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Abstract

Compressed sensing is a recently proposed technique aiming to acquire a signal with
sparse or compressible representation in some domain, using a number of samples under
the limit established by the Nyquist theorem. The challenge is to recover the sensed
signal solving an underdetermined linear system. Several techniques such as the [; min-
imization, Greedy and combinatorial algorithms can be used for that purpose. Greedy
algorithms have been found to be more suitable in hardware solutions, however they
rely on efficient matrix inversion techniques in order to solve the underdetermined linear
systems involved. In this work, a FPGA-based Greedy algorithm architecture with a
Chebyshev-type method to solve matrix inversion problem is presented. The architec-
ture was developed for Xilinx Virtex 4 XC4VSX25, Xilinx Spartan 6 XC6SL.X45, Altera
Cyclone IV EP4CGX150DF31C7 and Altera Cyclone 11 EP2C35F672C6 FPGAs. The
described architecture represents a low-cost and generic solution, robust to changes in
word length and signal size. Besides, a MATLAB Graphical User Interface is devel-
oped for compressed sensing theory exploration focused on matrix and transform test.
MATLAB GUI uses the Compressed Sampling Matching Pursuit algorithm to recover
the sensed signal; reconstruction can easily be extended to other compressed sensing

algorithms.
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Chapter 1

Introduction

In the middle of a digital revolution, a plethora of sensing systems has been developed,
dealing with the compromise between data size, resolution, and quality. Traditionally,
the sampling rate of acquisition systems follows the mathematical analysis established
by Nyquist and Shannon [3, 4] in the so called sampling theorem. Derived from their
work, it is widely known that for the reconstruction of a signal with a bandwidth F', the
sampling frequency F's must be at least two times the signal bandwidth, F's > 2F. When
a signal is acquired and digitized considering the Nyquist-Shannon theorem, dealing with

large data sets becomes a challenge.

However, some devices used for signal acquisition are physically impossible to imple-
ment. In 1999 Walden [5] presented a survey on Analog to Digital Converters (ADC) in
which he reports that the maximum nyquist sampling rate attained was 8 Giga samples
per second. Nevertheless, when the sampling frequency is duplicated the ADC resolu-
tion decreases one bit. Despite there were high sampling frequencies, bit resolution was

sacrificed, as at 8 GHz just 3 bits of resolution were achieved.

Due to the big amount of data, it is often necessary to compress a signal that has been
acquired according to the specifications of the Nyquist-Shannon theorem. Transform
Coding is a popular technique that aims to find a base or frame where the signal has
a sparse or compressible representation [6]. A signal of length N is k-sparse if it can
be represented with k elements, k << N, and is compressible if the signal can be well
approximated with those elements, even when a small amount of information may be
lost. Some signal formats that exploit transform coding concept are: JPEG, JPEG2000,
MPEG on images, MP4 and AVI on video and MP3 on audio.

In the past few years a new sensing technology has appeared. Donoho in 2006 |7],

coined the term compressed sensing to this technology. The field of compressed sensing
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has grown from the work of Candés, Romberg and Tao and Donoho, where they showed
that a finite dimension signal, having a sparse or compressible representation can be

reconstructed from a small set of linear and non-adaptive measurements [7, §|.

Compressed Sensing aims to acquire a compressed signal representation by a series of
direct measurements in some domain where the signal may have a sparse representation,
without going through the usual stage of acquiring N samples. The measurements are
acquired by computing M < N inner products between a signal of interest x and a
sensing vector collection {d)}j]‘/il as in y; = (z,¢;). The measurement vectors gzﬁé-w are

arranged in an M x N matrix ® [2].

Having less equations than unknowns, the goal of compressed sensing is to solve an
underdetermined linear system to find the sensed signal . This can be expressed as in

(2.1).

While a compressed signal has been acquired and the data sets to deal with are smaller,
a special effort must be done on the signal reconstruction. Unlike the reconstruction of an
acquired signal considering Nyquist-Shannon sampling theorem, compressed sensed sig-
nals cannot be reconstructed with a simple interpolation of the measurements. Hence,
several compressed sensing recovery algorithms have been developed, such as [; mini-

mization, combinatorial algorithms and Greedy algorithms [9].

1 minimization is a convex optimization problem aiming to find the minimization of
the sparse signal representation I; norm. Despite these compressed sensing recovery

algorithms are a powerful tool they are not suitable for hardware implementation [9].

Combinatorial algorithms are another option to reconstruct a compressed sensed sig-
nal. Most of these algorithms are predate the compressed sensing literature. In some
applications, as computation on data streams, combinatorial algorithms were used to re-
cover = from y = ®x, essentially the same as the sparse recovery problem in compressed

sensing [9].

Greedy algorithms are the most commonly used for implementation on hardware.
These algorithms are a set of methods that iteratively construct an approximation of
the sensed signal. Starting from a zero vector, a set of nonzero elements is estimated
adding new elements on every iteration. Such algorithms often produce a fast conver-

gence and can be applied to large data sets [9, 10].

In the Greedy algorithms it is required to solve a matrix inversion. There are two
implemented methods that are frequently used to find a matrix inversion in hardware,
CORDIC algorithm [11, 12| and QR decomposition (QRD) [13-15]. Besides, there are
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iterative matrix inversion methods such as the Newton or Schulz method [16, 17] and

the recently proposed Chebyshev-type method [18].

Chebyshev-type matrix inversion method was proposed by Amat et al. in 2003 [19].
In this work this matrix inversion method has been used in the context of compressed

sensing.

1.1 Compressed Sensing Applications

Compressed sensing is a promising technology capable to give a new approach for sens-
ing systems design, improving their performance. CS has been incorporated to several
application fields, such as the MRI (Magnetic Resonance Imaging), sub-nyquist sampling

systems, sensor networks, face recognition, and texture detection [9].

Duarte et al. [1] introduced a single-pixel camera using compressed sensing theory.
They replaced CCD or CMOS sensor for one photon detector, a digital micro-mirror
device (DMD), two lenses and an analog-to-digital (A/D) converter. The new device is
capable to reconstruct 256x256 pixels images from about 1300 measurements. Figure 1.1

shows the reconstructed image.

a) (b}

FIGURE 1.1: a) Original image. b) 256x256 image, reconstructed from 1300 measure-
ments [1]

Compressed sensing has been used to improve the Magnetic Resonance Imaging (MRI)
process. This is achieved increasing imaging speed [20]. Vasanawala in 2010 [21] made a
comparison of two MRI techniques: parallel imaging and MRI using compressed sensing.
Images acquired by compressed sensing technique were preferred more often; they had a
significantly higher image quality rating and greater delineation of anatomic structures

than did images obtained with the traditional parallel reconstruction method.

First sub-nyquist sampling hardware system was implemented in 2011 by Mishali et al.

[22]. This system supports input signals up to 2 GHz with a sample rate of 280 MHz.
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A CMOS architecture with built-in single-shot compressed sensing was design by Oike
and Gamal in 2013 [23]. The image sensor can operate in compressed sensing mode with
compression ratios 1/4, 1/6 or 1/8 at 480, 960 or 1920 fps, respectively; or in normal

capture mode with no compression at a frame rate of 120 fps.

In 2011 Balouchestani [24] proposed a novel approach for wireless sensor network nodes
testing based on compressed sensing theory aiming to increase reliability. That year he
presented a low power wireless network design also using compressed sensing [25]. In
both cases improvements were due to reduction on the number of bits used for data

transmission on the sensor network.

The low performance and high cost of the infrared (IR) photo detectors have prevented
the widespread utilization of IR cameras on various fields. Carbon nanotube (CNT) has
excellent optical properties that can be used for IR images sensors. However, it is difficult
to fabricate a CNT sensor array. To improve IR sensors performance with CNT-based
sensors and overcome the fabrication issue, Hongzhi et al. [26] presented a single nano-

photodetector IR camera based on compressed sensing.

Literature review demonstrates the relevance of the compressed sensing nowadays.
Thus, in this thesis a greedy algorithm named Compressed Sampling Matching Pursuit
(CoSaMP) has been implemented on an FPGA architecture using the Chebyshev-typed
method for solving the matrix inversion problem. Additionally a MATLAB Graphical
User Interface (GUI) has been developed as an educational tool for Compressed Sensing

theory exploration.

This thesis is organized as follows: Chapter 1 presents an introduction and motiva-
tion of this work. Chapter 2 summarizes the theory associated to compressed sensing
in the context of the Nyquist theorem and Transform Coding. Chapter 3 limns two
VHDL architectures: matrix inversion architecture and a Compressed Sampling Match-
ing Pursuit algorithm architecture. In Chapter 4 a MATLAB Graphical User Interface
for compressed sensing theory exploration is described. Chapter 5 presents obtained

results and discussion. Conclusions of the work are presented in Chapter 6.



Chapter 2

Theoretical Fundamentals

2.1 Compressed Sensing

Compressed sensing aims to acquire a compressed signal representation by a series of
direct measurements in some domain where the signal may have a sparse representation,
without going through the usual stage of acquiring N samples. The measurements are
acquired by computing M < N inner products between a signal of interest x and a
collection {(;S}j]\/il as in y; = (z,¢;). The measurement vectors ¢§\/[ are arranged in an
M x N matrix ® [2].

Having less equations than unknowns, the goal of Compressed Sensing is to solve an

underdetermined linear system to find the sensed signal x. This can be expressed as in
(2.1).

y=0xr =PUs (2.1)
Where:

M
1y measurements and y € R,
® sensing matrix and ® € RM*N,
U sparse base or frame RV®V,

x sensed signal and z € RY,

s sparse signal representation.
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If, however, signal x has a sparse representation s in a basis ¥, it can, under certain
conditions, be recovered from measurements y. A graphical representation of compressed

sensing can be seen in figure 2.1.

y o
o

XxX= Ys |

HEE EEEEE EECEEENY

FIGURE 2.1: Graphical representation of compressed sensing concept [2].

To reconstruct the sensed signal from the taken measurements y is required to solve

for s in equation (2.1); re-written as (2.2).

s= (V) 1y (2.2)

Signal sparse representation s must be multiplied by the orthogonal frame in order to

recover signal of interest, equation (2.3).

r=U(@V) 1y (2.3)

One of the limitations of CS is that it is strictly necessary to find a sparse frame in
order to apply compressed sensing theory for sensing a signal. Recovery problem requires
M = N to be well-posed so it can be solved from equation (2.2). Therefore, if M < N
the recovery problem becomes ill-posed. This missing link is found by adding a prior

information of the sensed signal z, that is the signal sparsity or sparse level k |27].

Compressed sensing reconstruction algorithms take the known sparsity level and keep

track of the k-nonzero elements or k-larger elements of the signal.

2.1.1 Sensing Matrix

Sensing matrix construction for compressed sensing is an important matter. There are

two main theoretical questions in CS. First, how should we design the sensing matrix ®
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to ensure that it preserves the information in the signal 7 Second, how can we recover

the original signal x from measurements y? [9].

Sensing matrix ® can be designed in such a way that it will be able to reconstruct signal
s from measurements y whether signal has a sparse representation. ¢ matrix structure

must satisfy a set of desirable properties.

2.1.1.1 Null Space Condition

The null space of ® is denoted by

N(@)=z:Px=0 (2.4)

For an underdetermined linear system there are an infinite number of solutions. It is
clear that for any pair of distinct vectors z, ' we must have ®x # ®12’, since otherwise it
would be impossible to distinguish 2 from 2z’ with solely measurements y [9]. A common

way for characterizing the Null Space property is known as the spark [28].

Spark of a given matrix ® is defined as the smallest number of columns of ® that are
linearly independent. In order to fulfill null space condition, spark of matrix ® must be

greater than 2 X k, this is :

spark(®) > 2k (2.5)

Where, k is the signal sparsity level.

2.1.1.2 Restricted Isometry Property

Null space property guarantees that signal z can be reconstructed from measurements
y, but this guarantees do not account the presence of noise. In [29] Candés and Tao
introduced the Restricted Isometry Property (RIP) with which a signal in the presence

of noise can be correctly reconstructed.

A matrix & satisfies the k-order restricted isometry property, if there exist a § € (0,1)
such that

(1= 0)l=[3 < [|®|3 < (1 +0)|=[f3 (2.6)
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There are two types of sensing matrices, deterministic [30, 31] and random matri-
ces. Deterministic matrices are more difficult to construct, but their RIP can easily be
computed and they can be constructed on the fly. Random matrices have two main draw-
backs. First, they may require a lot of storage. Second, there is no efficient algorithm for
testing the RIP [32]. However, Gaussian random matrices fulfill, with high probability,

the restricted isometry property condition and can be used as sensing matrices [2].

2.1.2 Reconstruction Algorithms

After signal x has been sensed and measurements are stored in vector y an endeavor
to recover the signal has to be made. There are a variety of algorithms that have been
used in applications such as sparse approximations, statistics and theoretical computer
science that were developed to exploit sparsity in other contexts and can be brought
to bear on the CS recovery problem [9, 33|. There are two main categories for signal

recovery in compressed sensing: [y minimization and greedy algorithms.

2.1.2.1 [; minimization

Minimization approach is a convex optimization problems aiming to find the mini-
mization of a variable subject to one or more conditions. For compressed sensing the Iy

norm was the first attempt to recover x by solving the optimization problem of the form

& = argmin||zllo  subject to  Pr =y (2.7)

Where ||z||p is the nonzero entries of .

This is with the previous knowledge that measurements y are from a highly sparse
signal. [y norm has the inconvenience that is a combinatorial problem with prohibitive
complexity if solved numerically [34]. An alternative to overcome this problem is to

replace [y norm by /; norm and solve a computationally tractable model given by (2.8).

T = argmin||z|l1  subject to  Pr =y (2.8)

The [; minimization has the advantage of giving an uniform reconstruction. However,
is still a too complex problem for real time recovery and is not suitable for hardware

implementation [13].
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2.1.2.2 Greedy algorithms

Besides [ minimization, greedy algorithms are an alternative for compressed sensing
signal reconstruction. Most common greedy algorithms are the Matching Pursuit MP[35]
(known as pure greedy algorithm), Orthogonal Matching Pursuit OMP|[36], Stage wise
Orthogonal Matching Pursuit SStOMP, Compressed Sampling Matching Pursuit CoSaMP
[37], Gradient Pursuit GP [38] and Conjugate Gradient Pursuit [38].

In 2012 Lifeng Du et al. [10] presented a greedy algorithms analysis. Based on their
results, they concluded that Orthogonal Matching Pursuit, Stage wise Matching Pur-
suit and Compressed Sampling Matching Pursuit have a better performance due to sig-
nificantly smaller error in the case of a small sparsity or more measurements. Signal

reconstruction error was the least for CoSaMP algorithm shown in Table 2.1.

2.1.2.3 CoSaMP Algorithm

The algorithm starts with a trivial initial guess a = 0. During each iteration, CoSaMP

performs five major steps [37].

(M Identification. The algorithm forms a proxy of the residual from current samples and

locates the largest elements of the proxy.

@ Support Merger. In first iteration support merger is not used. On following itera-
tions, it merges the support of the current signal approximation and the newly identified

components, this is T = Q| supp(a’~!)

(® Estimation. The algorithm solves a matrix inversion problem in order to approximate
the target signal on the merged components on support set T'. In this step is required
to find the pseudoinverse (f) of a full rank tall matrix. A submatrix ®7 is constructed

with columns of ® which index number is in the support set T

@ Pruning. The algorithm produces a new approximation by retaining only the largest

entries in the least-squares signal approximation.

(B Sample Update. Finally the samples are updated, so that they reflect the residual,
the part of the signal that has not been approximated.

The mentioned algorithm steps are repeated until halting condition is met. Compressed

Sampling Matching Pursuit algorithm is described in Table 2.1.
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TABLE 2.1: CoSaMP Algorithm

Input:

Sampling matrix ®;
Sample data y;
Sparsity level k

During the 1 iteration
Asa® =0andr=y
u=oTr @

T = supp(uas,)

by = (®|r)ty ®

blre =0

alV) = by, @

r=y— da®) ®
During the i" iteration
u=oTrQ®

Q =supp(uak)

T = QU supp(a™") o)

by = (®|r)ty ®
blre =0

all) = by @
r=y— daqV) ®
Output

An s-sparse approximation a of the target signal.

2.2 Matrix Inversion

Matrix inversion is a core issue for reconstructing a compressed sensed signal. Greedy
algorithms require to compute matrix inversion of a non-square matrix also called Moore-
Penrose matrix inversion denoted by ®f. Three ways to cope with the matrix inversion

problem are: analytical, Chebyshev-typed method and QR decomposition.

2.2.1 Moore-Penrose Inverse

The Moore-Penrose inverse of a matrix A € R™" denoted by Af, is a matrix X that

satisfies the following four Penrose equations 39|

AXA=A (2.9)
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XAX =X (2.10)
(AX)* = AX (2.11)
(XA) = XA (2.12)

Where A* is the conjugate transpose of A.

If above equations are fulfilled by matrix A and its pseudoinverted matrix X = Af,

Moore-Penrose inversion will be given by equations (2.13) and (2.14).

AT = (ATA)~1AT (2.13)

Al = AT(AAT)! (2.14)

Equations (2.13) and (2.14) are the left side and right side Moore-Penrose pseudoin-
version. A rectangular matrix cannot have a two sided inverse as either that matrix or

its transpose has a non-zero null space, this can be stated as follow.

e AT A is invertible when A has a full column rank.

e AAT is invertible when A has a full row rank.

The column rank of a matrix is the size of the collection of all linearly independent
columns. The row rank is the size of the collection of all linearly independent rows. For

any given matrix row rank equals column rank.
For a matrix A € R™*" if m = n then AT = A~
2.2.2 Analytical Inversion

A well-known method for finding matrix inversion is the analytical method that uses

the adjoint matrix. Matrix inversion is given by equation (2.15)[40].

1
A7t = T A0diA (2.15)
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Where:
adj A is the adjoint matrix,

detA is the matrix determinant.

2.2.2.1 Adjoint matrix.

Given a matrix A(a;j) spanned by its a;; elements, whose cofactor matrix is B(A; ;),

adjoint matrix will be (2.18).

a1 a2 - aip
A= | 120 22 7 e (2.16)
Gm1 Gma2 0 G
Ap A o Al
By = | 20 e A (2.17)
Am1 Amo2 Amn
Ain Ao Am
adj A=B' = A:I’Q A:Q’Q A’T"Q (2.18)
A Aae e A

2.2.2.2 Cofactor

The cofactor ij of a given matrix A, denoted as A;; can by computed using equation
(2.19).

Aip = (1) My (2.19)

Where, |M;;| is the determinant of the minor matrix of A, formed by taking out row 4

and column j from A.
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2.2.3 Chebyshev-type Method

In 2003, Amat et. al. [19] introduced an iterative Chebyshev-type method of third

order or cubic convergence to find the inverse of a given matrix.

Few years later in 2011, Hou-Biao Li et. al.[18] compared the method proposed by
Amat with the iterative Newton method and demostrated that Chebyshev-type method
has less computational complexity and needs a small number of iterations to find the
solution. In that work they suggested a preconditioning technique for the initial guess

of the method to ensure that the method will converge.

2.2.3.1 Mathematical Formalization

The mathematical formalization of the Chebyshev-type method is given by (2.20).

Npt1 = Nn(3I — AN, (31 — ANy,)) (2.20)
Where:

Np41 next inverse aproximation,
N,, previous inverse aproximation,
I identity matrix,

A matrix to be inverted.

2.2.3.2 Preconditioning

In order to find the solution to the inverse matrix problem through the Chebyshev-type

method, it is important to choose a suitable initial guess, otherwise the method diverges.
With the equation (2.21) a suitable initial guess can be computed to ensure the

method’s convergence.

AT

No=—"——
A[]11[Allo

(2.21)

Where:

Ny initial guess,
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A matrix to be inverted,
AT transpose of A,
||A||1 max value of the summation of the elements on each column (2.22),

||Al|oc max value of the summation of the elements on each row (2.23).

1Al = maz;{ ) |ai;|} (2.22)
=1

1Al = mazi{ ) _ las|} (2:23)
j=1

2.2.3.3 Word length

Word length is an important issue on designing an FPGA architecture; for an iterative

matrix inversion is defined in the preconditioning stage, equation (2.21).

Matrix A with size n and elements ranging in [0 — ¢] interval will give, in the precondi-
tioning stage, a maximum number to be represented and can be computed with equation
(2.24).

maz_n = ||Al|1 * [|A|e = (cn)? (2.24)

The minimum number greater than zero to be represented is:

(2.25)

Where:

min(A) is the minimum number greater than zero contained in A.
If min_n is greater than zero, then min_n must be multiplied by a constant d in

order to fullfil inequality in (2.26). The Word length will be defined by equation (2.27).

2>min_nxd>1 (2.26)

word_length = 2 x (bits_d + bits_max_n) (2.27)
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Where:
bits _d, number of bits to represent d,

bits _max_n, number of bits to represent max_n.

2.2.4 QR Decomposition

QR Decomposition is a method where matrix A is decomposed onto two matrices Q and
R (2.28) [41]. Matrix inversion using QR decomposition can be computed by equation
(2.29).

A=QR (2.28)

AV =RTIQT (2.29)

Two algorithms to perform QR decomposition are the Classical Gram-Schmidt (QRD-
CGS) and the Modified Gram-Schmidt (QRD-MGS). The QRD-CGS has a round off
error when using a fixed point calculation. QRD-MGS overcomes this issue and is nu-
merically and accuracy superior to CGS [42]. QRD-CGS algorithm is shown in table 2.2
and QRD-MGS algorithm in table 2.3.

TaBLE 2.2: QRD-CGS

For j =1 :n;
U]j = Aj
fori=1:(j—1);
Rij = (45, Qi)
wj = w; R jq,
end
»
Qi = T,Ts
Rjj = [lwjll2

Where, one index as in A; or @; means the j or ¢ column, two indices like R; ; indicates

an element of R and w; is a temporary vector.
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TaBLE 2.3: QRD-MGS

For j =1:n;
U}j = Aj
fori=1:(j—1);
R;; = (wj, Qi)
wj = w; R jq,
end
w
Qi = ;T
Rjj = [lwjll2

In (2.29) R7! is calculated using back substitution [42]. Computation algorithm of

R~ can be seen in table 2.4.

TABLE 2.4: R inversion using back substitution

For j =1 :n;
Fori=1:(j—1)
iRy =iR(i,1:(j — 1))« R(1:(j —1),j);

end

. _ TG
ZRlz(j_l)vj - 3,3
iR = g,

end

Where, iR is the inverted matrix.

2.3 Transforms

For a signal to be suitable for compressed sensing it is necessary to find a sparse
representation or domain. Therefore, transforms are used for this duty. Three common
used transforms are: Discrete Fourier Transform (DFT), Wavelet Transform (WT) and

discrete cosine transform (DCT).

2.3.1 Discrete Fourier Transform

Fourier analysis gives frequency information about a signal. Some signals present
sparsity at the frequency domain, as example: sinusoids. Figures 2.2 and 2.3 show how

periodic signal are highly sparse in the frequency domain applying DFT .
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FI1GURE 2.3: DFT of sinusoidal signal from figure 2.2.

DFT and its inverse IDFT are given by equations (2.30) and (2.31). The two equations

give a numerical algorithm to obtain the frequency response of z(n) .

N-1 N-1
X(k) =Y a(n)e Ik = 5" p(mywn, (2.30)
n=0 n=0

0<k<N-1
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N—

)_l

1
- N

N-1
-~ 1 —kn
X (k) S = =3 X (W, (2.31)
k=0 k=0

0<n<N-1

Direct computation of DFT and IDFT using (2.30) and (2.31) requires N2 multipli-
cations and (N — 1)? additions; so they become very large numbers when N is chosen
very large, in order to increase the resolution of the frequency response X (k) of a given

signal.

Fast Fourier Transform is an algorithm to compute the Discrete Fourier Transform and
its inverse. FFT improves computational efficiency, when the value for the radix N is
chosen as 2f, where R is an integer, the number of multiplication is of order (N/2)loga(N)
and the number of additions is reduced to NlogaN [43].

2.3.2 Wavelet Transform

The wavelet transform can be used as yet another way to describe the properties of
a waveform that changes over time, but in this case the waveform is divided not into

sections of time, but segments of scale.

In wavelet analysis a variety of different probing functions may be used, but the fam-
ily always consists of enlarged or compressed version of the basic function, as well as

translations. This lead to the equation for the continuous wavelet transforms (CWT):

e 1 t—b

W{(a,b) = x(t) U ( )dt (2.32)
—00 w/|a| a

Where b acts to translate the function across x(t) and a varies the time scale of the

probing function, W. Wavelet coefficients describe the correlation between the waveform

and the wavelet function various translations and scales. If the mother wavelet or wavelet

function, W(t), is appropriately chosen, then it is possible to reconstruct the original

waveform from wavelet coefficients [44].

Time range of a wavelet function, §ty, can be specified by the square root of the second
moment of a given wavelet about its time center, equation (2.33). The center time ¢q is

given by equation (2.34).

(2.33)

\/f (t — t0)2|W(t/a)|2dt

> 1( t/a)]th
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25 t(t/a)|?dt
J2o 19 (t/a)2dt

b= (2.34)

Frequency range is given by equation (2.35) around its center frequency given by (2.36)

(W —w)?|¥(w)|2dw
e \/IOO(fS; o 23
o — Joo wl¥(w)Pdw (2.36)

S0 [ (@) [2dw

CWT is highly redundant having many more coefficients then needed to represent a
signal. This becomes a problem due to high computational cost for signal recovery. The
discrete wavelet transform (DWT) overcomes this issue by restricting translation and

scale variations, usually to powers of 2 [44].

DWT can be performed using equations (2.37) and (2.38). Where ¢ is the scaling
function, ¢(n) is a series of scalars that defines the specific scaling function and d(n) is
a series of scalars that are related to the waveform z(t) and define the discrete wavelet
in terms of the scaling function. Relationship of d(n) and signal z(t) can be seen in the

inverse discrete wavelet transform equation (2.39) [44].

$(t) = Y V2c(n)g(2t —n) (2.37)

n=—oo

(t) = i V2d(n)(2t —n) (2.38)

Inverse DWT is defined by equation 2.39.
wt)= > > d(k1)27H w2k 1) (2.39)
k=—oc0 l=—00

Here k and [ are related to parameter a and b of equation 2.32 as: a = 2%, b = 2¥1. d(k,1)

is a sampling of the continuous wavelet coefficients, W (a, b), at discrete points k and [
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2.3.3 Discrete Cosine Transform

The discrete cosine transform (DCT) [45] has been an important processing tool for
digital signals. Due to the sparsity levels it generates in signals, DCT is used in digital

signals formats such as MP3 for audio and JPEG for images.

For a signal z(m) m =0,1,2,..,(M — 1) DCT is defined as [45]:

G.(0) = 5 2 x(m) (2.40)
M-1

Gz(k) = \]\/f x(m)cosw, (2.41)
m=0

Where G, (k) is the kth coefficient.

Two dimension DCT can be performed on an image with equation (2.42). Image is

divided into blocks of 8x8 pixels and z[m, n] represents the image pixel values in a block.

Glu,v] = C’[u]40[v] mz;onz;)x[m, n|cos (2m —11_61)U7Tcos (2n —;61)071-’ (2.42)
0<u,v<T.
where
Clu] = { aoou=0
1 1<u<7

The DCT, which belongs to the family of sinusoidal transforms, has received special

attention because of its success in the compression of real-world images [46].
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FPGA implementation

A CoSaMP FPGA-based architecture is proposed for compressed sensed signal recon-
struction. The matrix inversion process, required by the CoSaMP algorithm, is based
on an iterative Chebyshev-type method. This chapter is divided into two main sections:

matrix inversion architecture and CoSaMP architecture.

3.1 Matrix Inversion Architecture

In this section, the implementation of the Chebyshev matrix inversion algorithm, based
on the mathematical formulation proposed in [19][18] and described on section 2.2.3, is
presented. The algorithm has been divided, as shown in Table 3.1, into three stages:
preconditioning stage, based on equation (2.21), iterative stage, based on equation (2.20)

and verification stage, based on the premise of (3.1).

AAT =T (3.1)

In the preconditioning stage, matrix A is transposed and ||A||; and ||A]|~ are calcu-
lated, using equations (2.22) and (2.23). The output of this stage is the initial guess, Ny,

of the matrix inversion, which is saved into a RAM memory.

The iterative stage has been divided into its simplest operations such as matrix mul-
tiplication and subtraction. Every step at this stage is saved into an embedded RAM

memory.

Verification stage takes the output of the matrix multiplication, A * N, in step @ of

the iterative stage, after @) has been done so the multiplication is made between the

21
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matrix A and the previously found inverse matrix approximation Np,11. If the result
meets the condition established in (3.1) a finish signal is sent to the control block and

the inverse matrix A~! = N,, 1 has been found.

TABLE 3.1: Matrix Inversion Algorithm

Input:
Matrix A,

Dimension of A.

Preconditioning
[[A[l1, [ Al
Transpose of A,

T
No = e
0 = AT TAT

Iterative

@ 31 — AN,

@ 31 — AN, (3] — AN,,)

® Nm+1 = Np(31 — AN, (31 — AN,,))

Verification

When iterative stage computes A * Ny, 11 in step @
if (A% Nppg1) =1
finish algorithm
else
Nm = N1
iterative stage goes to (2)
end

Output:

Npi1 as the inverted matrix A~L.

3.1.1 System Structure

The developed architecture has been divided into the following main blocks: precon-
ditioner, core, verifier, multiplexer, control, and storage. These blocks are described in

detail in the next subsections.

Figure 3.1 graphically depicts the system structure and its composition blocks.
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FIGURE 3.1: Matrix inversion system structure.

3.1.2 Preconditioner

Preconditioner blocks aim to give the first approximation to the inverse matrix A",
taking as input the elements of RAM A which contains matrix A. If initial guess is not
appropriately chosen, inversion method will not converge to the solution. This block is

constituted by three sub-blocks: max, transpose and division, as shown in figure 3.2.

Equations (2.22) and (2.23) are computed in the max sub-block with the max row
and max column blocks. At the output of the max block the product ||Al|; * ||Al|oo is
obtained using a multiplier; this output is saved in a register and sent as input to the

division sub-block.

Max block performs the addition of the elements in every column and row; the result is
loaded in registers 1. When the addition of all elements in a column and the addition of
all element in a row are finished, the comparator sub-block determines if current results
are greater than a previous larger column and row elements addition stored in registers
2. If current results are greater they replace the data contained in registers 2, otherwise

data is kept. A graphical description of the max block can be seen in figure 3.3.

The transpose sub-block has an input (columns) and output (rows) address generators,
each one composed by two counters and one adder. Input address generator reads RAM
A as columns and output address generator sends the data to be stored as rows; in that

way the matrix A is transposed. Max and transpose sub-blocks are executed in parallel.

Once the transpose and Max sub-blocks are finished, the finite state machine sends a

start signal to the division sub-block. Initially the division sub-block takes the output
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FIGURE 3.2: Preconditioner block diagram.

of the max sub-block, given by |[|A||1]|A||cc, and performs the operation described in
equation (3.2) to find fact. After fact has been found, the sub-block multiplies every
element of AT by fact.

1

fact = ————
[A[[1]1A|o

(3.2)
After this process is finished, the first approximation, Ny, has been found and sent to
memory. The block sends a signal to the control block indicating the core block to start

the first iteration.
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FIGURE 3.3: Max block structure.
3.1.3 Core

The core block is composed of two sub-blocks: matrix multiplication and subtraction.
Based on those two sub-blocks it computes the next inverse matrix approximation, Ny, 41

from (2.20). The block distribution is shown in figure 3.4.

Multiplication sub-block is a generic Matrix-Matrix multiplicator. The architecture
has a MAC (Multiply ACcumulate) structure and five address generators. The MAC is
constituted by four parallel multipliers and one adder, so it computes the multiplication
of eight elements, four of each matrix, at the same time. In [47] MAC is constituted just
by one multiplier and one accumulator. Address generators are distributed as follow:
two for reading row elements, two for reading column elements and one for generating

the output address.

MAC data flow is shown in figure 3.5. First, registers 1 are loaded with the data
to be multiplied; after one clock cycle, registers 2 load the other four elements to be
multiplied. Multipliers have one cycle delay so the correct product of all four multipliers
will be at accumulator inputs one cycle after registers 2 are loaded. Register 3 is storing
accumulator output while size dim of multiplied matrix is reached; afterwards, register

4 loads result and sends it to the RAM memory.

An improvement in computational time with respect to a previous version reported in
[47] was implemented, by designing a parallel structure to perform multiplication and
subtraction operations in this block. This approach cuts down the number of steps in

the inversion algorithm from six to three.
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F1GURE 3.4: Core block diagram.

Subtraction is a combinatorial sub-block that takes the MAC output and does the
subtraction given by 31 — M AC dat out. The address where the result will be stored
is the same as the MAC output address.
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FIGURE 3.5: MAC data flow.

3.1.4 Verifier

Verifier block is constructed using a comparator, a counter and a finite state machine.
While multiplication A x M,, in the step (D of the iterative stage is being computed,

verifier checks up if that multiplication gives as result an identity matrix.

For the verifier sub-block it is important to know if the multiplication result will be
stored in or out the matrix diagonal; thus multiplication sub-block sends a signal called
Diag-sign to the verifier. Diag-sign points out if the data under the verifying analysis is

a matrix diagonal element. The elements in the matrix diagonal must be of value one.

The counter keeps track of wrong elements. Once the multiplication process finishes,
the counter is checked in order to decide the next step; if the counter’s output is zero a
stop signal is sent and the inverted matrix given by A~! = N,,, ;1 has been found. If the

counter’s output is greater than zero the iterative process continues through step 2.
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FIGURE 3.6: Verifier block diagram.

3.1.5 Multiplexer

The multiplexer block, consisting on several multiplexers and demultiplexers, addresses
every block output data to the corresponding input of a block or memory. Multiplexers
are important for reducing FPGA RAM resource utilization. RAM memory can be re-
used by blocks that function at different times; this prevent to have repeated data. RAM

contents can be deleted after they are not needed anymore.

3.1.6 Control and storage

For the control of the system a finite state machine (FSM) has been implemented.

FSM carries out the blocks control to, recursively, find the inverse matrix as follows:

(D Matrix A is transposed and Max values ||A]|1, ||A]|c are computed.

@ Equation (3.2) is performed.

@ Initial guess N,,—¢ is calculated, equation (2.21) .

@ 31 — AN,, is computed and stored. Besides, verifier block checks if A x N,,, ~ I.
® If Ax N, =~ I, inversion process is finished.

® If Ax N, # I, inversion process continues with (7).

(@ Core block performs and stores the operation 31 — AN, (3] — AN,,).
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Core block computes Ny, (3] — AN, (31 — AN,,)).
@ Ny = m+1-

Process goes to step @.

An embedded RAM memory is used to store the data. Each memory is a dual access
RAM, so two elements can be withdrawn and one element can be stored, all simulta-
neously. The block has three access port address: two for reading and one for writing.
Data to be stored in memory is sent to the memory input data port. Memory elements
are withdrawn to access them at output data 1 and output data 2 ports. WE (Write
Enable) port enables writing into memory; writing address and data to be written could

be ready but data is not written until WE signal value is one.

I WE

Writing Address ) Input Data
‘_
Reading Add 1 RAM Output Data 1
eadin ress
9 | Memory :
Reading Address 2 Output Data 2
= ..

FIGURE 3.7: RAM memory block.
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3.2 CoSaMP Architecture

In 2010, Jicheng Lu et al. [11| presented an optimization of the CoSaMP algorithm
introduced in [37], see table 2.1. In this work, the optimized CoSaMP algorithm shown
in table 3.2 was implemented. Several FPGA blocks were developed to, altogether, carry
out the compressed sensed signal reconstruction. Figure 3.8 depicts FPGA blocks that

computes CoSaMP algorithm of table 3.2.

CoSaMP Architecture
Matrix
Inversion Copier Support

—— 1 !

Transposer 44— Control [ Multiplication
| |

y L 4
Matrix Substraction-
Creation verifier

FIGURE 3.8: FPGA CoSaMP Architecture blocks.

3.2.1 Transposer
The transposer block aims to give a transpose version of any matrix and is needed

when the Moore-Penrose pseudoinversion, given by (2.13) and re-written in(3.3), has to

be computed.

AT = (AT A)~1AT (3.3)
Operation is performed to a ® sub matrix called ®7 and equation (3.3) becomes (3.4).

®7 matrix is created by the matrix creation block described in the matrix creation

subsection .

(@7)" = (1) (21)) " (21)" (3-4)

Transposer block has two address generators whose architecture is as shown in figure

3.9. Counter 0 to dim counts from zero to a specified matrix dimension; for both, row
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TABLE 3.2: Optimized CoSaMP Algorithm

Input:

Sampling matrix ®;
Sample data y;
Sparsity level k

During the 1% iteration
Asa® =0andr =y
u=olr

T = supp(uss,)

b = (®Ir)fy

bl7e =0

a®) = b,

r=y— dal)

During the i iteration
u=oTr

P :supp(a(i_l))

U = ulpe

Q =supp (i)

T=QUP

blr = (®|7r)Ty

blre =0

a® = by,

r=y-— Pald)

Output

An k-sparse approximation a of the
target signal.

and column address generators, this parameter will be matrix j-dimension. Counter dim
counts on dim increments. Here, dim for row address generator is matrix j-dimension

and for column address generator is matrix i-dimension.

The first address purpose is to read the matrix to be transposed as row elements.
Second address is to store the read row element as a column element. Figures 3.10 and
3.11 show the path that transposer address generators follow while they are reading

matrix A and writing matrix A~

3.2.2 Support

The support (supp) of a vector is the index set of the non-zero vector elements. Figure

3.12 shows a vector decomposed in two sets: elements and index. The support of this
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FIGURE 3.9: Transposer address generator.

vector will be the index subset T'=[1 3 4].

Greedy algorithm usually require fewer elements than the whole support set; this is
dependent on the sparsity level k£ of the compressed sensed signal. When k-support is
needed index of k greater elements of the vector are meant to be taken. For example
figure 3.12, vector k-support with & = 2 will be T' = [1 3] as the two greater elements

are 5 and 9 and their index are the needed k-support.

In order to find k-support of a given vector, for any k, a great-to-small arranging block
is implemented; in that manner index of k larger elements are at the first & memory

locations.

The Great-to-small block architecture is limned on figure 3.13. This blocks access two
RAM memories, one is where vector data is stored and the other has the index of the
data. Vector data is loaded in register 1 and 2 and at the same time index of that data
are loaded in register 5 and 6. The two loaded elements are compared; register 3 loads
the larger one and register 4 loads the smaller one. Multiplexers 1 and 2 send to the
block outputs the data and its index to be written into memory, addressing first the

larger element.
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FI1GURE 3.11: Column address generator path.

In this block, the vector elements are arranged in descendent order comparing pairs of
elements and re-arranging them if needed. At the end the index of k, 2k or 3k larger

elements can be taken to construct the required support.

3.2.3 Matrix Creation

Matrix creation block creates a tall matrix, @7, of size m by 3k, where m is the
number of samples and k the sparsity level. This matrix is a sub-matrix of the sensing

matrix ¢ and is created taking 3k columns of ®.
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Vector

Elements 0 5 0 91

Index 01 2 3 4

FIGURE 3.12: Decomposed vector in elements set and index set.

Great-to-small Data flow
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Mux 2

v

Register 5 —L'

Register 6

FIGURE 3.13: Great-to-small architecture.

The chosen ® columns that span the matrix &7 are those whose index are in the
support vector; i.e. if support vector is T =[5 2 4] then columns 5, 2 and 4 form ®p.
To achieve the matrix creation the architecture has two counters: one that goes from 0 to
3k and the second one that counts in increments of 3k. The output of the 0 to 3k counter
is used as the support memory reading address. The output of the support is added to
the 3k counter output to form the ® memory reading address, see figure 3.14. Writing

address is generated in a similar way as the transposer reading address, see figure 3.9.

3.2.4 Vector copier

Copier block is used to perform a vector replica in operations a(t) = by, and § = Yl pe.
Copier is composed by one counter and a finite state machine. The counter generates

the reading and writing address, both being the same.

The finite state machine controls the counter and generates the memory write enable

(WE) signal. Figure 3.15 depicts the vector copier structure.
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FIGURE 3.14: Reading address of matrix creation block.

: Counter iy
: WE :
—> FSM >
. Data . Control signal
. Address

FIGURE 3.15: Vector copier structure.

The output of the memory where the vector to be copied is stored is directly connected

to the data input of the memory that will contain the vector replica.

3.2.5 Vector reset

In order to implement CoSaMP algorithm vectors b, ¢, 2, T and P need to be reset

on each iterations. b and § must start with all their elements values set to zero. Support
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vectors €2, T' and P are reset by setting their values in ascendant order from 0 to n — 1,

where n is the sensed signal length.

Two architectures are required to carry out this task: zero reset and ascending order
reset. These architectures are identically composed by a counter to generate the memory
address where the data will be written and a finite state machine to generate the memory

write enable (WE) signal.

The difference between these two architecture is the output data to be written; for
the zero reset the output data always will be zero and for the ascending order reset the

output data will be the same generated address.

3.2.6 Matrix inversion
Matrix inversion is the architecture depicted in figure 3.1 and described in the previous

section. For the CoSaMP algorithm the matrix size to be inverted depends on the sparsity

of the compressed sensed signal and always is 3k by 3k, where k is the sparsity level.

3.2.7 Multiplication
Multiplication is the generic matrix/matrix multiplication sub-block whose nucleus is

limned in figure 3.5. As a generic architectures, it can multiply matrix and vectors of

any size and it is also flexible to word length variations.

3.2.8 Subtraction and Verifier
CoSaMP algorithm at its final step computes a residual to reflect the part of the signal

that has not been approximated. This operation is defined in equation 3.5. When

residual, 7, is smaller than an established threshold, CoSaMP iterations stop.

r=y— &d (3.5)
Where:

r Residual,
y samples vector,

® sensing matrix,



Chapter 3. FPGA implementation 37

a' current signal approximation.

In this stage multiplication ®a’, subtraction y — ®a’ and verification of r value are
perform in parallel. Multiplication is computed by the multiplication block and a
Subtraction-verifier block is implemented to execute the remaining two operations. Subtraction-

verifier block is depicted in figure 3.16.

Subtraction-verifier

Yy
I—' -+ r
Substraction I
Register 1 —I_'
FSM [« Comparator
Counter >
. Data . Control signal

FIGURE 3.16: Subtraction-verifier block structure.

While the residual vector, r, is computed, comparator checks if every element of r
meets the specified threshold condition. If this condition is met, comparator sends a
signal to the finite state machine in order to increment the counter. Counter keeps track
of the non desirable values of . At the end of the r calculation, if counter output is zero

CoSaMP algorithm is finished, otherwise another iteration is started.

3.2.9 Control

Control block has a ROM Memory and a finite state machine. The ROM memory has
all control signals stored and the finite state machine controls ROM access address. The

computing flow of the implemented CoSaMP architecture is as follow.

@ Operation u = ®*r is computed.
@ Support T = supp(usy) is obtained.

(® Sub-matrix @7 is created.
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@ Pseudoinverse (®7)" is performed.

® Multiplication b = (®7)Ty is computed.

(6 Signal approximation is created by copying the k larger elements of b, a = by.
(D Residual is calculated, r = y — ®a.

If residual r meets threshold condition, CoSaMP algorithm is finished.

© If residual value is above specified threshold, CoSaMP continues with another it-

eration.
Operation © = ®Tr is computed.
Counter of subtraction-verifier block is reset.

Support of previous signal approximation, P = supp(a), is obtained.

®@ & © 6

A copy of vector & = u is made taking out all elements whose index are in the

support vector P.

®

Support © = supp(t) is obtained.
@ Support T is obtained by merging P and Q, T = PJ .

@ Algorithm goes to step @

Storage of all vector and matrices is achieved by implementing RAM memories as the

one shown in figure 3.7.
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MATLAB Graphical User Interface

MATLAB graphical user interfaces (GUI) are friendly and mostly point and click soft-
ware applications, useful to organize data and display results in a fast and easy way. For
this work a MATLAB GUI has been developed as a tool for compressed sensing theory
exploration. Its main purpose is to rapidly test sensing matrix and transforms to 1-D
and 2-D signals. CoSaMP algorithm is used to reconstruct the sensed signal, but as a
flexible interface it can be easily modified to use other compressed sensing algorithms.

Figure 4.1 limns the user interface.

GUI features, leaving MATLAB code as implicit, can be divided into two categories:

inputs and outputs.

4.1 GUI Inputs

The user can define a set of conditions to perform an experiment. These are defined
by the data type, sensing matrix, transform, maximum compressed sensing algorithm
iterations, signal sparsity, sparsity threshold and name of the file where results will be

stored; this inputs are chosen to fulfill the test needs.

4.1.1 Data type

The interface can work with two different data types: images and 1-D signals; it has

two mutually exclusive radiobuttons in order to select the data type, see figure 4.2.

39



Chapter 4. MATLAB Graphical User Interface 40

© Preset Transforms © Custom Transform

Mother Wavels
’7@ Haar Transform level

Daubechies

PSNR (dBs)  Time (s) fterations Sparsity Size
335.83 0.0880 2 2000 1X2000

Summary of simulation is stored in Results.txt file.

FIGURE 4.1: Graphical User Interface as a compressed sensing tool.

¥ @]

FIGURE 4.2: Data type selection.

Two folders must be created in the code root directory to store the signals that will
be processed, these folder are images, for images and signals to for 1-D signals. When a
data type is selected, for example 1-D signals, GUI access signals folder and populates a
listbox with the name of all files in that folder whose extension is .mat, this is depicted

in figure 4.3.

FIGURE 4.3: Data file selection.

Images must be in .jpeg and rgb formats. Images are read using MATLAB function
imread(’images/images_name.jpeg’). Once an image is loaded, it is converted to gray

scale using rgb2gray(images) function.

1-D signals are stored in a .mat file. The .mat file needs to contain the signal in

a variable named z. Signal is load using MATLAB load(’signals/signal_name.mat’)
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function.

Loaded data is simulated to be compressed sensed computing operation ®x. Subse-

quently, it is reconstructed with the CoSaMP algorithm.

4.1.2 Sensing matrix

Sensing matrix, as described in previous section, is an important element for com-
pressed sensing that can lead to success or failure on the signal reconstruction. MATLAB
GUTI let the user to choose the proper sensing matrix for an specific problem, see figure
4.4.

FIGURE 4.4: Sensing matrix selection panel.

Random sensing matrix, as it has been said, fulfill the rip condition so they are, with
high probability, good to be a sensing matrix; therefore, random matrices are the default
sensing matrix option. The m by n sensing matrices are generated using phi = rand(
n,m) MATLAB instruction, where n is the sensed signal length and m is the number of

samples, a percent of n.

The percentage of measurements, m, is controlled by a slider GUI object. Slider values
vary from 0 to 1 representing a 100% scale. The number of measurements must be

greater than three times signal sparsity, this is:

m > 3k (4.1)

Custom matrix radiobutton gives the option to use any other matrix that were previ-
ously created and saved as a .mat file. The slider is disabled and the textbox is enabled
when the custom matrix option is selected. Sensing matrix is imported using MATLAB
function load (matrix_name.mat). By default textbox text is .mat; if this text is leaved as
it is, the code interprets that no sensing matrix has been selected and shows a message

error, see figure 4.5.

The j-dimension of loaded custom matrix must be the same as the sensed signal length

(n). Otherwise, a message error window, shown in figure 4.6, is displayed.
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u error [ = g

Specify zenzing matrix . mat name.

FIGURE 4.5: Custom sensing matrix name error.

n error .uﬂlﬂ

Senging matrix j-dimension and senged vector length must agree.

FIGURE 4.6: Matrix dimension and sensed vector length mismatch.

4.1.3 Transform

Transform selection is crucial for compressed sensing, for different transforms signal
sparsity might vary. This GUI let the user to select which transform will be used to
simulate the compressed sensing acquisition. Preset or a user defined transforms can be

selected.

There are two preset transforms defined for for 1-D and 2-D: wavelet and discrete
cosine transform. From a pop-up menu one of the preset transforms can be chosen; as
default wavelet transform is selected. Wavelet and DCT require different parameter to be

set. A transform parameters setting menu is displayed for the selected preset transform.

Wavelet transform can be computed using haar or daubechies mother wavelet, with six

decomposition levels. Figure 4.7 shows wavelet setting menu.

@ Preset Transforms

Wavelet -

@ Haar Transfarm level

(7 Daubechies

|7 Mother Wavelet

FIGURE 4.7: Wavelet setting menu.

Wavelet setting menu becomes invisible when DCT transform is selected; in its place
slider and label GUI objects show up, see figure 4.8. These objects are used to set a
threshold for the DCT, all signal elements under that threshold are set to zero. Slider



Chapter 4. MATLAB Graphical User Interface 43

values variate from 0 to 1 with increments of 0.001, giving threshold values ranging
between 1 to 1000.

@ Preset Transforms

Threshold

d d

FIGURE 4.8: Discrete cosine transform setting menu.

Besides the preset transforms, a custom user defined transform can be used in this
GUI. Preset transform panel is disabled when custom transform option is selected. The
custom transform must be coded as a function in MATLAB language and stored in a file
with .m extension; the file have to be placed in the root GUI folder. The input of the
transform function is an image or an 1-D signal vector, the output should be a coefficient
matrix of the same size as the image or a vector of the same length of the 1-D signal.

Custom transform panel is shown in figure 4.9.

@ Custom Transform

Transform

fft
Inverse Transform

my_transform

FIGURE 4.9: Custom transform panel.

In addition to the transform .m file an inverse transform file is needed to reconstruct
the 1-D signal or image from its recovered transform coefficients. Structure of the inverse

transform file is similar to the transform structure.

The two text box in the custom transform panel are use to write down the transform
and inverse transform names. Their initial text is my transform. If transform textbox
text is the same as its default, it is infer that no transform has been selected and the
message box shown in figure 4.10 is displayed. The same for inverse transform textbox,

inverse transform error message is shown in figure 4.11.
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B error = |iSh

Diefine pour transfarm with a different name
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FIGURE 4.10: Wrong transform selection error.

- error = B
o

Define your inverse tranzformn with a different narne

S S

FIGURE 4.11: Wrong inverse transform selection error.

4.1.4 Other inputs

In other inputs are enclosed the parameters shown in figure 4.12: max iteration, spar-

sity, sparsity threshold and summary file name.

FIGURE 4.12: Input parameters.

Max iteration refers the maximum number of iteration for the CoSaMP algorithm.

Sparsity is a parameter that defines how many elements of a signal or image are the
most representative. Sparsity parameter can be larger or smaller than the real signal
sparsity. For example almost all FF'T coefficients of a sinusoidal signal are close to zero,
but are not zero and just one of them is the most representative so the user can define

sparsity parameter as one.

Sparsity threshold is used to set to zero all transform coefficients under that threshold.
GUI computes the real sparsity of the signal so the user can find out the threshold value

above which the most significant transform coefficients are located.

GUI generates a .txt summary file which is described in next subsection. In the textbox

text the summary file name is written.
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4.2 GUI outputs

After the algorithm is finished the result information is given mainly by three different

ways: label text objects, graphs and plots and a summary file.

In the GUI design are five labels that give a first glimpse to the summary of the

experiment. Those labels can be seen in figure 4.13.

PSNR value is the peak signal to noise ratio between the original and recovered image;
mean squared error (MSE) is computed between original and recovered 1-D signal. PSNR

and MSE are used to measure the reconstruction performance.

Time expresses in seconds how long it took for the CoSaMP algorithm computation.
Iteration label shows the number of iteration CoSaMP algorithm took to recover the

transform coefficients.

Sparsity label give the real sparsity of the signal; for figure 4.13 was the sparsity of the
FFT coefficients for a three added sinusoidal signal with two thousand samples length;
it can be seen that no one of its coefficients was zero, although user defined sparsity for

this experiment was three. Last label shows the under examination signal or image size.

_
PSNR (dBs) Time (s) lterations Sparsity Size
335.81 0.0836 2 2000 1X2000

Summary of simulation is stored in Results.txt file.

FIGURE 4.13: Output GUI labels.

Four axes are other kind of GUI output objects. Upper left axes display the transform
coefficients and upper right axes display the recovered transform coefficients. Lower left
axes display the original signal or images and lower right axes the recovered signal or

image.

Figure 4.14 depicts an experiment for an image of 16 by 16 pixel size using DCT
tranform with threshold = 50.

The experiment of a three sinusoidal added signal using Fast Fourier Transform, whose

output label values are in figure 4.13, is depicted in figure 4.15.

The GUI creates a folder named results in the root directory. Every time the code is
executed, a folder with the date and time of the simulation is created in it. A .mat file,
containing simulation variables, is saved into the simulation folder. This is in order to

reproduce the simulation under the same conditions.
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FIGURE 4.14: Image simulation axes display.

Additionally a .txt file is created to store simulations summary. Summary information

is organized as follows.

e folder, is the folder, name with the simulation date, where data is stored.

file, is the time and file name of the simulation.

e testing signal, is the name of the image or 1-D .mat used for that simulation.
e Size, is the size of the signal.

e Transform, is the used transform.

e Samples percent, is the value of m, that is the percent of n. It is expressed in values

ranging between 0 and 1.

e dec_lev, is the Wavelet decomposition level, if used transform is not wavelet a value

of NA will appear.

e DCT Thresh, is the discrete cosine transform threshold. If a different transform

is used NA will appear.

e [, is the real signal sparsity.
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FIGURE 4.15: 1-D simulation axes display.

e k tresh, is the sparsity threshold, used to decrease the sparsity of a signal.
e fiz k, is the user defined signal sparsity.

e fom, is the figure of merit value that measures the signal reconstruction. Peak

Signal to Noise Ratio for images and mean square error for 1-D signals.
e Time, is the CoSaMP computation time (seconds).
e [terations, are the CoSaMP iterations taken to recover a signal.

e maxz iterations, are the maximum number of iterations defined by user to automat-
ically break CoSaMP algorithm.

An important conclusion can be made through summary file: if iterations are equal to

max iterations, signal was not correctly recovered.
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Results

In this work an FPGA architecture for compressed sensing signal recovery has been
developed. This architecture includes matrix multiplication, matrix transposition, matrix
inversion and a Compressed Sampling Matching Pursuit. Besides, a matlab graphical

user interface has been developed as a compressed sensing theory exploration tool.

5.1 FPGA architectures

FPGA architectures are validated by their device utilization, latency and maximum
working frequency. This implementation is focused on resource optimization. Usage of

DSP blocks, the most limited resources, is mainly affected by the word length.

5.1.1 Matrix Multiplication Architecture

The matrix multiplication architecture is a generic FPGA structure capable to multiply
matrices and vectors of any size. Tables 5.1 for Virtex 4 and 5.2 for Spartan6 summarize
the device resource utilization for the matrix multiplication structure for different word
lengths: 20, 26 and 36 bits. It can be seen that this architectures leaves enough space to

implement other architectures.

48
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TABLE 5.1: Matrix Multiplication Xilinx Virtex 4

Device Utilization Summary

Logic Utilization | 36 Bits | 26 Bits | 20 Bits | Available
Slices 771 457 529 10240
Slice Flip Flops 797 519 440 20480
4 input LUTs 2168 676 900 20480
DSP48s 32 16 4 128

TABLE 5.2: Matrix Multiplication Xilinx Spartan 6

Device Utilization Summary

Logic Utilization | 36 Bits | 26 Bits | 20 Bits | Available
Slice Registers 785 528 497 54575
Slice LUTs 1138 644 1246 27288
LUT-FF pairs 389 198 279 4780
DSP48Als 32 16 4 58

Latency for the matrix multiplication architecture is depicted by the graph in figure

5.1. Latency increases on an exponential way as a function of matrix size n.

Figure 5.2 shows the working frequency behavior due to word length variations and
different FPGA platforms. The maximum achieved working frequency for this structure

is 164 Mhz in a virtex 4 using a word length of 20 bits.

5.1.2 Matrix Transposer Architecture

Matrix transposition is another important operation when working with matrices. The
transposer architecture performs this operation. Being, as the matrix multiplication
structure, a generic architecture it can transpose any matrix of any size. Matrix trans-
poser device utilization for a virtex 4 and spartan 6 is summarize in tables 5.3 and 5.4.
Dsp blocks are not needed for this structure and as it can be seen in the summary tables,

transposer architecture uses small amount of the board resources.

The architecture is sensible to address length variations. The address length is the
number of used bits for the memory address. It was synthesized for two address lengths
20 and 8 bits.
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FIGURE 5.1: Matrix multiplication latency.
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FIGURE 5.2: Matrix multiplication working frequency.

TABLE 5.3: Matrix Transposer Xilinx Virtex 4

Device Utilization Summary

Logic Utilization | 20 Bits | 8 Bits | Available
Slices 102 57 10240
Slice Flip Flops 92 44 20480
4 input LUTs 195 108 20480
DSP48s 0 0 128
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TABLE 5.4: Matrix Transposer Xilinx Spartan 6

Device Utilization Summary

Logic Utilization | 20 Bits | 8 Bits | Available
Slice Registers 101 53 54575
Slice LUTs 155 81 27288
LUT-FF pairs 93 47 4780
DSP48A1ls 0 0 58

Matrix transposition operation, based on the proposed FPGA architecture, has a
latency shown in figure 5.3. This results are for square matrices of size n. However, the

structure is proficient to transpose a matrix of any dimension.

Transposer latency

14000 ' ' ' ' ' i
12000 ] R
10000 i
8000- :

6000 - :

Clock Cycles

4000 - -

2000 - i

Matrix Size (n)

FIGURE 5.3: Matrix transposer latency.

Maximum working frequency is limned by the graph in figure 5.4. This architecture
works with generating address so maximum working frequency is not affected by the
word length; on the other hand address length directly affects the maximum working
frequency. In spite of that the maximum working frequency difference between the
architecture implemented on a virtex 4 and a spartan 6 is considerable, the maximum

working frequency for the spartan 6 is still an excellent working frequency.
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FIGURE 5.4: Matrix transposer maximum working frequency.

5.1.3 Matrix Inversion Architecture

Latency for the matrix inversion architecture, based on the iterative chebyshev-type
method, it is mainly affected by the matrix size. Figure 5.5 shows a graph of the structure

latency for different matrix sizes and word lengths, y-axis is in a logarithmic scale.

Table 5.5 shows that if word length does not change, DSP blocks usage remains un-
changed. The architecture was implemented in various FPGA platforms: Virtex 4
XC4VSX25, Spartan 6 XC6SLX45, Cyclone IV EP4CGX150DF31C7 and Cyclone II
EP2C35F672C6. Device utilization for the different FPGAs families for 36 bits word
length and 8x8 matrix size is summarized in tables 5.6, 5.7, 5.8 and 5.9. Due to the

resource utilization, cheap FPGA families such as the Spartan 6 can be used.

TABLE 5.5: Matrix inversion Dsp blocks usage

Matrix size (n) This work [41, 48]

20 bits | 26 bits | 36 bits | 19 bits
4x4 7 28 56 12
6x6 7 28 o6 18
8x 8 7 28 o6 24
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FIGURE 5.5: Matrix inversion latency at different word lengths.

TABLE 5.6: Matrix inversion and CoSaMP in Xilinx Virtex 4

Device Utilization Summary

Logic Utilization | Inversion | CoSaMP | Available

Slices 1382 2835 10240
Slice Flip Flops 1190 1875 20480
4 input LUTs 2133 5084 20480
FIFO16/RAMBI16s 12 53 128

DSP48s 56 56 128
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TABLE 5.7: Matrix Inversion and CoSaMP in Xilinx Spartan 6

Device Utilization Summary

Logic Utilization | Inversion | CoSaMP | Available
Slice Registers 1245 1917 54575
Slice LUTs 2013 3942 27288
LUT-FF pairs 560 1079 4780
Block RAM/FIFO 6 44 116
DSP48A1ls 56 56 58

TABLE 5.8: Matrix Inversion and CoSaMP in Altera Cyclone 11

Device Utilization Summary

Logic Utilization | Inversion | CoSaMP | Available
Logic elements 2333 13830 33216
Registers 934 6030 33216
Memory bits 27648 383040 483840
Multipliers 9-bit 56 56 70

TABLE 5.9: Matrix Inversion and CoSaMP in Altera Cyclone IV

Device Utilization Summary

Logic Utilization | Inversion | CoSaMP | Available
Logic elements 2352 4321 149760
Registers 970 1478 149760
Memory bits 27648 391488 6635520
Multipliers 9-bit 56 56 720

Figure 5.6 shows the maximum working frequency for the matrix inversion structure

implemented in the different FPGA boards varying the word length.

5.1.4 CoSaMP Architecture

The Compressed Sampling Matching Pursuit (CoSaMP) algorithm was implemented

including the iterative Chebyshev-type matrix inversion method. Latency for CoSaMP



Chapter 5. Results 55

Maximum Frequency
160 Y v T : v

s " - -m - Xilinx Virtex 4

140 T - @ - Xilinx Spartan 6 |
NS — 4—- Altera Cyclone IV
130 - T --%-- Altera Cyclone ||

120 4 N~ e .

110 4 v\ RN s
100 - N T e -

90 - \ TE— .

Frequency (Mhz)

80 - N em
70 \ :
60 4

50 T E T E T
21 28 35

Word length (bits)

FIGURE 5.6: Maximum frequency comparison.

architecture is shown in figure 5.7. Latency was computed using test vectors of different
sparseness, ranging from one to nine. Figure 5.8 depicts latency of an iteration of the
CoSaMP algorithm partitioned into its main blocks. This picture is divided in three

parts: pre-pseudoinversion, pseudoinversion and post-pseudoinversion.

Maximum working frequency for the CoSaMP algorithm varies as data word length
change and is the same as the matrix inversion maximum working frequency. Obtained

results are depicted in figure 5.6.

Aldec Active-HDL software was used to simulate the VHDL architecture. A simulation
of the CoSaMP algorithm can be seen in figure 5.9; a signal with nine sparse level was
recovered in five iterations. In descendent order, simulated signals are: reset, clock,
CoSaMP finish signal, CoSaMP ready signal, pseudoinversion ready signal, inversion
ready signal, matrix multiplication ready signal, support ready signal, matrix creation
ready signal, vector copier ready signal, vector reset ready signal and transposer ready
signal. For the ready signals a zero value is when the block is working and one when the

block is ready to be used.
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FI1GURE 5.7: CoSaMP architecture Latency comparison at different sparse levels.

5.2 Matlab Graphical User Interface

Various test were performed using the developed MATLAB graphical user interface,
in order to extract the signal features useful for compressed sensing. The 64x64 pixels
images of figures 5.10 and 5.11 were used as testing images and as 1-D testing signals ten
sinusoidal waveforms, described by the following equations and stored in a 2000 length

vector, were used.

@ Cos(2mt)

®@ Cos(2nt) 4+ 0.4Sin(277t)

@ Cos(2nt) + 0.4Sin(277Tt) + 0.2C0s(27w10t)

@ Cos(2nt) + 0.4Sin(277t) + 0.2C0s(2w10t) 4 0.024Sin(2712t)

® Cos(2rt) + 0.48in(277t) + 0.2C0s(2710t) + 0.0248in(2712t) + 0.04Cos(27201)

® Cos(2nt) + 0.4Sin(277t) + 0.2C0s(2710t) + 0.024Sin(2712t) + 0.04Cos(2720t) +
0.06Sin(2725¢)

@ Cos(2nt) + 0.4Sin(277t) + 0.2C0s(27w10t) + 0.024Sin(2712t) + 0.04Cos(27w20t) +
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FIGURE 5.11: Pacman testing image.

First test was performed to obtain the sparseness of a 1-D signal due to different trans-
form condition. In this test two transform, Discrete Cosine Transform and Fast Fourier
Transform, were computed for the ten sinusoidal modeled by equations in the previous
list. Figure 5.12 shows the sparsity of each sinusoidal signal due to the transform, setting
to zero all transform coefficients whose absolute value is under one. It can be seen that

for sinusoidal signals FFT gives a lower sparsity level than DCT.

Although FFT offers more sparsity on sinusoidal signals, CoSaMP showed a better
reconstruction performance for sinusoidal signals sensed using DCT. The mean squared
error is computed between original and reconstructed signal. Reconstruction was ob-
tained taking 1000 measurements to recover the 2000 length signal. Results can be seen

in Figure 5.13.

Figure 5.14 depicts results of an experiment performed to extract Lena image sparsity
using wavelet transform. In this experiment a Haar mother wavelet is used for different
wavelet decomposition levels and threshold values. It can be seen that with a zero thresh-
old image has a poor sparseness; a considerable difference is seen as sparsity threshold
increases. The reconstructed lena image can be seen in figure 5.15(b), it was recovered

in three CoSaMP iterations using 70% of the samples.

Image sparsity due to specific transform conditions is also affected by the image nature.
This is shown in figure 5.16 where sparsity of pacman (figure 5.11) and lena (figure 5.10)
images is compared. In this test a haar wavelet transform is computed with a sparsity

threshold value of 60 and four different decomposition levels.
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FIGURE 5.15: 64 pixels lena testing image at 1.5 scale.
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(b) Reconstructed image
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Conclusion and Future Work

The aims of this work were to implement an FPGA-based architecture of a compressed
sensing recovering algorithm and develop of a MATLAB Graphical User Interface as an
educational compressed sensing theory exploration tool. As a result of this work generic
FPGA blocks for matrix transposition and multiplication were developed; as generic
structures they can be utilized in other field of applications, where matrix operations are
needed. Also, an FPGA-based reconstruction architecture for compressed sensed sparse

signal was implement with FPGA resource optimization.

The compressed sensing greedy algorithms are suitable for hardware implementation,
thus a greedy algorithm named Compressed Sampling Matching Pursuit was used for
this work. Synthesis results of the FPGA architecture show that the CoSaMP structure
can be implemented on small low cost FPGA boards as the Spartan6. If the architecture

is needed for a bigger application FPGA boards as the Virtex4 can be utilized.

CoSaMP algorithm requires to find the inverse of a matrix. The iterative Chebyshev-
type method was proposed to carry out this task. It was found that the Chebyshev
method iterations depend on the matrix data, affecting the FPGA inversion block latency.
The inversion block make use of the generic matrix multiplication that is also used by
the CoSaMP architecture. Thus, when CoSaMP block is implemented FPGA multipliers
usage is increased just by two. The shortcomings of the Chebyshev-type matrix inversion

are the memory usage, for large matrices external RAM is needed.

The FPGA implementation, with appropriate storage modifications, is robust to
changes on word length and sensed signal size. Under the same word length, FPGA

DSP blocks usages remains unchanged.

The MATLAB graphical user interface is useful for theoretical exploration, mainly for

testing sensing matrix, transforms and signals. In the MATLAB GUI the test of sensing

62
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matrix design and transforms under different conditions could give useful information
about a specific signal that can be used for a compressed sensing application. MATLAB
GUI uses the CoSaMP algorithm to reconstruct the signal but it can easily be extended

for other compressed sensing algorithm.

6.1 Future Work

Implement, based on developed blocks, a different matrix inversion method.

Develop FPGA external RAM controller.

Incorporate in MATLAB GUI other compressed sensing reconstruction algorithms.

Modify FPGA architecture and MATLAB GUI in order to perform a CPU-FPGA

hybrid simulations.

6.2 Publications Obtained from this Thesis

e H. D. Rico-Aniles, J. M. Ramirez-Cortes, and J. de J. Rangel-Magdaleno. FPGA-
based inversion matrix using an iterative chebyshev-type method in the
context of compressed sensing. International Instrumentation and Measure-

ment Technology Conference (I2MTC), Montevideo, Uruguay, May 2014.
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MEM8_raml : ram_s2p generic map(n,m,532)port map(clk,WA8,PSEUD_RA81,
PSEUD_RA82,WE8,DI8,D081,D082) ;

cosamp_mux53 : mux2_1_cosamp generic map(m)port map(matcre_WA,PSEUD_Wa8,opmb3,
WAS) ;

cosamp_mux54 : mux3_1_log_Cosamp port map(’0’,matcre_we,PSEUD_we8,opmb4,We8) ;

cosamp_mux55 : mux2_1_cosamp generic map(n)port map(matcre_dat_o,PSEUD_di8,
opm55,Di8) ;

——————————————————————————————————— PSEUDOINVERTER---------------——————————-

pseudoinverterl: pseudoinverter generic map(n,m,d)port map(rst,clk,PSEUD_str,
dim_i,S3(d-1 downto 0),PSEUD_mult_str,PSEUD_mult_dim_il,PSEUD_mult_dim_j1,
PSEUD_mult_dim_i2,PSEUD_mult_dim_j2,PSEUD_MULT _rowl, PSEUD_MULT_row2,
PSEUD_MULT_col1,PSEUD_MULT_col2,MULT_add_rowl,MULT_add_row2,MULT_add_coll,
MULT_add_col2,MULT_o,MULT_add_o,MULT_diag_sign, MULT_we,MULT_fin,MULT_rdy,
trans_str,trans_dim_i,trans_dim_j,trans_add_in,trans_add_out,trans_we,
trans_fin,trans_rdy,inv_str,inv_dim,inv_Do_11,inv_Do_12,inv_Do_21,inv_Do_22
,inv_Do_31,inv_Do_32,inv_Do_41,inv_Do_42,inv_Do_51,inv_Do_52 ,inv_Do_61,
inv_Do_62, inv_mult_o,inv_mult_add_rowl,inv_mult_add_row2,inv_mult_add_coll
,inv_mult_add_col2,inv_mult_add_o,inv_diag_sign,inv_mult_we,inv_mult_fin,
inv_Wal,inv_RA11,inv_RA12,inv_Dil,inv_wel,inv_Wa2,inv_RA21,inv_RA22,inv_Di2
,inv_we2,inv_Wa3,inv_RA31,inv_RA32,inv_Di3,inv_we3,inv_Wa4,inv_RA41,
inv_RA42,inv_Di4,inv_we4,inv_Wa5,inv_RA51,inv_RA52,inv_Di5,inv_web,inv_Waéb,
inv_RA61,inv_RA62,inv_Di6,inv_we6,inv_mult_dat_rowl,inv_mult_dat_row2,
inv_mult_dat_coll,inv_mult_dat_col2,inv_mult_str,inv_fin,inv_rdy,PSEUD_Wal,
PSEUD_RA11,PSEUD_RA12,PSEUD_Dil,PSEUD_wel,PSEUD_Wa2,PSEUD_RA21,PSEUD_RA22,
PSEUD_Di2,PSEUD_we2,PSEUD_Wa3,PSEUD_RA31,PSEUD_RA32,PSEUD_Di3,PSEUD_we3,
PSEUD_Wa4 ,PSEUD_RA41,PSEUD_RA42,PSEUD_Di4,PSEUD_we4,PSEUD_Wa5,PSEUD_RA51,
PSEUD_RA52,PSEUD_Di5,PSEUD_web,PSEUD_Wa6 ,PSEUD_RA61,PSEUD_RA62,PSEUD_Di6,
PSEUD_we6 ,PSEUD_Wa7 ,PSEUD_RA71,PSEUD_RA72,PSEUD_Di7,PSEUD_we7 ,PSEUD_Wa8,
PSEUD_RAS81,PSEUD_RA82,PSEUD_Di8,PSEUD_we8,Do11,Do12,D021,D022,D031,D032,
Do41,Do42,Do51,D052,D061,D062,Do71,Do72 ,Do81,D082,PSEUD_fin,PSEUD_rdy) ;

——————————————————————————————————— INVERTER R e e

inverterl : inverter generic map(n,m,d)port map(rst,clk,inv_str,inv_dim,
inv_Do_11,inv_Do_12,inv_Do_21,inv_Do_22,inv_Do_31,inv_Do_32,inv_Do_41,
inv_Do_42,inv_Do_51,inv_Do_52,inv_Do_61,inv_Do_62,inv_mult_o,
inv_mult_add_rowl,inv_mult_add_row2,inv_mult_add_coll,inv_mult_add_col2,
inv_mult_add_o,inv_diag_sign,inv_mult_we,inv_mult_fin,inv_Wal,inv_RA11,
inv_RA12,inv_Dil,inv_wel,inv_Wa2,inv_RA21,inv_RA22,inv_Di2,inv_we2,inv_Wa3,
inv_RA31,inv_RA32,inv_Di3,inv_we3,inv_Wa4,inv_RA41,inv_RA42,inv_Di4,inv_we4
,inv_Wab5,inv_RA51,inv_RA52,inv_Di5,inv_web5,inv_Wa6,inv_RA61,inv_RA62,
inv_Di6,inv_we6,inv_mult_dat_rowl,inv_mult_dat_row2,inv_mult_dat_coll,
inv_mult_dat_col2,inv_mult_str,inv_fin,inv_rdy) ;

----------------------------------- TRANSPOSER ~ - === === mmmmmmomemee o
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