
IEICE Electronics Express, Vol.9, No.11, 971–977

A multi-cycle fixed point
square root module for
FPGAs

Fernando Martin del Campo1a), Alicia Morales-Reyes1b),
Roberto Perez-Andrade3c), Rene Cumplido1d),
Aldo G. Orozco-Lugo2e), and Claudia Feregrino1f)

1 INAOE, Computer Science Department, Puebla, Mexico
2 CINVESTAV IPN, Electrical Engineering Department, D. F., Mexico
3 CINVESTAV IPN, Information Technology Laboratory, Tamps., Mexico

a) martin@ccc.inaoep.mx

b) a.morales@ccc.inaoep.mx

c) jrperez@tamps.cinvestav.mx

d) rcumplido@ccc.inaoep.mx

e) aorozco@cinvestav.mx

f) cferegrino@ccc.inaoep.mx

Abstract: This paper presents a module that solves the square root
by obtaining a number of more significant bits from a look-up table as
an approximate root. A set of possible roots are then appended and
squared for comparison to the original radicand, finely tuning the cal-
culation. The module stops as soon as it finds an exact root, therefore
not all entries take the same number of cycles, reducing the number
of iterations required for full resolution. The proposed FPGA module
overcomes a Xilinx’s logiCORE IP in terms of resources utilization and
in several cases latency due to its flexible structure configuration.
Keywords: Square root, non-restoring algorithm, FPGA
Classification: Electron devices, circuits, and systems

References

[1] K. Piromsopa, C. Aporntewan, and P. Chogsatitvataa, “An FPGA im-
plementation of a fixed-point square root operation,” Proc. Int. Symp.
Communications and Information Technology, Thailand, pp. 587–589,
2001.

[2] Y. Li and W. Chu, “A new non-restoring square root algorithm and its
VLSI implementations,” Proc. IEEE Int. Conf. Computer Design: VLSI
in Computers and Processors, Austin, USA, pp. 538–544, Oct. 1996.

[3] Y. Li and W. Chu, “Parallel-Array implementations of a non-restoring
square root algorithm,” Proc. IEEE Int. Conf. Computer Design: VLSI
in Computers and Processors, Washington, USA, pp. 690–695, Oct. 1997.

[4] T. Sutikno, “An efficient implementation of the non restoring square
root algorithm in gate level,” Int. J. Computer Theory and Engineering,
vol. 3, no. 1, pp. 46–51, Feb. 2011.

[5] S. Imtiaz, M. M. Ahmed, and Z. G. Sotirios, “Novel Pipelined Archi-
tecture for Efficient Evaluation of the Square Root Using a Modified

c© IEICE 2012
DOI: 10.1587/elex.9.971
Received April 18, 2012
Accepted May 18, 2012
Published June 11, 2012

971



IEICE Electronics Express, Vol.9, No.11, 971–977

Non-Restoring Algorithm,” J. Signal Processing and Systems, vol. 67,
pp. 157–166, Sept. 2010.

[6] Xilixn, Inc., “LogiCORE IP CORDIC v4.0,” Prod. specification DS249,
March 2011.

[7] S. Samavi, A. Sadrabadi, and A. Fanian, “Modular array structure
for non-restoring square root circuit,” J. Systems Architecture, vol. 54,
pp. 957–966, April 2008.

[8] S. Lachowicz and H.-J. Pfleiderer, “Fast Evaluation of the Square Root
and Other Nonlinear Functions in FPGA,” IEEE Int. Symp. Electronic
Design, Test & Applications - DELTA, pp. 474–477, 2008.

[9] F. Dinechin, M. Joldes, B. Pasca, and G. Revy, “Multiplicative Square
Root Algorithms for FPGAs,” IEEE Int. Conf. Field Programmable
Logic and Applications, pp. 574–577, 2010.

[10] T. Kwon and J. Draper, “Floating-point division and square root using
a Taylor-series expansion algorithm,” Microelectronics Journal, vol. 40,
pp. 1601–1605, 2009.

1 Introduction

The square root operation is common and widely used in several areas such as
image and signal processing, statistics, communications and design of scien-
tific engines. Calculating the square root is a complicated task thus several
techniques have been proposed to implement this operation in hardware.
Many of them use digit recurrence algorithmic approaches which were suit-
able at a time when hardware devices did not provide embedded modules
such as multipliers or RAM blocks. These modules are now available on re-
configurable fabrics easing the implementation of multiplicative square root
techniques.

In [1], a fixed-point square root module implemented on an Altera FLEX-
10K20RC240 FPGA is reported. Its maximum operation frequency is
21.36 MHz using 13% logic cells for a 48-bit radicand. This architecture
only uses an adder/subtractor and three registers performing one and two
bits left shift and storage for results.

In [2] a non-restoring square root algorithm is proposed. It focuses on the
partial remainder instead of calculating one bit’s root every iteration reduc-
ing significantly the total number of iterations. Two VLSI approaches were
implemented: a fully pipelined design which accepts a square root instruction
every clock cycle and a low-cost implementation using an adder/subtractor
and three registers. A systolic modification of [2] is presented in [3]. The
adder/subtractor unit is replaced by a systolic array using carry-save adders.
This approach reduces the calculation in 1 and 2 cycles for 16 and 32-bit
respectively, but increasing in 8 cycles for 64-bit. The approach significantly
reduces resources requirements.

In [4] a modified non-restoring square root algorithm is presented. Its
main difference is to use a subtract operation and append a binary value 01
instead of appending 11 and add to the developed root. Results for 32 and
64-bit input are characterized with a significant improvement in resource uti-

c© IEICE 2012
DOI: 10.1587/elex.9.971
Received April 18, 2012
Accepted May 18, 2012
Published June 11, 2012

972



IEICE Electronics Express, Vol.9, No.11, 971–977

lization of more than 50% achieved by an Altera APEX-20KE FPGA. In [5]
another modified non-restoring technique is introduced using fix point repre-
sentation for low cost implementation. Its pipeline approach avoids a write
after read hazard by feeding register using different lines in the same clock
cycle. Results showed reduction in hardware usage, shorter latencies and
lower power consumption. Samavi et al. presented a modular array based on
add/subtract units using the non-restoring square root algorithm [7]. Several
elements are removed without accuracy loss achieving significant reduction
in the required area. The structure allows arbitrary input width. Results
showed that latency and hardware resources usage are reduced.

Multiplicative square root techniques have also been proposed considering
current hardware capabilities. In [8], a non-constant LUT based technique
is presented. It consists on an initial approximation using a square function
which allows a reduction in the LUT size. More LUT locations are needed to
store non-linear points but less points describe linear segments of the square
curve. Multipliers are used to calculate the increments iteratively. This
approach is defined for 24-bit radicand only.

In [9], a survey on square root techniques and a polynomial based mul-
tiplicative square root approach are presented. A comparison of a pipelined
digit recurrence square root for single and double precision radicand slightly
outperformed the Xilinx LogiCore in terms of hardware resources. Attention
is paid to the rounding problem which is computationally expensive. This
multiplicative approach based on polynomial approximations results in a the-
oretical latency of 25-27 cycles with maximum accuracy for 64-bit radicand.
In [10], a single precision square root operation is added to a multiply/divide
unit. The method takes advantage of the Taylor-series expansion used in
division to calculate the square root. A comparison among algorithmic ap-
proaches implemented on different GPPs shows a latency of 12 cycles achieved
by this technique.

In this article, a combination of a non-restoring square root algorithm
and a multiplicative technique is proposed. The approach takes advantage of
current reconfigurable hardware capabilities such as embedded multipliers.
To evaluate the proposed approach, a Xilinx LogiCore for square root calcu-
lation is used as reference. This highly efficient core provides a good measure
of the strengths of the proposed module.

2 Square root module

The algorithmic approach for the square root calculation is a combination of
a multiplicative technique and the non-restoring square root algorithm [1].
In Algorithm 1 the pseudo code is provided. Initially, the approximate root
is obtained from a look-up table using as index a number of the radicand’s
most significant bits (lines 3-4). The approximate root is appended to a set of
possible roots that are squared and compared to the original radicand (lines
7-11). A comparison tree evaluates the remainders to determine the minimal
(lines 12-20). If the minimal remainder equals zero, the exact square root

c© IEICE 2012
DOI: 10.1587/elex.9.971
Received April 18, 2012
Accepted May 18, 2012
Published June 11, 2012

973



IEICE Electronics Express, Vol.9, No.11, 971–977

Algorithm 1 Square root algorithm
1: procedure sqr(X2n) � X radicand, 2n input length
2: (Qn, ..., Q0)← 0; � Qn square root
3:

(
Qn, ..., Q(n−m

2 ), 0, ..., 0
)
← � Approx. root for m-bit of X’ MSB

4: ROM
[(

X2n, ..., X(2n−m)

)]
;

5: r = 2n−m
p ; � r blocks of p-bit pending for square root calculation

6: while r �= 0 do
7: Q′

0 ← � Square root options by appending 2p solutions
8:

(
Qn, ..., Q(n−m

2 ), 0p, ..., 00, 0, ..., 0
)

; ...

9: ... Q′
p ←

(
Qn, ..., Q(n−m

2 ), 1p, ..., 10, 0, ..., 0
)

;

10: R0 ←
(
X − (Q′

0)
2
)

; ... � 2p remainders after subtraction from X

11: ... Rp ←
(

X −
(
Q′

p

)2
)

;

12: q ← 2p >> 1; � Comparison tree levels
13: while q �= 0 do � Determine minimal remainder
14: if Rq < Rq−1 then
15: R′q ← Rq;
16: else
17: R′q ← Rq−1;
18: end if
19: q ← q >> 1;
20: end while
21: if R′q = 0 then
22: Break; � Exact square root had been calculated
23: else
24: Q← Q′

q; � Solution with minimal remainder is assigned
25: r ← r − 1; � r block(s) pending for root calculation
26: end if
27: end while
28: end procedure

was obtained and the algorithm exits (line 22). On the contrary, the square
root with minimal remainder is updated as the new approximate root (line
24). In every iteration, the approximate root grows by a number of bits, until
reaching the least significant bit.

The new square root module operates in a similar way to a non-restoring
algorithm implementation with two main differences:

• A number of the root’s more significant bits are obtained from a look-
up table. This initial root approximation is then finely tuned. For
example, the square root of 5 is ≈ 2.236. The look-up table would
give the value of 2, and only the decimal part of the result has to be
calculated. This increases drastically the speed of the coprocessor using
very little FPGA area.

• Every iteration calculates, in parallel, a block of the root’s bits whose

c© IEICE 2012
DOI: 10.1587/elex.9.971
Received April 18, 2012
Accepted May 18, 2012
Published June 11, 2012

974



IEICE Electronics Express, Vol.9, No.11, 971–977

Fig. 1. Square root module

size varies according to the radicand size and not only one bit as the
non-restoring original technique does. A block chart of the proposed
system is shown in Figure 1.

It is important to consider the bit length of the look-up table memory. As
more bits are added to this structure, the number of iterations to calculate
the square root decreases. However, as this length grows, the memory size
increases significantly, to the point that it is impossible to implement us-
ing FPGA’s memory blocks and even external memories available, like the
SDRAM. Defining the size of the look-up table involves a trade-off that is
particularly important in FPGA architectures.

Another advantage of the coprocessor is that it stops once an exact root is
found, so not all entries take the same number of cycles to be calculated. For
example, if the root of 14.0625 is computed, the process stops after the exact
root is calculated (3.75), even if the original number is represented by 64-bit
requiring usually 6 iterations for full resolution or 5 iterations for maximum
error of ≈ 7.15× 10−7.

3 Results and discussion

In Table I, results obtained with characterization data for a Xilinx’s FPGA
device Virtex-5 XC5VSX35T are presented. For comparison, the first row
in the table shows performance and resource utilization for the Xilinx’s logi-
CORE IP CORDIC v4.0 configured to perform the square root calculation [6].
This Xilinx’s IP core is selected due to being optimized for FPGA fabrics and
therefore a fair reference for performance comparison. This module can be
configured for 16, 32 and 48-bit as maximum input width. For the proposed
architecture a 64-bit input width case is also evaluated.

For each input data size the number of radicand’s most significant bits
whose root is obtained from a LUT (and therefore the LUT’s size) is changed.
Having larger ROM sizes while maintaining the iterative block size increases
the resource utilization but not significantly. The number of multipliers used
in the comparison tree varies according to the size of the iterative block de-

c© IEICE 2012
DOI: 10.1587/elex.9.971
Received April 18, 2012
Accepted May 18, 2012
Published June 11, 2012

975



IEICE Electronics Express, Vol.9, No.11, 971–977

Table I. Results comparison with characterization data for
a Xilinx’s FPGA device Virtex-5 XC5VSX35T

fined by 2-bit for cases reported in Table I. The number of cycles required
to produce a result is also reduced while increasing the ROM size and main-
taining the same iterative block size. This is a consequence of requiring less
iterations due to the number of bits in the initial approximate root obtained
from the LUT. A more aggressive approach is to significantly increase the
size of both, the LUT memory and the iterative block, that would reflect in
an increase in the use of hardware resources with a reduction in the number
of cycles.

For 16, 32 and 48-bit input width the proposed approach presents a sig-
nificant reduction in resources utilization, when using 4, 8 and 12-bit ROM
array with 2-bit iterative block size. For 16-bit input width, a reduction of 1
and 8 clock cycles is achieved by using 8 and 12-bit ROM in comparison to
the Xilinx’s logiCORE IP CORDIC v4.0. Moreover, a minimum latency of
4.06×−8 sec. is also achieved by the proposed non-restoring square root algo-
rithm. In the next section, the main conclusions of this study are presented.

4 Conclusions

In this article, a flexible approach to the square root non-restoring algorithm
is presented. Two main differences are introduced, the use of a ROM array
to obtain an approximate root of the radicand’s MSB and an iterative block
containing possible root options. ROM and iterative block sizes should be de-
fined. Having variable size in these elements reflects on the overall module’s
performance. The Xilinx’s logiCORE IP Cordic v4.0 is used for performance
reference. This IP core is designed to exploit all features available in modern

c© IEICE 2012
DOI: 10.1587/elex.9.971
Received April 18, 2012
Accepted May 18, 2012
Published June 11, 2012

976



IEICE Electronics Express, Vol.9, No.11, 971–977

FPGAs providing a good measure of the strengths of the new proposed ap-
proach. In terms of maximum clock frequency the reference module achieves
higher frequencies. However, resources utilization by the proposed module
improves when the iterative block size is small together with a reduction in
the number of cycles required to calculate the square root. The proposed
approach requires 4 multipliers for an iterative block size of 2 which is 2%
of the total number of available DSP48E slices in the characterized device.
Thus, it does not represent a significant overuse of those resources. There-
fore, the proposed approach is a competitive option that reduces in less than
half the area required and achieves similar or smaller latencies. Moreover, it
is a compact option suitable for integration into larger architectures designs
with significant configuration flexibility to adapt to specific applications as
required.

c© IEICE 2012
DOI: 10.1587/elex.9.971
Received April 18, 2012
Accepted May 18, 2012
Published June 11, 2012

977


