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Abstract

Compressed sensing is a recently proposed technique aiming to acquire a signal with

sparse or compressible representation in some domain, using a number of samples under

the limit established by the Nyquist theorem. The challenge is to recover the sensed

signal solving an underdetermined linear system. Several techniques such as the l1 min-

imization, Greedy and combinatorial algorithms can be used for that purpose. Greedy

algorithms have been found to be more suitable in hardware solutions, however they

rely on efficient matrix inversion techniques in order to solve the underdetermined linear

systems involved. In this work, a FPGA-based Greedy algorithm architecture with a

Chebyshev-type method to solve matrix inversion problem is presented. The architec-

ture was developed for Xilinx Virtex 4 XC4VSX25, Xilinx Spartan 6 XC6SLX45, Altera

Cyclone IV EP4CGX150DF31C7 and Altera Cyclone II EP2C35F672C6 FPGAs. The

described architecture represents a low-cost and generic solution, robust to changes in

word length and signal size. Besides, a MATLAB Graphical User Interface is devel-

oped for compressed sensing theory exploration focused on matrix and transform test.

MATLAB GUI uses the Compressed Sampling Matching Pursuit algorithm to recover

the sensed signal; reconstruction can easily be extended to other compressed sensing

algorithms.
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Chapter 1

Introduction

In the middle of a digital revolution, a plethora of sensing systems has been developed,

dealing with the compromise between data size, resolution, and quality. Traditionally,

the sampling rate of acquisition systems follows the mathematical analysis established

by Nyquist and Shannon [3, 4] in the so called sampling theorem. Derived from their

work, it is widely known that for the reconstruction of a signal with a bandwidth F , the

sampling frequency Fs must be at least two times the signal bandwidth, Fs ≥ 2F . When

a signal is acquired and digitized considering the Nyquist-Shannon theorem, dealing with

large data sets becomes a challenge.

However, some devices used for signal acquisition are physically impossible to imple-

ment. In 1999 Walden [5] presented a survey on Analog to Digital Converters (ADC) in

which he reports that the maximum nyquist sampling rate attained was 8 Giga samples

per second. Nevertheless, when the sampling frequency is duplicated the ADC resolu-

tion decreases one bit. Despite there were high sampling frequencies, bit resolution was

sacrificed, as at 8 GHz just 3 bits of resolution were achieved.

Due to the big amount of data, it is often necessary to compress a signal that has been

acquired according to the specifications of the Nyquist-Shannon theorem. Transform

Coding is a popular technique that aims to find a base or frame where the signal has

a sparse or compressible representation [6]. A signal of length N is k-sparse if it can

be represented with k elements, k << N , and is compressible if the signal can be well

approximated with those elements, even when a small amount of information may be

lost. Some signal formats that exploit transform coding concept are: JPEG, JPEG2000,

MPEG on images, MP4 and AVI on video and MP3 on audio.

In the past few years a new sensing technology has appeared. Donoho in 2006 [7],

coined the term compressed sensing to this technology. The field of compressed sensing

1



Chapter 1. Introduction 2

has grown from the work of Candés, Romberg and Tao and Donoho, where they showed

that a finite dimension signal, having a sparse or compressible representation can be

reconstructed from a small set of linear and non-adaptive measurements [7, 8].

Compressed Sensing aims to acquire a compressed signal representation by a series of

direct measurements in some domain where the signal may have a sparse representation,

without going through the usual stage of acquiring N samples. The measurements are

acquired by computing M < N inner products between a signal of interest x and a

sensing vector collection {φ}Mj=1 as in yj = 〈x, φj〉. The measurement vectors φMj are

arranged in an M ×N matrix Φ [2].

Having less equations than unknowns, the goal of compressed sensing is to solve an

underdetermined linear system to find the sensed signal x. This can be expressed as in

(2.1).

While a compressed signal has been acquired and the data sets to deal with are smaller,

a special effort must be done on the signal reconstruction. Unlike the reconstruction of an

acquired signal considering Nyquist-Shannon sampling theorem, compressed sensed sig-

nals cannot be reconstructed with a simple interpolation of the measurements. Hence,

several compressed sensing recovery algorithms have been developed, such as l1 mini-

mization, combinatorial algorithms and Greedy algorithms [9].

l1 minimization is a convex optimization problem aiming to find the minimization of

the sparse signal representation l1 norm. Despite these compressed sensing recovery

algorithms are a powerful tool they are not suitable for hardware implementation [9].

Combinatorial algorithms are another option to reconstruct a compressed sensed sig-

nal. Most of these algorithms are predate the compressed sensing literature. In some

applications, as computation on data streams, combinatorial algorithms were used to re-

cover x from y = Φx, essentially the same as the sparse recovery problem in compressed

sensing [9].

Greedy algorithms are the most commonly used for implementation on hardware.

These algorithms are a set of methods that iteratively construct an approximation of

the sensed signal. Starting from a zero vector, a set of nonzero elements is estimated

adding new elements on every iteration. Such algorithms often produce a fast conver-

gence and can be applied to large data sets [9, 10].

In the Greedy algorithms it is required to solve a matrix inversion. There are two

implemented methods that are frequently used to find a matrix inversion in hardware,

CORDIC algorithm [11, 12] and QR decomposition (QRD) [13–15]. Besides, there are
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iterative matrix inversion methods such as the Newton or Schulz method [16, 17] and

the recently proposed Chebyshev-type method [18].

Chebyshev-type matrix inversion method was proposed by Amat et al. in 2003 [19].

In this work this matrix inversion method has been used in the context of compressed

sensing.

1.1 Compressed Sensing Applications

Compressed sensing is a promising technology capable to give a new approach for sens-

ing systems design, improving their performance. CS has been incorporated to several

application fields, such as the MRI (Magnetic Resonance Imaging), sub-nyquist sampling

systems, sensor networks, face recognition, and texture detection [9].

Duarte et al. [1] introduced a single-pixel camera using compressed sensing theory.

They replaced CCD or CMOS sensor for one photon detector, a digital micro-mirror

device (DMD), two lenses and an analog-to-digital (A/D) converter. The new device is

capable to reconstruct 256x256 pixels images from about 1300 measurements. Figure 1.1

shows the reconstructed image.

Figure 1.1: a) Original image. b) 256x256 image, reconstructed from 1300 measure-
ments [1]

Compressed sensing has been used to improve the Magnetic Resonance Imaging (MRI)

process. This is achieved increasing imaging speed [20]. Vasanawala in 2010 [21] made a

comparison of two MRI techniques: parallel imaging and MRI using compressed sensing.

Images acquired by compressed sensing technique were preferred more often; they had a

significantly higher image quality rating and greater delineation of anatomic structures

than did images obtained with the traditional parallel reconstruction method.

First sub-nyquist sampling hardware system was implemented in 2011 by Mishali et al.

[22]. This system supports input signals up to 2 GHz with a sample rate of 280 MHz.



Chapter 1. Introduction 4

A CMOS architecture with built-in single-shot compressed sensing was design by Oike

and Gamal in 2013 [23]. The image sensor can operate in compressed sensing mode with

compression ratios 1/4, 1/6 or 1/8 at 480, 960 or 1920 fps, respectively; or in normal

capture mode with no compression at a frame rate of 120 fps.

In 2011 Balouchestani [24] proposed a novel approach for wireless sensor network nodes

testing based on compressed sensing theory aiming to increase reliability. That year he

presented a low power wireless network design also using compressed sensing [25]. In

both cases improvements were due to reduction on the number of bits used for data

transmission on the sensor network.

The low performance and high cost of the infrared (IR) photo detectors have prevented

the widespread utilization of IR cameras on various fields. Carbon nanotube (CNT) has

excellent optical properties that can be used for IR images sensors. However, it is difficult

to fabricate a CNT sensor array. To improve IR sensors performance with CNT-based

sensors and overcome the fabrication issue, Hongzhi et al. [26] presented a single nano-

photodetector IR camera based on compressed sensing.

Literature review demonstrates the relevance of the compressed sensing nowadays.

Thus, in this thesis a greedy algorithm named Compressed Sampling Matching Pursuit

(CoSaMP) has been implemented on an FPGA architecture using the Chebyshev-typed

method for solving the matrix inversion problem. Additionally a MATLAB Graphical

User Interface (GUI) has been developed as an educational tool for Compressed Sensing

theory exploration.

This thesis is organized as follows: Chapter 1 presents an introduction and motiva-

tion of this work. Chapter 2 summarizes the theory associated to compressed sensing

in the context of the Nyquist theorem and Transform Coding. Chapter 3 limns two

VHDL architectures: matrix inversion architecture and a Compressed Sampling Match-

ing Pursuit algorithm architecture. In Chapter 4 a MATLAB Graphical User Interface

for compressed sensing theory exploration is described. Chapter 5 presents obtained

results and discussion. Conclusions of the work are presented in Chapter 6.



Chapter 2

Theoretical Fundamentals

2.1 Compressed Sensing

Compressed sensing aims to acquire a compressed signal representation by a series of

direct measurements in some domain where the signal may have a sparse representation,

without going through the usual stage of acquiring N samples. The measurements are

acquired by computing M < N inner products between a signal of interest x and a

collection {φ}Mj=1 as in yj = 〈x, φj〉. The measurement vectors φMj are arranged in an

M ×N matrix Φ [2].

Having less equations than unknowns, the goal of Compressed Sensing is to solve an

underdetermined linear system to find the sensed signal x. This can be expressed as in

(2.1).

y = Φx = ΦΨs (2.1)

Where:

y measurements and y ∈ RM ,

Φ sensing matrix and Φ ∈ RMxN ,

Ψ sparse base or frame RNxN ,

x sensed signal and x ∈ RN ,

s sparse signal representation.

5
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If, however, signal x has a sparse representation s in a basis Ψ, it can, under certain

conditions, be recovered from measurements y. A graphical representation of compressed

sensing can be seen in figure 2.1.

Figure 2.1: Graphical representation of compressed sensing concept [2].

To reconstruct the sensed signal from the taken measurements y is required to solve

for s in equation (2.1); re-written as (2.2).

s = (ΦΨ)−1y (2.2)

Signal sparse representation s must be multiplied by the orthogonal frame in order to

recover signal of interest, equation (2.3).

x = Ψ(ΦΨ)−1y (2.3)

One of the limitations of CS is that it is strictly necessary to find a sparse frame in

order to apply compressed sensing theory for sensing a signal. Recovery problem requires

M = N to be well-posed so it can be solved from equation (2.2). Therefore, if M < N

the recovery problem becomes ill-posed. This missing link is found by adding a prior

information of the sensed signal x, that is the signal sparsity or sparse level k [27].

Compressed sensing reconstruction algorithms take the known sparsity level and keep

track of the k-nonzero elements or k-larger elements of the signal.

2.1.1 Sensing Matrix

Sensing matrix construction for compressed sensing is an important matter. There are

two main theoretical questions in CS. First, how should we design the sensing matrix Φ



Chapter 2. Theoretical Fundamentals 7

to ensure that it preserves the information in the signal x? Second, how can we recover

the original signal x from measurements y? [9].

Sensing matrix Φ can be designed in such a way that it will be able to reconstruct signal

s from measurements y whether signal has a sparse representation. Φ matrix structure

must satisfy a set of desirable properties.

2.1.1.1 Null Space Condition

The null space of Φ is denoted by

N (Φ) = x : Φx = 0 (2.4)

For an underdetermined linear system there are an infinite number of solutions. It is

clear that for any pair of distinct vectors x, x′ we must have Φx 6= Φx′, since otherwise it

would be impossible to distinguish x from x′ with solely measurements y [9]. A common

way for characterizing the Null Space property is known as the spark [28].

Spark of a given matrix Φ is defined as the smallest number of columns of Φ that are

linearly independent. In order to fulfill null space condition, spark of matrix Φ must be

greater than 2× k, this is :

spark(Φ) > 2k (2.5)

Where, k is the signal sparsity level.

2.1.1.2 Restricted Isometry Property

Null space property guarantees that signal x can be reconstructed from measurements

y, but this guarantees do not account the presence of noise. In [29] Candés and Tao

introduced the Restricted Isometry Property (RIP) with which a signal in the presence

of noise can be correctly reconstructed.

A matrix Φ satisfies the k-order restricted isometry property, if there exist a δ ∈ (0, 1)

such that

(1− δ)||x||22 ≤ ||Φx||22 ≤ (1 + δ)||x||22 (2.6)
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There are two types of sensing matrices, deterministic [30, 31] and random matri-

ces. Deterministic matrices are more difficult to construct, but their RIP can easily be

computed and they can be constructed on the fly. Random matrices have two main draw-

backs. First, they may require a lot of storage. Second, there is no efficient algorithm for

testing the RIP [32]. However, Gaussian random matrices fulfill, with high probability,

the restricted isometry property condition and can be used as sensing matrices [2].

2.1.2 Reconstruction Algorithms

After signal x has been sensed and measurements are stored in vector y an endeavor

to recover the signal has to be made. There are a variety of algorithms that have been

used in applications such as sparse approximations, statistics and theoretical computer

science that were developed to exploit sparsity in other contexts and can be brought

to bear on the CS recovery problem [9, 33]. There are two main categories for signal

recovery in compressed sensing: l1 minimization and greedy algorithms.

2.1.2.1 l1 minimization

Minimization approach is a convex optimization problems aiming to find the mini-

mization of a variable subject to one or more conditions. For compressed sensing the l0
norm was the first attempt to recover x by solving the optimization problem of the form

x̂ = argmin||x||0 subject to Φx = y (2.7)

Where ||x||0 is the nonzero entries of x.

This is with the previous knowledge that measurements y are from a highly sparse

signal. l0 norm has the inconvenience that is a combinatorial problem with prohibitive

complexity if solved numerically [34]. An alternative to overcome this problem is to

replace l0 norm by l1 norm and solve a computationally tractable model given by (2.8).

x̂ = argmin||x||1 subject to Φx = y (2.8)

The l1 minimization has the advantage of giving an uniform reconstruction. However,

is still a too complex problem for real time recovery and is not suitable for hardware

implementation [13].
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2.1.2.2 Greedy algorithms

Besides l1 minimization, greedy algorithms are an alternative for compressed sensing

signal reconstruction. Most common greedy algorithms are the Matching Pursuit MP[35]

(known as pure greedy algorithm), Orthogonal Matching Pursuit OMP[36], Stage wise

Orthogonal Matching Pursuit StOMP, Compressed Sampling Matching Pursuit CoSaMP

[37], Gradient Pursuit GP [38] and Conjugate Gradient Pursuit [38].

In 2012 Lifeng Du et al. [10] presented a greedy algorithms analysis. Based on their

results, they concluded that Orthogonal Matching Pursuit, Stage wise Matching Pur-

suit and Compressed Sampling Matching Pursuit have a better performance due to sig-

nificantly smaller error in the case of a small sparsity or more measurements. Signal

reconstruction error was the least for CoSaMP algorithm shown in Table 2.1.

2.1.2.3 CoSaMP Algorithm

The algorithm starts with a trivial initial guess a = 0. During each iteration, CoSaMP

performs five major steps [37].

1©Identification. The algorithm forms a proxy of the residual from current samples and

locates the largest elements of the proxy.

2©Support Merger. In first iteration support merger is not used. On following itera-

tions, it merges the support of the current signal approximation and the newly identified

components, this is T = Ω
⋃
supp(ai−1)

3©Estimation. The algorithm solves a matrix inversion problem in order to approximate

the target signal on the merged components on support set T . In this step is required

to find the pseudoinverse (†) of a full rank tall matrix. A submatrix ΦT is constructed

with columns of Φ which index number is in the support set T .

4©Pruning. The algorithm produces a new approximation by retaining only the largest

entries in the least-squares signal approximation.

5© Sample Update. Finally the samples are updated, so that they reflect the residual,

the part of the signal that has not been approximated.

The mentioned algorithm steps are repeated until halting condition is met. Compressed

Sampling Matching Pursuit algorithm is described in Table 2.1.
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Table 2.1: CoSaMP Algorithm

Input:
Sampling matrix Φ;
Sample data y;
Sparsity level k

During the 1st iteration

As a(0) = 0 and r = y

u = ΦT r 1©
T = supp(u2k)

b|T = (Φ|T )†y 3©
b|Tc = 0

a(1) = bk 4©
r = y − Φa(1) 5©
During the ith iteration

u = ΦT r 1©
Ω =supp(u2k)

T = Ω
⋃
supp(ai−1) 2©

b|T = (Φ|T )†y 3©
b|Tc = 0

a(1) = bk 4©
r = y − Φa(1) 5©
Output

An s-sparse approximation a of the target signal.

2.2 Matrix Inversion

Matrix inversion is a core issue for reconstructing a compressed sensed signal. Greedy

algorithms require to compute matrix inversion of a non-square matrix also called Moore-

Penrose matrix inversion denoted by Φ†. Three ways to cope with the matrix inversion

problem are: analytical, Chebyshev-typed method and QR decomposition.

2.2.1 Moore-Penrose Inverse

The Moore-Penrose inverse of a matrix A ∈ Rmxn, denoted by A†, is a matrix X that

satisfies the following four Penrose equations [39]

AXA = A (2.9)
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XAX = X (2.10)

(AX)∗ = AX (2.11)

(XA)∗ = XA (2.12)

Where A∗ is the conjugate transpose of A.

If above equations are fulfilled by matrix A and its pseudoinverted matrix X = A†,

Moore-Penrose inversion will be given by equations (2.13) and (2.14).

A† = (ATA)−1AT (2.13)

A† = AT (AAT )−1 (2.14)

Equations (2.13) and (2.14) are the left side and right side Moore-Penrose pseudoin-

version. A rectangular matrix cannot have a two sided inverse as either that matrix or

its transpose has a non-zero null space, this can be stated as follow.

• ATA is invertible when A has a full column rank.

• AAT is invertible when A has a full row rank.

The column rank of a matrix is the size of the collection of all linearly independent

columns. The row rank is the size of the collection of all linearly independent rows. For

any given matrix row rank equals column rank.

For a matrix A ∈ Rmxn, if m = n then A† = A−1.

2.2.2 Analytical Inversion

A well-known method for finding matrix inversion is the analytical method that uses

the adjoint matrix. Matrix inversion is given by equation (2.15)[40].

A−1 =
1

detA
adjA (2.15)
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Where:

adjA is the adjoint matrix,

detA is the matrix determinant.

2.2.2.1 Adjoint matrix.

Given a matrix A(aij) spanned by its aij elements, whose cofactor matrix is B(Ai,j),

adjoint matrix will be (2.18).

Am,n =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 (2.16)

Bm,n =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n

 (2.17)

adj A = B′ =


A1,1 A2,1 · · · Am,1

A1,2 A2,2 · · · Am,2

...
...

...

A1,n A2,n · · · Am,n

 (2.18)

2.2.2.2 Cofactor

The cofactor ij of a given matrix A, denoted as Aij can by computed using equation

(2.19).

Aij = (−1)i+j |Mij | (2.19)

Where, |Mij | is the determinant of the minor matrix of A, formed by taking out row i

and column j from A.
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2.2.3 Chebyshev-type Method

In 2003, Amat et. al. [19] introduced an iterative Chebyshev-type method of third

order or cubic convergence to find the inverse of a given matrix.

Few years later in 2011, Hou-Biao Li et. al.[18] compared the method proposed by

Amat with the iterative Newton method and demostrated that Chebyshev-type method

has less computational complexity and needs a small number of iterations to find the

solution. In that work they suggested a preconditioning technique for the initial guess

of the method to ensure that the method will converge.

2.2.3.1 Mathematical Formalization

The mathematical formalization of the Chebyshev-type method is given by (2.20).

Nm+1 = Nm(3I −ANm(3I −ANm)) (2.20)

Where:

Nm+1 next inverse aproximation,

Nm previous inverse aproximation,

I identity matrix,

A matrix to be inverted.

2.2.3.2 Preconditioning

In order to find the solution to the inverse matrix problem through the Chebyshev-type

method, it is important to choose a suitable initial guess, otherwise the method diverges.

With the equation (2.21) a suitable initial guess can be computed to ensure the

method’s convergence.

N0 =
AT

||A||1||A||∞
(2.21)

Where:

N0 initial guess,
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A matrix to be inverted,

AT transpose of A,

||A||1 max value of the summation of the elements on each column (2.22),

||A||∞ max value of the summation of the elements on each row (2.23).

||A||1 = maxj{
n∑

i=1

|aij |} (2.22)

||A||∞ = maxi{
n∑

j=1

|aij |} (2.23)

2.2.3.3 Word length

Word length is an important issue on designing an FPGA architecture; for an iterative

matrix inversion is defined in the preconditioning stage, equation (2.21).

Matrix A with size n and elements ranging in [0− c] interval will give, in the precondi-

tioning stage, a maximum number to be represented and can be computed with equation

(2.24).

max_n = ||A||1 ∗ ||A||∞ = (cn)2 (2.24)

The minimum number greater than zero to be represented is:

min_n =
min(A)

(cn)2
(2.25)

Where:

min(A) is the minimum number greater than zero contained in A.

If min_n is greater than zero, then min_n must be multiplied by a constant d in

order to fullfil inequality in (2.26). The Word length will be defined by equation (2.27).

2 > min_n ∗ d ≥ 1 (2.26)

word_length = 2 ∗ (bits_d+ bits_max_n) (2.27)
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Where:

bits_d, number of bits to represent d,

bits_max_n, number of bits to represent max_n.

2.2.4 QR Decomposition

QR Decomposition is a method where matrix A is decomposed onto two matrices Q and

R (2.28) [41]. Matrix inversion using QR decomposition can be computed by equation

(2.29).

A = QR (2.28)

A−1 = R−1QT (2.29)

Two algorithms to perform QR decomposition are the Classical Gram-Schmidt (QRD-

CGS) and the Modified Gram-Schmidt (QRD-MGS). The QRD-CGS has a round off

error when using a fixed point calculation. QRD-MGS overcomes this issue and is nu-

merically and accuracy superior to CGS [42]. QRD-CGS algorithm is shown in table 2.2

and QRD-MGS algorithm in table 2.3.

Table 2.2: QRD-CGS

For j = 1 : n;

wj = Aj

for i = 1 : (j − 1);

Ri,j = 〈Aj , Qi〉
wj = wj˘Ri,jQi

end

Qj =
wj
||wj ||2

Rj,j = ||wj ||2

Where, one index as in Aj or Qi means the j or i column, two indices like Ri,j indicates

an element of R and wj is a temporary vector.
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Table 2.3: QRD-MGS

For j = 1 : n;

wj = Aj

for i = 1 : (j − 1);

Ri,j = 〈wj , Qi〉
wj = wj˘Ri,jQi

end

Qj =
wj
||wj ||2

Rj,j = ||wj ||2

In (2.29) R−1 is calculated using back substitution [42]. Computation algorithm of

R−1 can be seen in table 2.4.

Table 2.4: R inversion using back substitution

For j = 1 : n;

For i = 1 : (j − 1)

iRi,j = iR(i, 1 : (j − 1)) ∗R(1 : (j − 1), j);

end

iR1:(j−1),j =
−iR1:(j−1),j

Rj,j

iRj,j = 1
Rj,j

end

Where, iR is the inverted matrix.

2.3 Transforms

For a signal to be suitable for compressed sensing it is necessary to find a sparse

representation or domain. Therefore, transforms are used for this duty. Three common

used transforms are: Discrete Fourier Transform (DFT), Wavelet Transform (WT) and

discrete cosine transform (DCT).

2.3.1 Discrete Fourier Transform

Fourier analysis gives frequency information about a signal. Some signals present

sparsity at the frequency domain, as example: sinusoids. Figures 2.2 and 2.3 show how

periodic signal are highly sparse in the frequency domain applying DFT .
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Figure 2.2: Sinusoidal signal.

Figure 2.3: DFT of sinusoidal signal from figure 2.2.

DFT and its inverse IDFT are given by equations (2.30) and (2.31). The two equations

give a numerical algorithm to obtain the frequency response of x(n) .

X(k) =

N−1∑
n=0

x(n)e−j(
2π
N

)kn =

N−1∑
n=0

x(n)W kn, (2.30)

0 ≤ k ≤ N − 1
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x(n) =
1

N

N−1∑
k=0

X(k)ej(
2π
N

)kn =
1

N

N−1∑
k=0

X(k)W−kn, (2.31)

0 ≤ n ≤ N − 1

Direct computation of DFT and IDFT using (2.30) and (2.31) requires N2 multipli-

cations and (N − 1)2 additions; so they become very large numbers when N is chosen

very large, in order to increase the resolution of the frequency response X(k) of a given

signal.

Fast Fourier Transform is an algorithm to compute the Discrete Fourier Transform and

its inverse. FFT improves computational efficiency, when the value for the radix N is

chosen as 2R, whereR is an integer, the number of multiplication is of order (N/2)log2(N)

and the number of additions is reduced to Nlog2N [43].

2.3.2 Wavelet Transform

The wavelet transform can be used as yet another way to describe the properties of

a waveform that changes over time, but in this case the waveform is divided not into

sections of time, but segments of scale.

In wavelet analysis a variety of different probing functions may be used, but the fam-

ily always consists of enlarged or compressed version of the basic function, as well as

translations. This lead to the equation for the continuous wavelet transforms (CWT):

W (a, b) =

∫ ∞
−∞

x(t)
1√
|a|

Ψ ∗ (
t− b

a
)dt (2.32)

Where b acts to translate the function across x(t) and a varies the time scale of the

probing function, Ψ. Wavelet coefficients describe the correlation between the waveform

and the wavelet function various translations and scales. If the mother wavelet or wavelet

function, Ψ(t), is appropriately chosen, then it is possible to reconstruct the original

waveform from wavelet coefficients [44].

Time range of a wavelet function, δtΨ, can be specified by the square root of the second

moment of a given wavelet about its time center, equation (2.33). The center time t0 is

given by equation (2.34).

δtΨ =

√∫∞
−∞(t− t0)2|Ψ(t/a)|2dt∫∞

−∞ |Ψ(t/a)|2dt
(2.33)
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T0 =

∫∞
−∞ t|Ψ(t/a)|2dt∫∞
−∞ |Ψ(t/a)|2dt

(2.34)

Frequency range is given by equation (2.35) around its center frequency given by (2.36)

δωΨ =

√∫∞
−∞(ω − ω0)2|Ψ(ω)|2dω∫∞

−∞ |Ψ(ω)|2dω
(2.35)

ω0 =

∫∞
−∞ ω|Ψ(ω)|2dω∫∞
−∞ |Ψ(ω)|2dω

(2.36)

CWT is highly redundant having many more coefficients then needed to represent a

signal. This becomes a problem due to high computational cost for signal recovery. The

discrete wavelet transform (DWT) overcomes this issue by restricting translation and

scale variations, usually to powers of 2 [44].

DWT can be performed using equations (2.37) and (2.38). Where φ is the scaling

function, c(n) is a series of scalars that defines the specific scaling function and d(n) is

a series of scalars that are related to the waveform x(t) and define the discrete wavelet

in terms of the scaling function. Relationship of d(n) and signal x(t) can be seen in the

inverse discrete wavelet transform equation (2.39) [44].

φ(t) =
∞∑

n=−∞

√
2c(n)φ(2t− n) (2.37)

Ψ(t) =

∞∑
n=−∞

√
2d(n)φ(2t− n) (2.38)

Inverse DWT is defined by equation 2.39.

x(t) =

∞∑
k=−∞

∞∑
l=−∞

d(k, l)2−k/2Ψ(2−kt− l) (2.39)

Here k and l are related to parameter a and b of equation 2.32 as: a = 2k, b = 2kl. d(k, l)

is a sampling of the continuous wavelet coefficients, W (a, b), at discrete points k and l
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2.3.3 Discrete Cosine Transform

The discrete cosine transform (DCT) [45] has been an important processing tool for

digital signals. Due to the sparsity levels it generates in signals, DCT is used in digital

signals formats such as MP3 for audio and JPEG for images.

For a signal x(m) m = 0, 1, 2, .., (M − 1) DCT is defined as [45]:

Gx(0) =

√
2

M

M−1∑
m=0

x(m) (2.40)

Gx(k) =

√
2

M

M−1∑
m=0

x(m)cos
(2m+ 1)kπ

2M
, (2.41)

k = 1, 2, . . . , (M − 1)

Where Gx(k) is the kth coefficient.

Two dimension DCT can be performed on an image with equation (2.42). Image is

divided into blocks of 8x8 pixels and x[m,n] represents the image pixel values in a block.

G[u, v] =
C[u]C[v]

4

7∑
m=0

7∑
n=0

x[m,n]cos
(2m+ 1)uπ

16
cos

(2n+ 1)vπ

16
, (2.42)

0 ≤ u, v ≤ 7.

where

C[u] =

{
1√
2

u = 0

1 1 ≤ u ≤ 7

The DCT, which belongs to the family of sinusoidal transforms, has received special

attention because of its success in the compression of real-world images [46].
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FPGA implementation

A CoSaMP FPGA-based architecture is proposed for compressed sensed signal recon-

struction. The matrix inversion process, required by the CoSaMP algorithm, is based

on an iterative Chebyshev-type method. This chapter is divided into two main sections:

matrix inversion architecture and CoSaMP architecture.

3.1 Matrix Inversion Architecture

In this section, the implementation of the Chebyshev matrix inversion algorithm, based

on the mathematical formulation proposed in [19][18] and described on section 2.2.3, is

presented. The algorithm has been divided, as shown in Table 3.1, into three stages:

preconditioning stage, based on equation (2.21), iterative stage, based on equation (2.20)

and verification stage, based on the premise of (3.1).

AA−1 = I (3.1)

In the preconditioning stage, matrix A is transposed and ||A||1 and ||A||∞ are calcu-

lated, using equations (2.22) and (2.23). The output of this stage is the initial guess, N0,

of the matrix inversion, which is saved into a RAM memory.

The iterative stage has been divided into its simplest operations such as matrix mul-

tiplication and subtraction. Every step at this stage is saved into an embedded RAM

memory.

Verification stage takes the output of the matrix multiplication, A ∗Nm in step 1© of

the iterative stage, after 3© has been done so the multiplication is made between the

21
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matrix A and the previously found inverse matrix approximation Nm+1. If the result

meets the condition established in (3.1) a finish signal is sent to the control block and

the inverse matrix A−1 = Nm+1 has been found.

Table 3.1: Matrix Inversion Algorithm

Input:
Matrix A,
Dimension of A.

Preconditioning

||A||1, ||A||∞
Transpose of A,

N0 = AT

||A||1||A||∞

Iterative

1© 3I −ANm

2© 3I −ANm(3I −ANm)

3© Nm+1 = Nm(3I −ANm(3I −ANm))

Verification

When iterative stage computes A ∗Nm+1 in step 1©

if (A ∗Nm+1) ≈ I
finish algorithm

else

Nm = Nm+1

iterative stage goes to 2©
end

Output:

Nm+1 as the inverted matrix A−1.

3.1.1 System Structure

The developed architecture has been divided into the following main blocks: precon-

ditioner, core, verifier, multiplexer, control, and storage. These blocks are described in

detail in the next subsections.

Figure 3.1 graphically depicts the system structure and its composition blocks.
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Figure 3.1: Matrix inversion system structure.

3.1.2 Preconditioner

Preconditioner blocks aim to give the first approximation to the inverse matrix A−1,

taking as input the elements of RAM A which contains matrix A. If initial guess is not

appropriately chosen, inversion method will not converge to the solution. This block is

constituted by three sub-blocks: max, transpose and division, as shown in figure 3.2.

Equations (2.22) and (2.23) are computed in the max sub-block with the max row

and max column blocks. At the output of the max block the product ||A||1 ∗ ||A||∞ is

obtained using a multiplier; this output is saved in a register and sent as input to the

division sub-block.

Max block performs the addition of the elements in every column and row; the result is

loaded in registers 1. When the addition of all elements in a column and the addition of

all element in a row are finished, the comparator sub-block determines if current results

are greater than a previous larger column and row elements addition stored in registers

2. If current results are greater they replace the data contained in registers 2, otherwise

data is kept. A graphical description of the max block can be seen in figure 3.3.

The transpose sub-block has an input (columns) and output (rows) address generators,

each one composed by two counters and one adder. Input address generator reads RAM

A as columns and output address generator sends the data to be stored as rows; in that

way the matrix A is transposed. Max and transpose sub-blocks are executed in parallel.

Once the transpose and Max sub-blocks are finished, the finite state machine sends a

start signal to the division sub-block. Initially the division sub-block takes the output
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Figure 3.2: Preconditioner block diagram.

of the max sub-block, given by ||A||1||A||∞, and performs the operation described in

equation (3.2) to find fact. After fact has been found, the sub-block multiplies every

element of AT by fact.

fact =
1

||A||1||A||∞
(3.2)

After this process is finished, the first approximation, N0, has been found and sent to

memory. The block sends a signal to the control block indicating the core block to start

the first iteration.
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Figure 3.3: Max block structure.

3.1.3 Core

The core block is composed of two sub-blocks: matrix multiplication and subtraction.

Based on those two sub-blocks it computes the next inverse matrix approximation, Nm+1

from (2.20). The block distribution is shown in figure 3.4.

Multiplication sub-block is a generic Matrix-Matrix multiplicator. The architecture

has a MAC (Multiply ACcumulate) structure and five address generators. The MAC is

constituted by four parallel multipliers and one adder, so it computes the multiplication

of eight elements, four of each matrix, at the same time. In [47] MAC is constituted just

by one multiplier and one accumulator. Address generators are distributed as follow:

two for reading row elements, two for reading column elements and one for generating

the output address.

MAC data flow is shown in figure 3.5. First, registers 1 are loaded with the data

to be multiplied; after one clock cycle, registers 2 load the other four elements to be

multiplied. Multipliers have one cycle delay so the correct product of all four multipliers

will be at accumulator inputs one cycle after registers 2 are loaded. Register 3 is storing

accumulator output while size dim of multiplied matrix is reached; afterwards, register

4 loads result and sends it to the RAM memory.

An improvement in computational time with respect to a previous version reported in

[47] was implemented, by designing a parallel structure to perform multiplication and

subtraction operations in this block. This approach cuts down the number of steps in

the inversion algorithm from six to three.
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Figure 3.4: Core block diagram.

Subtraction is a combinatorial sub-block that takes the MAC output and does the

subtraction given by 3I −MAC_dat_out. The address where the result will be stored

is the same as the MAC output address.
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Figure 3.5: MAC data flow.

3.1.4 Verifier

Verifier block is constructed using a comparator, a counter and a finite state machine.

While multiplication A ∗ Mn in the step 1© of the iterative stage is being computed,

verifier checks up if that multiplication gives as result an identity matrix.

For the verifier sub-block it is important to know if the multiplication result will be

stored in or out the matrix diagonal; thus multiplication sub-block sends a signal called

Diag-sign to the verifier. Diag-sign points out if the data under the verifying analysis is

a matrix diagonal element. The elements in the matrix diagonal must be of value one.

The counter keeps track of wrong elements. Once the multiplication process finishes,

the counter is checked in order to decide the next step; if the counter’s output is zero a

stop signal is sent and the inverted matrix given by A−1 = Nm+1 has been found. If the

counter’s output is greater than zero the iterative process continues through step 2©.
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Figure 3.6: Verifier block diagram.

3.1.5 Multiplexer

The multiplexer block, consisting on several multiplexers and demultiplexers, addresses

every block output data to the corresponding input of a block or memory. Multiplexers

are important for reducing FPGA RAM resource utilization. RAM memory can be re-

used by blocks that function at different times; this prevent to have repeated data. RAM

contents can be deleted after they are not needed anymore.

3.1.6 Control and storage

For the control of the system a finite state machine (FSM) has been implemented.

FSM carries out the blocks control to, recursively, find the inverse matrix as follows:

1© Matrix A is transposed and Max values ||A||1, ||A||∞ are computed.

2© Equation (3.2) is performed.

3© Initial guess Nm=0 is calculated, equation (2.21) .

4© 3I −ANm is computed and stored. Besides, verifier block checks if A ∗Nm ≈ I.

5© If A ∗Nm ≈ I, inversion process is finished.

6© If A ∗Nm 6= I, inversion process continues with 7©.

7© Core block performs and stores the operation 3I −ANm(3I −ANm).
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8© Core block computes Nm(3I −ANm(3I −ANm)).

9© Nm = Nm+1.

10© Process goes to step 4©.

An embedded RAM memory is used to store the data. Each memory is a dual access

RAM, so two elements can be withdrawn and one element can be stored, all simulta-

neously. The block has three access port address: two for reading and one for writing.

Data to be stored in memory is sent to the memory input data port. Memory elements

are withdrawn to access them at output data 1 and output data 2 ports. WE (Write

Enable) port enables writing into memory; writing address and data to be written could

be ready but data is not written until WE signal value is one.

Figure 3.7: RAM memory block.
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3.2 CoSaMP Architecture

In 2010, Jicheng Lu et al. [11] presented an optimization of the CoSaMP algorithm

introduced in [37], see table 2.1. In this work, the optimized CoSaMP algorithm shown

in table 3.2 was implemented. Several FPGA blocks were developed to, altogether, carry

out the compressed sensed signal reconstruction. Figure 3.8 depicts FPGA blocks that

computes CoSaMP algorithm of table 3.2.

Figure 3.8: FPGA CoSaMP Architecture blocks.

3.2.1 Transposer

The transposer block aims to give a transpose version of any matrix and is needed

when the Moore-Penrose pseudoinversion, given by (2.13) and re-written in(3.3), has to

be computed.

A† = (ATA)−1AT (3.3)

Operation is performed to a Φ sub matrix called ΦT and equation (3.3) becomes (3.4).

ΦT matrix is created by the matrix creation block described in the matrix creation

subsection .

(ΦT )† = ((ΦT )T (ΦT ))−1(ΦT )T (3.4)

Transposer block has two address generators whose architecture is as shown in figure

3.9. Counter 0 to dim counts from zero to a specified matrix dimension; for both, row
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Table 3.2: Optimized CoSaMP Algorithm

Input:
Sampling matrix Φ;
Sample data y;
Sparsity level k

During the 1st iteration

As a(0) = 0 and r = y

u = ΦT r

T = supp(u3k)

b|T = (Φ|T )†y

b|Tc = 0

a(1) = bk

r = y − Φa(1)

During the ith iteration

u = ΦT r

P =supp(a(i−1))

û = u|Pc

Ω =supp(û2k)

T = Ω
⋃
P

b|T = (Φ|T )†y

b|Tc = 0

a(i) = bk

r = y − Φa(i)

Output

An k-sparse approximation a of the
target signal.

and column address generators, this parameter will be matrix j-dimension. Counter dim

counts on dim increments. Here, dim for row address generator is matrix j-dimension

and for column address generator is matrix i-dimension.

The first address purpose is to read the matrix to be transposed as row elements.

Second address is to store the read row element as a column element. Figures 3.10 and

3.11 show the path that transposer address generators follow while they are reading

matrix A and writing matrix A−1.

3.2.2 Support

The support (supp) of a vector is the index set of the non-zero vector elements. Figure

3.12 shows a vector decomposed in two sets: elements and index. The support of this
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Figure 3.9: Transposer address generator.

vector will be the index subset T = [1 3 4].

Greedy algorithm usually require fewer elements than the whole support set; this is

dependent on the sparsity level k of the compressed sensed signal. When k-support is

needed index of k greater elements of the vector are meant to be taken. For example

figure 3.12, vector k-support with k = 2 will be T = [1 3] as the two greater elements

are 5 and 9 and their index are the needed k-support.

In order to find k-support of a given vector, for any k, a great-to-small arranging block

is implemented; in that manner index of k larger elements are at the first k memory

locations.

The Great-to-small block architecture is limned on figure 3.13. This blocks access two

RAM memories, one is where vector data is stored and the other has the index of the

data. Vector data is loaded in register 1 and 2 and at the same time index of that data

are loaded in register 5 and 6. The two loaded elements are compared; register 3 loads

the larger one and register 4 loads the smaller one. Multiplexers 1 and 2 send to the

block outputs the data and its index to be written into memory, addressing first the

larger element.
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Figure 3.10: Row address generator path.

Figure 3.11: Column address generator path.

In this block, the vector elements are arranged in descendent order comparing pairs of

elements and re-arranging them if needed. At the end the index of k, 2k or 3k larger

elements can be taken to construct the required support.

3.2.3 Matrix Creation

Matrix creation block creates a tall matrix, ΦT , of size m by 3k, where m is the

number of samples and k the sparsity level. This matrix is a sub-matrix of the sensing

matrix Φ and is created taking 3k columns of Φ.



Chapter 3. FPGA implementation 34

Figure 3.12: Decomposed vector in elements set and index set.

Figure 3.13: Great-to-small architecture.

The chosen Φ columns that span the matrix ΦT are those whose index are in the

support vector; i.e. if support vector is T = [5 2 4] then columns 5, 2 and 4 form ΦT .

To achieve the matrix creation the architecture has two counters: one that goes from 0 to

3k and the second one that counts in increments of 3k. The output of the 0 to 3k counter

is used as the support memory reading address. The output of the support is added to

the 3k counter output to form the Φ memory reading address, see figure 3.14. Writing

address is generated in a similar way as the transposer reading address, see figure 3.9.

3.2.4 Vector copier

Copier block is used to perform a vector replica in operations a(1) = bk and ŷ = y|Pc.

Copier is composed by one counter and a finite state machine. The counter generates

the reading and writing address, both being the same.

The finite state machine controls the counter and generates the memory write enable

(WE) signal. Figure 3.15 depicts the vector copier structure.
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Figure 3.14: Reading address of matrix creation block.

Figure 3.15: Vector copier structure.

The output of the memory where the vector to be copied is stored is directly connected

to the data input of the memory that will contain the vector replica.

3.2.5 Vector reset

In order to implement CoSaMP algorithm vectors b, ŷ, Ω, T and P need to be reset

on each iterations. b and ŷ must start with all their elements values set to zero. Support
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vectors Ω, T and P are reset by setting their values in ascendant order from 0 to n− 1,

where n is the sensed signal length.

Two architectures are required to carry out this task: zero reset and ascending order

reset. These architectures are identically composed by a counter to generate the memory

address where the data will be written and a finite state machine to generate the memory

write enable (WE) signal.

The difference between these two architecture is the output data to be written; for

the zero reset the output data always will be zero and for the ascending order reset the

output data will be the same generated address.

3.2.6 Matrix inversion

Matrix inversion is the architecture depicted in figure 3.1 and described in the previous

section. For the CoSaMP algorithm the matrix size to be inverted depends on the sparsity

of the compressed sensed signal and always is 3k by 3k, where k is the sparsity level.

3.2.7 Multiplication

Multiplication is the generic matrix/matrix multiplication sub-block whose nucleus is

limned in figure 3.5. As a generic architectures, it can multiply matrix and vectors of

any size and it is also flexible to word length variations.

3.2.8 Subtraction and Verifier

CoSaMP algorithm at its final step computes a residual to reflect the part of the signal

that has not been approximated. This operation is defined in equation 3.5. When

residual, r, is smaller than an established threshold, CoSaMP iterations stop.

r = y − Φai (3.5)

Where:

r Residual,

y samples vector,

Φ sensing matrix,
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ai current signal approximation.

In this stage multiplication Φai, subtraction y − Φai and verification of r value are

perform in parallel. Multiplication is computed by the multiplication block and a

Subtraction-verifier block is implemented to execute the remaining two operations. Subtraction-

verifier block is depicted in figure 3.16.

Figure 3.16: Subtraction-verifier block structure.

While the residual vector, r, is computed, comparator checks if every element of r

meets the specified threshold condition. If this condition is met, comparator sends a

signal to the finite state machine in order to increment the counter. Counter keeps track

of the non desirable values of r. At the end of the r calculation, if counter output is zero

CoSaMP algorithm is finished, otherwise another iteration is started.

3.2.9 Control

Control block has a ROM Memory and a finite state machine. The ROM memory has

all control signals stored and the finite state machine controls ROM access address. The

computing flow of the implemented CoSaMP architecture is as follow.

1© Operation u = ΦT r is computed.

2© Support T = supp(u3k) is obtained.

3© Sub-matrix ΦT is created.
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4© Pseudoinverse (ΦT )† is performed.

5© Multiplication b = (ΦT )†y is computed.

6© Signal approximation is created by copying the k larger elements of b, a = bk.

7© Residual is calculated, r = y − Φa.

8© If residual r meets threshold condition, CoSaMP algorithm is finished.

9© If residual value is above specified threshold, CoSaMP continues with another it-

eration.

10© Operation u = ΦT r is computed.

11© Counter of subtraction-verifier block is reset.

12© Support of previous signal approximation, P = supp(a), is obtained.

13© A copy of vector û = u is made taking out all elements whose index are in the

support vector P .

14© Support Ω = supp(û) is obtained.

15© Support T is obtained by merging P and Ω, T = P
⋃

Ω.

16© Algorithm goes to step 3©

Storage of all vector and matrices is achieved by implementing RAM memories as the

one shown in figure 3.7.
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MATLAB Graphical User Interface

MATLAB graphical user interfaces (GUI) are friendly and mostly point and click soft-

ware applications, useful to organize data and display results in a fast and easy way. For

this work a MATLAB GUI has been developed as a tool for compressed sensing theory

exploration. Its main purpose is to rapidly test sensing matrix and transforms to 1-D

and 2-D signals. CoSaMP algorithm is used to reconstruct the sensed signal, but as a

flexible interface it can be easily modified to use other compressed sensing algorithms.

Figure 4.1 limns the user interface.

GUI features, leaving MATLAB code as implicit, can be divided into two categories:

inputs and outputs.

4.1 GUI Inputs

The user can define a set of conditions to perform an experiment. These are defined

by the data type, sensing matrix, transform, maximum compressed sensing algorithm

iterations, signal sparsity, sparsity threshold and name of the file where results will be

stored; this inputs are chosen to fulfill the test needs.

4.1.1 Data type

The interface can work with two different data types: images and 1-D signals; it has

two mutually exclusive radiobuttons in order to select the data type, see figure 4.2.

39
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Figure 4.1: Graphical User Interface as a compressed sensing tool.

Figure 4.2: Data type selection.

Two folders must be created in the code root directory to store the signals that will

be processed, these folder are images, for images and signals to for 1-D signals. When a

data type is selected, for example 1-D signals, GUI access signals folder and populates a

listbox with the name of all files in that folder whose extension is .mat, this is depicted

in figure 4.3.

Figure 4.3: Data file selection.

Images must be in .jpeg and rgb formats. Images are read using MATLAB function

imread(’images/images_name.jpeg’). Once an image is loaded, it is converted to gray

scale using rgb2gray(images) function.

1-D signals are stored in a .mat file. The .mat file needs to contain the signal in

a variable named x. Signal is load using MATLAB load(’signals/signal_name.mat’)



Chapter 4. MATLAB Graphical User Interface 41

function.

Loaded data is simulated to be compressed sensed computing operation Φx. Subse-

quently, it is reconstructed with the CoSaMP algorithm.

4.1.2 Sensing matrix

Sensing matrix, as described in previous section, is an important element for com-

pressed sensing that can lead to success or failure on the signal reconstruction. MATLAB

GUI let the user to choose the proper sensing matrix for an specific problem, see figure

4.4.

Figure 4.4: Sensing matrix selection panel.

Random sensing matrix, as it has been said, fulfill the rip condition so they are, with

high probability, good to be a sensing matrix; therefore, random matrices are the default

sensing matrix option. The m by n sensing matrices are generated using phi = rand(

n,m) MATLAB instruction, where n is the sensed signal length and m is the number of

samples, a percent of n.

The percentage of measurements, m, is controlled by a slider GUI object. Slider values

vary from 0 to 1 representing a 100% scale. The number of measurements must be

greater than three times signal sparsity, this is:

m ≥ 3k (4.1)

Custom matrix radiobutton gives the option to use any other matrix that were previ-

ously created and saved as a .mat file. The slider is disabled and the textbox is enabled

when the custom matrix option is selected. Sensing matrix is imported using MATLAB

function load(matrix_name.mat). By default textbox text is .mat ; if this text is leaved as

it is, the code interprets that no sensing matrix has been selected and shows a message

error, see figure 4.5.

The j-dimension of loaded custom matrix must be the same as the sensed signal length

(n). Otherwise, a message error window, shown in figure 4.6, is displayed.
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Figure 4.5: Custom sensing matrix name error.

Figure 4.6: Matrix dimension and sensed vector length mismatch.

4.1.3 Transform

Transform selection is crucial for compressed sensing, for different transforms signal

sparsity might vary. This GUI let the user to select which transform will be used to

simulate the compressed sensing acquisition. Preset or a user defined transforms can be

selected.

There are two preset transforms defined for for 1-D and 2-D: wavelet and discrete

cosine transform. From a pop-up menu one of the preset transforms can be chosen; as

default wavelet transform is selected. Wavelet and DCT require different parameter to be

set. A transform parameters setting menu is displayed for the selected preset transform.

Wavelet transform can be computed using haar or daubechies mother wavelet, with six

decomposition levels. Figure 4.7 shows wavelet setting menu.

Figure 4.7: Wavelet setting menu.

Wavelet setting menu becomes invisible when DCT transform is selected; in its place

slider and label GUI objects show up, see figure 4.8. These objects are used to set a

threshold for the DCT, all signal elements under that threshold are set to zero. Slider
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values variate from 0 to 1 with increments of 0.001, giving threshold values ranging

between 1 to 1000.

Figure 4.8: Discrete cosine transform setting menu.

Besides the preset transforms, a custom user defined transform can be used in this

GUI. Preset transform panel is disabled when custom transform option is selected. The

custom transform must be coded as a function in MATLAB language and stored in a file

with .m extension; the file have to be placed in the root GUI folder. The input of the

transform function is an image or an 1-D signal vector, the output should be a coefficient

matrix of the same size as the image or a vector of the same length of the 1-D signal.

Custom transform panel is shown in figure 4.9.

Figure 4.9: Custom transform panel.

In addition to the transform .m file an inverse transform file is needed to reconstruct

the 1-D signal or image from its recovered transform coefficients. Structure of the inverse

transform file is similar to the transform structure.

The two text box in the custom transform panel are use to write down the transform

and inverse transform names. Their initial text is my_transform. If transform textbox

text is the same as its default, it is infer that no transform has been selected and the

message box shown in figure 4.10 is displayed. The same for inverse transform textbox,

inverse transform error message is shown in figure 4.11.
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Figure 4.10: Wrong transform selection error.

Figure 4.11: Wrong inverse transform selection error.

4.1.4 Other inputs

In other inputs are enclosed the parameters shown in figure 4.12: max iteration, spar-

sity, sparsity threshold and summary file name.

Figure 4.12: Input parameters.

Max iteration refers the maximum number of iteration for the CoSaMP algorithm.

Sparsity is a parameter that defines how many elements of a signal or image are the

most representative. Sparsity parameter can be larger or smaller than the real signal

sparsity. For example almost all FFT coefficients of a sinusoidal signal are close to zero,

but are not zero and just one of them is the most representative so the user can define

sparsity parameter as one.

Sparsity threshold is used to set to zero all transform coefficients under that threshold.

GUI computes the real sparsity of the signal so the user can find out the threshold value

above which the most significant transform coefficients are located.

GUI generates a .txt summary file which is described in next subsection. In the textbox

text the summary file name is written.
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4.2 GUI outputs

After the algorithm is finished the result information is given mainly by three different

ways: label text objects, graphs and plots and a summary file.

In the GUI design are five labels that give a first glimpse to the summary of the

experiment. Those labels can be seen in figure 4.13.

PSNR value is the peak signal to noise ratio between the original and recovered image;

mean squared error (MSE) is computed between original and recovered 1-D signal. PSNR

and MSE are used to measure the reconstruction performance.

Time expresses in seconds how long it took for the CoSaMP algorithm computation.

Iteration label shows the number of iteration CoSaMP algorithm took to recover the

transform coefficients.

Sparsity label give the real sparsity of the signal; for figure 4.13 was the sparsity of the

FFT coefficients for a three added sinusoidal signal with two thousand samples length;

it can be seen that no one of its coefficients was zero, although user defined sparsity for

this experiment was three. Last label shows the under examination signal or image size.

Figure 4.13: Output GUI labels.

Four axes are other kind of GUI output objects. Upper left axes display the transform

coefficients and upper right axes display the recovered transform coefficients. Lower left

axes display the original signal or images and lower right axes the recovered signal or

image.

Figure 4.14 depicts an experiment for an image of 16 by 16 pixel size using DCT

tranform with threshold = 50.

The experiment of a three sinusoidal added signal using Fast Fourier Transform, whose

output label values are in figure 4.13, is depicted in figure 4.15.

The GUI creates a folder named results in the root directory. Every time the code is

executed, a folder with the date and time of the simulation is created in it. A .mat file,

containing simulation variables, is saved into the simulation folder. This is in order to

reproduce the simulation under the same conditions.
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Figure 4.14: Image simulation axes display.

Additionally a .txt file is created to store simulations summary. Summary information

is organized as follows.

• folder, is the folder, name with the simulation date, where data is stored.

• file, is the time and file name of the simulation.

• testing signal, is the name of the image or 1-D .mat used for that simulation.

• Size, is the size of the signal.

• Transform, is the used transform.

• Samples percent, is the value of m, that is the percent of n. It is expressed in values

ranging between 0 and 1.

• dec_lev, is the Wavelet decomposition level, if used transform is not wavelet a value

of NA will appear.

• DCT_Thresh, is the discrete cosine transform threshold. If a different transform

is used NA will appear.

• k, is the real signal sparsity.
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Figure 4.15: 1-D simulation axes display.

• k tresh, is the sparsity threshold, used to decrease the sparsity of a signal.

• fix k, is the user defined signal sparsity.

• fom, is the figure of merit value that measures the signal reconstruction. Peak

Signal to Noise Ratio for images and mean square error for 1-D signals.

• Time, is the CoSaMP computation time (seconds).

• Iterations, are the CoSaMP iterations taken to recover a signal.

• max iterations, are the maximum number of iterations defined by user to automat-

ically break CoSaMP algorithm.

An important conclusion can be made through summary file: if iterations are equal to

max iterations, signal was not correctly recovered.
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Results

In this work an FPGA architecture for compressed sensing signal recovery has been

developed. This architecture includes matrix multiplication, matrix transposition, matrix

inversion and a Compressed Sampling Matching Pursuit. Besides, a matlab graphical

user interface has been developed as a compressed sensing theory exploration tool.

5.1 FPGA architectures

FPGA architectures are validated by their device utilization, latency and maximum

working frequency. This implementation is focused on resource optimization. Usage of

DSP blocks, the most limited resources, is mainly affected by the word length.

5.1.1 Matrix Multiplication Architecture

The matrix multiplication architecture is a generic FPGA structure capable to multiply

matrices and vectors of any size. Tables 5.1 for Virtex 4 and 5.2 for Spartan6 summarize

the device resource utilization for the matrix multiplication structure for different word

lengths: 20, 26 and 36 bits. It can be seen that this architectures leaves enough space to

implement other architectures.

48
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Table 5.1: Matrix Multiplication Xilinx Virtex 4

Device Utilization Summary

Logic Utilization 36 Bits 26 Bits 20 Bits Available

Slices 771 457 529 10240

Slice Flip Flops 797 519 440 20480

4 input LUTs 2168 676 900 20480

DSP48s 32 16 4 128

Table 5.2: Matrix Multiplication Xilinx Spartan 6

Device Utilization Summary

Logic Utilization 36 Bits 26 Bits 20 Bits Available

Slice Registers 785 528 497 54575

Slice LUTs 1138 644 1246 27288

LUT-FF pairs 389 198 279 4780

DSP48A1s 32 16 4 58

Latency for the matrix multiplication architecture is depicted by the graph in figure

5.1. Latency increases on an exponential way as a function of matrix size n.

Figure 5.2 shows the working frequency behavior due to word length variations and

different FPGA platforms. The maximum achieved working frequency for this structure

is 164 Mhz in a virtex 4 using a word length of 20 bits.

5.1.2 Matrix Transposer Architecture

Matrix transposition is another important operation when working with matrices. The

transposer architecture performs this operation. Being, as the matrix multiplication

structure, a generic architecture it can transpose any matrix of any size. Matrix trans-

poser device utilization for a virtex 4 and spartan 6 is summarize in tables 5.3 and 5.4.

Dsp blocks are not needed for this structure and as it can be seen in the summary tables,

transposer architecture uses small amount of the board resources.

The architecture is sensible to address length variations. The address length is the

number of used bits for the memory address. It was synthesized for two address lengths

20 and 8 bits.
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Figure 5.1: Matrix multiplication latency.

Figure 5.2: Matrix multiplication working frequency.

Table 5.3: Matrix Transposer Xilinx Virtex 4

Device Utilization Summary

Logic Utilization 20 Bits 8 Bits Available

Slices 102 57 10240

Slice Flip Flops 92 44 20480

4 input LUTs 195 108 20480

DSP48s 0 0 128
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Table 5.4: Matrix Transposer Xilinx Spartan 6

Device Utilization Summary

Logic Utilization 20 Bits 8 Bits Available

Slice Registers 101 53 54575

Slice LUTs 155 81 27288

LUT-FF pairs 93 47 4780

DSP48A1s 0 0 58

Matrix transposition operation, based on the proposed FPGA architecture, has a

latency shown in figure 5.3. This results are for square matrices of size n. However, the

structure is proficient to transpose a matrix of any dimension.

Figure 5.3: Matrix transposer latency.

Maximum working frequency is limned by the graph in figure 5.4. This architecture

works with generating address so maximum working frequency is not affected by the

word length; on the other hand address length directly affects the maximum working

frequency. In spite of that the maximum working frequency difference between the

architecture implemented on a virtex 4 and a spartan 6 is considerable, the maximum

working frequency for the spartan 6 is still an excellent working frequency.
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Figure 5.4: Matrix transposer maximum working frequency.

5.1.3 Matrix Inversion Architecture

Latency for the matrix inversion architecture, based on the iterative chebyshev-type

method, it is mainly affected by the matrix size. Figure 5.5 shows a graph of the structure

latency for different matrix sizes and word lengths, y-axis is in a logarithmic scale.

Table 5.5 shows that if word length does not change, DSP blocks usage remains un-

changed. The architecture was implemented in various FPGA platforms: Virtex 4

XC4VSX25, Spartan 6 XC6SLX45, Cyclone IV EP4CGX150DF31C7 and Cyclone II

EP2C35F672C6. Device utilization for the different FPGAs families for 36 bits word

length and 8x8 matrix size is summarized in tables 5.6, 5.7, 5.8 and 5.9. Due to the

resource utilization, cheap FPGA families such as the Spartan 6 can be used.

Table 5.5: Matrix inversion Dsp blocks usage

Matrix size (n) This work [41, 48]
20 bits 26 bits 36 bits 19 bits

4 x 4 7 28 56 12

6 x 6 7 28 56 18

8 x 8 7 28 56 24



Chapter 5. Results 53

Figure 5.5: Matrix inversion latency at different word lengths.

Table 5.6: Matrix inversion and CoSaMP in Xilinx Virtex 4

Device Utilization Summary

Logic Utilization Inversion CoSaMP Available

Slices 1382 2835 10240

Slice Flip Flops 1190 1875 20480

4 input LUTs 2133 5084 20480

FIFO16/RAMB16s 12 53 128

DSP48s 56 56 128
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Table 5.7: Matrix Inversion and CoSaMP in Xilinx Spartan 6

Device Utilization Summary

Logic Utilization Inversion CoSaMP Available

Slice Registers 1245 1917 54575

Slice LUTs 2013 3942 27288

LUT-FF pairs 560 1079 4780

Block RAM/FIFO 6 44 116

DSP48A1s 56 56 58

Table 5.8: Matrix Inversion and CoSaMP in Altera Cyclone II

Device Utilization Summary

Logic Utilization Inversion CoSaMP Available

Logic elements 2333 13830 33216

Registers 934 6030 33216

Memory bits 27648 383040 483840

Multipliers 9-bit 56 56 70

Table 5.9: Matrix Inversion and CoSaMP in Altera Cyclone IV

Device Utilization Summary

Logic Utilization Inversion CoSaMP Available

Logic elements 2352 4321 149760

Registers 970 1478 149760

Memory bits 27648 391488 6635520

Multipliers 9-bit 56 56 720

Figure 5.6 shows the maximum working frequency for the matrix inversion structure

implemented in the different FPGA boards varying the word length.

5.1.4 CoSaMP Architecture

The Compressed Sampling Matching Pursuit (CoSaMP) algorithm was implemented

including the iterative Chebyshev-type matrix inversion method. Latency for CoSaMP
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Figure 5.6: Maximum frequency comparison.

architecture is shown in figure 5.7. Latency was computed using test vectors of different

sparseness, ranging from one to nine. Figure 5.8 depicts latency of an iteration of the

CoSaMP algorithm partitioned into its main blocks. This picture is divided in three

parts: pre-pseudoinversion, pseudoinversion and post-pseudoinversion.

Maximum working frequency for the CoSaMP algorithm varies as data word length

change and is the same as the matrix inversion maximum working frequency. Obtained

results are depicted in figure 5.6.

Aldec Active-HDL software was used to simulate the VHDL architecture. A simulation

of the CoSaMP algorithm can be seen in figure 5.9; a signal with nine sparse level was

recovered in five iterations. In descendent order, simulated signals are: reset, clock,

CoSaMP finish signal, CoSaMP ready signal, pseudoinversion ready signal, inversion

ready signal, matrix multiplication ready signal, support ready signal, matrix creation

ready signal, vector copier ready signal, vector reset ready signal and transposer ready

signal. For the ready signals a zero value is when the block is working and one when the

block is ready to be used.
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Figure 5.7: CoSaMP architecture Latency comparison at different sparse levels.

5.2 Matlab Graphical User Interface

Various test were performed using the developed MATLAB graphical user interface,

in order to extract the signal features useful for compressed sensing. The 64x64 pixels

images of figures 5.10 and 5.11 were used as testing images and as 1-D testing signals ten

sinusoidal waveforms, described by the following equations and stored in a 2000 length

vector, were used.

1© Cos(2πt)

2© Cos(2πt) + 0.4Sin(2π7t)

3© Cos(2πt) + 0.4Sin(2π7t) + 0.2Cos(2π10t)

4© Cos(2πt) + 0.4Sin(2π7t) + 0.2Cos(2π10t) + 0.024Sin(2π12t)

5© Cos(2πt) + 0.4Sin(2π7t) + 0.2Cos(2π10t) + 0.024Sin(2π12t) + 0.04Cos(2π20t)

6© Cos(2πt) + 0.4Sin(2π7t) + 0.2Cos(2π10t) + 0.024Sin(2π12t) + 0.04Cos(2π20t) +

0.06Sin(2π25t)

7© Cos(2πt) + 0.4Sin(2π7t) + 0.2Cos(2π10t) + 0.024Sin(2π12t) + 0.04Cos(2π20t) +

0.06Sin(2π25t) + 0.058Cos(2π29t)
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Figure 5.8: CoSaMP blocks latency for a signal with s=9 and 36 bits word length.
Divided in a) pre-pseudoinversion, b) pseudoinversion and c) post-pseudoinversion.

Figure 5.9: CoSaMP architecture simulation.

8© Cos(2πt) + 0.4Sin(2π7t) + 0.2Cos(2π10t) + 0.024Sin(2π12t) + 0.04Cos(2π20t) +

0.06Sin(2π25t) + 0.058Cos(2π29t) + 0.064Sin(2π32t)

9© Cos(2πt) + 0.4Sin(2π7t) + 0.2Cos(2π10t) + 0.024Sin(2π12t) + 0.04Cos(2π20t) +

0.06Sin(2π25t) + 0.058Cos(2π29t) + 0.064Sin(2π32t) + 0.104Cos(2π52t)
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10© Cos(2πt) + 0.4Sin(2π7t) + 0.2Cos(2π10t) + 0.024Sin(2π12t) + 0.04Cos(2π20t) +

0.06Sin(2π25t)+0.058Cos(2π29t)+0.064Sin(2π32t)+0.104Cos(2π52t)+0.096Sin(2π100t)

Figure 5.10: Lena testing image.

Figure 5.11: Pacman testing image.

First test was performed to obtain the sparseness of a 1-D signal due to different trans-

form condition. In this test two transform, Discrete Cosine Transform and Fast Fourier

Transform, were computed for the ten sinusoidal modeled by equations in the previous

list. Figure 5.12 shows the sparsity of each sinusoidal signal due to the transform, setting

to zero all transform coefficients whose absolute value is under one. It can be seen that

for sinusoidal signals FFT gives a lower sparsity level than DCT.

Although FFT offers more sparsity on sinusoidal signals, CoSaMP showed a better

reconstruction performance for sinusoidal signals sensed using DCT. The mean squared

error is computed between original and reconstructed signal. Reconstruction was ob-

tained taking 1000 measurements to recover the 2000 length signal. Results can be seen

in Figure 5.13.

Figure 5.14 depicts results of an experiment performed to extract Lena image sparsity

using wavelet transform. In this experiment a Haar mother wavelet is used for different

wavelet decomposition levels and threshold values. It can be seen that with a zero thresh-

old image has a poor sparseness; a considerable difference is seen as sparsity threshold

increases. The reconstructed lena image can be seen in figure 5.15(b), it was recovered

in three CoSaMP iterations using 70% of the samples.

Image sparsity due to specific transform conditions is also affected by the image nature.

This is shown in figure 5.16 where sparsity of pacman (figure 5.11) and lena (figure 5.10)

images is compared. In this test a haar wavelet transform is computed with a sparsity

threshold value of 60 and four different decomposition levels.
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Figure 5.12: Transform comparison.

Figure 5.13: Reconstruction error.
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Figure 5.14: Haar transform for different threshold level.

(a) Original image. (b) Reconstructed image

Figure 5.15: 64 pixels lena testing image at 1.5 scale.
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Figure 5.16: Haar trasform for different images.



Chapter 6

Conclusion and Future Work

The aims of this work were to implement an FPGA-based architecture of a compressed

sensing recovering algorithm and develop of a MATLAB Graphical User Interface as an

educational compressed sensing theory exploration tool. As a result of this work generic

FPGA blocks for matrix transposition and multiplication were developed; as generic

structures they can be utilized in other field of applications, where matrix operations are

needed. Also, an FPGA-based reconstruction architecture for compressed sensed sparse

signal was implement with FPGA resource optimization.

The compressed sensing greedy algorithms are suitable for hardware implementation,

thus a greedy algorithm named Compressed Sampling Matching Pursuit was used for

this work. Synthesis results of the FPGA architecture show that the CoSaMP structure

can be implemented on small low cost FPGA boards as the Spartan6. If the architecture

is needed for a bigger application FPGA boards as the Virtex4 can be utilized.

CoSaMP algorithm requires to find the inverse of a matrix. The iterative Chebyshev-

type method was proposed to carry out this task. It was found that the Chebyshev

method iterations depend on the matrix data, affecting the FPGA inversion block latency.

The inversion block make use of the generic matrix multiplication that is also used by

the CoSaMP architecture. Thus, when CoSaMP block is implemented FPGA multipliers

usage is increased just by two. The shortcomings of the Chebyshev-type matrix inversion

are the memory usage, for large matrices external RAM is needed.

The FPGA implementation, with appropriate storage modifications, is robust to

changes on word length and sensed signal size. Under the same word length, FPGA

DSP blocks usages remains unchanged.

The MATLAB graphical user interface is useful for theoretical exploration, mainly for

testing sensing matrix, transforms and signals. In the MATLAB GUI the test of sensing

62
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matrix design and transforms under different conditions could give useful information

about a specific signal that can be used for a compressed sensing application. MATLAB

GUI uses the CoSaMP algorithm to reconstruct the signal but it can easily be extended

for other compressed sensing algorithm.

6.1 Future Work

• Implement, based on developed blocks, a different matrix inversion method.

• Develop FPGA external RAM controller.

• Incorporate in MATLAB GUI other compressed sensing reconstruction algorithms.

• Modify FPGA architecture and MATLAB GUI in order to perform a CPU-FPGA

hybrid simulations.

6.2 Publications Obtained from this Thesis

• H. D. Rico-Aniles, J. M. Ramirez-Cortes, and J. de J. Rangel-Magdaleno. FPGA-

based inversion matrix using an iterative chebyshev-type method in the

context of compressed sensing. International Instrumentation and Measure-

ment Technology Conference (I2MTC), Montevideo, Uruguay, May 2014.
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CoSaMP VHDL code

1 library IEEE;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4 use std.textio.all;

5

6

7 entity cosamp is

8 generic(

9 n : integer := 36;

10 m : integer := 21;

11 d : integer := 10);

12 port(

13 rst : in std_logic;

14 clk : in std_logic;

15 cosamp_str : in std_logic;

16 S1 : in std_logic_vector(m-1 downto 0);

17 S3 : in std_logic_vector(m-1 downto 0);

18 dim_i : in std_logic_vector(d-1 downto 0);

19 dim_j : in std_logic_vector(d-1 downto 0);

20 u_Di : in std_logic_vector(n-1 downto 0);

21 u_we : in std_logic;

22 u_Wa : in std_logic_vector(m-1 downto 0);

23 phi_Wa : in std_logic_vector(m-1 downto 0);

24 phit_Di : in std_logic_vector(n-1 downto 0);

25 phi_Di : in std_logic_vector(n-1 downto 0);

26 phi_we : in std_logic;

27 fsm_fin : out std_logic;

28 fsm_rdy : out std_logic

29 );

30 end cosamp;
64
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31

32 architecture cosamp of cosamp is

33 ---------------- COMPONENTS

34 ------------- MUXES ----------------------

35 COMponent mux2_1_log_cosamp is

36 port (

37 I0,I1: in std_logic;

38 S : in std_logic;

39 y : out std_logic

40 );

41 end component;

42

43 component mux2_1_cosamp is

44 generic(n: integer :=18);

45 port (

46 I0,I1: in std_logic_vector(n-1 downto 0);

47 S : in std_logic;

48 y : out std_logic_vector(n-1 downto 0)

49 );

50 end component;

51

52 component mux3_1_log_cosamp is

53 port (

54 I0,I1,I2 : in std_logic;

55 S : in std_logic_Vector(1 downto 0);

56 y : out std_logic

57 );

58 end component;

59

60 component mux3_1_cosamp is

61 generic(n: integer :=18);

62 port (

63 I0,I1,I2 : in std_logic_vector(n-1 downto 0);

64 S : in std_logic_vector(1 downto 0);

65 y : out std_logic_vector(n-1 downto 0)

66 );

67 end component;

68

69 component mux4_1_cosamp is

70 generic(n: integer :=18);

71 port (

72 I0,I1,I2,I3 : in std_logic_vector(n-1 downto 0);

73 S : in std_logic_vector(1 downto 0);

74 y : out std_logic_vector(n-1 downto 0)



Appendix A. CoSaMP VHDL code 66

75 );

76 end component;

77

78 component mux4_1_log_cosamp is

79 generic(n: integer :=18);

80 port (

81 I0,I1,I2,I3 : in std_logic;

82 S : in std_logic_vector(1 downto 0);

83 y : out std_logic

84 );

85 end component;

86

87 component mux5_1_log_cosamp is

88 generic(n: integer :=18);

89 port (

90 I0,I1,I2,I3,I4 : in std_logic;

91 S : in std_logic_vector(2 downto 0);

92 y : out std_logic

93 );

94 end component;

95 ---- MULTIPLICATION------------------------------

96 component Multiplication is

97 generic(n: integer := 36;

98 m: integer := 21;

99 d: integer := 10);

100 port(

101 rst: in std_logic;

102 clk: in std_logic;

103 str : in std_logic;

104 dim_i1 : in std_logic_vector(d-1 downto 0);

105 dim_j1 : in std_logic_vector(d-1 downto 0);

106 dim_i2 : in std_logic_vector(d-1 downto 0);

107 dim_j2 : in std_logic_vector(d-1 downto 0);

108 dat_row1 : in std_logic_vector(n-1 downto 0);

109 dat_row2 : in std_logic_vector(n-1 downto 0);

110 dat_col1 : in std_logic_vector(n-1 downto 0);

111 dat_col2 : in std_logic_vector(n-1 downto 0);

112 add_row1 : out std_logic_vector(m-1 downto 0);

113 add_row2 : out std_logic_vector(m-1 downto 0);

114 add_col1 : out std_logic_vector(m-1 downto 0);

115 add_col2 : out std_logic_vector(m-1 downto 0);

116 dat_out : out std_logic_vector(n-1 downto 0);

117 add_out : out std_logic_vector(m-1 downto 0);

118 diag_sign: out std_logic;
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119 we : out std_logic;

120 fin : out std_logic;

121 rdy : out std_logic

122 );

123 end component;

124 --------------------------- great2small --------------------------

125 component g2s is

126 generic(n: integer := 36;

127 m: integer := 21;

128 d: integer :=10);

129 port(

130 rst : in std_logic;

131 clk : in std_logic;

132 str : in std_logic;

133 dimj: in std_logic_vector(d-1 downto 0);

134 dat1: in std_logic_vector(n-1 downto 0);

135 dat2: in std_logic_vector(n-1 downto 0);

136 ind1: in std_logic_vector(m-1 downto 0);

137 ind2: in std_logic_vector(m-1 downto 0);

138 dat_o: out std_logic_vector(n-1 downto 0);

139 ind_o: out std_logic_vector(m-1 downto 0);

140 RA1 : out std_logic_vector(m-1 downto 0);

141 RA2 : out std_logic_vector(m-1 downto 0);

142 WA : out std_logic_vector(m-1 downto 0);

143 we : out std_logic;

144 fin : out std_logic;

145 rdy : out std_logic

146 );

147 end component;

148

149 component matcre is

150 generic(n: integer :=36;

151 m: integer :=21;

152 d: integer :=10);

153 port(

154 rst: in std_logic;

155 clk: in std_logic;

156 str: in std_logic;

157 dim_i : in std_logic_vector(d-1 downto 0);

158 dim_j : in std_logic_vector(d-1 downto 0);

159 S3 : in std_logic_vector(m-1 downto 0);

160 index : in std_logic_vector(m-1 downto 0);

161 dat_in : in std_logic_vector(n-1 downto 0);

162 dat_out : out std_logic_vector(n-1 downto 0);
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163 read_address : out std_logic_vector(m-1 downto 0);

164 write_address : out std_logic_vector(m-1 downto 0);

165 sup_address : out std_logic_vector(m-1 downto 0);

166 we : out std_logic;

167 fin : out std_logic;

168 rdy : out std_logic

169 );

170 end component;

171

172 component ver_cop is

173 generic(n: integer := 36;

174 m: integer := 21;

175 d: integer := 10);

176 port(

177 rst: in std_logic;

178 clk: in std_logic;

179 str: in std_logic;

180 RAdd_str : in std_logic_vector(m-1 downto 0);

181 RAdd_end : in std_logic_vector(d-1 downto 0);

182 WrAdd_str: in std_logic_vector(m-1 downto 0);

183 dat_i : in std_logic_vector(n-1 downto 0);

184 dat_o : out std_logic_vector(n-1 downto 0);

185 read_add : out std_logic_vector(m-1 downto 0);

186 write_add: out std_logic_vector(m-1 downto 0);

187 we : out std_logic;

188 fin : out std_logic;

189 rdy : out std_logic);

190 end component;

191

192 component ind_res is

193 generic(m: integer := 21;

194 d: integer := 10);

195 port(

196 rst : in std_logic;

197 clk : in std_logic;

198 str : in std_logic;

199 dim : in std_logic_vector(d-1 downto 0);

200 address : out std_logic_vector(m-1 downto 0);

201 we : out std_logic;

202 fin : out std_logic;

203 rdy : out std_logic

204 );

205 end component;

206
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207 component bc is

208 generic(n: integer := 36;

209 m: integer := 21;

210 d: integer := 10);

211 port(

212 rst : in std_logic;

213 clk : in std_logic;

214 str : in std_logic;

215 S3 : in std_logic_vector(m-1 downto 0);

216 dim : in std_logic_vector(d-1 downto 0);

217 address:out std_logic_vector(m-1 downto 0);

218 dat_o : out std_logic_vector(n-1 downto 0);

219 we : out std_logic;

220 fin : out std_logic;

221 rdy : out std_logic

222 );

223 end component;

224

225 component subs_Ver is

226 generic(n: integer := 36;

227 m: integer := 21;

228 d: integer := 10);

229 port(

230 rst : in std_logic;

231 clk : in std_logic;

232 mult_we : in std_logic;

233 mult_o : in std_logic_vector(n-1 downto 0);

234 u : in std_logic_vector(n-1 downto 0);

235 mult_Add_o : in std_logic_vector(m-1 downto 0);

236 rst_aux : in std_logic;

237 subs_ver_o : out std_logic_vector(n-1 downto 0);

238 subs_ver_add : out std_logic_vector(m-1 downto 0);

239 verifier_o : out std_logic_vector(m-1 downto 0);

240 subs_ver_we : out std_logic);

241 end component;

242

243 component Transposer is

244 generic(n: integer := 36;

245 m: integer := 21;

246 d: integer := 10);

247 port(

248 rst : in std_logic;

249 clk : in std_logic;

250 str : in std_logic;
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251 dim_i : in std_logic_vector(d-1 downto 0);

252 dim_j : in std_logic_vector(d-1 downto 0);

253 add_in : out std_logic_vector(m-1 downto 0);

254 add_out : out std_logic_vector(m-1 downto 0);

255 we : out std_logic;

256 fin : out std_logic;

257 rdy : out std_logic

258 );

259 end component;

260

261 component inverter is

262 generic(n: integer := 36;

263 m: integer := 21;

264 d: integer := 10

265 );

266 port(

267 rst: in std_logic;

268 clk: in std_logic;

269 str: in std_logic;

270 dim: in std_logic_vector(d-1 downto 0);

271 Do_11,Do_12 : in std_logic_vector(n-1 downto 0);

272 Do_21,Do_22 : in std_logic_vector(n-1 downto 0);

273 Do_31,Do_32 : in std_logic_vector(n-1 downto 0);

274 Do_41,Do_42 : in std_logic_vector(n-1 downto 0);

275 Do_51,Do_52 : in std_logic_vector(n-1 downto 0);

276 Do_61,Do_62 : in std_logic_vector(n-1 downto 0);

277 mult_o : in std_logic_vector(n-1 downto 0);

278 mult_add_row1,mult_add_row2 : std_logic_vector(m-1 downto 0);

279 mult_add_col1,mult_add_col2 : std_logic_vector(m-1 downto 0);

280 mult_add_o : std_logic_vector(m-1 downto 0);

281 diag_sign : in std_logic;

282 mult_we : in std_logic;

283 mult_fin : in std_logic;

284

285 Wa1,RA11,RA12 : out std_logic_vector(m-1 downto 0);

286 Di1 : out std_logic_vector(n-1 downto 0);

287 we1 : out std_logic;

288 Wa2,RA21,RA22 : out std_logic_vector(m-1 downto 0);

289 Di2 : out std_logic_vector(n-1 downto 0);

290 we2 : out std_logic;

291 Wa3,RA31,RA32 : out std_logic_vector(m-1 downto 0);

292 Di3 : out std_logic_vector(n-1 downto 0);

293 we3 : out std_logic;

294 Wa4,RA41,RA42 : out std_logic_vector(m-1 downto 0);
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295 Di4 : out std_logic_vector(n-1 downto 0);

296 we4 : out std_logic;

297 Wa5,RA51,RA52 : out std_logic_vector(m-1 downto 0);

298 Di5 : out std_logic_vector(n-1 downto 0);

299 we5 : out std_logic;

300 Wa6,RA61,RA62 : out std_logic_vector(m-1 downto 0);

301 Di6 : out std_logic_vector(n-1 downto 0);

302 we6 : out std_logic;

303 mult_dat_row1,mult_dat_row2 : out std_logic_vector(n-1 downto 0);

304 mult_dat_col1,mult_dat_col2 : out std_logic_vector(n-1 downto 0);

305 mult_str : out std_logic;

306 fin: out std_logic;

307 rdy: out std_logic

308 );

309 end component;

310

311 component pseudoinverter is

312 generic(n: integer := 36;

313 m: integer := 21;

314 d: integer := 10);

315 port(

316 rst : in std_logic;

317 clk : in std_logic;

318 str : in std_logic;

319 dim_i : in std_logic_vector(d-1 downto 0);

320 dim_j : in std_logic_vector(d-1 downto 0);

321

322 -- data for/from multiplication

323 mult_str : out std_logic;

324 mult_dim_i1,mult_dim_j1,mult_dim_i2,mult_dim_j2 : out std_logic_vector(d-1

downto 0);

325 mult_dat_row1, mult_dat_row2,mult_dat_col1,dd : out std_logic_vector(n-1

downto 0);

326 mult_add_row1,mult_add_row2, mult_add_col1, mult_add_col2 : in

std_logic_vector(m-1 downto 0);

327 mult_o : in std_logic_vector(n-1 downto 0);

328 mult_add_o : in std_logic_vector(m-1 downto 0);

329 mult_diag_sign, mult_we,mult_fin,mult_rdy : in std_logic;

330 -- data for/from tranposer

331

332 trans_str : out std_logic;

333 trans_dim_i,trans_dim_j : out std_logic_vector(d-1

downto 0);
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334 trans_add_in,trans_add_out : in std_logic_vector(m-1 downto

0);

335 trans_we,trans_fin,trans_rdy : in std_logic;

336

337 --- data for/from inverter

338 inv_str: out std_logic;

339 inv_dim: out std_logic_vector(d-1 downto 0);

340 inv_Do_11,inv_Do_12,inv_Do_21,inv_Do_22,inv_Do_31,inv_Do_32,inv_Do_41,

inv_Do_42,inv_Do_51,inv_Do_52 ,inv_Do_61,inv_Do_62, inv_mult_o : out

std_logic_vector(n-1 downto 0);

341 inv_mult_add_row1,inv_mult_add_row2,inv_mult_add_col1,inv_mult_add_col2,

inv_mult_add_o : out std_logic_vector(m-1 downto 0);

342 inv_diag_sign : out std_logic;

343 inv_mult_we : out std_logic;

344 inv_mult_fin : out std_logic;

345 inv_Wa1,inv_RA11,inv_RA12 : in std_logic_vector(m-1 downto 0);

346 inv_Di1 : in std_logic_vector(n-1 downto 0);

347 inv_we1 : in std_logic;

348 inv_Wa2,inv_RA21,inv_RA22 : in std_logic_vector(m-1 downto 0);

349 inv_Di2 : in std_logic_vector(n-1 downto 0);

350 inv_we2 : in std_logic;

351 inv_Wa3,inv_RA31,inv_RA32 : in std_logic_vector(m-1 downto 0);

352 inv_Di3 : in std_logic_vector(n-1 downto 0);

353 inv_we3 : in std_logic;

354 inv_Wa4,inv_RA41,inv_RA42 : in std_logic_vector(m-1 downto 0);

355 inv_Di4 : in std_logic_vector(n-1 downto 0);

356 inv_we4 : in std_logic;

357 inv_Wa5,inv_RA51,inv_RA52 : in std_logic_vector(m-1 downto 0);

358 inv_Di5 : in std_logic_vector(n-1 downto 0);

359 inv_we5 : in std_logic;

360 inv_Wa6,inv_RA61,inv_RA62 : in std_logic_vector(m-1 downto 0);

361 inv_Di6 : in std_logic_vector(n-1 downto 0);

362 inv_we6 : in std_logic;

363 inv_mult_dat_row1,inv_mult_dat_row2 : in std_logic_vector(n-1 downto 0);

364 inv_mult_dat_col1,inv_mult_dat_col2 : in std_logic_vector(n-1 downto 0);

365 inv_mult_str : in std_logic;

366 inv_fin : in std_logic;

367 inv_rdy : in std_logic;

368

369 -- data for/from memories

370 Wa1,RA11,RA12 : out std_logic_vector(m-1 downto 0);

371 Di1 : out std_logic_vector(n-1 downto 0);

372 we1 : out std_logic;

373 Wa2,RA21,RA22 : out std_logic_vector(m-1 downto 0);
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374 Di2 : out std_logic_vector(n-1 downto 0);

375 we2 : out std_logic;

376 Wa3,RA31,RA32 : out std_logic_vector(m-1 downto 0);

377 Di3 : out std_logic_vector(n-1 downto 0);

378 we3 : out std_logic;

379 Wa4,RA41,RA42 : out std_logic_vector(m-1 downto 0);

380 Di4 : out std_logic_vector(n-1 downto 0);

381 we4 : out std_logic;

382 Wa5,RA51,RA52 : out std_logic_vector(m-1 downto 0);

383 Di5 : out std_logic_vector(n-1 downto 0);

384 we5 : out std_logic;

385 Wa6,RA61,RA62 : out std_logic_vector(m-1 downto 0);

386 Di6 : out std_logic_vector(n-1 downto 0);

387 we6 : out std_logic;

388 Wa7,RA71,RA72 : out std_logic_vector(m-1 downto 0);

389 Di7 : out std_logic_vector(n-1 downto 0);

390 we7 : out std_logic;

391 Wa8,RA81,RA82 : out std_logic_vector(m-1 downto 0);

392 Di8 : out std_logic_vector(n-1 downto 0);

393 we8 : out std_logic;

394 Do_11,Do_12 : in std_logic_vector(n-1 downto 0);

395 Do_21,Do_22 : in std_logic_vector(n-1 downto 0);

396 Do_31,Do_32 : in std_logic_vector(n-1 downto 0);

397 Do_41,Do_42 : in std_logic_vector(n-1 downto 0);

398 Do_51,Do_52 : in std_logic_vector(n-1 downto 0);

399 Do_61,Do_62 : in std_logic_vector(n-1 downto 0);

400 Do_71,Do_72 : in std_logic_vector(n-1 downto 0);

401 Do_81,Do_82 : in std_logic_vector(n-1 downto 0);

402

403

404 fin : out std_logic;

405 rdy : out std_logic

406 );

407 end component;

408

409 component RAM_S2P is

410 generic(

411 m : integer := 8; -- Numero de bits

412 n : integer := 2; -- Lineas de direccion

413 k : integer := 4 -- Numero de localidades

414 );

415 port(

416 CLK : in std_logic; -- Reloj maestro

417 AE : in std_logic_vector(n-1 downto 0); -- Direccion de escritura



Appendix A. CoSaMP VHDL code 74

418 A1 : in std_logic_vector(n-1 downto 0); -- Direccion de lectura 1

419 A2 : in std_logic_vector(n-1 downto 0); -- Direccion de lectura 2

420 WE : in std_logic; -- Escritura

421 DE : in std_logic_vector(m-1 downto 0); -- Dato de entrada

422 D1 : out std_logic_vector(m-1 downto 0); -- Dato de salida 1

423 D2 : out std_logic_vector(m-1 downto 0) -- Dato de salida 2

424 );

425 end component;

426

427 component FSM_ROM is

428 port(

429 address : std_logic_vector(4 downto 0);

430 dat_o : out std_logic_vector(105 downto 0));

431 end component;

432

433 component cosamp_fsm is

434 generic(m: integer :=21);

435 port(

436 rst : in std_logic;

437 clk : in std_logic;

438 str : in std_logic;

439 mult_fin: in std_logic;

440 g2s_Fin : in std_logic;

441 matcre_fin: in std_logic;

442 pseud_fin : in std_logic;

443 vec_cop2_fin : in std_logic;

444 vec_cop1_fin : in std_logic;

445 ver_o : in std_logic_vector(m-1 downto 0);

446 salida : out std_logic_vector(4 downto 0);

447 fin : out std_logic;

448 rdy : out std_logic

449 );

450 end component;

451

452

453 --#####################################################################-

454 ------------------------------------ SIGNALS ------------------------

455 --#####################################################################

456 --------------------- FSM_ROM SIGNALS ---------------------------

457 signal FSM_ROM_add : std_logic_vector(4 downto 0);

458 signal FSM_ROM_dat : std_logic_vector(105 downto 0);

459 --------------------- MULTIPLICATION SIGNALS---------------------------

460 SIGnal MULT_str, cosamp_mult_str : std_logic;
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461 signal MULT_dim_i1,MULT_dim_j1,MULT_dim_i2,MULT_dim_j2 :

std_logic_vector(d-1 downto 0);

462 signal MULT_dat_row1,MULT_dat_row2,MULT_dat_col1,MULT_dat_col2 :

std_logic_vector(n-1 downto 0);

463 signal MULT_add_row1,MULT_add_row2,MULT_add_col1,MULT_add_col2 :

std_logic_vector(m-1 downto 0);

464 signal MULT_o :

std_logic_vector(n-1 downto 0);

465 signal MULT_add_o :

std_logic_vector(m-1 downto 0);

466 signal MULT_diag_sign,MULT_we,MULT_fin,MULT_rdy : std_logic;

467 signal opm1,opm5 : std_logic;

468 signal opm2,opm3,opm4,opm6,opm7,opm8,opm9 : std_logic_vector(1 downto

0);

469

470 ---------------------- GREAT2SMALL SIGNALS------------------------------

471 signal G2s_str : std_logic;

472 signal G2s_dat1,G2s_dat2 : std_logic_vector(n-1 downto 0);

473 signal G2s_ind1,G2s_ind2 : std_logic_vector(m-1 downto 0);

474 signal G2s_dat_o : std_logic_vector(n-1 downto 0);

475 signal G2s_ind_o,G2s_RA1,G2s_RA2,G2s_WA : std_logic_vector(m-1 downto 0);

476 signal G2s_we,G2s_fin,G2s_rdy : std_logic;

477 signal opm10,opm11,opm12,opm13 : std_logic_vector(1 downto 0);

478

479 --------------------- MATRIX CREATION SIGNALS

-----------------------------------------------

480 signal MATCRE_str : std_logic;

481 signal MATCRE_dat_o : std_logic_vector(n-1 downto 0);

482 signal MATCRE_RA,MATCRE_WA,MATCRE_sup_add : std_logic_vector(m-1 downto 0);

483 signal MATCRE_we ,MATCRE_fin,MATCRE_rdy : std_logic;

484

485 --------------------- Vector copier 1 SIGNALS ------------------------------

486 signal VEC_COP1_str : std_logic;

487 signal VEC_COP1_RA_str : std_logic_vector(m-1

downto 0);

488 signal VEC_COP1_RA_end : std_logic_vector(d-1

downto 0);

489 signal VEC_COP1_WA_str,VEC_COP1_dat_i,VEC_COP1_dat_o,VEC_COP1_RA,VEC_COP1_WA

: std_logic_vector(m-1 downto 0);

490 signal VEC_COP1_we,VEC_COP1_fin,VEC_COP1_rdy : std_logic;

491 signal opm14,opm15,opm16,opm17 :std_logic;

492

493 --------------------- Vector copier 2 SIGNALS -------------------------------

494 signal VEC_COP2_str : std_logic;
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495 signal VEC_COP2_RA_str : std_logic_vector(m-1

downto 0);

496 signal VEC_COP2_RA_end : std_logic_vector(d-1

downto 0);

497 signal VEC_COP2_WA_str,VEC_COP2_RA,VEC_COP2_WA : std_logic_vector(m-1 downto

0);

498 signal VEC_COP2_dat_i,VEC_COP2_dat_o : std_logic_vector(n-1

downto 0);

499 signal VEC_COP2_we,VEC_COP2_fin,VEC_COP2_rdy : std_logic;

500 signal opm18,opm19,opm20,opm61 :std_logic;

501

502 ----------------------- index reset signals -------------------------------

503 SIGnal T_RES_str : std_logic;

504 signal T_RES_WA : std_logic_vector(m-1 downto 0);

505 signal T_RES_we,T_RES_fin,T_RES_rdy : std_logic;

506

507 SIGnal P_RES_str : std_logic;

508 signal P_RES_WA : std_logic_vector(m-1 downto 0);

509 signal P_RES_we,P_RES_fin,P_RES_rdy : std_logic;

510

511 SIGnal OHM_RES_str : std_logic;

512 signal OHM_RES_WA : std_logic_vector(m-1 downto 0);

513 signal OHM_RES_we,OHM_RES_fin,OHM_RES_rdy : std_logic;

514

515 ----------------------- bc reset signals -------------------------------

516 SIGNAL B_RES_str : std_logic;

517 signal B_RES_add : std_logic_vector(m-1 downto 0);

518 signal B_RES_dat_o : std_logic_vector(n-1 downto 0);

519 signal B_RES_we,B_RES_fin,B_RES_rdy : std_logic;

520

521 SIGNAL y2_RES_str : std_logic;

522 signal y2_RES_add : std_logic_vector(m-1 downto 0);

523 signal y2_RES_dat_o : std_logic_vector(n-1 downto 0);

524 signal y2_RES_we,y2_RES_fin,y2_RES_rdy : std_logic;

525

526 --------------------- SUBS_VER SIGNALS ____________________________

527 signal subs_Ver_rst : std_logic;

528 signal subs_ver_o : std_logic_vector(n-1 downto 0);

529 signal subs_ver_add,verifier_o : std_logic_vector(m-1 downto 0);

530 signal subs_ver_we : std_logic;

531 --------------------- Transposer SIGNALS -----------------------------

532 signal trans_str : std_logic;

533 signal trans_dim_i,trans_dim_j : std_logic_vector(d-1

downto 0);
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534 signal trans_add_in,trans_add_out : std_logic_vector(m-1

downto 0);

535 signal trans_we,trans_fin,trans_rdy : std_logic;

536

537 --------------------- INVERTER SIGNALS ------------------------------

538 signal inv_str: std_logic;

539 signal inv_dim: std_logic_vector(d-1 downto 0);

540 signal inv_Do_11,inv_Do_12,inv_Do_21,inv_Do_22,inv_Do_31,inv_Do_32,inv_Do_41,

inv_Do_42,inv_Do_51,inv_Do_52 ,inv_Do_61,inv_Do_62, inv_mult_o :

std_logic_vector(n-1 downto 0);

541 signal inv_mult_add_row1,inv_mult_add_row2,inv_mult_add_col1,inv_mult_add_col2

,inv_mult_add_o : std_logic_vector(m-1 downto 0);

542 signal inv_diag_sign : std_logic;

543 signal inv_mult_we : std_logic;

544 signal inv_mult_fin : std_logic;

545 signal inv_Wa1,inv_RA11,inv_RA12 : std_logic_vector(m-1 downto 0);

546 signal inv_Di1 : std_logic_vector(n-1 downto 0);

547 signal inv_we1 : std_logic;

548 signal inv_Wa2,inv_RA21,inv_RA22 : std_logic_vector(m-1 downto 0);

549 signal inv_Di2 : std_logic_vector(n-1 downto 0);

550 signal inv_we2 : std_logic;

551 signal inv_Wa3,inv_RA31,inv_RA32 : std_logic_vector(m-1 downto 0);

552 signal inv_Di3 : std_logic_vector(n-1 downto 0);

553 signal inv_we3 : std_logic;

554 signal inv_Wa4,inv_RA41,inv_RA42 : std_logic_vector(m-1 downto 0);

555 signal inv_Di4 : std_logic_vector(n-1 downto 0);

556 signal inv_we4 : std_logic;

557 signal inv_Wa5,inv_RA51,inv_RA52 : std_logic_vector(m-1 downto 0);

558 signal inv_Di5 : std_logic_vector(n-1 downto 0);

559 signal inv_we5 : std_logic;

560 signal inv_Wa6,inv_RA61,inv_RA62 : std_logic_vector(m-1 downto 0);

561 signal inv_Di6 : std_logic_vector(n-1 downto 0);

562 signal inv_we6 : std_logic;

563 signal inv_mult_dat_row1,inv_mult_dat_row2 : std_logic_vector(n-1 downto 0);

564 signal inv_mult_dat_col1,inv_mult_dat_col2 : std_logic_vector(n-1 downto 0);

565 signal inv_mult_str : std_logic;

566 signal inv_fin : std_logic;

567 signal inv_rdy : std_logic;

568 --------------------- PSEUDOINVERTER SIGNALS --------------------------

569 signal PSEUD_mult_str : std_logic;

570 signal PSEUD_mult_dim_i1,PSEUD_mult_dim_j1,PSEUD_mult_dim_i2,

PSEUD_mult_dim_j2 : std_logic_vector(d-1 downto 0);

571 signal PSEUD_mult_row1,PSEUD_mult_row2,PSEUD_mult_col1,PSEUD_mult_Col2 :

std_logic_vector(n-1 downto 0);
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572

573

574

575 signal PSEUD_str : std_logic;

576

577 -- data for/from memories

578 signal PSEUD_Wa1,PSEUD_RA11,PSEUD_RA12 : std_logic_vector(m-1 downto 0);

579 signal PSEUD_Di1 : std_logic_vector(n-1 downto 0);

580 signal PSEUD_we1 : std_logic;

581 signal PSEUD_Wa2,PSEUD_RA21,PSEUD_RA22 : std_logic_vector(m-1 downto 0);

582 signal PSEUD_Di2 : std_logic_vector(n-1 downto 0);

583 signal PSEUD_we2 : std_logic;

584 signal PSEUD_Wa3,PSEUD_RA31,PSEUD_RA32 : std_logic_vector(m-1 downto 0);

585 signal PSEUD_Di3 : std_logic_vector(n-1 downto 0);

586 signal PSEUD_we3 : std_logic;

587 signal PSEUD_Wa4,PSEUD_RA41,PSEUD_RA42 : std_logic_vector(m-1 downto 0);

588 signal PSEUD_Di4 : std_logic_vector(n-1 downto 0);

589 signal PSEUD_we4 : std_logic;

590 signal PSEUD_Wa5,PSEUD_RA51,PSEUD_RA52 : std_logic_vector(m-1 downto 0);

591 signal PSEUD_Di5 : std_logic_vector(n-1 downto 0);

592 signal PSEUD_we5 : std_logic;

593 signal PSEUD_Wa6,PSEUD_RA61,PSEUD_RA62 : std_logic_vector(m-1 downto 0);

594 signal PSEUD_Di6 : std_logic_vector(n-1 downto 0);

595 signal PSEUD_we6 : std_logic;

596 signal PSEUD_Wa7,PSEUD_RA71,PSEUD_RA72 : std_logic_vector(m-1 downto 0);

597 signal PSEUD_Di7 : std_logic_vector(n-1 downto 0);

598 signal PSEUD_we7 : std_logic;

599 signal PSEUD_Wa8,PSEUD_RA81,PSEUD_RA82 : std_logic_vector(m-1 downto 0);

600 signal PSEUD_Di8 : std_logic_vector(n-1 downto 0);

601 signal PSEUD_we8 : std_logic;

602

603 signal PSEUD_fin : std_logic;

604 signal PSEUD_rdy : std_logic;

605

606 ---------------------- PHI MATRIX SIGNALS --------------------------

607 signal phi_DO1,phi_DO2 : std_logic_vector(n-1 downto 0);

608 signal phi_RA1 : std_logic_vector(m-1 downto 0);

609 signal opm21 : std_logic;

610 ---------------------- PHIT MATRIX SIGNALS ---------------------------

611 signal phit_DO1,phit_DO2 : std_logic_vector(n-1 downto 0);

612 ------------------------ U vector -----------------------------------

613 SIgnal u_DO1,u_DO2 : std_logic_vector(n-1 downto 0);

614 signal u_RA1 : std_logic_vector(m-1 downto 0);

615 signal opm22 : std_logic;
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616 ------------------------ r vector ------------------------------------

617 signal r_DO1,r_DO2 : std_logic_vector(n-1 downto 0);

618 signal r_we,opm23 : std_logic;

619

620 signal r_di : std_logic_vector(n-1 downto 0);

621 signal r_wa : std_logic_vector(m-1 downto 0);

622 signal opmr1,opmr2,opmr3,r_we_aux : std_logic;

623

624 ----------------------- a vector -----------------------------------

625 signal a_DO1,a_DO2,a_Di : std_logic_vector(n-1 downto 0);

626 signal a_WA,a_RA1,a_RA2 : std_logic_vector(m-1 downto 0);

627 signal a_we : std_logic;

628 signal opm25,opm26 : std_logic;

629 signal opm27,opm24,opm28 : std_logic_vector(1 downto 0);

630 ----------------------- b vector -----------------------------------

631 signal b_wa,b_ra1 : std_logic_vector(m-1 downto 0);

632 signal b_we,opm60 : std_logic;

633 signal opm30,opm29,opm31 : std_logic_vector(1 downto 0);

634 signal b_DO1,b_DO2,b_Di : std_logic_vector(n-1 downto 0);

635 ------------------------ T support vector ----------------------------

636 signal T_DO1,T_DO2,T_WA,T_RA1,T_Di : std_logic_vector(m-1 downto 0);

637 signal T_We : std_logic;

638 signal opm33,opm34,opm32,opm35 : std_logic_vector(1 downto 0);

639 ------------------------ OHM support vector --------------------------

640 signal OHM_DO1,OHM_DO2,OHM_RA1,OHM_RA2,OHM_DI,OHM_Wa : std_logic_vector(m-1

downto 0);

641 SIGnal OHM_we,opm36,opm57,OPM56,opm62 : std_logic;

642 signal opm37 :std_logic_vector(1 downto 0);

643 ------------------------ P support vector ----------------------------

644 signal P_DO1,P_DO2, P_RA1,P_RA2,P_WA,P_Di : std_logic_vector(m-1 downto 0);

645 signal P_WE,opm38,opm39,opm58,opm59 : std_logic;

646 signal opm40 :std_logic_vector(1 downto 0);

647 ----------------------- MEM1 --------------------------------------

648 SIGnal Do11,Do12 : std_logic_vector(n-1 downto 0);

649 signal RA11,RA12 : std_logic_vector(m-1 downto 0);

650 signal opm41,opm42: std_logic;

651 ----------------------- MEM2 --------------------------------------

652 signal DO21,DO22,Di2 : std_logic_vector(n-1 downto 0);

653 signal WA2,RA21,RA22 : std_logic_vector(m-1 downto 0);

654 signal We2,opm44,opm45 : std_logic;

655 signal opm43,opm47 : std_logic_vector(1 downto 0);

656 signal opm46 : std_logic_vector(2 downto 0);

657 ----------------------- MEM3 ---------------------------------------

658 signal DO31,DO32,Di3 : std_logic_vector(n-1 downto 0);
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659 signal WA3,RA31,RA32 : std_logic_vector(m-1 downto 0);

660 signal we3,opm50 : std_logic;

661 signal opm48,opm49,opm51,opm52 : std_logic_vector(1 downto 0);

662 ----------------------- MEM4 ---------------------------------------

663 signal Do41,Do42 : std_logic_vector(n-1 downto 0);

664 ----------------------- MEM5 ---------------------------------------

665 signal Do51,Do52 : std_logic_vector(n-1 downto 0);

666 ----------------------- MEM6 ---------------------------------------

667 signal Do61,Do62 : std_logic_vector(n-1 downto 0);

668 ----------------------- MEM7 ---------------------------------------

669 signal Do71,Do72 : std_logic_vector(n-1 downto 0);

670 ---------------------- MEM8 ----------------------------------------

671 signal Do81,Do82,Di8 : std_logic_vector(n-1 downto 0);

672 signal WA8 : std_logic_vector(m-1 downto 0);

673 signal We8,opm53,opm55 : std_logic;

674 signal opm54 : std_logic_vector(1 downto 0);

675

676 ----------------------- AUXILIARES ------------------------------------

677 signal aux : std_logic_vector(n-1 downto 0);

678 signal dim1_aux : std_logic_vector(d-1 downto 0);

679 signal aux_wa : std_logic_vector(m-1 downto 0);

680 begin

681

682 aux <= (others =>’0’);

683 dim1_aux <= aux(d-1 downto 1) & ’1’; --- dimension = 1

684 ----------------------------------- FSM -----------------------

685 cosamp_fsm1 : cosamp_fsm generic map(m)port map(rst,clk,cosamp_str,mult_fin,

g2s_Fin,matcre_fin,pseud_fin,vec_cop2_fin,vec_cop1_fin,verifier_o,

fsm_rom_add,fsm_fin,fsm_rdy);

686

687 ----------------------------------- MEMORIES ------------------

688 --- FSM_ROM

689 opm61 <= fsm_rom_dat(105);

690 opm62 <= fsm_rom_dat(104);

691 opm60 <= FSM_ROM_dat(103);

692 FSM_ROM1 : FSM_ROM port map(FSM_ROM_Add,FSM_ROM_dat);

693 COSAMP_mult_str <= FSM_ROM_dat(102);

694 opm1 <= FSM_ROM_dat(101); opm2 <= FSM_ROM_dat(100 downto 99); opm3

<= FSM_ROM_dat(98 downto 97);

695 opm4 <= FSM_ROM_dat(96 downto 95); opm5 <= FSM_ROM_dat(94); opm6 <=

FSM_ROM_dat(93 downto 92);

696 opm7 <= FSM_ROM_dat(91 downto 90); opm8 <= FSM_ROM_dat(89 downto 88); opm9 <=

FSM_ROM_dat(87 downto 86);

697 g2s_Str <= FSM_ROM_dat(85);
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698 opm10 <= FSM_ROM_dat(84 downto 83 ) ;opm11 <= FSM_ROM_dat(82 downto 81);opm12

<= FSM_ROM_dat(80 downto 79);

699 opm13 <= FSM_ROM_dat(78 downto 77) ;matcre_str <= FSM_ROM_dat(76);

vec_cop1_str <= FSM_ROM_dat(75);

700 opm14 <= FSM_ROM_dat(74); opm15 <= FSM_ROM_dat(73); opm16

<= FSM_ROM_dat(72);

701 opm17 <= FSM_ROM_dat(71); vec_cop2_str <= FSM_ROM_dat(70);

702 opm18 <= FSM_ROM_dat(69); opm19 <= FSM_ROM_dat(68); opm20

<= FSM_ROM_dat(67);

703 T_res_str <= FSM_ROM_dat(66); P_res_str <= FSM_ROM_dat(65);

ohm_res_str <= FSM_ROM_dat(64);

704 y2_res_str <= FSM_ROM_dat(63); b_res_str <= FSM_ROM_dat(62);

subs_ver_rst <= FSM_ROM_dat(61);

705 pseud_str <= FSM_ROM_dat(60);

706 opm21 <= FSM_ROM_dat(59); opm22 <= FSM_ROM_dat(58);

707 opm23 <= FSM_ROM_dat(57); opm24 <= FSM_ROM_dat(56 downto 55); opm25

<= FSM_ROM_dat(54);

708 opm26 <= FSM_ROM_dat(53); opm27 <= FSM_ROM_dat(52 downto 51); opm28

<= FSM_ROM_dat(50 downto 49);

709 opm29 <= FSM_ROM_dat(48 downto 47); opm30 <= FSM_ROM_dat(46 downto 45); opm31

<= FSM_ROM_dat(44 downto 43);

710 opm32 <= FSM_ROM_dat(42 downto 41); opm33 <= FSM_ROM_dat(40 downto 39); opm34

<= FSM_ROM_dat(38 downto 37);

711 opm35 <= FSM_ROM_dat(36 downto 35); opm36 <= FSM_ROM_dat(34); opm37

<= FSM_ROM_dat(33 downto 32);

712 opm38 <= FSM_ROM_dat(31); opm39 <= FSM_ROM_dat(30); opm40

<= FSM_ROM_dat(29 downto 28);

713 opm41 <= FSM_ROM_dat(27); opm42 <= FSM_ROM_dat(26); opm43

<= FSM_ROM_dat(25 downto 24);

714 opm44 <= FSM_ROM_dat(23); opm45 <= FSM_ROM_dat(22); opm46

<= FSM_ROM_dat(21 downto 19);

715 opm47 <= FSM_ROM_dat(18 downto 17); opm48 <= FSM_ROM_dat(16 downto 15); opm49

<= FSM_ROM_dat(14 downto 13);

716 opm50 <= FSM_ROM_dat(12); opm51 <= FSM_ROM_dat(11 downto 10); opm52

<= FSM_ROM_dat(9 downto 8);

717 opm53 <= FSM_ROM_dat(7); opm54 <= FSM_ROM_dat(6 downto 5); opm55

<= FSM_ROM_dat(4);

718 opm56 <= FSM_ROM_dat(3); opm57 <= FSM_ROM_dat(2); opm58

<= FSM_ROM_dat(1);

719 opm59 <= FSM_ROM_dat(0);

720 --- PHI MATRIX

721 phi_ram1 : ram_s2p generic map(n,m,532)port map(clk,phi_wa,phi_RA1,

mult_add_row2,phi_we,phi_di,phi_DO1,PHI_DO2);
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722 cosamp_mux21 : mux2_1_cosamp generic map(m)port map(matcre_RA,MULT_add_row1,

opm21,phi_RA1);

723 --- TRANSPOSE PHI MATRIX

724 phit_ram1 : ram_s2p generic map(n,m,532)port map(clk,phi_wa,MULT_add_row1,

MULT_add_row2,phi_We,phit_di,phit_DO1,phit_DO2);

725 --- U VECTOR (measurements)

726 u_ram1 : ram_s2p generic map(n,m,19)port map(clk,u_wa,u_RA1,

mult_add_col2,u_we,u_di,u_DO1,u_DO2);

727 cosamp_mux22 : mux2_1_cosamp generic map(m)port map(mult_add_col1,subs_ver_add

,opm22,u_RA1);

728 --- R vector residuo

729 r_ram1 : ram_s2p generic map(n,m,19)port map(clk,r_wa,mult_add_col1,

mult_add_col2,r_we_aux,r_di,r_do1,r_do2);

730 cosamp_mux23 : mux2_1_log_cosamp port map(’0’,subs_Ver_we,opm23,r_We);

731

732

733

734 mux_r : mux2_1_cosamp generic map(m)port map(u_wa,subs_ver_add,opmr1,r_wa)

;

735 mux_r2 : mux2_1_log_cosamp port map(u_we,r_we,opmr2,r_we_aux);

736 mux_r3 : mux2_1_cosamp generic map(n) port map(u_di,subs_ver_o,opmr3,r_Di);

737

738

739 --- a vector

740 a_ram1 : ram_s2p generic map(n,m,28)port map(clk,a_WA,a_RA1,a_RA2,a_WE,

A_Di,a_DO1,a_DO2);

741 cosamp_mux24 : mux4_1_cosamp generic map(m)port map(vec_Cop2_wa,g2s_wa,

b_res_add,ohm_do2,opm24,a_WA);

742 cosamp_mux25 : mux2_1_cosamp generic map(m)port map(mult_Add_col1,g2s_RA1,

opm25,a_RA1);

743 cosamp_mux26 : mux2_1_cosamp generic map(m)port map(mult_Add_col2,g2s_RA2,

opm26,a_RA2);

744 cosamp_mux27 : mux4_1_log_cosamp port map(’0’,vec_cop2_we,g2s_we,b_res_we,

opm27,a_we);

745 cosamp_mux28 : mux3_1_cosamp generic map(n)port map(vec_cop2_dat_o,g2s_dat_o,

b_res_dat_o,opm28,a_Di);

746 --- b vector

747 b_ram1 : ram_s2p generic map(n,m,28)port map(clk,b_WA,b_ra1,g2s_ra2,b_we

,b_Di,b_Do1,b_Do2);

748 cosamp_mux29 : mux3_1_cosamp generic map(m)port map(b_res_add,T_dO1,g2s_wa,

opm29,b_WA);

749 cosamp_mux30 : mux4_1_log_cosamp port map(’0’,b_res_we,mult_we,g2s_we,opm30,

b_we);
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750 cosamp_mux31 : mux3_1_cosamp generic map(n)port map(b_res_dat_o,mult_o,

G2s_dat_o,opm31,b_Di);

751 cosamp_mux60 : mux2_1_cosamp generic map(m)port map(vec_cop2_ra,G2s_ra1,opm60,

b_ra1);

752

753 ---- T support vector

754 T_ram : ram_s2p generic map(m,m,28)port map(clk,T_WA,T_RA1,g2s_ra2,T_we

,T_Di,T_DO1,T_DO2);

755 cosamp_mux32 : mux3_1_cosamp generic map(m)port map(T_RES_wa,g2s_WA,

vec_cop1_Wa,opm32,T_WA);

756 cosamp_mux33 : mux3_1_cosamp generic map(m)port map(g2s_RA1,matcre_sup_add,

mult_add_o,opm33,T_RA1);

757 cosamp_mux34 : mux4_1_log_cosamp port map(’0’,T_res_we,g2s_we,vec_Cop1_we,

opm34,T_we);

758 cosamp_mux35 : mux3_1_cosamp generic map(m)port map(T_res_wa,g2s_ind_o,

vec_Cop1_dat_o,opm35,T_Di);

759 ----- OHM support vector

760 OHM_ram1 : ram_s2p generic map(m,m,28)port map(clk,OHM_WA,OHM_RA1,ohm_RA2,

OHM_we,OHM_DI,OHM_DO1,OHM_DO2);

761 cosamp_mux36 : mux2_1_cosamp generic map(m)port map(G2s_RA1,vec_cop1_RA,opm36,

OHM_RA1);

762 cosamp_mux37 : mux3_1_log_cosamp port map(’0’,OHM_RES_we,G2s_we,opm37,OHM_we);

763 cosamp_mux56 : mux2_1_cosamp generic map(m)port map(OHM_RES_wa,G2s_WA,opm56,

OHM_WA);

764 cosamp_mux57 : mux2_1_cosamp generic map(m)port map(OHM_RES_WA,g2s_ind_o,opm57

,OHM_DI);

765 cosamp_mux62 : mux2_1_cosamp generic map(m)port map(g2s_ra2,vec_cop2_wa,opm62,

ohm_ra2);

766 ---- P support vector

767 p_ram1 : ram_s2p generic map(m,m,28)port map(clk,P_WA,P_RA1,P_RA2,P_we,

P_di,P_DO1,P_DO2);

768 cosamp_mux38 : mux2_1_cosamp generic map(m)port map(G2s_RA1,vec_cop2_WA,opm38,

P_RA1);

769 cosamp_mux39 : mux2_1_cosamp generic map(m)port map(G2s_RA2,vec_cop1_RA,opm39,

P_RA2);

770 cosamp_mux40 : mux3_1_log_cosamp port map(’0’,P_RES_we,g2s_we,opm40,P_we);

771 cosamp_mux58 : mux2_1_cosamp generic map(m)port map(P_Res_wa,g2s_wa,opm58,P_WA

);

772 cosamp_mux59 : mux2_1_cosamp generic map(m)port map(P_res_Wa,g2s_ind_o,opm59,

P_Di);

773 ---- MEM1

774 MEM1_ram : ram_s2p generic map(n,m,532)port map(clk,pseud_WA1,RA11,RA12,

pseud_we1,pseud_di1,DO11,DO12);
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775 cosamp_mux41 : mux2_1_cosamp generic map(m)port map(pseud_RA11,mult_add_row1,

opm41,RA11);

776 cosamp_mux42 : mux2_1_cosamp generic map(m)port map(pseud_RA12,mult_add_row2,

opm42,RA12);

777 ---- MEM2

778 MEM2_ram1 : ram_s2p generic map(n,m,532)port map(clk,WA2,RA21,RA22,WE2,Di2,

Do21,Do22);

779 cosamp_mux43 : mux4_1_cosamp generic map(m)port map(y2_res_add,PSEUD_WA2,P_Do1

,g2s_Wa,opm43,WA2);

780 cosamp_mux44 : mux2_1_cosamp generic map(m)port map(PSEUD_RA21,G2s_ra1,opm44,

RA21);

781 cosamp_mux45 : mux2_1_cosamp generic map(m)port map(PSEUD_RA22,G2s_RA2,opm45,

RA22);

782 cosamp_mux46 : mux5_1_log_cosamp port map(’0’,y2_res_we,PsEUD_WE2,vec_cop2_we,

G2s_we,opm46,we2);

783 cosamp_mux47 : mux4_1_cosamp generic map(n)port map(y2_res_dat_o,PSEUD_di2,

vec_cop2_dat_o,g2s_dat_o,opm47,Di2);

784 ---- MEM3

785 MEM3_ram2 : ram_s2p generic map(n,m,532)port map(clk,WA3,RA31,RA32,We3,Di3,

Do31,Do32);

786 cosamp_mux48 : mux3_1_cosamp generic map(m)port map(mult_add_o,g2s_wa,

PSEUD_wa3,opm48,WA3);

787 cosamp_mux49 : mux3_1_cosamp generic map(m)port map(g2s_RA1,PSEUD_RA31,P_do1,

opm49,RA31);

788 cosamp_mux50 : mux2_1_cosamp generic map(m)port map(g2s_RA2,PSEUD_RA32,opm50,

RA32);

789 cosamp_mux51 : mux4_1_log_cosamp port map(’0’,mult_we,g2s_we,PSEUD_we3,opm51,

WE3);

790 cosamp_mux52 : mux3_1_cosamp generic map(n)port map(mult_o,g2s_dat_o,pseud_di3

,opm52,Di3);

791

792 ---- MEM4

793 MEM4_ram1 : ram_s2p generic map(n,m,532)port map(clk,PSEUD_WA4,PSEUD_RA41,

PSEUD_RA42,PSEUD_WE4,PSEUD_DI4,DO41,DO42);

794 ---- MEM5

795 MEM5_ram1 : ram_s2p generic map(n,m,532)port map(clk,PSEUD_WA5,PSEUD_RA51,

PSEUD_RA52,PSEUD_WE5,PSEUD_DI5,DO51,DO52);

796 ---- MEM6

797 MEM6_ram1 : ram_s2p generic map(n,m,532)port map(clk,PSEUD_WA6,PSEUD_RA61,

PSEUD_RA62,PSEUD_WE6,PSEUD_DI6,DO61,DO62);

798 ---- MEM7

799 MEM7_ram1 : ram_s2p generic map(n,m,532)port map(clk,PSEUD_WA7,PSEUD_RA71,

PSEUD_RA72,PSEUD_WE7,PSEUD_DI7,DO71,DO72);

800 ---- MEM8
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801 MEM8_ram1 : ram_s2p generic map(n,m,532)port map(clk,WA8,PSEUD_RA81,

PSEUD_RA82,WE8,DI8,DO81,DO82);

802 cosamp_mux53 : mux2_1_cosamp generic map(m)port map(matcre_WA,PSEUD_Wa8,opm53,

WA8);

803 cosamp_mux54 : mux3_1_log_Cosamp port map(’0’,matcre_we,PSEUD_we8,opm54,We8);

804 cosamp_mux55 : mux2_1_cosamp generic map(n)port map(matcre_dat_o,PSEUD_di8,

opm55,Di8);

805 ----------------------------------- PSEUDOINVERTER--------------------------

806 pseudoinverter1: pseudoinverter generic map(n,m,d)port map(rst,clk,PSEUD_str,

dim_i,S3(d-1 downto 0),PSEUD_mult_str,PSEUD_mult_dim_i1,PSEUD_mult_dim_j1,

PSEUD_mult_dim_i2,PSEUD_mult_dim_j2,PSEUD_MULT_row1, PSEUD_MULT_row2,

PSEUD_MULT_col1,PSEUD_MULT_col2,MULT_add_row1,MULT_add_row2,MULT_add_col1,

MULT_add_col2,MULT_o,MULT_add_o,MULT_diag_sign, MULT_we,MULT_fin,MULT_rdy,

trans_str,trans_dim_i,trans_dim_j,trans_add_in,trans_add_out,trans_we,

trans_fin,trans_rdy,inv_str,inv_dim,inv_Do_11,inv_Do_12,inv_Do_21,inv_Do_22

,inv_Do_31,inv_Do_32,inv_Do_41,inv_Do_42,inv_Do_51,inv_Do_52 ,inv_Do_61,

inv_Do_62, inv_mult_o,inv_mult_add_row1,inv_mult_add_row2,inv_mult_add_col1

,inv_mult_add_col2,inv_mult_add_o,inv_diag_sign,inv_mult_we,inv_mult_fin,

inv_Wa1,inv_RA11,inv_RA12,inv_Di1,inv_we1,inv_Wa2,inv_RA21,inv_RA22,inv_Di2

,inv_we2,inv_Wa3,inv_RA31,inv_RA32,inv_Di3,inv_we3,inv_Wa4,inv_RA41,

inv_RA42,inv_Di4,inv_we4,inv_Wa5,inv_RA51,inv_RA52,inv_Di5,inv_we5,inv_Wa6,

inv_RA61,inv_RA62,inv_Di6,inv_we6,inv_mult_dat_row1,inv_mult_dat_row2,

inv_mult_dat_col1,inv_mult_dat_col2,inv_mult_str,inv_fin,inv_rdy,PSEUD_Wa1,

PSEUD_RA11,PSEUD_RA12,PSEUD_Di1,PSEUD_we1,PSEUD_Wa2,PSEUD_RA21,PSEUD_RA22,

PSEUD_Di2,PSEUD_we2,PSEUD_Wa3,PSEUD_RA31,PSEUD_RA32,PSEUD_Di3,PSEUD_we3,

PSEUD_Wa4,PSEUD_RA41,PSEUD_RA42,PSEUD_Di4,PSEUD_we4,PSEUD_Wa5,PSEUD_RA51,

PSEUD_RA52,PSEUD_Di5,PSEUD_we5,PSEUD_Wa6,PSEUD_RA61,PSEUD_RA62,PSEUD_Di6,

PSEUD_we6,PSEUD_Wa7,PSEUD_RA71,PSEUD_RA72,PSEUD_Di7,PSEUD_we7,PSEUD_Wa8,

PSEUD_RA81,PSEUD_RA82,PSEUD_Di8,PSEUD_we8,Do11,Do12,Do21,Do22,Do31,Do32,

Do41,Do42,Do51,Do52,Do61,Do62,Do71,Do72 ,Do81,Do82,PSEUD_fin,PSEUD_rdy);

807 ----------------------------------- INVERTER ----------------------------

808 inverter1 : inverter generic map(n,m,d)port map(rst,clk,inv_str,inv_dim,

inv_Do_11,inv_Do_12,inv_Do_21,inv_Do_22,inv_Do_31,inv_Do_32,inv_Do_41,

inv_Do_42,inv_Do_51,inv_Do_52,inv_Do_61,inv_Do_62,inv_mult_o,

inv_mult_add_row1,inv_mult_add_row2,inv_mult_add_col1,inv_mult_add_col2,

inv_mult_add_o,inv_diag_sign,inv_mult_we,inv_mult_fin,inv_Wa1,inv_RA11,

inv_RA12,inv_Di1,inv_we1,inv_Wa2,inv_RA21,inv_RA22,inv_Di2,inv_we2,inv_Wa3,

inv_RA31,inv_RA32,inv_Di3,inv_we3,inv_Wa4,inv_RA41,inv_RA42,inv_Di4,inv_we4

,inv_Wa5,inv_RA51,inv_RA52,inv_Di5,inv_we5,inv_Wa6,inv_RA61,inv_RA62,

inv_Di6,inv_we6,inv_mult_dat_row1,inv_mult_dat_row2,inv_mult_dat_col1,

inv_mult_dat_col2,inv_mult_str,inv_fin,inv_rdy);

809 ----------------------------------- TRANSPOSER ----------------------------
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810 transposer1 : transposer generic map(n,m,d)port map(rst,clk,trans_str,

trans_dim_i,trans_dim_j,trans_add_in,trans_add_out,trans_we,trans_fin,

trans_rdy);

811 ----------------------------------- SUBSTRACTOR VERIFIER ------------------

812 subs_Ver1 : subs_Ver generic map(n,m,d)port map(rst,clk,MULT_we,MULT_o,

u_DO1,MULT_add_o,subs_Ver_rst,subs_ver_o,subs_ver_add,verifier_o,

subs_ver_we);

813 ----------------------------------- VECTOR RESET --------------------

814 B_reset1 : bc generic map(n,m,d)port map(rst,clk,B_RES_str,S3,dim_j,

B_RES_add,B_RES_dat_o,B_RES_we,B_RES_fin,B_RES_rdy);

815 Y2_reset1 : bc generic map(n,m,d)port map(rst,clk,Y2_RES_str,S3,dim_j,

y2_RES_add,y2_RES_dat_o,y2_RES_we,y2_RES_fin,y2_RES_rdy);

816

817 ----------------------------------- INDEX RESET --------------------

818 T_reset1 : ind_res generic map(m,d)port map(rst,clk,T_RES_str,dim_j,

T_RES_WA,T_RES_we,T_RES_fin,T_RES_rdy);

819 P_reset1 : ind_res generic map(m,d)port map(rst,clk,P_RES_str,dim_j,

P_RES_WA,P_RES_we,P_RES_fin,P_RES_rdy);

820 OHM_reset1 : ind_res generic map(m,d)port map(rst,clk,OHM_RES_str,dim_j,

OHM_RES_WA,OHM_RES_we,OHM_RES_fin,OHM_RES_rdy);

821 ----------------------------------- vector copier assign --------------------

822 vec_Cop_support1 : ver_cop generic map(m,m,d)port map(rst,clk,VEC_COP1_str,

VEC_COP1_RA_str,VEC_COP1_RA_end,VEC_COP1_WA_str,VEC_COP1_dat_i,

VEC_COP1_dat_o,VEC_COP1_RA,VEC_COP1_WA,VEC_COP1_we,VEC_COP1_fin,

VEC_COP1_rdy);

823 cosamp_mux14 : mux2_1_cosamp generic map(m)port map(aux(m-1 downto 0),s1,

opm14,VEC_COP1_RA_str);

824 cosamp_mux15 : mux2_1_cosamp generic map(d)port map(s1(d-1 downto 0),s3(d

-1 downto 0),opm15,VEC_COP1_RA_end);

825 cosamp_mux16 : mux2_1_cosamp generic map(m)port map(aux(m-1 downto 0),s1,

opm16,VEC_COP1_WA_str);

826 cosamp_mux17 : mux2_1_cosamp generic map(m)port map(P_DO2,OHM_DO1,opm17,

VEC_COP1_dat_i);

827

828 vec_Cop_dat2 : ver_cop generic map(n,m,d)port map(rst,clk,VEC_COP2_str,

VEC_COP2_RA_str,vec_cop2_RA_end,VEC_COP2_WA_str,VEC_COP2_dat_i,

VEC_COP2_dat_o,VEC_COP2_RA,VEC_COP2_WA,VEC_COP2_we,VEC_COP2_fin,

VEC_COP2_rdy);

829 cosamp_mux18 : mux2_1_cosamp generic map(m)port map(aux(m-1 downto 0),s1,

opm18,VEC_COP2_RA_str);

830 cosamp_mux19 : mux2_1_cosamp generic map(m)port map(aux(m-1 downto 0),s1,

opm19,VEC_COP2_WA_str);

831 cosamp_mux20 : mux2_1_cosamp generic map(n)port map(b_DO1,DO31,opm20,

VEC_COP2_dat_i);
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832 cosamp_mux61 : mux2_1_cosamp generic map(d)port map(dim_j,s1(d-1 downto 0)

,opm61,vec_cop2_RA_end);

833 --------------------------------- Matrix creation assign -----------------

834 matcre1 : matcre generic map(n,m,d)port map(rst,clk,MATCRE_str,dim_i,

dim_j,s3,T_DO1,phi_DO1,MATCRE_dat_o,MATCRE_RA,MATCRE_WA,MATCRE_sup_add,

MATCRE_we ,MATCRE_fin,MATCRE_rdy);

835 --------------------------------- Great2small assign ---------------------

836 G2s1 : g2s generic map(n,m,d)port map(rst,clk,G2s_str,dim_j,

G2s_dat1,G2s_dat2,G2s_ind1,G2s_ind2,G2s_dat_o,G2s_ind_o,G2s_RA1,G2s_RA2,

G2s_WA,G2s_we,G2s_fin,G2s_rdy);

837 cosamp_mux10 : mux4_1_cosamp generic map(n)port map(DO31,a_DO1,DO21,b_do1,

opm10,G2s_dat1);

838 cosamp_mux11 : mux4_1_cosamp generic map(n)port map(DO32,a_DO2,DO22,b_do2,

opm11,G2S_dat2);

839 cosamp_mux12 : mux3_1_cosamp generic map(m)port map(T_DO1,P_DO1,OHM_DO1,

opm12,G2S_ind1);

840 cosamp_mux13 : mux3_1_cosamp generic map(m)port map(T_DO2,P_DO2,OHM_DO2,

opm13,G2S_ind2);

841 --------------------------------- multiplication--------------------------

842 multiplication1 : Multiplication generic map(n,m,d)port map(rst,clk,MULT_str,

MULT_dim_i1,MULT_dim_j1,MULT_dim_i2,MULT_dim_j2,MULT_dat_row1,MULT_dat_row2

,MULT_dat_col1,MULT_dat_col2,MULT_add_row1,MULT_add_row2,MULT_add_col1,

MULT_add_col2,MULT_o,MULT_add_o,MULT_diag_sign,MULT_we,MULT_fin,MULT_rdy);

843 cosamp_mux1 : mux2_1_log_cosamp port map(COSAMP_mult_str,PSEUD_mult_Str,

opm1,MULT_str);

844 cosamp_mux2 : mux4_1_cosamp generic map(d)port map(dim_j,

PSEUD_mult_dim_i1,s3(d-1 downto 0),dim_i,opm2,MULT_dim_i1);

845 cosamp_mux3 : mux3_1_cosamp generic map(d)port map(dim_i,PSEUD_mult_dim_j1,

dim_j,opm3,MULT_dim_j1);

846 cosamp_mux4 : mux3_1_cosamp generic map(d)port map(dim_i,

PSEUD_mult_dim_i2,dim_j,opm4,MULT_dim_i2);

847 cosamp_mux5 : mux2_1_cosamp generic map(d)port map(dim1_aux,

PSEUD_mult_dim_j2,opm5,MULT_dim_j2);

848 cosamp_mux6 : mux4_1_cosamp generic map(n)port map(phit_DO1,

PSEUD_mult_row1,DO11,phi_do1,opm6,MULT_dat_row1);

849 cosamp_mux7 : mux4_1_cosamp generic map(n)port map(phit_DO2,

PSEUD_mult_row2,DO12,phi_do2,opm7,MULT_dat_row2);

850 cosamp_mux8 : mux4_1_cosamp generic map(n)port map(r_do1,PSEUD_mult_col1,

u_do1,a_do1,opm8,MULT_dat_col1);

851 cosamp_mux9 : mux4_1_cosamp generic map(n)port map(r_do2,PSEUD_mult_Col2,

u_do2,a_do2,opm9,MULT_dat_col2);

852 end cosamp;
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