.68±16.85 

77%,4.20 
533.53±55.63 

97%,1.70 
380.92±48.44 

95%,2.17 
256.52±31.74 

100%,0.00 

ANOVA / KW3           
1. Average number of generations and standard deviations are included. Underlined std.dev. correspond to non-normal dist. 
2. Success search rates’ standards deviations are included next to the percentage. 
3. Statistical tests results: statistical difference is proved (+)/ is not proved( * ) 

 

 

approach) with statistical difference. Hit rate percentages 
that are close to 50%, which is the mean chance expectation, 
are more likely to occur by chance, therefore statistical 
measures show minor numerical differences. 

In Table III, results for combinatorial problems are 
shown. For the MDDP problem an improvement in efficacy 
of 10% with statistical difference of 2.13 is achieved 
through the proposed coarse-fine approach when comparing 
to a static square topology with binary tournament or 
anisotropic selection with . Comparing anisotropic 
selection with  and the best efficacy achieved by the 
proposed coarse-fine approach the improvement is reduced 
but still statistically significant with a difference of 0.71. For 
the same comparative scenario, the average convergence 
time is also reduced in around 30 generations with statistical 
proof. The MTTP problem results show that applying a 
constant high selective pressure through binary tournament 
provides the best overall performance. However, very low 
hit rate is achieved by anisotropic selection with 

0.0 
0.8 

0.8   
and both efficiency and efficacy are improved by the 
proposed coarse-fine technique for diversity tuning with 
statistical proof. Similarly, the P-Peaks problem is 
successfully tackled when applying high selective pressure 
on a square topology; though among dynamic approaches 
there is a slight improvement in convergence time with 
100% efficacy with respect to implementing anisotropic 

selection with 0.8  . Results show a reduction in 
convergence time when applying high selective pressure 
through binary tournament or anisotropic selection with 

0.0  . However, that strength in selective pressure does 
not lead to a proper balance in the exploration-exploitation 
trade-off negatively influencing the algorithmic efficacy of 
most benchmark problems. Applying the proposed coarse-
fine approach shows better performance in terms of 
efficiency and efficacy when comparing to locally applying 
anisotropic selection with 0.8  . Although, in a couple of 
problems (Rastrigin and P-Peaks problems) using a static 
square topology with high selective pressure induced locally 
achieves the best performance. Convergence times are 
improved by dynamically applying the coarse-fine approach 
through adaptive configuration of the   parameter, which is 
based on phenotypic or genotypic diversity changes, but this 
difference is limited when comparing to a constant change. 
In the next section, conclusions of this study are presented. 

VI. CONCLUSIONS 

The role of the population's structure at coarse and fine 
levels as a mean for promoting diversity during the 
evolutionary process is the main contribution of the 
proposed algorithmic technique. 

Algorithmic efficacy is the performance metric that has 
been improved through the proposed coarse-fine approach 

       45
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for diversity tuning. Applying constant high selective 
pressure using binary tournament or anisotropic selection 
with  results in shorter convergence times but 
efficacy is significantly affected in most problems. Two 
exceptions are the Rastrigin and the P-Peaks problems 
where better overall performances are achieved by a 
combination of a square topology and high local selection 
pressure. In most benchmark problems better convergence 
times are obtained by the proposed coarse-fine approach 
when comparing to locally apply anisotropic selection with 

 (low selective pressure). Similar or improved hit 
rates are obtained by the proposed coarse-fine approach in 
comparison to separately applying lattice reconfiguration or 
dynamic anisotropic local selection.  

0.0 

0.8 

Results herein presented are based only on performance 
metrics at algorithmic level. However, for real-world 
problems such as the GPS attitude determination problem, 
hard real-time constraints can also be fulfilled. For example, 
a cGA algorithmic platform is used in [24] to develop a 
hardware architecture to solve the problem. Execution times 
fulfil hard real-time constrains required for this application. 
Thus, implementing the proposed approach for diversity 
tuning would improve even further those already obtained 
execution times. 
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