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Abstract

Cellular Genetic Algorithms (cGAs) have attracted the attention of researchers due to their high performance, ease of
implementation and massive parallelism. Maintaining an adequate balance between exploitative and explorative search is
essential when studying evolutionary optimization techniques. In this respect, cGAs inherently possess a number of
structural configuration parameters that are able to sustain diversity during evolution. In this study, the internal
reconfiguration of the lattice is proposed to constantly or adaptively control the exploration-exploitation trade-off. Genetic
operators are characterized in their simplest form since algorithmic performance is assessed on implemented
reconfiguration mechanisms. Moreover, internal reconfiguration allows the adjacency of individuals to be maintained.
Hence, any improvement in performance is only a consequence of topological changes. Two local selection methods
presenting opposite selection pressures are used in order to evaluate the influence of the proposed techniques. Problems
ranging from continuous to real world and combinatorial are tackled. Empirical results are supported statistically in terms of
efficiency and efficacy.
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Introduction

Evolutionary Algorithms (EAs) are stochastic search techniques

based on the principles of evolution. Amongst EAs, Genetic

Algorithms (GAs) provide a competitive approach that has been

successfully applied to a wide variety of difficult optimization

problems [1]. Parallel Genetic Algorithms (PGAs) are classified by

their grain in coarse/distributed and fine/cellular GAs [2,3].

Coarse PGAs consist of several independent homogeneous or

heterogeneous sub-populations evolving in parallel with individ-

uals migrating among them. Fine or cellular GAs consist of a

decentralized population where individuals interact with others

located at nearby positions.

From the theoretical to the real world and particularly in the

hardware implementation arena, GAs feasibility has been inves-

tigated. From the Very Large Scale Integration (VLSI) point of

view, GAs possess important characteristics that makes them

suitable for hardware implementation targeting real time applica-

tions. Parallelized versions of GAs have been used as optimizers

and adapted for hardware implementation targeting real-time

performance. Among problems solved by parallel GAs are: the

image registration problem [4–6], the disc scheduling problem [7]

and the GPS attitude parameters determination problem [8–11].

In [7], a cGA architecture was developed targeting the disc

scheduling problem. It consists in finding the best attending tasks

order to reduce the access time per request. In this architecture, a

cellular GA encodes up to 32 queued requests ordered by a fitness

function that minimizes latency and search time per request. The

architecture achieved an scheduling time of up to 2 milliseconds

per access request and 4 milliseconds of searching time per

request. Thus, timing constraints were fulfilled. Ordered based

crossover and mutation operations were performed. Ordered

based crossover randomly selects chromosome positions in one

parent, finds these positions in the second parent and copies

corresponding alleles to the offspring. Thereafter, a reordering

policy is applied, for selected genes to maintain their positions in

the offspring. Ordered based mutation selects certain chromosome

positions and mutate the alleles.

An image processing architecture was developed to tackle the

image registration problem that presents real-time constraints

[4,5]. First, in [4] an architecture for image registration using a

cellular GA was proposed. The image registration problem

consists in matching a 2-D captured image to a reference image.

A transformation between both images is necessary. The fitness

function measures the number of corresponding pixels between

captured and reference images. Once a perfect match has been

found, the transformation encodes the object’s position and

orientation. Each transformation parameters were encoded in 6
bits. At algorithmic level, an extra step was added to the

canonical cGA procedure defined by Tomassini [12]. Each

transformation parameter is incremented or decremented in one

unit for promotion through hill climbing, while the best

individual is always kept. Results showed that real-time

constraints are fulfilled up to a tenth of a second to match the

images, corresponding approximately to 35 generations for

64|64 images.
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In [5], an improved cGA architecture for image processing

combining data compression and image registration is presented.

For the image registration, a cGA determines an affine transfor-

mation for the image coordinates with respect to a reference

image. The fitness function minimizes the error between the

transformed and the referenced images. Then, the Discrete Cosine

Transform (DCT) using a data compression algorithm is applied in

order to reduce the memory storage requirements. In terms of

speed, processing one chromosome took up to 2 milliseconds with

limited accuracy for 64|64 images.

A cellular GA architecture tackling the GPS attitude determi-

nation problem was developed by Xu et al. In [8,9] a method to

determine the attitude parameters of a vehicle based on the Global

Positioning System (GPS) technology and the Ambiguity Function

Method (AFM), is presented. The attitude parameters are

determined by the vector difference between GPS receivers

attached to the vehicle. Binary chromosome representation of 32

bits is used. The azimuth angle is encoded in the first 14 bits, the

elevation angle in the next 10 bits and the base line length in the

last 8 bits. In [9] a comparison among a panmictic GA, a

panmictic GA with fine and coarse search stages, and a cellular

GA with fine and coarse stages was carried out. Different array

sizes were tested in order to find the best population size to solve

the problem. Algorithmic performances were measured in terms of

the average number of generations, and the hit rate together with

the results accuracy.

Stefatos et al. extended the GPS attitude architecture presenting

a novel approach from a fault tolerance perspective to deal with

Single Hard Errors (SHEs) and implicitly with Single Event Upsets

(SEUs), both are Single Event Effects (SEEs) subclasses [10].

Erroneous bit flipping in data registers, temporary (SEUs) or

permanently (SHEs) is the effect of this kind of faults. If faulty

registers correspond to critical data, the system’s functionality fails.

In the proposed architecture, a faulty scenario considering stuck at

zero faults at fitness score registers was targeted. In the cGA,

individuals with faulty fitness scores are not selected and therefore

their solution is not spread throughout the population.

The fault tolerant architecture is a double layer approach, each

layer implements a cellular GA. A computational layer to

determine the GPS attitude parameters and a control layer to

determine the best configuration of individuals or Processor

Elements (PEs) to overcome a faulty scenario. Several experiments

were carried out, first only the computational layer was tested in

order to observe how the cGA deals with the faults. Then the

control layer was executed and a performance comparison is

carried out. Results showed a significant improvement in the

system’s performance when the control layer was active, in the

worst case scenarios with 30% and 40% faulty PEs. Although,

using the control layer allows an improvement in the system

performance, there is a significant increment in the use of

hardware resources. Another disadvantage is that the control layer

was considered free of faults.

In [11] a high performance hardware architecture for the GPS

attitude determination problem was presented; emphasis was paid

to the speed, power consumption and hardware usage. Thus, a

Coordinate Rotation Digital Computer (CORDIC) module was

implemented to calculate the trigonometric functions required by

the fitness function [13]. Results fulfil real-time constraints due to

the simplified arithmetic units.

This article aims to provide a deeper insight into the great

flexibility which cellular GAs inherently possess. When appropri-

ately exploited, cGAs’ unique properties as regards the interaction

of individuals enhance their searching abilities. In EAs, the main

interest is to preserve population diversity through satisfactorily

balancing the exploration and exploitation of solutions throughout

the search space; in order to successfully converge to the global

optimum in the minimum number of generations [14]. In this

regard, structural properties of cGAs have shown their effective-

ness in maintaining this balance, in several cases improving cGAs

performance [15]. In this study, a dynamic cellular approach that

internally reconfigures a traditional square topology into smaller

sub-cellular structures is investigated.

Initial studies on Genetic Algorithms were mainly based on

panmictic populations [2]. However, evident disposition to

parallelization expanded GAs horizons, opening new areas for

investigation, such as detailed by Cantú-Paz in his study on

parallel GAs approaches in [16,17]. In [16], parallel distributed

GAs are analysed and new techniques are proposed to calculate

population size according to problem’s difficulty. Moreover,

migration is investigated as a crucial genetic operator and as a

possible reason for PGAs speed-ups [18].

In order to validate the importance of decentralized GAs,

authors compared their results to those of standard GAs, and

frequently referred to modified or improved versions of standard

GAs, such as steady state GA or generational GA. In several cases,

cGAs were proved to perform better in terms of algorithmic

efficiency and efficacy [19]. Moreover, the effect of synchronism in

migration policies of distributed approaches using cGAs or

panmictic independent populations, has been studied and

compared. Asynchronous cGAs proved to be a competitive option

that outperform synchronous ones, and in several cases also

outperform panmictic distributed GAs in terms of real time [20].

On the other hand, simplicity in implementation of processor

elements is also an advantage that has been investigated and

applied [11].

Alba et al. have widely studied decentralized GAs [21]. An

important area covered by their work is to compare distributed

parallel GAs considering homogeneous or heterogeneous popula-

tions or a mixture of these. In [22,23] a detailed analysis of several

approaches at algorithmic and implementation levels is presented.

Configurations of homogeneous sub-populations (only panmictic

or cellular), heterogeneous sub-populations (a mixture of panmic-

tic and cellular), comprising several migration and replacement

criteria are evaluated. In general, their results showed the

superiority of distributed cellular GAs in terms of efficacy over

panmictic distributed PGAs. However, cellular GAs showed

slower convergence times than standard steady-state distributed

GAs. Communication among sub-populations was also assessed.

Asynchronous communication leads to faster convergence and

better speed-ups than synchronous ones.

In cellular GAs, the population is normally distributed in a torus

like grid structure with wraparound edges. One individual is

placed in each grid position and can only interact with nearby

neighbours. Several parameters must be configured in order to

reach the best algorithm performance, such as, shape and size of

local neighbourhood and population topology, migration rate and

frequency (in case explicit migration occurs), local selection and

replacement policies, among others [24].

Initially, the study of cGAs has been developed following

empirical knowledge through manually tuning and configuring the

parameters mentioned above and through considering specific

areas of application. However, there has also been an effort to

provide a mathematical basis to explain their behaviour. For

example, in order to provide a numerical relationship between

grid structure and local neighbourhood, the dispersion of a points

pattern has been defined as an appropriate measure known as the

Neighbourhood to Grid Ratio (NGR) [15,25], more details are

provided in the next section. It has been demonstrated that by

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e41279

Lattice Reconfiguration for Diversity Tuning



having different neighbourhood sizes and shapes in combination

with, for example a square topology, different selection pressures

are obtained. Selection pressure in cGAs is measured as the

number of generations it takes for the best individual of an initial

population to spread its solution throughout the grid. This

measure is carried out by using only local selection. Shorter

take-over times indicate high selection pressures and vice versa. A

more detailed analysis will be carried out in the next section.

This article aims to investigate how selection pressure can be

constantly or adaptively controlled in order to improve the

performance of cellular GAs, as a result of the population topology

and the local neighbourhood configuration. Previously, research-

ers have proposed dynamically reconfiguring the population

topology [26]. However, a form of migration occurs during the

relocation of individuals; this approach from now on is named as

external lattice reconfiguration. Three main scenarios were

evaluated: static (fixed topology shape), pre-programmed (recon-

figuration at a predefined time slot) and adaptive (dynamic

reconfiguration) criteria. Statistically significant results were

obtained for several difficult benchmark problems. The mapping

of individuals, after grid re-arrangement, induces a loss of the

natural adjacency of individuals, due to toroidal connection. In

this research, adjacency among individuals is maintained while

constant or adaptive lattice reconfiguration is carried out by

subdividing the entire population into smaller square, rectangular

or linear toroidal arrays, with no induced migration among them

apart from neighbourhoods overlapping. Proposed internal recon-

figuration mechanisms are applied to a set of continuous, real and

combinatorial problems covering characteristics such as multi-

modality, epistasis, deceptiveness and non-regularity.

In the following section, a detailed explanation of the effect of

controlling selection pressure through structural properties in

cellular GAs is presented, together with proposed internal reconfig-

uration mechanisms.

Methods

Selection Pressure
Mechanisms proposed in this article control, constantly or

adaptively, the induced selection pressure during evolution

through the internal reconfiguration of the population topology.

Internal lattice reconfiguration means that there is no alteration to

the natural adjacency of individuals. Measuring selection pressure

in cellular GAs has been fundamental and has allowed a more

accurate study of their behaviour. Selection pressure in cGAs, is

measured through the local selection of individuals, without

intervention from other genetic operators; and it is empirically

calculated as the number of generations the best individual of an

initial population needs in order to spread its solution throughout

the entire grid, concept also known as take-over time [12,15].

Previously, Dorronsoro et al. proposed several constant and

adaptive criteria to externally modify the induced selection pressure

in order to improve the performance of cGAs [26]. However, their

approach considers an inherent migration mechanism; through it,

new positions are calculated for individuals when the population

topology is changed among square, rectangular and narrow lattice

shapes. Although results showed an improvement in performance

for several benchmark problems, it is not clear if this improvement

is purely due to controlling the NG ratio or if it is also a

consequence of inherent migration. In this article, the proposal is

to internally reconfigure the population’s topology, constantly or

adaptively, while maintaining the original adjacency among

individuals.

Selection pressure in cGAs provides important information

about the evolutionary process showing levels of exploration or

exploitation that certain population topology contribute to the

search. In [26], diversity changes are measured as speed variations

of the average population fitness score or the population entropy.

If the average fitness increases drastically from one generation to

the other, the search process proceeds rapidly and therefore

exploitation is high. On the other hand, if the average fitness of the

population remains the same or has slightly changed in

comparison to previous generations, the population is slowly

evolving and therefore individuals are widely spread throughout

far-off regions of the search space. Although, this analysis covers

several possible scenarios, it does not include all of them. For

example, individuals can be loosely located over a multi-modal

landscape and the average fitness could be rapidly increasing or

vice versa.

Researchers have demonstrated that the exploration-exploitation

trade-off can be implicitly controlled in cGAs through the

configuration of the population topology and the neighbourhood

[27,28]. A measure known as the neighbourhood-grid ratio (NGR)

has been defined in order to describe its behaviour. The NGR was

first introduced by [15]. Its calculation corresponds to measuring the

dispersion of p points (each individual position) centred at x0,y0ð Þ. A

dispersion measure is used because other possible measures, such as

the radius of a circle, would give the same value for different

population topologies. The dispersion of a points pattern is

calculated as follows:

D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi{�xxð Þ2z

P
yi{�yyð Þ2

p

s
ð1Þ

where �xxð Þ~
Pp

i~1
xi

p
and �yyð Þ~

Pp
i~1

yi
p

. Hence, the NGR is given

by

NGR~
Dneighbourhood

Dgrid

ð2Þ

In Figure 1, four population configurations are drawn.

Internally, smaller cellular structures imply a higher or lower

NGR, that as a whole would modify the search making it more

exploitative or explorative. A n|n configuration, where n is the

number of individuals per grid side, is the only topology which

NGR directly represents its level of selective pressure. A

2 n=2|nð Þ configuration divides a square grid in two rectangular

topologies with n=2 individuals on the shorter side. A 4 n=2|n=2ð Þ
configuration divides a fully connected square topology in four

smaller square toroidal grid configurations with n=2 individuals

per side. Finally, linear toroidal arrays are formed with length of

n=2 individuals. Configurations denoted by n 1|
n

2

� �
and

2
n

2
|n

� �
are implemented in both vertical and horizontal

alignments. These lattice configurations have been used in the

experimental set-up. In order to assess these internally different

configuration topologies in terms of selective pressure, an

empirical study of the take-over times is necessary.

For most topologies in Figure 1, a compact Von Neumann local

neighbourhood is used consisting of individuals located at North,

East, South and West with a Manhattan distance of one from the

central individual; except for linear lattices (n 1|
n

2

� �
) that employ
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a linear local neighbourhood with a Manhattan distance of two. As

an example, for a population of 400 individuals, dispersion

measures are DvonNeumman~0:8944 with local Von Neumman

neighbourhood and Dlinear~1:4142 for the linear case. If

individuals are distributed on a 20|20 square topology,

corresponding NG ratios, as regards each independent cellular

structure, are as follows:

. NGRn|n~0:1093

. NGR n

2
|n

� �~0:1380

. NGR n

2
|

n

2

� �~0:2169

. NGR
1|

n

2

� �~0:4780

Different ratios means having higher or lower selection

pressures. Therefore, decentralized GAs are structurally capable

of modifying selective pressure while changing the population’s

structural configuration. Lower ratios means more exploration is

performed while higher ratios imply more exploitation. However,

the NGR is a representation of the selective pressure in a fully

connected structure or sub-structure. Therefore, it does not reflect

the overall induced selective pressure in topologies configurations

formed by several cellular sub-structures, like those shown in

Figure 1. In order to analyse the levels of selective pressure that

each topology configuration induces, an experimental assessment

is carried out to calculate the take-over times following a constant

internal lattice reconfiguration criterion.

Take-over time or proportional growth of the best individual

reflects how long it takes for the best individual to spread its

solution throughout the whole lattice, applying only local selection.

Thus, longer take-over times represent lower selection pressure

and therefore more explorative behaviour. In contrast, shorter

take-over times correspond to higher selection pressure, equivalent

to a more exploitative search.

At a local level, two different selection methods are applied;

widely known binary tournament selection and, ad-hoc for cellular

GAs, anisotropic selection proposed by [29]. These selection

methods provide distinctively opposite selection pressures. Binary

tournament is highly exploitative in comparison to anisotropic

selection which is more explorative.

In Figure 2, take-over times for both selection methods

are shown. A hundred experiments with a population of 400
individuals, placed on a 20|20 grid configuration, were

performed. Only constant lattice reconfiguration between a square

lattice and topologies drawn in Figure 1 is performed. Constant

reconfiguration occurs every 5 generations. For n 1|
n

2

� �
and

2
n

2
|n

� �
formations, horizontal or vertical alignments are

executed with probability P~0:5. Adaptive internal lattice recon-

figuration is not subject to take-over time analysis since it depends

on phenotypic or genotypic diversity; information not available

when applying only local selection to a single individual. On the

other hand, due to the stopping criterion which evaluates the

average fitness score for the whole population, and in order to

assess selective pressure on an internally different grid configura-

tion; reconfiguration occurs between a fully connected n|n
topology and one of the other configuration options.

For both local selection methods in Figure 2, solid lines

correspond to selective pressure on a fully connected n|n square

topology. On a square topology, binary tournament presents

higher selection pressure in comparison to anisotropic selection

which is more explorative. Once constant reconfiguration is

applied, anisotropic selection becomes more exploitative when

either internal configuration is applied. This behaviour is not

repeated through binary tournament selection, presenting a

slightly more explorative behaviour when reconfiguration occurs

between a square and a n
n

2
|1

� �
topology. However, in both

selection cases when reconfiguration happens between n|n and

2
n

2
|n

� �
topologies, the highest selection pressure is induced.

Specific constraints based on take-over time analysis are consid-

ered in the proposed algorithmic approach.

The main difference between internal (proposed in this article)

and external [26] lattice reconfiguration approaches is that the

former maintains individuals’ adjacency while the later induces a

form of explicit migration which is an influential genetic operation

to restore diversity during the evolutionary process. One of the

main aims in this article is to show the effect of solely manipulating

the population’s topology as a way to control diversity without

taking advantage of other genetic operations. To show the effect of

having the added effect of explicit migration, an experimental

assessment on genotypic and phenotypic entropy to solve the ECC

problem (see Section) is carried out. Lattice reconfiguration occurs

once at a predefined time slot which is an average half the number

of generations that takes for a cGA on a square topology to find

Figure 1. Neighbourhood-grid ratios corresponding to cellular structures and sub-structures. Each topology configuration induces a
different level of selective pressure. Applying constant or adaptive internal reconfiguration criteria globally affects the search making it more
explorative or exploitative while maintaining adjacency among individuals.
doi:10.1371/journal.pone.0041279.g001
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Figure 2. Take-over times for constant lattice reconfiguration locally applying binary tournament or anisotropic selection. The growth rate
indicates the average number of generations for a hundred experiments that takes the best individual to spread its solution throughout the grid.
doi:10.1371/journal.pone.0041279.g002
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Figure 3. Comparing genotypic and phenotypic entropy for internal and external lattice reconfiguration.
doi:10.1371/journal.pone.0041279.g003
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the problem’s solution. Both reconfiguration mechanisms are

assessed locally applying anisotropic selection which showed a

wider span of selective pressure in contrast to binary tournament

selection. For external lattice reconfiguration, evolution starts on a

square topology and continue on a rectangular grid, making the

search going from more exploitation to more exploration. On the

other hand, for internal reconfiguration, initially the population

evolves on an internal arrangement of four square cellular sub-

structures (4
n

2
|

n

2

� �
) and lattice is then reconfigured to a square

topology. For the internal mechanism, this means going from a

more exploitative to a more explorative behaviour as shown by the

take-over time experimental analysis when constant lattice

reconfiguration takes place.

Entropy results are obtained from a hundred experimental

samples, see Figure 3. Dashed lines correspond to internal

reconfiguration and solid lines to external reconfiguration. A square

shows the moment both internal and external reconfiguration is

performed. For both entropy measures, change in diversity is clear

when external reconfiguration occurs; as a result of grid change and

individuals’ migration. In contrast, after reconfiguration is

internally performed, entropy measures do not change abruptly

as a consequence of maintaining individuals’ adjacency.

Another observation from entropy results in Figure 3 is that

entropy measures are slightly higher for internal lattice reconfigu-

ration during the initial stages of evolution and until reconfigu-

ration occurs. However, in this experimental assessment reconfig-

uration is applied only once while the algorithmic approach and

the experimental set-up are based on the take-over times analysis

which consists in systematic reconfiguration among all proposed

internal topology configurations. In the following section, details of

the algorithmic procedure and diversity measures for lattice

reconfiguration are provided.

Cellular Configuration
This study proposes to constantly or adaptively reconfigure the

internal population topology to modify the induced selective

pressure, and thus achieve an appropriate balance between

searching exploration and exploitation, essential for maintaining

population’s diversity during evolution. In this proposal, lattice

reconfiguration is implemented by subdividing a squared popu-

lation into smaller squared, rectangular or linear toroidal arrays. A

similar approach has been referred to as a parallel cellular GA

[21]. However, that approach has a fixed internal configuration.

Whilst an homogeneous distributed or an island model cGA is one

possible perspective [30], migration policies have not been

investigated nor implemented. During constant or adaptive

periods of evolution, smaller topologies maintain internally

toroidal connections [31,32].

In Figure 4, a pseudocode for the proposed cellular GA

approach is included. A single random seed is used to generate the

entire initial population, two topology configurations are set to

evolve the first generations: a n|n or a 4
2

n
|

2

n

� �
lattice. For

each individual, neighbours located at North, East, South and

West positions are evaluated in order to select a second parent for

reproduction. Two local selection methods, presenting opposite

selection pressures, are applied for experimental purposes. Binary

tournament presents higher selection pressure than anisotropic

selection.

Binary tournament randomly chooses two individuals from the

local neighbourhood and the best one (x’) is mated with the central

Figure 4. Pseudocode for the proposed reconfigurable cellular GA.
doi:10.1371/journal.pone.0041279.g004
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individual (x0). On the other hand, anisotropic selection requires

an extra parameter (a) that leads the search in North-South or

East-West grid directions. Thus, anisotropic probabilistic equa-

tions are defined for each individual in the neighbourhood as:

Pn~Ps~P0 1zað Þ and Pe~Pw~P0 1{að Þ; where P0 is the

uniform probability for each neighbour to be selected. If a~0:8
and P0~0:25, individuals at North and South positions are

assigned with higher probabilities for selection compared to East

and West individuals that remain with lower selection probabil-

ities. In this way the search process is directionally guided and

adjusting the a parameter would supply higher or lower selection

pressure. For experimental purposes, a~0:8 has been used due to

presenting lower selection pressure and thus being more explor-

ative. Moreover, if P0~0:0 all neighbours have same selection

probability and anisotropic selection behaves as binary tourna-

ment selection. Although fewer studies have been reported using

this local selection method in cGAs, anisotropic selection does

provide more flexibility in terms of selective pressure, making use

of cGAs’ structural properties, and even more when the

population topology is reconfigured; this being the main perspec-

tive in this research [29,33].

Recombination is performed using Single Point Crossover

(SPC) with highest probability and constant mutation probability.

Both genetic operators have been applied in their simplest form, as

it is not the objective of this research to evaluate the effect of either

of them but to widely investigate the effect of dynamically

changing selection pressure through cGAs structural properties.

Although it is outwith the scope of this paper, particular attention

should be paid to mutation as its effect has been modelled for

cellular GAs as an essential control parameter to lead or mislead

the search [34,35]. Replacement takes place following an if-better

policy. Only if.

In Figure 4, line 20, CLRDPLR fð ÞDGLR xð Þ½ � corresponds to

constant lattice reconfiguration, phenotypic lattice reconfiguration

or genotypic lattice reconfiguration, respectively.

CLR consists in constant cyclic reconfiguration among internal

lattice topologies shown in Figure 1. Every c generations the

topology is reconfigured to a different topology configuration

following a cyclic pattern. For rectangular (2
n

2
|n

� �
) and linear

(n 1|
n

2

� �
) grid configurations, both horizontal and vertical

alignments are performed with 50% probability. The overall

induced selective pressure varies according to the take-over time

analysis presented in previous section.

Grid reconfiguration based on phenotypic diversity (PLR

procedure) evaluates differences in phenotypic entropy, HP,

among consecutive generations:

HP~{
XN

j~1

fj log fj

� �
ð3Þ

Figure 5. Pseudocode for phenotypic or genotypic lattice reconfiguration through binary tournament selection.
doi:10.1371/journal.pone.0041279.g005
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where fj is the proportion of individuals in one generation having

fitness j. Thus, the difference between DHPt , DHPt{1
and

DHPt{2
would determine if phenotypic diversity in current

generation has or has not significantly changed with respect to

previous generations; where DHPt~DHPt{HPt{1
D.

In Figures 5 and 6, adaptive reconfiguration mechanisms for

binary tournament and anisotropic local selection methods are

described. If diversity among phenotypes decreases,

DDHPt
{DHPt{1

D is less than DDHPt{1
{DHPt{2

D then exploration

should be encouraged by switching to a lattice configuration that

presents in average lower selective pressure. If the same condition

indicates an increase on phenotypic diversity, in order to make the

search more aggressive, exploitation should be promoted by

increasing selection pressure. Otherwise, population’s topology

remains the same.

On the other hand, determining genotypic diversity requires to

calculate the Hamming distance among chromosomes. The distance

between current (D �HHGt
~D �HHGt

{ �HHGt{1
D) and previous (D �HHGt{1

,

D �HHGt{2
) generations is calculated in order to assess genotypic

diversity changes. In a similar way to phenotypic diversity, if

DD �HHGt
{D �HHGt{1

D difference is less than DD �HHGt{1
{D �HHGt{2

D, explo-

ration should be encouraged through a lattice configuration which

induces a lower selective pressure. On contrast, exploitation should

be promoted by increasing overall selection pressure.

For both diversity metrics, if the change rate of phenotypic or

genotypic diversity equals zero, it means the search process has

reached a plateau and no more competitive solutions would

arise. Therefore, the effect of reconfiguring the grid will not

significantly affect the evolutionary process. Because the

proposed adaptive criteria do not evaluate the growing or

decaying direction of diversity, the algorithmic approach follows

a 0.5 probability policy to reconfigure the grid to an internal

configuration that provides either a more exploitative or more

explorative behaviour.

In [26], conditions for lattice external reconfiguration imply

the relocation of individuals to new positions, inducing a kind

of migration among them. Hence, the impact of reconfiguring

the grid is not completely clear; as migration is an influential

operation that can by itself change significantly the perfor-

mance of cGAs [18,19]. Reconfiguration mechanisms pro-

posed here, do not induce any explicit migration and once

topology configuration has internally reconfigured, a toroidal

connection with wraparound edges is maintained in all cellular

sub-structures. Thus, higher or lower intensities of selective

pressure are applied throughout the landscape after lattice

reconfiguration takes place while individuals’ adjacency is

maintained.

Pre-programmed criterion by Dorronsoro et. al. consists in

externally changing topology’s shape after a certain number of

Figure 6. Pseudocode for phenotypic or genotypic lattice reconfiguration through anisotropic selection.
doi:10.1371/journal.pone.0041279.g006
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generations, that is half way through a successful run for a

square topology. For the adaptive approach, authors deter-

mined a constant parameter as a threshold to measure

phenotypic and genotypic diversity and switch among topology

configurations [26]. Criteria herein proposed avoid the use of

an extra parameter and directly detect significant changes

while extending the generation-range to measure diversity. In

the following section, results analysis including the experimen-

tal set-up is presented.

Table 1. Benchmark problems.

Problem Fitness function Properties

Rastrigin f ~xxð Þ~10qz
Pq

i~1 x2{cos 2pxið Þ
� �

q~10, �ffT ƒ0:0005, multi-modal, regular

Griewank
f ~xxð Þ~1z

Pq
i~1

x2
i

4000
{ P cos

xiffiffi
i
p
� �

q~10, �ffT ƒ0:0001, multi-modal, epistatic, regular

Langerman
f ~xxð Þ~{

Pq
i~1 cie

{1
p

PD

j~1
xj {a2

ijð Þ
cos p

PD
j~1 xj{aij

� �2
� �

q~10, �ffT §{1:4990, multimodal, epistatic, non-regular

FMS f tð Þ~a1
:sin(w1

:t:hza2
:sin w2

:t:hza3
:sin w3

:t:hð Þð Þ) q~6, �ffT ƒ0:04, multimodal, epistatic, non-regular

SLE A~xx~b q~10, �ffT ƒ0:04, epistatic

GPS
f q,b,bð Þ~

Pm
i~1

Pn
j~2 cos

2p

l

DDW
1j
AB

m n{1ð Þ{
DDW

1j
AB Q,b,bð Þ

m n{1ð Þ

 ! !
q~3, �ffT §0:99, multimodal, epistatic, non-regular

MMDP fMDDP ~xxð Þ~
Pq

i~1 fitnessxi q~25, q sub-problems, �ffT §0:99, multi-modal, combinatorial

MTTP fMTTP ~xxð Þ~
Pp

i~1 weightxi q~100, �ffT ƒ0:005, epistatic, NP-combinatorial

P-Peaks fP{Peaks(~xx)~ 1
Q

maxP
i~1 Q{Hamming ~xx,Pið Þð Þ P~100 peaks, Q~100 bits, �ffT ~1:0, non-regular, non-manually tunable

ECC
fECC (~CC)~

1PM
i~1

PM
j~1;i=j

1

d2
ij

M~24 codewords, �ffT ~0:0674, non-regular, non-manually tunable

doi:10.1371/journal.pone.0041279.t001

Table 2. Convergence time and hit rate results for continuous, FMS and SLE problems through static, preprogrammed (external)
and constant (internal) lattice reconfiguration with binary tournament local selection.

Static/Preprog.

External Reconfig. Rastrigin Griewank Langerman FMS SLE

Square 136:68+9:48 272:79+46:45 291:04+103:92 210:78+58:76 297:28+72:56

100% 89%, 3.12 21%, 4.07 41%, 4.91 39%, 4.87

Rectangular 148:01+11:49 315:41+63:12 285:52+98:34 247:70+80:70 359:09+87:22

100% 90%, 3 19%, 3.92 48%, 4.99 31%, 4.62

Narrow

219:12+22:56 412:74+45:09 417:33+71:00 406:52+64:75 573:25+67:44

100% 63%, 4.82 3%, 1.70 34%, 4.73 16%, 3.66

Square-Narrow

150:23+21:96 313:48+83:23 226:31+76:08 206:18+46:72 347:55+119:30

37%, 4.82 100% 19%, 4.20 19%, 3.92 29%, 4.53

Narrow-Square 139:26+13:09 262:08+34:10 305:35+100:08 207:42+40:20 298:66+89:93

100% 96%, 1.95 17%, 3.75 35%, 4.76 27%, 4.43

Constant

Internal Reconfig.

Square?Constant 122:79+8:33 245:35+43:90 318:73+164:18 195:23+54:12 257:09+77:29

100% 80%, 4.00 23%, 4.20 43%, 4.95 21%, 4.07

4(
n

2
|

n

2
)?Constant 123:09+9:84 245:86+38:15 222:90+88:46 189:78+46:32 269:75+79:87

100% 73%, 4.43 20%, 4.00 42%, 4.93 28%, 4.49

3ANOVA/K-W z z . . z

doi:10.1371/journal.pone.0041279.t002
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Results

Experimental Set-up
In order to assess the dynamic reconfiguration criteria proposed

in this article and as an initial comparison, pre-programmed and

adaptive criteria of Dorronsoro et al. have been applied to the

benchmark problems tackled in this research [26].

A comparison between centralized versus decentralized GAs is

outwith the scope of this article. However, several authors have

demonstrated in previous research that cellular GAs outperform

serial GAs when solving difficult optimization tasks [8,12,21]. In

this article, as a reference point, a traditional toroidal square

topology is used for performance comparison.

Benchmark Problems
In Table 1, a summary of mathematical equations and

properties of the benchmark problems is included. Three

continuous problems: the Rastrigin, the Griewank and the

Langerman functions are assessed [36,37]. Three real-world

problems are tackled: the Frequency Modulation Sound (FMS)

problem, the System of Linear Equations (SLE) problem [21] and

the GPS attitude determination problem which has been

previously tackled by the authors in [38]. Finally, three

combinatorial problems are evaluated: the Massively Multi-modal

Deceptive Problem (MMDP), the Minimum Tardy Task Problem

(MTTP), the P-Peaks problem [39] and the Error Correcting

Code (ECC) design problem [21]. Chromosome encoding for all

problems is binary. The stop condition is defined by the average

population’s fitness (�ffT ) score for each problem.

Experimental Constraints
Crossover and mutation operators are configured in a simple

form and are kept constant during the search process. Single Point

Crossover (SPC) operates pairs formed by a central individual and

an individual selected from the local neighbourhood with

probability Pc~1:0. SPC randomly selects a single point for

recombination. On the other hand, mutation is performed after

recombination with probability Pm~0:02. Neither genetic oper-

ators are specifically evaluated in this article and are configured in

their simplest form.

Replacement policies also play an important role in GAs. In

cGAs, an offspring can replace a current individual in the

following three ways: 1) always, 2) only if it has a better fitness

score or 3) following some other condition. In this research an only

replace if better policy is followed. On the other hand, synchronous

population updating is also considered. Synchronous updating

requires current and next generations to be stored separately; once

all individuals have evolved, new offspring will entirely replace the

current population. Asynchronous updating has also been

investigated and in several problems outperforms synchronous

updating in terms of convergence time although the accuracy of

the results and their hit rate are negatively affected [20].

Table 3. Convergence time and hit rate results for continuous, FMS and SLE problems through external and internal adaptive
lattice reconfiguration with binary tournament local selection.

Adaptive Phenotypic

External Reconfig. Rastrigin Griewank Langerman FMS SLE

Rectangular?Adapt.

135:31+8:45 263:63+39:72 261:27+106:77 178:60+29:73 304:72+83:51

100% 88%, 3.24 29%, 4.53 53%, 4.99 29%, 4.53

Narrow?Adapt. 137:00+10:20 260:94+43:13 218:20+62:26 185:44+35:87 298:76+104:25

100% 84%, 3.66 24%, 4.27 47%, 4.99 26%, 4.33

Internal Reconfig.

Square?Adapt. 127:33+10:6 254:56+42:65 234:50+113:11 184:97+49:29 293:37+89:32

100% 74%,4.38 18%,3.84 47%,4.99 35%,4.76

4(
n

2
|

n

2
)?Adapt. 121:88+10:09 257:52+43:61 231:44+93:80 165:00+32:65 291:09+112:90

100% 70%, 4.58 18%, 3.84 52%, 4.99 32%, 4.66

Adaptive Genotypic

External Reconfig.

Rectangular?Adapt. 126:66+8:33 250:05+39:85 276:94+111:51 167:39+26:65 232:50+70:52

100% 76%, 4.27 19%, 3.92 46%, 4.98 26%, 4.38

Narrow?Adapt. 125:77+8:42 253:73+38:81 237:55+72:31 179:95+33:41 274:73+90:69

100% 76%, 4.27 20%, 4.00 49%, 4.99 23%, 4.20

Internal Reconfig.

Square?Adapt. 125:17+10:39 234:54+38:60 221:90+67:21 199:97+53:37 270:83+100:29

100% 75%, 4.33 21%, 4.07 37%, 4.82 30%, 4.58

4(
n

2
|

n

2
)?Adapt. 127:26+11:62 256:50+39:57 259:47+114:53 185:18+44:79 283:94+80:38

100% 78%, 4.14 17%, 3.75 37%, 4.82 35%, 4.76

3ANOVA/K-W z z . . .

doi:10.1371/journal.pone.0041279.t003
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The following experimental constraints are evaluated:

N A population size of 400 individuals was used for most

problems. Due to their size, GPS and MTTP problems are

tackled using a population size of 64 and 100 individuals

respectively.

N Binary encoding is used in all problems. In continuous and real

problems, each variable is encoded in 10 bits, except for the

GPS attitude problem where each variable is encoded in 14,

10, 8 bits respectively. Binary encoding is implicit in

combinatorial problems.

N Local neighbourhood configuration is Von Neumann or linear

composed by four individuals plus a central individual.

N One hundred independent runs are carried out per experi-

mental reconfiguration criterion.

N A problem specific threshold based on population average

fitness is used as a stop condition.

N A limit of 500 generations is used in most problems, except for

the Langerman function, the SLE and the MMDP problems

with a limit of 700 and the ECC problem with 2500

generations.

The same reconfiguration mechanisms are applied to all

problems and results are analysed based on convergence time

and hit rate. The accuracy of results is determined by problem

specific thresholds, see Table 1. The stop condition evaluates

population’s average fitness score. An accepted stop condition

considers that experimental samples should evolve until a solution

of the same quality is found and not after a certain number of

generations [20]. The stop condition herein considered has been

defined due to previous research constraints related to fault

tolerance. Although fault tolerance is a different topic, outwith the

scope of this article, the decision was made to keep the same stop

condition for consistency. Results herein obtained will be taken up

again for future research in the area of fault tolerance. For further

reference readers can consult [38,40].

Statistical Tests
In order to statistically support results so far obtained, the

Lilliefors normality test, at 5% of significance, is performed on

each set of convergence time results. This test is suitable when a

fully-specified null distribution is unknown, in contrast to the

Kolmorov-Smirnov test. Once normality of results has been

established, an Analysis of Variance (ANOVA) is applied among

results that follow a normal distribution whereas the Kruskal-

Wallis test is applied to results that are not normally distributed.

For sets of results with non-normal distributions, dispersion of data

is calculated using the mean absolute deviation and italics are used to

highlight these cases in the results tables in the next section.

In the next section, results are summarized in two tables, one for

static, pre-programmed and constant reconfiguration criteria and

a second one for adaptive approaches. Then, in order to prove

that a certain approach outperforms others, in terms of

convergence time, a multiple comparison test is carried out, after

a statistical analysis is done independently for each table of results.

In contrast, if statistical proof is obtained only in one of the two

tables, a multiple comparison test is applied separately.

In the results tables, where a statistically significant difference at

5% has been found among convergence time results, this has been

represented by the symbol z. On the contrary, a . symbol

represents results which are not statistically different, and where

therefore the application of proposed dynamic criteria makes no

difference in terms of the number of generations. On the other

hand, having statistically different results does not mean the

proposed approaches definitively improve cGAs performance.

Table 4. Convergence time and hit rate results for GPS and combinatorial problems through static, preprogrammed (external) and
constant (internal) lattice reconfiguration with binary tournament local selection.

Static/Preprog.

External Reconfig. GPS MMDP MTTP P-Peaks ECC

Square 73:12+28:69 431:31+38:45 259:65+44:16 169:46+19:99 1522:56+396:86

57%, 4.95 89%, 3.12 99%, 0.99 100%, 16%, 3.66

Rectangular 85:24+30:04 517:14+63:87 295:57+48:70 175:52+23:11 1127:4+683:66

53%, 4.99 90%, 3.00 99%, 0.99 100%, 30%, 4.58

Narrow 123:57+43:77 696:00+0:00 {{{{ 170:34+23:36 972:83+339:27

66%, 4.73 1%, 0.99 {{ 100%, 6%, 2.37

Square-Narrow 98:84+45:76 455:56+84:93 314:85+69:92 209:58+30:71 1330:1+574:11

46%, 4.98 86%, 3.46 97%, 1.70 100%, 29% 4.53

Narrow-Square 85:62+32:19 488:57+51:19 276:41+48:50 242:25+44:63 1605:23+468:63

58%, 4.93 92%, 2.71 99%, 0.99 100%, 17%, 3.75

Constant

Internal Reconfig.

Square?Constant 72:55+30:18 358:03+41:76 243:08+35:77 170:68+21:00 849:10+373:14

54%, 4.98 88%, 3.24 98%, 1.70 100%, 76%, 4.27

4(
n

2
|

n

2
)?Constant 71:00+20:22 352:72+54:93 252:16+43:58 173:99+25:04 942:38+440:91

53%, 4.99 87%, 3.36 100%, 100%, 86%, 3.46

3ANOVA/K-W . z z . z

doi:10.1371/journal.pone.0041279.t004
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This statistical analysis only evaluates the efficiency of proposed

techniques. Thus, the efficacy of results has also been statistically

considered.

The hit rate has been statistically evaluated as a Bernoulli trial.

A random experiment whose result is either success or failure can

be considered a Bernoulli trial [12]. For each dynamic lattice

reconfiguration criterion, 100 experiments were carried out. In

successful experiments, the global optima, at a certain threshold, is

reached. Measuring the standard deviation of successful experi-

ments percentages provides a numerical value that indicates how

significantly different are these success search rates. The standard

deviation for each experimental sample is calculated as follows:

s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � p̂p 1{p̂pð Þ

p
ð4Þ

where p̂p represents the probability of successful experiments and r
is the total number of experiments. In results tables, the standard

deviation is shown next to hit rates percentages for each

experimental sample. In the next section, results are detailed.

Results Analysis
Results analysis aims to empirically support the main hypothesis

of this study: dynamic modification of the internal configuration of

the population’s topology would lead to a significant improvement

in cGAs’ performance. At a local level, as explained previously in

Section, two different local selection methods have been applied.

The main difference between them consists of inducing higher

(binary tournament) or lower (anisotropic) selection pressure.

These two methods were chosen because of their considerably

different selection intensity. Thus, it is possible to separately

evaluate 1) the effect of having a highly exploitative or explorative

cellular GA, due to local selection, and 2) the added flexibility of

dynamically reconfiguring the population topology in order to

supply the search process with a more convenient and balanced

exploitation-exploration trade-off.

For presentation, results are divided by local selection method.

Two tables of results are organized: the first includes static, pre-

programmed (external) reconfiguration and constant (internal)

reconfiguration. The second group presents adaptive approaches

for both external and internal lattice reconfiguration approaches.

In the tables, numbers in bold indicate the best average

convergence time and italics are used to distinguish between

standard deviation (normal distributions) and mean absolute

deviation (non normal distributions) as dispersion measures. Next

to the hit rates, corresponding Bernoulli trial standard deviations

are shown in small numbers.

Binary Tournament Local Selection
Tables 2 and 3 present results for static, pre-programmed,

constant and adaptive lattice reconfiguration criteria through

binary local selection. The Rastrigin function hit rate is 100% for

all configurations, and convergence time is slightly affected

through lattice reconfiguration. Statistical proof is obtained for

the two best criteria: square ? constant and 4
n

2
|

n

2

� �
?

Table 5. Convergence time and hit rate results for GPS and combinatorial problems through external and internal adaptive lattice
reconfiguration with binary tournament local selection.

Adaptive Phenotypic

External Reconfig. GPS MMDP MTTP P-Peaks ECC

Rectangular?Adapt. 68:78+29:60 411:24+42:25 231:58+34:06 180:50+24:84 976:75+398:04

60%, 4.89 90%, 3.00 100%, 100%, 83%, 3.75

Narrow?Adapt. 65:58+20:44 427:91+57:66 226:52+36:68 181:51+25:91 932:58+448:57

53%, 4.99 89%, 3.12 100%, 100%, 87%, 3.36

Internal Reconfig.

Square?Adapt. 68:96+21:90 377:21+51:26 240:07+33:26 178:69+28:34 1086:05+511:28

50%, 5.0 85%, 3.57 100%, 100%, 78%,

4(
n

2
|

n

2
)?Adapt. 73:05+31:85 373:81+42:29 239:09+37:06 167:06+22:38 925:50+410:92

51%, 4.94 85%, 3.57 99%, 0.99 100%, 84%, 3.66

Adaptive Genotypic

External Reconfig.

Rectangular?Adapt. 63:00+22:51 366:14+43:70 227:22+32:77 177:55+23:93 858:18+413:24

58%, 4.93 91%, 2.86 100%, 100%, 91%, 2.86

Narrow?Adapt. 73:12+31:02 360:77+40:39 222:55+31:01 166:65+22:66 949:74+433:50

56%, 4.96 94%, 2.37 99%, 0.99 100% 89%, 3.12

Internal Reconfig.

Square?Adapt. 74:73+33:31 374:96+43:94 241:17+37:42 173:70+22:25 1098:69+575:46

57%, 4.95 88%, 3.24 100%, 100%, 84%, 3.66

4(
n

2
|

n

2
)?Adapt. 64:35+18:60 373:49+50:99 247:12+36:14 175:32+25:55 1006:97+443:49

59%, 4.91 87%, 3.36 100%, 100%, 84%, 3.66

3ANOVA/K-W . z z . z

doi:10.1371/journal.pone.0041279.t005
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adaptive phenotypic internal reconfiguration. On the other hand,

adaptive approaches do not show significant difference in

convergence time.

Similar results in the number of generations are obtained for the

Griewank function, statistical difference at 5% is proved for square

? constant internal reconfiguration with respect to static and pre-

programmed criteria. However, in terms of success search rate,

pre-programmed square ? narrow approach shows major

advantage in this regard, from 80% (s~4:00) to 100% s~0:0,

based on calculated sample standard deviations. On the other

hand, for adaptive approaches the best convergence time is

obtained by square ? adaptive genotypic internal reconfiguration

with statistical difference. The best hit rate is 88% (s~3:24) for

rectangular ? adaptive external reconfiguration, which is not as

good as the pre-programmed approach.

The Langerman function is the most difficult in the continuous

set of problems tackled in this study; hit rates are not higher than

29%. The improvement in results for lattice reconfiguration

approaches is not significant, either in convergence time or in the

hit rate for all proposed criteria through binary tournament local

selection. Similar results were obtained for the FMS problem. No

significant improvement in terms of convergence time was obtained

through any of the proposed approaches. Standard deviations for

hit rates do not show significant statistical difference either.

From these two sets of results, it is worth noticing that the best

convergence times in Table 2 correspond to constant approaches.

However, hit rates in some cases are higher for either static or pre-

programmed criteria, with statistical proof, for example, in the

Griewank function. For adaptive approaches, in Table 3, best

convergence times correspond to external reconfiguration tech-

niques, however these results are not statistically supported.

Results consistency for convergence times is maintained for most

problems, except in the Langerman function. In terms of

convergence time, the SLE problem presents a significant

difference for square ? constant internal reconfiguration. Howev-

er, in terms of hit rate, traditional static square grid provides the

highest efficacy (39%). In contrast, the best adaptive square ?

adaptive and 4(
n

2
|

n

2
) ? adaptive internal phenotypic and

genotypic based criteria reach a hit rate of 35%, with no

meaningful difference due to s~4:87 and s~4:76 respectively.

The convergence times for adaptive criteria are not different, and

the consistency of the results is not well maintained. Multiple

comparison tests are not carried out for results in Tables 2 and 3

due to the lack of statistical difference in convergence time for

most of the problems.

In Tables 4 and 5, corresponding results for the GPS and

combinatorial problems are shown with binary tournament

selection. For the GPS attitude determination problem, through

binary local selection, no statistical proof was obtained in terms of

convergence time and hit rate for both sets of results. In contrast,

the MMDP statistical proof was found in convergence time for

4(
n

2
|

n

2
) ? constant internal reconfiguration. However, the best

hit rate of 92% (s~2:71) is reached through pre-programmed

narrow ? square external reconfiguration, in comparison to 87%

(s~3:36) of former approach. However, the narrow ? adaptive

genotypic based approach, external reconfiguration, provides best

efficiency and efficacy.

For the MTTP, high hit rates are in general obtained. There is a

statistical difference for the best configuration case among static,

pre-programmed and constant approaches: square ? constant

internal reconfiguration. Similarly for adaptive approaches, statis-

tical difference is proved for the best adaptive mechanism: narrow

? adaptive genotypic based external reconfiguration. After a

Table 6. Convergence time and hit rate results for continuous, FMS and SLE problems through static, preprogrammed (external)
and constant (internal) lattice reconfiguration with anisotropic local selection.

Static/Preprog.

External Reconfig. Rastrigin Griewank Langerman FMS SLE

Square 230:38+15:51 438:36+39:04 432:61+47:01 379:38+58:58 594:21+54:32

100% 68%, 4.66 21%, 4.07 52%, 4.99 19%, 3.92

Rectangular 283:34+27:42 464:18+23:06 429:35+61:08 603:66+54:68

100% 16%, 3.66 1%, 0.99 14%, 3.46 6%, 2.37

Narrow 470:77+19:00 {{{{ {{{{ {{{{ {{{{

53% {{ {{ {{ {{

Square-Narrow 279:35+29:43 437:57+52:99 430:50+34:54 368:39+75:91 585:87+115:39

100% 14%, 3.46 6%, 2.37 33%, 4.70 8%, 2.71

Narrow-Square 246:43+14:76 431:53+36:83 448:11+36:08 420:51+53:73 600:17+79:09

100% 93%, 2.55 18%, 3.84 35%, 4.76 29%, 4.53

Constant

Internal Reconfig.

Square?Constant 186:89+14:56 370:11+45:66 316:62+66:14 305:24+61:08 469:50+114:32

100% 89%, 3.12 37%, 4.82 66%, 4.73 42%, 4.93

4(
n

2
|

n

2
)?Constant 186:67+11:48 375:97+45:76 309:42+69:13 300:32+53:09 442:80+93:42

100% 95%, 2.17 26%, 4.38 71%, 4.53 42%, 4.93

3ANOVA/K-W z z z z z

doi:10.1371/journal.pone.0041279.t006
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multiple comparison test is performed for both sets of results,

no statistical proof was found for the adaptive approach in

terms of convergence time. The P-Peaks problem through

binary tournament selection presents no statistical difference

for either static, pre-programmed, constant or for adaptive

approaches in terms of convergence time, and hit rates were in

all cases 100%.

The ECC problem presents statistical difference in terms of

convergence time in both Tables 4 and 5. The best performance is

achieved by genotypic based external reconfiguration when

evolution starts on a rectangular configuration.

At this stage, an interesting preliminary conclusion indicates

that the difference in performance between constant and adaptive

approaches is not as substantial as expected. Moreover, in Table 4,

the best results, in terms of convergence time, correspond to

constant internal reconfiguration. However, better efficacy is

obtained through static and pre-programmed external reconfigura-

tion criteria for SLE, GPS and MMDP problems. Another

interesting observation in Table 5, for all problems, is that best

convergence times are obtained through adaptive genotypic based

external reconfiguration.

In general, binary tournament local selection provides a narrow

span for selective pressure when internally reconfiguring the grid,

in comparison to anisotropic local selection, see Figure 2.

However, several advantages in performance have been achieved

for some problems with statistical proof.

Anisotropic Local Selection
Results obtained through anisotropic local selection are

presented in this subsection. In Tables 6 and 7 results for

continuous problems and the FMS problem are presented.

Anisotropic local selection with constant a~0:8 presents a more

explorative behaviour if compared to binary tournament

selection. Moreover, this selection method also makes use of

structural properties in cGAs, due to neighbourhood configu-

ration in which the location of individuals for selection is

implied.

In both tables, statistical difference is proved for most problems

except for the SLE problem in Table 7. Therefore, multiple

comparison tests were carried out among most approaches. The

Rastrigin function shows statistical difference in convergence time

for both sets of results. However, no statistical proof supports this

difference between best approaches on each table. In comparison

to a static square topology, convergence time consistency is held in

constant and adaptive criteria.

The Griewank function is better approached by internal

reconfiguration, square ? constant for best convergence time,

and 4(
n

2
|

n

2
) ? constant for best hit rate. Similar results are

obtained through adaptive approaches. Genotypic and phenotypic

based internal reconfiguration also provides the best performance.

In terms of the hit rate, 93% and 94% are reached. However, after

multiple comparison tests, no statistical proof was obtained

between constant and adaptive criteria. Moreover, consistency in

Table 7. Convergence time and hit rate results for continuous, FMS and SLE problems through external and internal adaptive
lattice reconfiguration with anisotropic local selection.

Adaptive Phenotypic

External Reconfig. Rastrigin Griewank Langerman FMS SLE

Rectangular?Adapt. 227:12+17:92 420:29+40:40 420:21+47:44 369:57+64:78 569:00+81:42

100% 86%, 3.46 28%, 4.48 61%, 4.87 31%, 4.62

Narrow?Adapt. 227:13+15:99 425:08+40:74 391:00+41:28 358:77+57:90 566:20+90:81

100% 84%, 3.66 25%, 4.33 57%, 4.95 25%, 4.33

Internal Reconfig.

Square?Adapt. 188:91+12:42 384:69+51:54 338:28+77:18 314:35+69:18 474:89+89:32

100% 94%,2.37 25%,4.33 64%,4.8 37%,4.82

4(
n

2
|

n

2
)?Adapt. 189:31+16:21 377:34+46:40 340:12+72:40 314:12+59:51 457:31+78:66

100% 93%,2.55 33%,4.70 66%,4.73 29%,4.53

Adaptive Genotypic

External Reconfig.

Rectangular?Adapt. 202:39+18:42 401:90+44:85 387:22+59:31 328:87+65:23 513:23+90:67

100% 83%, 3.75 27%, 4.43 63%, 4.82 30%, 4.58

Narrow?Adapt. 202:11+16:62 393:69+49:50 382:73+61:50 332:49+70:22 525:77+85:77

100% 81%, 3.92 26%, 4.38 59%, 4.91 40%, 4.89

Internal Reconfig.

Square?Adapt. 192:45+13:42 379:38+49:98 320:90+72:27 306:75+53:67 496:33+85:82

100%, 94%,2.37 32%,4.66 69%,4.62 45%,4.97

4(
n

2
|

n

2
)?Adapt. 186:93+9:56 379:92+49:42 357:44+70:00 304:34+62:57 472:45+103:06

100%, 94%,2.37 38%,4.85 70%,4.58 37%,4.82

3ANOVA/K-W z z z z .

doi:10.1371/journal.pone.0041279.t007
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convergence time is kept through internal and adaptive external

mechanisms.

The Langerman function also provides best performance

through constant and genotypic internal reconfiguration. Similar

to the previous function, statistical proof, in convergence time, was

not found between the best constant and adaptive approaches. On

the other hand, convergence time consistency is slightly lost

through internal constant and adaptive reconfiguration. In terms of

hit rate, square ? constant and 4(
n

2
|

n

2
) ? adaptive achieve up

to 37% and 38% success rate respectively. This represents a

significant improvement in efficacy in comparison to a static

square topology, from s~4:07 to s~4:82 and s~4:85 in

standard deviations.

The FMS problem is highly epistatic, which means genetic

interdependency is strong. Constant internal reconfiguration gives

the best performance through 4(
n

2
|

n

2
) ? constant mechanism

with statistical significant difference. On the other hand, adaptive

genotypic internal reconfiguration mechanisms provide the best

convergence time and hit rate respectively. However, once again

no statistical proof was obtained between constant and adaptive

reconfiguration techniques. Moreover, best hit rates are 70% and

71% in both cases. Consistency in convergence time is maintained

among reconfiguration approaches.

The best convergence time for the SLE problem is achieved

through 4(
n

2
|

n

2
) ? constant internal reconfiguration together

with the highest hit rate of 42%. Statistical difference is proved in

the average number of generations with respect to a static square

topology, as well as in hit rates where the difference in standard

deviation ranges from s~3:92 to s~4:93. In contrast, results for

adaptive approaches are not significantly different in convergence

time and a best hit rate of 45% is achieved through genotypic

based internal reconfiguration. Convergence times are consistent

among adaptive mechanisms.

It is worth noticing that through static rectangular topologies

most of the problems in Table 6 lose performance quality,

increasing convergence time and limiting their hit rates to the

minimum, except for the Rastrigin function. Moreover, for static

narrow lattices, three of the problems do not converge at all. An

important observation is that the best performance results are

obtained through constant and adaptive internal reconfiguration

mechanisms.

In Tables 8 and 9, results for the GPS and combinatorial

problems are presented. For most of the problems in each table,

statistical difference was found in terms of convergence times,

except for the MMDP problem in Table 8.

Overall, the GPS problem is the smallest problem. Yet, its

landscape is multi-modal and non symmetric also presenting high

epistasis. A smaller population size was implemented with 64

individuals and for anisotropic selection, statistical proof was

obtained in convergence time. Overall, the best convergence time

is achieved through adaptive genotypic based external reconfigura-

tion, although a substantially better hit rate of 91% is reached

through a static narrow topology. On the other hand, compared

with a static square topology, consistency in convergence time is

preserved through constant internal and adaptive approaches.

The last four problems are combinatorial. Hit rates of 97% are

achieved through static square and rectangular topologies for the

MMDP problem, while narrow topology cannot converge at all.

No statistical proof is obtained in terms of convergence time. For

adaptive approaches, the best performance was obtained through

phenotypic and genotypic based 4(
n

2
|

n

2
) ? adaptive internal

reconfiguration with statistical difference in convergence time and

95% success search rate. After the multiple comparison test,

Table 8. Convergence time and hit rate results for GPS and combinatorial problems through static, preprogrammed (external) and
constant (internal) lattice reconfiguration with anisotropic local selection.

Static/Preprog.

External Reconfig. GPS MMDP MTTP P-Peaks ECC

Square 80:73+15:43 568:98+54:01 444:45+36:92 286:19+35:95 548:19+75:75

76%, 4.27 97%, 1.70 31%, 4.62 99% 100%

Rectangular 148:95+35:42 574:03+47:93 {{{{ 274:80+34:54 572:7+80:35

88%, 3.24 97%, 1.70 {{ 100% 100%

Narrow 143:49+35:20 {{{{ {{{{ 304:96+37:53 828:41+83:35

91%, 2.86 {{ {{ 100% 100%

Square-Narrow 93:69+31:25 572:75+61:37 462:00+0:00 321:44+38:42 527:36+78:80

82%, 3.84 77%, 4.20 1%, 0.99 100% 100%

Narrow-Square 84:23+20:01 633:40+31:46 463:90+19:46 349:29+36:80 548:19+75:75

78%, 4.14 80%, 4.00 11%, 3.12 100% 100%

Constant

Internal Reconfig.

Square?Constant 72:76+16:93 550:86+55:63 437:34+65:97 256:77+28:67 216:56+58:83

78%, 4.14 94%, 2.37 100% 100% 100%

4(
n

2
|

n

2
)?Constant 90:00+23:70 553:96+51:20 403:00+47:85 261:31+28:61 212:65+65:84

89%, 3.12 91%, 2.86 87%, 3.36 100% 100%

3ANOVA/K-W z . z z z

doi:10.1371/journal.pone.0041279.t008
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statistical proof is also found between best convergence times on

each table while consistency is also maintained.

The MTTP presents a very low hit rate for a static square

population topology. Moreover, through rectangular and narrow

topologies, cGAs are not appropriate to solve this problem.

However, the best convergence time and hit rate are achieved by

constant internal reconfiguration and the hit rate is improved up

to 100%. Adaptive approaches show, with statistical difference,

improvement in terms of convergence time. Adaptive genotypic

based external reconfiguration outperforms other approaches. Yet,

hit rate reaches 98% and 99% in best cases. Convergence time

consistency is kept among internal constant and adaptive

reconfiguration.

Overall, hit rates for the P-Peaks and the ECC problems are

100%. In terms of convergence time, statistical tests prove an

improvement. Constant internal and adaptive genotypic based

external reconfiguration outperform the rest of the proposed

techniques, although, there is no statistical proof to differentiate

between both approaches. The consistency of the results is well

maintained between the best approaches in both problems.

Similar to the results in Table 6 for static, pre-programmed and

constant approaches; in Table 8 best convergence times and most

of the best success search rates correspond to constant internal

reconfiguration. Having a static topology or to perform a pre-

programmed change in population topology during evolution does

not provide the best performance cGAs could achieve. However,

in some cases better hit rates are obtained through static and pre-

programmed reconfiguration approaches.

Considering take-over time analysis carried out in Section, less

influence on cGAs’ performance was expected when lattice

reconfiguration mechanisms with binary tournament selection

are applied. In contrast, due to a wider span for controlling

selective pressure showed by anisotropic selection when a~0:8, a

significant effect in performance was anticipated; as supported by

statistical tests carried out for each benchmark problem.

In Table 10, convergence time results for adaptive lattice

reconfiguration mechanisms with anisotropic selection are statis-

tically compared. In the second column, the best adaptive

approach per problem with statistical significance is included,

either best external or internal lattice reconfiguration criterion.

Internal adaptive mechanisms outperformed external adaptive ones

in six out of ten benchmark problems. In columns 3-9, static, pre-

programmed and constant reconfiguration mechanisms are

statistically compared to best adaptive ones. In most cases,

adaptive approaches outperformed static and pre-programmed

ones. However, no statistically supported evidence is found for

adaptive mechanisms to improve internal constant lattice reconfig-

uration but in three cases (GPS, MTTP and P-Peaks) where

genotypic based external adaptive approaches outperformed con-

stant ones. Efficacy achieved is very similar when applying

Table 9. Convergence time and hit rate results for GPS and combinatorial problems through external and internal adaptive lattice
reconfiguration with anisotropic local selection.

Adaptive Phenotypic

External Reconfig. GPS MMDP MTTP P-Peaks ECC

Rectangular?Adapt. 75:96+12:25 648:81+35:58 377:73+47:20 290:93+35:31 257:54+66:39

81%, 3.92 33%, 4.70 95%, 2.17 100% 100%

Narrow?Adapt. 80:03+18:34 659:28+22:11 377:67+38:69 282:52+37:87 253:3+63:59

79%, 4.07 50%, 5.00 97%, 1.70 100% 100%

Internal Reconfig.

Square?Adapt. 80:82+17:40 586:48+46:23 405:36+46:17 262:85+37:87 212:71+60:87

81%, 3.92 91%, 2.86 90%, 3.0 100%, 100%,

4(
n

2
|

n

2
)?Adapt. 86:67+21:48 583:50+52:83 408:97+45:63 272:38+36:00 222:51+50:51

84%, 3.66 95%, 2.17 85%, 3.57 100%, 100%,

Adaptive Genotypic

External Reconfig.

Rectangular?Adapt. 84%, 3.66 95%, 2.17 85%, 3.57 100%, 100%,

71:42+15:30 618:30+47:03 362:03+42:30 239:70+28:24 204:74+53:05

82%, 3.84 78%, 4.14 99%, 0.99 100% 100%

Narrow?Adapt. 65:75+12:93 623:41+48:18 354:02+47:43 242:20+39:50 209:38+64:29

78%, 4.14 77%, 4.20 98%, 1.40 100% 100%

Internal Reconfig.

Square?Adapt. 78%, 4.14 77%, 4.20 98%, 1.40 100% 100%

85:96+20:22 582:54+48:97 405:49+48:34 265:20+31:75 222:66+59:09

84%, 3.66 91%, 2.86 83%, 3.75 100%, 100%,

4(
n

2
|

n

2
)?Adapt. 92:89+24:54 580:21+49:54 413:43+47:29 272:33+33:38 226:98+62:60

89%, 3.12 92%, 2.71 86%, 3.46 100%, 100%,

3ANOVA/K-W z z z z z

doi:10.1371/journal.pone.0041279.t009
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adaptive or constant mechanisms with no statistical significant

difference. Next section provides final conclusions of this study.

Discussion

The aim of this research has been to extend previous studies on

how structural properties in cGAs can be a factor in adequately

tuning diversity during evolution. Internal lattice reconfiguration

has been experimentally assessed and compared with external

reconfiguration proposed in [26]. The main difference between

both approaches is that individ’uals adjacency is maintained

through internal lattice reconfiguration while it is lost in the external

approach because it induces an implicit migration mechanism.

Making difficult to distinguish if performance improvements are a

consequence of the added effect of the lattice reconfiguration

mechanism and the induced migration.

Binary tournament showed a narrow span for modifying

selective pressure when internal lattice reconfiguration is performed.

Thus, a significant effect on selective pressure to tune diversity and

consequently in performance was not expected. In contrast, take-

over times for anisotropic selection showed a wider span to affect

selective pressure when the population’s topology is internally

reconfigured; for most of the problems statistical difference was

proved in terms of convergence time.

Internal adaptive approaches outperformed external ones in six out

of ten benchmark problems when applying anisotropic local

selection. In order to statistically compare the best adaptive

criteria, tests were carried out versus static, pre-programmed and

constant reconfiguration mechanisms. In three out of ten

benchmark problems, adaptive approaches (genotypic based

external reconfiguration) outperformed constant internal reconfigu-

ration.

In cGAs, exploration is carried out globally throughout the grid

while exploitation is mostly promoted locally within neighbour-

hoods. The proposed mechanism for diversity tuning works at a

global level through the internal reconfiguration of the popula-

tion’s topology as a way of modifying the induced selective

pressure and thus promote a more balanced exploration-exploi-

tation trade-off. Therefore, its effect does not need to be a prompt

response to changes in the solutions or the representation spaces;

this is why constant reconfiguration of the topology induces a

similar effect in performance as measuring phenotypic or

genotypic entropy and is less computationally expensive.
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36. Ortiz-Boyer D, Hervś-Martı́nez C (2012). School of computer science website,

carnegie mellon university, benchmark problems, accessed 2012 june 25th. URL
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/ortizboyer05a-

html/node6.html.
37. Bersini H, Dorigo M (1996) Results of the first international contest on

evolutionary optimisation (1st iceo). In: Proceedings of IEEE International

Conference on Evolutionary Computation. IEEE, 611–615.
38. Morales-Reyes A, Stefatos E, Erdogan A, Arslan T (2008) Towards fault-tolerant

systems based on adaptive cellular genetic algorithms. In: Proceedings of IEEE
NASA/ESA Conference on Adaptive Hardware and Systems (AHS’08). IEEE,

398–405. URL ieeexplore.ieee.org/.

39. Chen H, Member S, Flann NS, Society IC, Watson DW, et al. (1998) Parallel
genetic simulated annealing: a massively parallel simd algorithm. IEEE

Transactions on Parallel and Distributed Systems 9: 126–136.
40. Morales-Reyes A, Haridas N, Erdogan A, Arslan T (2009) Adaptive fault

tolerant gps attitude determination system. In: Proceedings of IEEE Aerospace
Conference. IEEE, 1–8. URL ieeexplore.ieee.org/.

Lattice Reconfiguration for Diversity Tuning

PLoS ONE | www.plosone.org 19 July 2012 | Volume 7 | Issue 7 | e41279


