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Autonomous unmanned vehicles equipped with sensors are rapidly becoming the de facto
means of achieving situational awareness — the ability to make sense of, and predict
what is happening in an environment. Particularly in environments that are subject to
continuous change, the use of such teams to maintain accurate and up-to-date situational
awareness is a challenging problem. To perform well, the vehicles need to patrol their
environment continuously and in a coordinated manner.

To address this challenge, we develop a near-optimal multi-agent algorithm for conti-
nuously patrolling such environments. We first define a general class of multi-agent
information gathering problems in which vehicles are represented by information gathering
agents — autonomous entities that direct their activity towards collecting information
with the aim of providing accurate and up-to-date situational awareness. These agents
move on a graph, while taking measurements with the aim of maximising the cumulative
discounted observation value over time. Here, observation value is an abstract measure
of reward, which encodes the properties of the agents’ sensors, and the spatial and
temporal properties of the measured phenomena. Concrete instantiations of this class
of problems include monitoring environmental phenomena (temperature, pressure, etc.),
disaster response, and patrolling environments to prevent intrusions from (non-strategic)
attackers.

In more detail, we derive a single-agent divide and conquer algorithm to compute a
continuous patrol (an infinitely long path in the graph) that yields a near-optimal amount
of observation value. This algorithm recursively decomposes the graph, until high-quality
paths in the resulting components can be computed outright by a greedy algorithm. It then
constructs a patrol by concatenating these paths using dynamic programming. For multiple
agents, the algorithm sequentially computes patrols for each agent in a greedy fashion, in
order to maximise its marginal contribution to the team. Moreover, to achieve robustness,
we develop algorithms for repairing patrols when one or more agents fail or the graph
changes.

For both the single- and the multi-agent case, we give theoretical guarantees (lower bounds
on the solution quality and an upper bound on the computational complexity in the size of
the graph and the number agents) on the performance of the algorithms. We benchmark
the single- and multi-agent algorithm against the state of the art and demonstrate that it
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typically performs 35% and 33% better in terms of average and minimum solution quality
respectively.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Unmanned autonomous vehicles equipped with sensors are rapidly becoming the de facto means of achieving situational
awareness — the ability to make sense of, and predict what is happening in an environment — in application domains that
are highly dynamic in nature, such as disaster management, military reconnaissance and climate research. In these domains,
and many others besides, the use of autonomous vehicles reduces the need for exposing humans to hostile, impassable
or polluted environments. Moreover, in such environments the deployment of wireless sensor networks (WSNs) is difficult,
potentially not cost effective for temporary use, or cannot be performed in a sufficiently timely fashion. Now, operating as
a team, rather than a collection of individuals, these unmanned vehicles can provide up-to-date coverage of a large area by
coordinating their movements, and improve the robustness of this coverage by compensating for the failure of one or more
vehicles. For example, in the aftermath of a major earthquake, a team of unmanned aerial vehicles (UAVs) can support first
responders by patrolling the skies overhead [25]. By working together, they can supply real-time wide-area surveillance on
the movements of crowds and the spread of fires and floods [9]. In similar vein, teams of UAVs can be used to track and
predict the path of hurricanes [13]. Since these UAVs face hostile environmental conditions, extra care must be taken to deal
with the potential loss of one or more UAVs. Under such conditions, the coverage provided by the vehicles can be made to
degrade gracefully if the responsibilities of their failed counterparts are shared through teamwork.

In light of this, the main challenge we address in this paper is the use of a team of autonomous vehicles in order to
monitor the continuously changing state of the phenomena in their environment — or put differently — to provide accurate
and up-to-date situational awareness. In order to do so they need to patrol the environment continuously in a coordinated
manner.

We model this challenge as a general class of information gathering problem, in which vehicles are represented by
information gathering agents — autonomous entities that direct their activity towards collecting information with the aim of
providing accurate and up-to-date situational awareness. The generality of this class of problems is achieved through the
use of the concept of an information value function. This function encodes the properties of the agents’ sensors (such as their
accuracy and range), the spatial and temporal properties of the measured phenomenon (e.g. how much correlation exists
between measurements at two different locations and how quickly these measurements become stale), and a metric of
the agents’ performance (e.g. the prediction accuracy of the current and future temperature across the environment, or the
maximum time that has elapsed between two observations of the same location). The physical layout of the environment
is modelled by a graph, which defines the allowed movements of the agents. Given this, the main objective of the team of
agents is to patrol the graph continuously so as to maximise the cumulative discounted observation value over time.

Solving this problem optimally for all but the smallest instances is impossible due to the exponential growth of the
number of possible paths in the size of the graph and the number of agents (to be more precise, it is known to be NP-hard
[19]). Therefore, we develop a multi-agent algorithm that computes patrols that are boundedly optimal, i.e. policies that are
guaranteed to be within a (small) factor of the optimal one. This algorithm solves two interrelated issues: (i) specifying
how individual agents should behave, and (ii) determining how a team of agents should interact in order to maximise team
performance. The structure of our multi-agent algorithm reflects this dichotomy; it invokes a single-agent algorithm for each
individual agent to maximise its marginal contribution to the performance of the multi-agent team.

In more detail, the single-agent algorithm uses a divide and conquer strategy to efficiently compute a high-quality patrol
(in terms of observation value). This algorithm uses three main operations: DivIDE, CONQUER and MERGE. DIVIDE recursively
decomposes the graph using a graph clustering algorithm, until the diameter of the resulting components is “small enough”.
CoNQUER then solves the problem within these components using a greedy algorithm that computes high-quality paths
through them. Finally, MERGE concatenates these paths using dynamic programming into a patrol for the top-level problem
(the entire graph).

To compute patrols for multiple agents, the single-agent algorithm is invoked incrementally for each agent with the aim
of maximising its marginal contribution to the team. More precisely, the observation value collected by agent i is maximised
subject to the patrols for agents 1,...,i — 1. This is commonly referred to in the economic cost-sharing literature as a
marginal contribution scheme [31]. In this scheme, each agent is given a reward proportional to the welfare it contributes
to the team. Effectively, under this reward structure, agent i’s goal becomes to collect the reward left behind by agents
1,...,i— 1. We show that this results in greatly reduced computational overhead compared to searching the joint solution
space of patrols for all i agents.

We provide theoretical guarantees on the performance and computation of both the single- and multi-agent algorithms.
Given the potential life critical nature and sensitivity of the application domains in which the agents are often operating,
these guarantees — particularly on the worst-case performance — are important when the algorithm is applied in the real
world. Specifically, we show that the multi-agent patrol obtained through greedy computation is at least 63% as good as
the best set of single-agent patrols (i.e. of the type computed by the single-agent algorithm). Moreover, we show that our
algorithm scales well with the size of the environment. However, it scales exponentially with the number of agents, but we
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empirically demonstrate that this can be kept in check by pruning those states in the MDP that are not reachable from a
given initial state of the environment.

Next, we make the multi-agent algorithm robust against component failure (which may occur in hostile environments) by
developing efficient algorithms for repairing patrols in the event of failure of one or more agents, or when the layout graph
changes. In the former case, agents fill the gap left behind by the failed agent by adopting the patrol of their predecessors.
Rather than recomputing these patrols from scratch, existing patrols can be (partially) reused, resulting in a reduction of
up to 50% in the number of states that needs to be searched (which is proportional to the computation time required)
without losing solution quality. In the latter case, the recursive nature of the single-agent algorithm is exploited to limit the
recomputation to the affected subproblem in which the graph changes occurs.

Finally, to ascertain how the algorithm performs in practical settings, and how this relates to the theoretical performance
guarantees, we provide an extensive empirical evaluation of our algorithms in two challenging information gathering scenar-
ios. The first models a general patrolling task, in which agents are tasked with minimising the intra-visit time of different
areas of their environment. The second resembles a disaster response scenario, in which the agents’ goal is to monitor a
continuously changing environmental phenomenon (e.g. temperature, radiation, pressure and gas concentration). Our find-
ings show that our algorithm outperforms three state-of-the-art benchmark algorithms taken from the literature in terms of
minimising average and maximum intra-visit time (in the first scenario) and average and maximum root-mean-square error
(in the second scenario). Specifically, it typically reduces the former metric by 35% and the latter metric by 33% for 6 agents.
Moreover, using a best-response algorithm in an attempt to compute the optimal multi-agent policy, we demonstrate that
our algorithm achieves approximately 91% optimality in the problem instances we consider, providing strong evidence for
the near-optimality of the multi-agent algorithm.

Now, recent work has addressed similar challenges in environments that are static over time, or are changing at a
rate that is negligible compared to the time required to traverse them [27,41]. Similarly, techniques from the literature on
continuous localisation and mapping (SLAM) [47, Chapter 10], while relevant, also typically assume that the environment is
static, and as such agents need not revisit areas in order to update their beliefs about the environment. As a consequence,
these algorithms compute finite length paths, which tend not to return to previously visited locations, since no additional
information can be obtained from doing so. In contrast, in continuously changing environments, it is imperative that agents
periodically revisit locations in order to provide up-to-date situational awareness. As a result, these existing approaches fall
short of explicitly dealing with the rapid rate of change within the agents’ environment that we consider here.

However, two algorithms from related work address this shortcoming (see Section 2 for more details). First, the decen-
tralised algorithm proposed by Stranders et al. [43] is specifically geared towards multi-agent patrolling in environments
subject to rapid change. It allows agents to patrol continuously by planning new portions of their paths using receding
horizon control. Since it has a limited look-ahead, however, it does not provide guarantees on long term solution quality —
a drawback given the potential life critical nature of the applications. Second, Elmaliach et al. [11] consider the problem of
repeatedly visiting all cells in a grid with a maximal frequency. Their algorithm computes a circular path (which we call a
patrol), on which multiple robots are then are deployed equidistantly. However, our problem formulation is more general;
the intra-visit time is but one of the possible performance metrics. Moreover, in our problem, moving equidistantly on a
circular path is not necessarily optimal, and our algorithm therefore attempts to maximise the marginal contribution of each
agent to the team instead.

To summarise, the primary contributions of this paper are:

e A new general class of information gathering problems involving multiple information gathering agents moving on a
graph. This class relies on the concept of an information value function to encompass a large spectrum of concrete
applications of UAVs, UGVs, and even mobile cleaning robots. It captures the spatial and temporal dynamics of the
phenomenon of interest, the sensing capabilities of the agents, and the performance metric of the situational awareness
achieved by the agents.

The novelty of our problem formulation, compared to that of Singh et al. [41] on which it is based, lies in the property
of temporality. This property models the change of the environment over time.

¢ A non-myopic' divide and conquer algorithm for computing near-optimal patrols for single information gathering agents.
The key novelty of this algorithm lies in the fact that it computes continuous patrols for patrolling rapid and continu-
ously changing environments.

e An algorithm for computing near-optimal patrols for multiple agents by iteratively computing single-agent policies. This
is done by maximising the marginal contribution of each agent, by collecting the reward that other agents were unable
to collect. We achieve this by avoiding both synchronous double-counting, which occurs when two or more agents patrol
the same cluster, and asynchronous double-counting, which occurs when an agent i patrols a cluster before another
agent j (i > j), thereby effectively transferring the received reward from agent i to agent j.

The novelty of this approach lies in the application of the sequential allocation technique [41] for the computation of a
joint continuous patrol, which allows the algorithm to (empirically) scale much better than an algorithm that searches

1 We refer to a non-myopic algorithm as one that uses a multiperiod optimisation criterion, as opposed to a myopic optimisation one. Note that cyclic
patrols use a multiperiod (or more accurately, infinite period) optimisation criterion.
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the entire joint space of patrols. While the latter does not scale beyond two agents in the settings we consider, our
algorithm computes policies for six agents in less than one minute on a standard desktop machine.

e Algorithms for improving the robustness of the multi-agent patrols in the event of failure of one or more agents or
changes in the graph. These algorithms repair the offline computed patrols during their execution. Both can save a
significant amount of computation by reusing results from the offline stage (typically in excess of 50%), making them
efficient methods for coping with a priori unknown events.

e Theoretical guarantees on both solution quality and computation cost of both the single-agent and multi-agent algo-
rithms.

e An empirical evaluation of our multi-agent algorithm by benchmarking it against a range of state-of-the-art algorithms,
such as the decentralised receding horizon control (RHC) algorithm [43], the global greedy algorithm [49] and an al-
gorithm that solves a modified Travelling Salesman Problem (TSP) to make the agents periodically observe the entire
environment [37]. We demonstrate that our multi-agent algorithm typically performs 35% better in terms of the aver-
age quality of situational awareness, and 33% better in terms of minimum quality. Finally, we empirically evaluate the
near-optimality of the multi-agent algorithm by attempting to improve the multi-agent patrols using a best-response
algorithm, whereby agents repeatedly compute the best patrol in response to their peers. While this algorithm is mod-
erately effective (yielding up to 9% improvement), the improvement it achieves comes at a considerable computational
cost (it searches 10-100 times more states than the multi-agent algorithm). We consider this evidence for the relative
effectiveness and efficiency of our algorithms.

The remainder of the paper is organised as follows. In Section 2 we discuss the state of the art. In Section 3 we formally
define the problem of multi-agent information gathering. In Section 4 we describe our algorithm for computing patrols for
single and multiple information gathering agents. In Section 5 we derive bounds on the solution quality and the compu-
tational complexity of this algorithm. In Section 6 we describe the algorithms for repairing patrols in response to a priori
unknown events. In Section 7 we empirically evaluate the algorithms. We conclude in Section 8.

2. Related work

Recent work in (multi)sensor/robot patrolling can be classified along four orthogonal dimensions pertaining to algorith-
mic properties:

e Offline vs. online. Offline algorithms compute patrols before sensors are deployed, while online algorithms control the
sensors’ motion during operation. As a result, online algorithms are better able to revise patrols after (the sensors’ belief
of) the environment has changed, or when sensors fail unexpectedly during their mission.

e Finite vs. infinite planning horizon. Finite planning horizon algorithms compute patrols that maximise reward (or perfor-
mance) over a finite horizon, infinite horizon (non-myopic) algorithms maximise an expected sum of rewards over an
infinite horizon.

e Continuous patrolling vs. single traversal. Continuous patrolling is geared towards monitoring dynamic environments. These
include those found in military and security domains, in which intruders attempt to breach a perimeter — which
has to be continuously patrolled — or disaster management scenarios, in which decision makers continuously need
accurate and up-to-date situational awareness. Single traversals are useful when the aim is to obtain a one-off snapshot
of an environment. The work on single traversal is relevant, because techniques for computing single traversals can
be exploited to compute infinitely long continuous patrols by concatenating single traversals in different parts of an
environment.

e Strategic vs. non-strategic patrolling. Strategic patrolling attempts to reduce the loss caused by intrusions or attacks from
perfectly rational (i.e. expected payoff maximising) intruders. Non-strategic patrolling takes place in the absence of such
strategic entities, for example when monitoring nature or searching for confused civilians after a disaster. This work is
non-strategic, but we discuss strategic patrolling work as well in light of future extensions.

Furthermore, these approaches assume or exploit properties of the environments in which the sensors are situated:

e Spatial or spatio-temporal dynamics. In environments with spatial dynamics only, observations vary only along the spatial
dimensions, while in environments with spatio-temporal dynamics, observations are a function of both their spatial
and temporal coordinates. The former is consistent with phenomena that stay (almost) fixed over time, such as terrain
height or the layout of a building. The latter is consistent with phenomena that vary in space and time, such as weather
conditions, radiation or gas concentration.?

2 Environments that vary along the temporal dimension only can monitored with a single fixed sensor, and are not of relevance here.
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Table 1
The properties of the state of the art.
Algorithm Property
Online® Infinite look-ahead Continuous patrolling Spatio-temporal Strategic
Singh et al. [42]
Singh et al. [41] X
Meliou et al. [27] X X

Paruchuri et al. [32]
Tsai et al. [48]
Basilico et al. [4]
Agmon et al. [1]
Elmaliach et al. [11]
Grocholsky et al. [15]
Fiorelli et al. [12]
Martinez-Cantin et al. [24]
Ahmadi and Stone [2]
Stranders et al. [44]
Stranders et al. [43]
Our algorithm

X X X X X X X X
X
X X X X

X X X X X X X X
X X X X X X X X X X

X X X X

Since the primary contribution of this paper is a non-myopic algorithm for computing patrols in environments with
spatio-temporal dynamics, we will use the two corresponding dimensions — myopia and spatio-temporal dynamism — to
discuss the state of the art. Table 1 summarises these, as well as the other two aforementioned properties.

Non-myopic spatial algorithms Previous work in the class of infinite horizon spatial algorithms are based on the assumption
that the environment is static over time. Under this assumption, it suffices to traverse the environment once, while ensuring
that the informativeness of the observations made along the path is maximised. Since visiting the same location twice does
not result in new information, these algorithms will attempt to avoid this. This is in contrast with our assumption that the
environment varies in time as well as space, in which case revisiting locations is a necessary requirement for optimality.
Algorithms found in this non-myopic spatial class consist primarily of approximation algorithms for the single-sensor non-
adaptive [42] and multi-sensor adaptive [41] setting with energy constraints (e.g. finite battery or mission time). Both
works exploit an intuitive property of diminishing returns that is formalised in the notion of submodularity: making an
observation leads to a bigger improvement in performance if the sensors have made few observations so far, than if they
have made many observations. This property holds in a wide range of real-life sensor applications, and is an assumption
that our work shares with that of Singh et al. However, apart from solving a different problem (i.e. single traversal vs.
continuous patrolling) the solution proposed by Singh et al. [41] also differs algorithmically from ours. While they define a
two-step algorithm for computing high quality single traversals through the environment, our solution is a full divide and
conquer algorithm. In more detail, in the first step the algorithm of Singh et al. divides the environment into clusters, and
computes high-quality paths through these clusters. In the second step, these paths are concatenated to yield the desired
traversal. The two steps bear similarity to the first two operations used in our algorithm (DiviDE and CONQUER). However,
our algorithm uses completely different techniques (sequential decision making) for concatenating paths within a single
cluster into infinite-length patrols, which, unlike their solution, are recursively applied to increasingly smaller subdivisions
of the environment, until the patrolling problem within these subdivisions becomes efficiently solvable.

Within this class of algorithms we also find work on deploying fixed security checkpoints to prevent intrusions by strate-
gic opponents [32,48]. In this context, both authors develop an efficient procedure for generating checkpoint deployments
that prevent intrusions or at least minimise their impact. The work focuses on tractability, directly dealing with the expo-
nential explosion incurred in the attacker’s and defender’s strategy spaces. Although finding checkpoint deployments is not
directly linked to our work — i.e. there is no temporal element in their approach, and they use Stackelberg games to model
the problem (instead of MDPs) — it is a problem somewhat related to the one studied here.

Non-myopic spatial-temporal algorithms In the class of infinite horizon spatio-temporal algorithms we find a variation of the
aforementioned work of Singh et al. [42] that addresses the setting wherein the environment changes slowly over time [27].
Here, the challenge is to compute a sequence of informative paths conditioned on the observations collected along previous
paths. The time it takes to patrol environments is assumed to be negligible compared to the rate at which they change.
Therefore, the environment is considered static while sensors traverse paths. We do not make this assumption. Rather, we
assume that environments often change at a rate that is too high for a single sensor to take an accurate snapshot.

Other work in this class focuses on patrolling in the presence of strategic evaders or intruders; a problem that is char-
acterised by (possibly multiple) attackers attempting to avoid capture or breach a perimeter. The agents’ main challenge
in such cases is to detect and capture these attackers in an effort to minimise loss. A good patrolling policy is one that

3 Qur algorithm is online in that it is able to repair offline computed patrols in response of the failure of agents and changes in the graph (see Section 6).
It does not perform online path planning.
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frequently revisits locations, since attackers can appear anywhere at any time. Several offline and centralised optimal algo-
rithms have been proposed (see for example [4,1]) that compute non-myopic policies for multiple mobile robots. Due to
the strategic nature of the problem, these require different techniques than the ones we use in our algorithm — Stackelberg
games and partially observable stochastic games instead of the Markov decision processes. We will investigate the use of
these techniques for strategic patrolling as a future extension of our work. However, since the problem of strategic patrolling
is NP-hard [4] (as is the problem we address in this paper), these optimal algorithms scale poorly and are only capable of
solving small problem instances. As a consequence, approximation algorithms — such as the ones we propose in this paper
— are needed to solve most practical patrolling problems in large graphs with many sensors.

A more similar approach to ours is that of Elmaliach et al. [11], who consider the problem of repeatedly visiting all cells
in a grid with an optimal frequency (similar to the TSP benchmark used in Section 7, but more scalable). Their solution
is to find a circular path (which we call a patrol) based on a spanning tree (induced by the grid's topology). Multiple
robots are then deployed equidistantly on this circular path. This process induces a Hamiltonian cycle and every cell will be
visited with the same frequency. Nevertheless, there are several differences with our work. Our problem definition is more
general: (i) it supports general (undirected) graphs instead of just grids, (ii) agents can observe more than one vertex at a
time, (iii) different parts of the graph are not necessarily of equal importance, and (iv) the frequency of visiting vertices is
but one of the possible performance metrics (see Experiments 1 and 2 in Section 7). Because of this, ensuring that robots
move equidistantly on the circular path is not necessarily optimal (or even desirable). Therefore, our algorithm attempts to
maximise the marginal contribution of each agent to the team instead.

Finite horizon spatial algorithms The class of finite horizon spatial algorithms can be further categorised by the length of
look-ahead. Some algorithms use greedy (i.e. single step look-ahead) gradient climbing techniques to reduce entropy in the
prediction model (thus reducing the prediction error) [15], optionally in combination with potential fields that force groups
of agents into desirable formations for observing their environment [12]. Other algorithms use an increased (but finite)
look-ahead by applying receding or finite horizon control. One application of this technique is to control a single agent
whose goal is to minimise uncertainty about its own position as well as the location of various targets in its environment
[24]. Unfortunately, algorithms within this class cannot give performance guarantees due to their finite look-ahead.

Finite horizon spatial-temporal algorithms Finally, the class of finite horizon spatio-temporal algorithms also use receding
horizon control. To this end Ahmadi and Stone [2] use decentralised negotiation to continuously refine the dimensions
of the partitions which the agents are assigned to patrol. Stranders et al. [44,43] use the max-sum algorithm for decen-
tralised coordination [36] at predefined intervals to plan the next sequence of moves that yields the highest probability of
non-strategic target capture (in the pursuit evasion domain), or the lowest prediction error (for monitoring environmen-
tal phenomena). While shown to be adaptive and effective, however, neither give performance guarantees on long-term
performance.

This paper seeks to address the aforementioned shortcomings of the state of the art in the context of the central problem
addressed in this paper, by not only taking the immediately received reward over a finite number of moves into account,
but also the reward received over the remainder of the sensors’ mission, making it non-myopic. As a result, the algorithm
presented in this paper computes infinite length patrols for multiple sensors in highly dynamic environments. In addition,
it can repair these offline computed patrols online in the event of failure of one or more agents.* Before discussing our
algorithm in detail, however, we first present the formalisation of the problem it aims to solve.

3. Problem definition

In this section we present a general formalisation of the multi-agent information gathering problem. This formulation
is domain independent, and therefore does not reference any domain specific properties (such as targets, environmental
phenomena, or intruders). This is accomplished through the use of the concept of observation value (cf. [27]), which abstracts
from the chosen representation of the environment, and defines the value of observations in terms of their contribution
towards improving the accuracy of situational awareness. Put differently, the collected observation value is a metric of how
well the agents are performing.

Our formalisation is inspired by that of Singh et al. [42], which we extend with a temporal dimension through the prop-
erty of temporality. This property models the dynamism in the environment which is one of the central foci of this paper.
In what follows, we introduce the three main aspects of the problem: (i) the physical environment, (ii) the information
gathering agents and their capabilities and (iii) the agents’ objective. A summary of the notation introduced in this section
and used throughout this paper can be found in Table 2.

4 Since our algorithm is based on sequential decision making in order to compute infinitely long patrols, our repair algorithm is not related to plan
repair in classical planning (which is characterised by the existence of a predefined goal state). A discussion of plan repair in classical planning is therefore
considered beyond the scope of this paper.
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Table 2
A summary of the notation used throughout this paper.
Symbol Meaning
A={1,...,M} A set of agents
A_; The set of agents {1, ..., i—1}
G=(V,E) An undirected graph encoding the physical layout of an environment (Definition 1)
adjc(v) The set of vertices adjacent to v in a graph G
d(u,v) The Euclidean distance between coordinates u and v (Definition 2)
dg(u, v) The shortest path (Dijkstra) distance between vertices u and v in graph G (Definition 3)
diam(G) The diameter of a graph G, i.e. the length of the longest shortest path between any pair of vertices of G
T={1,2,...} A discrete set of time steps (Definition 4)
0=VxT The set of all observations, i.e. the set of all spatio-temporal coordinates (Definition 7)
05‘ The observations made by all agents at time t
Of The observations made by agent i at time t
05\ The observations made by all agents at or before time t
C=(V¢c,Ec) A cluster (Definition 15)
T=(Vr,ET) A transit node (Definition 17)

GICI=((CUT), Ec)

A cluster graph: an undirected bipartite graph of transit nodes and clusters in a given graph G. Edges Ec encode the connections
between the two

Crnax The maximum number of clusters DIVIDE creates before further recursive division is necessary
(T,C, T A subpatrol starting from transit node T through cluster C to transit node T’ (Definition 19)
Pr.c1 The sequence of vertices in G visited by subpatrol (T, C, T')

c(Pr.c.17) The length (number of vertices) of subpatrol (T,C, T’)

I(C,Ac, T, T') The value of subpatrol (T, C, T') given that cluster C was patrolled A¢ time steps ago

Ac The number of time steps since cluster C was last visited

B The maximum number of time steps allocated to an agent to patrol a cluster

f A set function f:20 — R that assigns observation value to a set of observations (Definition 10)

8 The minimum distance between two observations for these to be considered independent (Property 3)
T The minimum time between two observations for these to be considered independent (Property 4)
y The discounting factor

i The policy of agent i

i The state of agent i

Sr(s) The set of states reachable from state s

3.1. The physical environment

The physical environment is defined by its spatial and temporal properties. The former is encoded by a layout graph,
which specifies how and where agents can move:

Definition 1 (Layout graph). A layout graph is an undirected graph G = (V, E) that represents the layout of the environment,
where the set of spatial coordinates V is embedded in Euclidean space and edges E encode the movements that are possible
between them.

By modelling the physical layout of the environment as an undirected graph, we assume that agents can move along
edges in both directions. While this is common in most environments, there are certain cases in which this assumption
does not hold, for instance in the presence of one-way streets or corridors. The reason for the focus on undirected graphs in
this paper is that dealing with directed graphs requires the existence of appropriate graph clustering algorithms that satisfy
the requirements stated in Section 4.1.1. This issue is discussed in further detail in Section 4.1.1.

In this paper we use two different measures of distance related to spatial coordinates V and layout graph G:

Definition 2 (Euclidean distance). The Euclidean distance between two spatial coordinates vi € V and v, € V is denoted by
d(vy, va).

Definition 3 (Dijkstra distance). The Dijkstra distance between two spatial coordinates v € V and v, € V is equal to the
length of the shortest path and is denoted by dg(v1, v2).

The temporal properties of the physical environment are defined as follows:

Definition 4 (Time). Time is modelled by a discrete set of temporal coordinates T = {1, 2, 3, ...} (henceforth referred to as
time steps) at which the agents observe the environment and at which their performance is evaluated.

3.2. Information gathering agents

Agents are situated in the physical environment defined above.
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Definition 5 (Information gathering agent). An information gathering agent (agent for short) is a physical mobile entity capa-
ble of taking observations. The set of all information gathering agents is denoted as A={1, ..., M}.

The movement and observation capabilities of agents are defined as follows:

Definition 6 (Movement). At all time steps T, all agents are positioned at one of the vertices of layout graph G. Multiple
agents can occupy the same vertex. Movement is atomic, i.e. takes place within the interval between two subsequent time
steps, and is constrained by layout graph G, i.e. an agent positioned at a vertex v € V can only move to a vertex v’ € adjc(v)
that is adjacent to v in graph G. The speed of the agents is assumed to be sufficient to reach an adjacent vertex within a
single time step.

Definition 7 (Observation). An observation is a pair (v, t), where v € V is the spatial and t € T is the temporal coordinate at
which it is taken. The set of all possible observations is denoted by O =V x T.

Definition 8 (Taking observations). Agents take observations at each time step at or near their current position. The time
it takes to collect an observation is assumed to be negligible. Depending on type of the sensors they are equipped with,
agents are able to observe one or more vertices in V at once. For example, an agent equipped with a camera can observe
all vertices in the line of sight, possibly up to a certain distance. However, with a standard temperature sensor, an agent can
only observe the current position. Hence, our model supports both types of sensors.

There are several different sets of observations used in the formalisation of the optimal solution and our algorithms. To
formalise these, we use the following notation:

. Of: the set of observations made by agent i at time t.
e 04 =Jica O!: the set of observations made by all agents at time .

. Of\ = U[,gt Of\’: the set of observations made by all agents at or before time t. For convenience, we define 04 = @ for
t<0.

3.3. The objective

As stated in the introduction, the objective of the agents is to maximise the quality of the situational awareness they
provide. This quality is measured in terms of observation value:

Definition 9 (Observation value). The observation value of a set of observations is proportional to the increase in situational
awareness it brings about. Put differently, the better a set of observations allows the agents to understand and predict what
is happening in their environment, the higher its observation value.

The observation value of a set of observation is calculated by an observation value function:

Definition 10 (Observation value function). An observation value function f is a set function f:2° — R* that assigns obser-
vation value to a set of observations.

To ensure generality of our model, the semantics of the observation value function are deliberately left abstract, as they
can vary significantly depending on the type of environment, the agents’ mission, and the phenomena they observe within
it. It is important to note, however, that the observation value function encodes the following information:

e Any information about the dynamics of the process that is known a priori, such as the type of phenomenon that
is monitored, the speed at which the environment is changing, and the correlation between observations along the
temporal and spatial dimensions.

e The metric of the agents’ performance. Concrete examples are mutual information [17], entropy [20], area coverage [45],
and probability of capturing a non-strategic target [43], all of which are a measure of the quality of the picture of their
environment compiled by the agents, subject to the properties of the environment mentioned in the first item.

We will see concrete instances of observation value functions in Example 1 and Section 7.
Now, there are a number of properties which many observation value functions have in common, which are exploited
by our solution. These properties are:

Property 1 (Non-decreasing). Observation value functions are non-decreasing: VA, B such that A € B C 0, f(A) < f(B). Thus,
acquiring more observations never ‘hurts’.
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Property 2 (Submodularity). Observation value functions are submodular: VA, B suchthat AC B C O andVo € O:

f(AU{o}) — f(A) = f(BU{o}) — f(B)

This property encodes the diminishing returns of observations, i.e. making an additional observation is more valuable if the agents have
only made a few prior observations, than if they have made many.

Many aforementioned observation value functions exhibit the submodularity property in the context of information
gathering, such as entropy, mutual information, area coverage and target capture probability.

Locality and temporality are two additional properties of observation value functions that formalise the (in)dependency
of observations taken at two (possibly different) points in time and space:

Property 3 (Locality). Observations taken sufficiently far apart in space are (almost) independent (cf. [21]). That is, there exists a
distance § > 0, and a p > 0, such that for any two sets of observations A and B, if mingea pep d(a, b) > 6, then:

f(AUB) = f(A)+ f(B)—p

Thus, the smaller 8, the less information an observation at a given spatial coordinate provides about a different spatial coordinate.

We assume the locality parameters o and § do not change over time. This is because these values encode knowledge
about the environment that is known a priori. This does not mean that the (future) measurements of the phenomena within
the environment are known a priori, but it does imply that their dynamics do not change over time.

Property 4 (Temporality). Observations taken sufficiently far apart in time are (almost) independent. Formally, let o;(-) be a function
that selects only those observations made at or after t:

or(A):={(v.t") e A|t' >t}

Then, there exists a T > 0, such that forall AC 0, € > 0:

f(ot—(A) = f(A) —€

Thus, the smaller T, the more dynamic the environment.

Note that if § = T = o0, all observations are dependent. In such cases, we can no longer speak of locality or temporality.
Thus, unlike Properties 1 and 2, an observation value function can exhibit locality and temporality in degrees and need not
have these properties at all.

Given the formalisation above, we can now express the team’s goal of maximising situational awareness (captured by
observation value function f). To do this, we first need the concept of a patrolling policy:

Definition 11 (Patrolling policy). A patrolling policy m :29 — 29 specifies which observations Oﬁ\ C O should be made at
time step t, given that observations Oﬁ\_] C O were made at the time steps before ¢, subject to movement and observation
constraints imposed by layout graph G (Definition 6) and the agents’ sensors (Definition 8). Put differently, 7'[(05‘_1) = Of\.

The team’s goal can now be expressed formally in terms of the optimal policy 7 *. We will use s; = Oj\_l and a; = Oﬁ\
for sake of simplicity.

Definition 12 (The agents’ objective). The agents’ objective is to maximise the expected value® of using a policy 7 of the
discounted incremental observation value over time:

T t
max E [ZV r(st,af)‘n(Sr)=at} (1)
teT
where 0 < y <1 is the discount factor that determines how much observations made in the near future are worth compared
to those made in the further future. The instantaneous reward r(s¢, a;) = f(sf Uay) — f(s¢), i.e. the so-called “incremental
value” of the observations a; = O‘E\ made by all agents at time ¢, given that observations s; = Of(l were already made at or
before time t — 1.

Finding the optimal patrolling policy * calls for quantifying the quality of any policy 7, this can be computed using a
recursive definition known as the Bellman [5] equations for computing the state value function for policy 7:

5 Note that while the policy defined in Definition 11 is deterministic, we will treat 77 as non-deterministic, since this results in more familiar notation.
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Definition 13 (Value function). A value function V™ computes the discounted future incremental observation value that is
received by following policy 7 from a given state (i.e. a set of collected observations 05\):

VT (se) :=r(se,ar) + Y V7 (ar Usy) (2)
Using Definitions 11 and 13, we can now define the optimal patrolling policy that maximises Eq. (1):

Definition 14 (Optimal patrolling policy). The optimal patrolling policy maximises the discounted incremental observation
value and is defined as,

¥ (se) :=argmax(r(s¢, ar) + ¥y V7 (ar Usy)) (3)
ag
where a; = Of\“ is a set of observations that can be collected by the agents at time step t + 1, subject to movement and
observation constraints and s; = Oﬁ\.

Proposition 1. The optimal patrolling policy is the solution to the teams’ objective.

Proof. Recall Eq. (3), let s;11 =a; Us; and note that,

r(se.ar) + YV (se41)
=1(st.a0) + ¥ (F(se+1. A1) + YV (t42))
=r(st,ar) + J/(T(St-H 2 Ae+1) + )/(T(St+2, ary2) + )/V”*(St+3)))

=Y y'r(se, ar)

teT

then, 7w*(s;) = argmaxg, > ;o1 ytr(ses1, arr1), which is equivalent to Eq. (1). O

Note that policy 7 * (or indeed any other policy satisfying Definition 11) is defined over the set of all possible observation
histories 05\. The size of this set is exponential in the number of time steps t that have elapsed and the number of agents M.
As a result, computing the optimal policy is computationally intractable for all but the smallest of problems.® The algorithms
we develop in the next section avoid this problem by exploiting the properties of observation function f mentioned above,
making a significant compression of the observation history possible. By doing so, we obtain efficient algorithms that,
instead of the optimal solution, compute bounded approximate policies, i.e. policies that are guaranteed to be within a
(small) factor of the optimal one.

We conclude this section with the following example, which illustrates the model formulated in this section.

Example 1. Fig. 1 shows four discrete time steps of a team of four agents patrolling a small graph. For illustration purposes,
y =1 and observation value function f assigns a value to observation at vertex v that is equal to the number of time steps
that have elapsed since v was last observed, with a maximum of 4. This models an environment in which observations
become stale after T = 4. Moreover, agents can only observe the vertex at which they are currently positioned.

The size of the vertices in Fig. 1 are proportional to the observation value that can be received at their coordinates in
the next time step. Thus, the amount of observation value that the agents receive as a team in each of these four time steps
is 4, 12, 16 and 13 respectively. Note that the decision by agent 3 to go back to its previous position at t =4 (Fig. 1(d))
results in a suboptimal observation value (at least, over these four time steps).

4. Near-optimal non-myopic patrolling

Given the model formulated in the previous section, we first develop an approximate non-myopic algorithm for the
single-agent case (Section 4.1), which is later used as a building block for the computing multi-agent policies (Section 4.2).
For the purpose of clarity, we only discuss the algorithmic steps in this section — the theoretical analysis of these algorithms
is deferred to Section 5.

Before continuing, we formally define a number of the most important concepts used in the formalisation of the single-
and multi-agent algorithms:

6 For example, consider the scenario from Example 1. The vertices in the layout graph G have an average degree of 4.2 (33 vertices and 70 edges).
Therefore, after only 10 time steps with 4 agents, there are (4.2'%)% ~ 8.102* different paths the agents could have jointly taken, with an even greater
number of possible observation histories.
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Fig. 1. Four discrete time steps of a team of agents A= {1, 2, 3, 4} moving in an environment whose layout is defined by a graph G = (V, E). The diameter
of the vertices (indicated by the & symbol) is proportional to the observation value that is received by moving there in the next time step.

Definition 15 (Cluster). A cluster C = (V¢, E¢) is a connected subgraph of layout graph G.

Definition 16 (Atomic cluster). An atomic cluster is a cluster with a diameter less or equal to D and is not subdivided into
smaller clusters.

Definition 17 (Transit node). A transit node is a maximal connected subgraph of layout graph G whose vertices lie on the
boundary between one or more clusters. More formally, if T = (V1, E7) is a transit node, (v, v') € E7 iff ve V¢ and v/ € V-,
where C = (V¢, Ec) and C' = (V, Ec) are distinct clusters.

Definition 18 (Cluster graph). A cluster graph G[C] = ((CUT), E¢) is a bipartite graph of transit nodes and clusters. An edge
exists between a transit node T and a cluster C iff at least one vertex in T is adjacent to C in layout graph G.

Definition 19 (Subpatrol). A subpatrol (T, C, T’) is a path from a transit node T, through a cluster C to a transit node T’ (it
is possible that T = T’). A subpatrol originates at a vertex v € Vy N V¢ and terminates at a vertex v/ € Vo N V.
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Input/Output Operations Examples

Layout graph .

I 1 (V,gE)p l Figure 3
DiviDE

Partition Layout Graph
(Section 4.1.1)

Cluster graph
G[C]=(CUT,E¢) \ Figure 4
CONQUER
Compute Subpatrols

for Atomic Clusters
(Section 4.1.2)

Subpatrols .
Pr.c.r l Figure 5
MERGE
Concatenate Subpatrols
(Section 4.1.3)
Patrolling Policy 7 l Video 1

Fig. 2. An overview of the single-agent algorithm.

Definition 20 (Patrol). A patrol is an infinitely long path through layout graph G obtained by concatenating subpatrols
(T(l), C(l), T(Z))’ (T(Z), C(Z)’ T(3)), L

4.1. The single-agent algorithm

The prime objective of the single-agent algorithm is to compute a patrol along which a large amount of observation value
can be collected (we will shortly quantify “large amount”) in a computationally efficient way. It does so through employing
a divide and conquer strategy: recursively dividing the layout graph into smaller and smaller components (clusters), until
the patrolling problem within those clusters can be efficiently solved. As a result, the exponentially large set of possible
observation histories 05\ in Eq. (3) is compressed into a more manageably sized set of world states, such that it becomes
computationally feasible to conduct searches over the space of patrols. This compression comes at a cost, as the resulting
patrol is not optimal. However, as we will show in Section 5, it is possible to derive theoretical guarantees on its quality.

The single-agent algorithm exploits the following properties of the problem defined in Section 3:

1. We exploit the locality property of an observation value function f (Property 3), by partitioning graph G into a set
of clusters C = {Cq,...,Cc} (Definition 15), such that observations taken in different clusters are independent. The
problem of maximising observation value can then be solved independently for each cluster. This property is exploited
in a similar way by Singh et al. [41].

2. We exploit the temporality property of f (Property 4) by discarding observations older than 7. These observations are
independent of observations taken now or in the future, and can thus safely be ignored.

3. Just as space is divided in clusters, time is divided into non-overlapping intervals of length B € N. During each interval,
an agent enters a cluster, patrols it, and moves on to the next. The path taken within a cluster is called a subpatrol
(Definition 19). Parameter B is chosen such that the agent can collect a reasonable amount of observation value within
the cluster.

By exploiting these properties, we can define a divide and conquer algorithm, which is defined by the following three
operations (see Fig. 2 for a visual overview):

Divide Exploit the locality property by recursively subdividing the problem into more manageable subproblems. This is
done by dividing a (sub)problem with layout graph G into a set of clusters C={Cy, ..., C¢|} such that the distance
between them is sufficient to ensure observations taken in different clusters are independent (cf. [41]).
By dividing the layout graph, we have transformed the problem from one in which the agents move from
vertex to vertex (of which there are many), into one where agents move from cluster to cluster (of which there
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are few). The graph that captures these new topological relations is a bipartite graph G[C] called a cluster graph
(Definition 18).

Conquer When a cluster obtained in the previous step is small enough, the patrolling problem within that cluster can
be solved. Here “small enough” means that the diameter, diam(C), of a cluster C is sufficiently small to allow an
agent to collect a large amount of observation value within B time steps. In Section 5 we will quantify the relation
between diam(C) and B that achieves this.

By solving the patrolling problem for the atomic clusters, we obtain a set of subpatrols (Definition 19) within
those clusters. A subpatrol is a path within an atomic cluster of length B or less. Each subpatrol corresponds to a
movement allowed within the cluster graph G[C] obtained from the DiVIDE operation.

Merge The MERGE operation reverses the recursion by concatenating the subpatrols of subproblems into a (sub)patrol of
a higher level (sub)problem. It does so by constructing a Markov Decision Process (MDP) in which states represent
the position of the agent and the time A¢ each cluster C was last visited. A solution to this MDP is a policy that
instructs the agent which cluster to patrol next, given its current position and the last time the clusters were
visited. When the MERGE operation arrives at the root of the tree, which corresponds to the patrolling problem in
the original layout graph, it yields the final output of the algorithm: a patrol for a single agent.

Video 1. A video demonstrating each operation, as well as the complete algorithm can be found at http://player.vimeo.com/
video/20220136.

In what follows, we first provide detailed algorithms for each operation and then construct the complete algorithm in
Section 4.1.4. As will prove in Section 5.2, our algorithm provides a good trade-off between computation and solution quality,
while simultaneously providing performance guarantees. However, we wish to note that different algorithms may be used
in the DiviDE and CONQUER operations to yield subpatrols that strike a different balance between computation and quality.
We will discuss a (non-exhaustive) set of alternatives where appropriate.

4.1.1. DIvIDE: Partition the layout graph
The objective of the DIVIDE operation of the algorithm can be defined as:

Objective 1. Partition graph G into a set of clusters C= {Cq, ..., Cicj} (IC| < Cmax), while minimising the maximum diameter
across all clusters. If diam(G) < D, graph G is not further subdivided as it is small enough such that a path of length B can
visit at least k vertices (k < |V¢|). Furthermore, ensure that vertices in different clusters are at least a distance of § apart.

The reason for imposing the constraints on the diameter of atomic clusters is that it allows us to later derive theoretical
guarantees on the quality of the computed solution, as will become clear in Section 5. Parameter Cnp,x determines how
many subproblems may be created until further subdivision is needed. The resulting partitions are transformed into a
cluster graph G[C] that encodes how agents can move between clusters.

In terms of alternative algorithms, any (recursive) decomposition of the graph in principle reduces the complexity of the
problem that needs to be solved by operations DIvIDE and CONQUER. However, the quality of the solution and the theoretical
guarantees on the solution depend on the decomposition of the graph, which in turn depends on the type of graph and
the graph clustering algorithm used. Fortunately, the literature on graph clustering is abundant. As a result, our algorithm
can be applied to a wide spectrum of graphs by selecting an appropriate clustering algorithm that satisfies the properties
mentioned in Objective 1.

Algorithm 1 performs the necessary steps. First, it checks whether the graph is sufficiently small and does not need
further subdivision (line 2). If this is not the case, it partitions the graph into a set of clusters C={Cq,..., Ccj} (line 5).
There are many different ways of doing this, however, we are interested in obtaining a minimum number of atomic clusters
that satisfy the maximum diameter requirement. With this in mind, we use the algorithm proposed by Edachery et al. [10]
as a subroutine, which we will refer to as CLUSTER(G, D, Crmax).

As we will discuss in further detail in Section 5.2, this algorithm is approximate. It satisfies the minimum diameter
requirement of each cluster, but requires more than the minimum (optimal) number of clusters to do so. We choose this
algorithm for its computational efficiency. However, depending on the type of graph, there might be other algorithms worth
investigating. For an overview of different approaches, we refer the reader to Schaeffer [40]. In addition, this algorithm
is only applicable to undirected graphs. This is the reason for focusing exclusively on undirected graph in this paper (see
Section 1). To the best of our knowledge, there are no graph clustering algorithms for directed graphs that provide a bound
on the diameter of the resulting clusters. There are, however, several algorithms for clustering directed graphs without these
guarantees (e.g. [26,39]). As a result, these algorithms may be used the DIVIDE operation of our algorithm, but lead to the
loss of the performance guarantees described in Section 5.2.

Now, the CLUSTER(G, D, Cpax) algorithm takes as input a graph G, maximum diameter D and the maximum number of
clusters Cpax and returns a set of clusters C, such that |C] < Cpax While attempting to reduce the maximum diameter of
these clusters to D. In more detail, CLUSTER solves a slight variation of the pairwise clustering problem. The pairwise clustering
problem involves finding the smallest n-clustering of G, such that each of the n clusters has a diameter smaller than D.
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Algorithm 1 The DiviDE algorithm for clustering layout graph G into cluster graph G[C].
Require: G = (V, E): the layout graph
Require: D: the maximum diameter of an atomic cluster
Require: Cpax: the maximum number of clusters G is divided into
Ensure: Cluster graph G[C] = ((CUT), E¢), such that:
e C={C1,...,Cq} is a set of clusters;
e T=({Tq,..., Ty} is a set of transit nodes;
o Vv e(;, Vv €Cj,i+#j: d(v,v') > 6, i.e. vertices within a cluster are at least a distance § away from vertices in other clusters;
o |C| < Cmax
: procedure DIVIDE(G, D, Cmax)
if diam(G) < D then
return G[C] = ({G},9) > Lowest level of division has been reached
end if
> Step 1: Partition graph G:
5: C <« CLUSTER(G, D, Cinax) > Cluster G in at most Cpax clusters
> Step 2: Identify transit nodes T by detecting vertices Vg that lie on the boundary between two clusters:
6: Ve < UceclveClIV eV: (v,v)eE)}
: T <~ CONNECTEDCOMPONENTS(G[VB])
> Compute edges E¢ of graph G[C] that encode connections between clusters and transit nodes:
8: Ec < {(C,T)|CeC,TeT,veC,IV eT: (v,v')€E}
D> Step 3: Strip away vertices less than %6 away from vertices in different clusters:
9: Vs «— &
100 Vs=UceclveClIV eV \C: d(v,v) < 38}
11: for C €C do
12: C<«C\Vs
13: end for
14: return G[C]= ((CUT), E¢)
15: end procedure

RNy

In the second step (lines 6-7), Algorithm 1 identifies the transit nodes T between clusters C. These transit nodes are
connected components of graph G that lie on the boundary of the clusters. To compute these, the algorithm identifies the
boundary vertices Vp of the clusters, i.e. those vertices that have at least one adjacent vertex in a different cluster. G[Vg] is
the subgraph induced by Vg, so the set of transit nodes T={T1,..., T} corresponds to the set of connected components
in G[V3g].

The third step (lines 9-13) of the algorithm ensures independence of observations made in different clusters, by removing
all vertices that are less than 1/28 away from vertices in other clusters (Property 3).

The resulting clusters, transit nodes and their connections are represented as a bipartite graph G[C] = ((CUT), E¢). The
set of edges E¢ of G[C] contains an edge (C, T) between a cluster C € C and a transit node T €T if and only if the original
graph G contains an edge e that has endpoints in both C and T (line 6). This graph represents valid high-level movements
between clusters, and is used in the MERGE operation to define the actions of the agent within the MDP.

The following example illustrates the operation of DIVIDE:

Example 2. Fig. 3 shows a single-level clustering (i.e. non-recursive) of the layout graph G of the Agents, Interaction and
Complexity (AIC) lab at the University of Southampton with § = 0 (i.e. observations made at different spatial coordinates
are independent) and D = 25. This results in six clusters and seven transit nodes. Fig. 4 depicts the cluster graph G[(C]
representing the interconnections between the clusters and transit nodes in Fig. 3.

4.1.2. CONQUER: Compute subpatrols in atomic clusters

By recursively clustering the layout graph, we have now decomposed the problem of finding a path of high value through
the original (large) graph to a set of easier independent subproblems that involve finding subpatrols within the small atomic
clusters. Recall that these subproblems were made independent by ensuring that observations made in different clusters are
independent and by limiting the time available to patrol an atomic cluster to B. Based on this, we can now state the
objective of the CONQUER operation of the algorithm:

Objective 2. For each atomic cluster, compute subpatrols of length of at most B between each pair of the cluster’s adjacent
transit nodes.

The reason for this objective is that the agent’s high-level movement is constrained by graph G[C], in which agents enter
and exit clusters through the clusters’ adjacent transit nodes. A subpatrol is the path in layout graph G that corresponds to
such a movement.

Example 3. For cluster Cg in Fig. 4 there are four possible subpatrols: (Tg, Cg, Ts), (Ts, Cs, T7), (T7, Cg, Tg), (T7, Cg, T7).
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Fig. 3. The clusters and transit nodes obtained by applying the DIVIDE operation on the layout graph of the AIC lab with Cpax =6 and D = 25. The dotted
lines indicate the boundaries of the clusters C and the solid lines outline the seven transit nodes T that connect the clusters. The original layout graph has
350 vertices and 529 edges.

17

C5 Cﬁ

Fig. 4. The cluster graph G[C] that represents the topological relations between the clusters (coloured circles) and transit nodes (white squares) in Fig. 3.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In more detail, the problem is now to find a sequence of vertices within an atomic cluster that maximises the value of
observations, subject to a finite time budget B. Since this problem is NP-complete [19],” solving this problem optimally is

7 1t is easy to see that the decision variant of the TSP can be reduced to this problem.
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Fig. 5. Example 4: A patrol within cluster C from transit node T7 to Ts for an information gathering agent with an observation radius of 1.5 m. The arrow
indicates a redundant move of the agent, i.e. one that, when omitted, yields the same amount of observation value.

Algorithm 2 The CONQUER algorithm for computing a subpatrol of atomic cluster C from entry T to exit T’.
Require: C = (V¢, Ec): a cluster
Require: f: the observation value function
Require: T: the entry transit node
Require: T’: the exit transit node
Require: B: the budget
Ensure: Pr ¢ 1/: a subpatrol in C from T to T’ taking c(Pr c 1) < B time steps.
1: procedure CoNQUER(C, f, T, T’, B)
> Step 1: Sort vertices by their incremental observation value:
s¢ <0
while V¢ \s¢ #0 do
Let Oy be the observations made at v, and 0 < |, 5, Ov-
SG (*SGHargmaXveC\sG fOuUoy) - f(0)
end while
> Step 2: Find the maximum n such that the time taken by traversing the subpatrol that visits the first n elements of s¢ does not exceed B:
7: n<0
8: P’ <~ (T, T

A

9: repeat

10: n<n+1

11: PT,C,T’ «~ P’

12: s¢ < prefix(sg,n) > Select first n elements of sg
13: P’ < TSP(T, s, T')

14: until ¢(P’) > B
15: return Pr c 1/
16: end procedure

computationally intractable for arbitrary clusters. Therefore, instead, the patrolling subroutine is chosen to be approximate.
That is, it computes subpatrols of near-optimal value that are shorter than B. This subroutine is based on the near-optimal
sensor placement algorithm of Krause et al. [21] (which was also used in [41]).

Algorithm 2 shows the necessary steps for computing these subpatrols. For each cluster, this algorithm is used to com-
pute subpatrols between each pair of the cluster’s adjacent transit nodes.

In more detail, for a given cluster C, entry T and exit T’, Algorithm 2 proceeds in two steps. First (lines 2-6), it orders
the vertices of C by their incremental value — the value obtained by greedily adding the observations O, made at v to the
already selected set O, such that the incremental value f(OU O,) — f(0) of observations collected at v is maximised. This
results in a sequence of vertices s¢ = (vV, ..., v(IVeD) In the second step (lines 7-14), it seeks to find a subpatrol Py ¢ 1/
from T to T’ with a length of at most B and maximises the length n of the prefix of s¢ (i.e. its first n elements) that is
visited along the path. This problem can be encoded as an instance of the TSP where we seek to find a minimum cost (in
terms of time) cycle (T, vV, ..., v® T’ T). Here, the time of moving between two vertices v; and v; equals the length
of the shortest path between them, and the time taken by moving between T and T’ equals 0. Since solving the TSP itself
is NP-complete [19], we use the heuristic algorithm by [6], which has the best known performance guarantee (%) of any
approximate algorithm for the TSP [16].

Example 4. Consider an agent (the white circle in Fig. 5) that is capable of perfectly observing all vertices within a sensing
radius of 1.5 m (the dashed circle) and let value function f be defined in terms of the number of vertices that are observed.
Fig. 5 shows the subpatrol Pr, cs 14 through Cg in the graph in 3 computed by Algorithm 2 with B = 50.

Note that this patrol is not optimal, in the sense that the same number of vertices (i.e. all of them) could have been
observed within 44 time steps (instead of 46) by removing the path element indicated by an arrow.
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4.1.3. MERGE: Concatenate subpatrols
The third and final operation of the algorithm achieves the following objective:

Objective 3. For a given (sub)problem identified by DivIDE, compute a patrol (see Definition 20) by concatenating the
subpatrols in lower level clusters such that the observation value received along that patrol is maximised (subject to the
computed subpatrols).

Thus, using MERGE we start at the level of atomic clusters by concatenating subpatrols computed by CONQUER and move
up to higher level clusters until the patrolling problem involving the entire layout graph (i.e. root-level cluster) has been
solved.

To achieve this objective, MERGE (Algorithm 3) solves an MDP over the patrolling problem in clustered graph G[C]. This
(deterministic) MDP is a 4-tuple (S, A, §(-,-), R(-,-)) where:

S is a set of states encoding the current position of the agent and the time each cluster was last visited.

e A is a set of actions. In this context, each action in this set corresponds to following a subpatrol (computed by CONQUER)
that start from the agent’s current position, a transit node, through a cluster to another transit node.

s’ =8(s,a) is the state obtained from following subpatrol a in state s. Thus, § is a deterministic transition function.
R(s,a) is the observation value received by following subpatrol a in state s.

Algorithm 3 The MERGE algorithm for solving the patrolling problem within a non-atomic cluster.

Require: G[C]: a cluster graph of graph G

Require: subpatrols: the set of all subpatrols for all clusters in G[C]

Require: B: the budgeted time for patrolling G

Require: entry: the vertex where the agent enters G

Require: exit: the vertex where the agent should exit G within B¢ time steps or @ if B¢ = oo

Ensure: A (sub)patrol for G of length no greater than B¢ starting at entry and terminating at exit

1: procedure MERGE(G[C], subpatrols, B¢, entry, exit)

2: return The patrol obtained by concatenating subpatrols using the MDP for G[C] defined in this section with parameters y, B¢, entry, and exit.
3: end procedure

In what follows, we discuss each item in more detail.
State space The state space S consists of patrolling states:
Definition 21 (Patrolling state). A patrolling state is a triple (T, A, B;) where:

1. T €T is the agent’s position, which is one of the transit nodes.
2. A =[A¢ys .-+ Acgql is a vector in which each element is the number of time steps since each cluster was last patrolled.
3. B, e NT is the remaining budget for patrolling the graph.

By exploiting the temporality property (Property 4), we know that observations made longer than t time steps ago are
independent of new observations. Therefore, the entries of A never exceed 7.

Furthermore, keeping track of the exact number of time steps since a cluster was last visited yields !¢ distinct possible
states, causing the problem to become intractable for even a very small number of clusters or a small value of 7. However,
by exploiting the knowledge that an agent takes B time steps to patrol an atomic cluster, and if we furthermore choose B
to be a divisor of 7, we can ensure that Ac € {0, B, 2B, ..., t}. This drastically reduces the number of distinct possible visit
states of a single cluster from 7 + 1 to % + 1. Thus, combining this result with the number of possible positions for the
agent |T|, the state space for a single agent consists of \T|(§ + 1) states. We discuss the effect of this on computational
complexity in Section 5.2.

Action space The action space of the MDP consists of patrolling actions which are defined as follows:

Definition 22 (Patrolling action). A patrolling action is a sequence (T, C,T’) where C € C is a cluster and (T, T’) € T? are
transit nodes. A patrolling action corresponds to a subpatrol starting from T which moves through C and terminates at T'.

The set of valid actions A(s) for state s is defined as:

Definition 23 (Valid patrolling action). Let s be the state (T, A, B;). The set of valid patrolling actions A(s) for s is:

As)={(T.C.T) } c(Pr,c.7) < By AC €adjgie)(T) AT € adjge; (O)}
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Thus, the set of available actions contains all subpatrols starting at T for which the agent has sufficient remaining budget.

Example 5. The valid patrolling actions in the cluster graph shown in Fig. 4 for state s = (Tq,-,00) are A(S) =
{(T1, C1, T1), (T1, C1, T3), (T1, C1, Ta), (T1, C2, T1), (T1, C2, T2), (T1, C2, Ta), (T1, C2, Te)}-

Transition function The transition function formalises how the state of the MDP transitions under a given action a, and is
defined as:

Definition 24 (Patrolling transition function). The patrolling transition function is a deterministic function §(s,a) = s’ which
formalises the transition from state s = (T, [Ac;, ..., Ac ], Br) under valid action (see Definition 23) a = (T, C;, T') € A(s):

8(57 a) = (T/v [iC1 P 5‘4Ci_] P O’ iCi+]v e ic‘q]v Br - C(PT,C,',T’))

where icj = min(kcj +c(Pr,c;, 1), D).

Thus, the patrolling transition function states that when an agent patrols a cluster C; by performing action a = (T, C, T'),
the process transitions to state s’, in which the agent is positioned at T’ and the visitation time of the cluster A¢ is reset
to 0. Furthermore, since the agent takes a number of time steps equal to the length of the subpatrol to visit a cluster, the
visitation times of clusters Cj (j # i) are incremented by the length of the patrol c¢(Pr c, 1), if not already equal to 7, and
the remaining budget is decreased by c¢(Pr c; 7).

This transition function enables us to further reduce the size of the state space defined earlier, by only considering the
states S;(S) that are reachable from the initial state s = (entry, [t, ..., T]) in which none of the states have been visited yet
and the agent is at the entry transition node (see Algorithm 3). As an example of a state that cannot be reached in the
setting of Fig. 3, consider (Tq,[7, 7,0, 7,7, t],-) which encodes that cluster C3 was just patrolled by the agent and then
moved to a transit node that is inaccessible from C3. The set of states S;(s) reachable from a state s is defined as:

Sy ={stu | Sr(8Gs.0) (4)

acA(s)

Reward function The reward function of the MDP is defined as follows:

Definition 25 (Patrolling reward function). The reward R(s,a) received for performing patrolling action (T,C,T’) in state
s=(T,[ ¢, .-, kc‘q], B;) is given by:

I(C,Ac, T, T') if B <c(Pr,c 1)
R((T, [)Lfls'~~7AC|C‘]’BT)’PT,C,T’): 0 if A(5(s,a)) =0 AT’ = exit (5)
-0 otherwise

where I(C, A¢c, T, T’) is the value of the observations made along subpatrol Pr ¢ 1/, given that cluster C was visited A¢ time
steps ago and is given by:

n i—1 i—1
I(C.ac. T.T)) =)yl [f(ov(,-) ulJow uoc*f) - f(U 0,0 uoc*fﬂ (6)
i=1 j=1

j=1

Here, OE)‘C denotes the set of observations made A¢ time steps ago at each vertex of C, the set O, denotes the observa-
tions made at v (as before), and t; is the time at which v® is visited, which is the time it takes to arrive at v traversing
subpatrol Pr ¢ 1%:

i—1

=3 do (v, vUtD)

j=1

A couple of important points need to be made about this reward function. First, it is unknown which subpatrol was
previously used to visit C, we assume that all vertices of C were visited simultaneously A¢ time steps ago, at which point
a set of observations was made, which we denote as OC_)‘C. Thus, the incremental value of the observations made along
Pt c.1v with respect to OE’\C yields a conservative estimate (i.e. lower bound) on the true reward for action (T, C, T’), since
observation value function f is strictly decreasing with the time elapsed since observations were made.

8 Recall that d¢(v, v') is the length of the shortest path in G from v to v'.
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Second, note that the reward R(s,a) of performing a = (T,C,T’) in state s = (T, [Acyseeonheg)) is the sum of incre-
mental values of observations made along subpatrol Py c 1 = (T, vV, ..., v® T’). Thus, R(s,a) depends exclusively on the
visitation state Ac; of cluster C and the entry T and exit T’ of the subpatrol used to visit C; the visitation states of the clus-
ters other than C are irrelevant for computing the action’s reward. Therefore, we defined an auxiliary function I(C, Ac, T, T’)
that computes the value of a subpatrol with only the relevant parameters.

Third, the reward function ensures that the agent arrives at the exit transit node (see Algorithm 3) before the remaining
budget B; has been exhausted. This is done by assigning the value —oo to transitions to states in which this constraint is
not met.

Solving the MDP A solution of the MDP (S, A, §(-,-), R(-,-)) defined above is a policy of the form 7 (s) =a that, for every
possible state s € S;(sg) reachable from initial state sg, yields action a that maximises the expected discounted reward. This
policy is characterised by the following equations:

(s) = argmc?x{R(s, a)+yVT(8Gs,a)} (7)
VT(s)=R(s,(s)) + PV (8(s, 7 (5))) (8)

Here, V7 (s) is referred to as the state value of s under policy 7, which equals the discounted sum of rewards to be
received by following policy 7 from state s. Many algorithms can be used to compute policy , such as policy iteration [18],
modified policy iteration [34], and prioritised sweeping [28]. However, one of the simplest is value iteration [33]. This
algorithm repeatedly applies the following update rule:

V(s) =maax{R(s,a) +pV(sGs.a)} (9)

until the maximum difference between any two successive state values falls below a predefined threshold € > 0. After
termination, the value of each state under policy 7 is within € of the optimal value. This policy is returned by the MERGE
operation (see Algorithm 3). When executed, it yields the desired (sub)patrol for the given graph.

4.14. Putting it all together: The complete algorithm

Now that we have defined all three necessary operations, we can now construct the single-agent patrolling algorithm
(Algorithm 4). This algorithm calls the coMPUTESUBPATROLDNC as subroutine with an infinite budget, since we require a
continuous patrol from entry at the transit node at which the agent is located.® Algorithm 5 shows the operation of the
recursive COMPUTESUBPATROLDNC which performs the actual computation.

First, it checks whether the graph is small enough for solving the problem outright with CoNQUER (lines 2-4). If not, it
DiviDEs the problem into smaller clusters. Then, using a recursive call to itself, coMPUTESUBPATROLDNC computes subpatrols
in each of the identified clusters. The allocated budget of these subpatrols is computed using the cOMPUTEBUDGET subroutine
in Algorithm 6, which ensures that clusters on the same level are given equal budget. Finally, the subpatrols for clusters C
are MERGEd into a subpatrol for graph G (line 14).

When the call to coMmPUTESUBPATROLDNC in Algorithm 4 returns, it has computed a patrolling policy (Definition 11),
which, when executed, yields the desired patrol in the full layout graph G.

Algorithm 4 The single-agent algorithm for computing a patrol of graph G in a divide and conquer fashion.
Require: G = (V, E): a layout graph

Require: f: the observation value function

Require: y € [0, 1): the discount factor

Require: B € N: the maximum time that may be spent in an atomic cluster.

Require: D € N: the maximum diameter of an atomic cluster.

Require: entry € V: the starting location of the agent

Require: Cpax: the maximum number of clusters in which G may be divided.

Ensure: a patrol for graph G

1: procedure coMPUTEPATROLDNC(G, f, y, B, D, entry, Cmax)

2: return COMPUTESUBPATROLDNC(G, f, v, B, D, oo, entry, ¥, Cmax) > Algorithm 5
3: end procedure

Consider the following example which explains the operation of the complete algorithm.

Example 6. Consider the layout graph in Fig. 6. This graph is obtained by connecting nine copies of the AIC lab (Fig. 3) in a
three by three grid. Using DiviDE with D = 20, the graph is first divided into six top-level clusters. Each of these top-level
clusters are then Divided again into six second-level clusters. Finally, some of the 36 second-level clusters are Divided one

9 If the agent is not located at a transit node, we compute the value of starting at all transit nodes and discount this value with the length of the shortest
path from the agent’s starting location to each of these nodes. We then choose the best starting transit node.
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Algorithm 5 A divide and conquer (DnC) algorithm for computing a subpatrol in a (subgraph of a) layout graph.
Require: G = (V, E): a layout graph

Require: y € [0, 1): the discount factor

Require: f: the observation value function

Require: B € N: the maximum time that may be spent in an atomic cluster

Require: B; € N: the maximum time that may be spent in G

Require: D € N: the maximum diameter of an atomic cluster

Require: entry € V: the vertex from which the layout graph is entered

Require: exit € V: the vertex from which the layout graph should be exited

Require: Cp,x: the maximum number of clusters in which G may be divided

Ensure: Pengry, G exic: @ (sub)patrol for graph G starting at entry and terminating at exit of length no greater than budget
1: procedure cOMPUTESUBPATROLDNC(G, f, ¥, B, B¢, D, entry, exit, Cmax)

2: if diam(G) < D then > The graph is small enough: conquer
3: return CONQUER(G, f, entry, exit, B) > Algorithm 2
4 else > The graph is too big: divide
5: G[C]=(CUT, E¢) < DIVIDE(G, D, Crax) > Algorithm 1
6 subpatrols < {}

7 for CeCdo > Compute subpatrols for each cluster
8: B¢ < coMPUTEBUDGET(C, B, D, Cax) > Algorithm 6
9: for T e adjc[c](c), T € ad_]c[0](c) do

10: Pt c 1/ < COMPUTESUBPATROLDNC(C, f, ¥, B, B¢, D, T, T', Cmax)

11: subpatrols < subpatrols U {Pt ¢ 1/}

12: end for

13: end for

14: return MERGE(G[C], subpatrols, yBC, Bg, entry, exit) > Algorithm 3
15:  end if

16: end procedure

Algorithm 6 An algorithm for computing the time that may be spent in a cluster C.

Require: C: a cluster

Require: B € N: the maximum time that may be spent in an atomic cluster
Require: D € N: the maximum diameter of an atomic cluster

Require: Cp,x: the maximum number of clusters in which C may be divided
1: procedure coMPUTEBUDGET(C, B, D, Crax)

2: if diam(C) < D then

3: return B

4 else

5 G[C]=(CUT, E¢) < DIVIDE(G, D, Cinax)

6: return |C| x maxc/ec COMPUTEBUDGET(C’, B, D, Cax)

7

8:

end if
end procedure

more time resulting in 64 atomic clusters. Fig. 7 shows a tree which represents the recursive division of the clusters. In this
tree the root represents the complete layout graph, and the leafs the atomic clusters.

Each of the atomic clusters (coloured nodes in Fig. 7) are solved using CONQUER. Going up the tree, we find the non-
atomic clusters. Each of these was clustered to obtain a cluster graph (line 5 in Algorithm 4). For example, the cluster graph
of the root graph is shown in Fig. 8(a). Similarly, the cluster graph of the top-level cluster in the bottom right of Fig. 6 is
shown in 8(b). The left two columns of Fig. 7 shows the maximum budget (computed using Algorithm 6) and discount factor
used as parameters to the MERGE operation for solving patrolling problems on the corresponding levels of the tree.

4.1.5. Determining parameters

Algorithm 4 takes three parameters: D, B and Cpax, all of which affect the algorithm’s performance. Here we briefly
discuss their effect and describe a methodology of selecting appropriate values:

e An increase in D yields an increase in the number of atomic clusters, but a reduction in their size. Smaller clusters are
easier to solve by CONQUER, but they increase the amount work performed by MERGE by increasing the recursion depth
of Algorithm 4. Unfortunately, it is not possible to make general statements about the optimal value of D for arbitrary
graphs and observation value functions. As a rule of thumb, we chose the size of the clusters such that an agent is
capable of visiting at least k = 10 of the greedily selected vertices in Algorithm 2. Furthermore, metrics such as the
number of edge cuts and the variance in diameter indicate the quality of the clustering for a given graph. These metrics
depend highly on the type of graph and the type of graph clustering algorithm used. We refer the reader to Schaeffer
[40] for an overview of these algorithms.

e B determines the trade-off between intra and inter cluster patrolling. As B is increased, agents spend more time pa-
trolling atomic clusters before moving on to the next. At a certain point, the additional value obtained within clusters
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Fig. 6. Nine copies of the layout graph in Fig. 3 laid out in a three by three grid. The graph has been recursively clustered on three levels. The six top-
level clusters are demarcated with bold lines and the six second-level with dashed lines. The 64 atomic clusters are distinguishable by the colour of their
vertices. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. The relations between top-level, second-level and atomic clusters in Fig. 6 represented as a tree. Children of a cluster are shown in order of their
clockwise appearance in Fig. 6. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

no longer compensates for the decrease in discount factor . Given this, a good heuristic is to find the value of B*
which maximises the average discounted value of all subpatrols computed by CONQUER:

> yPI(c.0.1.T)

T,.C,T/

B* =

max
Be[D. Vel ,

As this value depends on observation value function f, it is problem dependent. However, it can be efficiently computed
using a simple hill climbing algorithm.
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(a) The cluster graph of the root graph in Figure 7. Squares
represent transit nodes, circles represent clusters.

(b) The cluster graph of the bottom right top-level cluster in
Figure 7. White squares represent transit nodes between clus-
ters, black squares represent the transit nodes to other top-level
clusters.

Fig. 8. Cluster graphs representing the topological relations between child-clusters of two clusters in Fig. 7.

e Cnax is a parameter that determines the trade-off between computation and solution quality. The larger Cpax, the larger
the set of subpatrols that can be concatenated, which generally results in higher solution quality. However, the empirical
results in Section 7 show that the increase in solution quality diminishes fairly quickly as Cpax is increased. Thus, as a
rule of thumb, Cpax should be increased until the available computing capabilities or time constraints no longer warrant
the increase in solution quality (both of which are application dependent).

This concludes the description of the single-agent algorithm. Using this algorithm as a building block, we can now derive
the multi-agent algorithm, which is described next.

4.2. The multi-agent algorithm

Now that we have defined the single-agent algorithm, we can extend it to compute policies for the multi-agent problem.
A straightforward, but somewhat naive, way of doing this is to extend the MDP constructed in the MERGE operation to
multiple agents. The state space of this multi-agent MDP contains the position of each agent, and its action space is defined
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Fig. 9. The recursive state space of agent i.

as the Cartesian product of the action spaces of the single agents. However, in so doing, the size of the state and action
space grow exponentially with the number of agents M, allowing only the smallest of problem instances to be solved.!?

The key property of our multi-agent algorithm is that it avoids this problem by sequentially computing policies for
single agents, instead of computing a joint policy for the team. More specifically, our approach computes a nearly optimal
policy for a team of agents (we prove this in the next section), by greedily computing single-agent policies for each agent i,
conditioned on the previously computed policies of agents A_; ={1,...,i — 1}.

This greedy method is similar to the sequential allocation of multiple agents proposed by Singh et al. [42]. However, the
problem they address is to compute finitely long paths for each agent, instead of policies. This makes a straightforward
application of their sequential allocation method impossible.

In more detail, under the assumption of Singh et al., it is possible to define a new observation value function f’ that
computes the marginal value of observations O; made by agent i conditioned on observations made by agents A_;, i.e.:

i-1 i—1
f’(o,->=f<oiu U oj) —f(U 0,-)

j=1 Jj=1
However, this implicitly assumes there exists an order in which the agents make observations; agent 1 traverses the en-
vironment first, agent 2 second, etc. Clearly, no such ordering is possible with paths of infinite length (i.e. the policies
computed by the single-agent algorithm). Thus, we need to fundamentally redesign the reward function used in the single-
agent algorithm developed in the previous section in order to correctly allocate rewards to agents, and thus be able to
perform sequential allocation.

To be able to incrementally compute the team policy, we modify the single-agent MDP defined in Section 4.1.3 such that
the goal of agent i becomes to maximise the received marginal reward, or equivalently, to collect the observation value left
behind by agents A_;. Put differently, agent i operates on a modified MDP that changes according to the policies of A_;. To
accomplish this, we make the transition function of agent i reflect the effect of the policies of agents A_;, while agents A_;
are unaware of the existence of agent i.

The MDP that captures this process can be obtained from the single-agent MDP discussed in the previous section by
making the following modifications:

State space Agent i now takes into account the positions and states of agents A_; (but not vice versa) in order to determine
how the world will change under their policies. States thus become composite (or recursive).

Transition function The transition function now reflects the effect of agent i’s actions, as well as the policies executed by
agents A_;.

Reward function The reward function now rewards agent i only for the received marginal observation value, i.e. the obser-
vation value left behind by agents A_;.

The relations between states, policies and transition functions in this modified MDP are shown in Fig. 9. In the remainder
of this section we shall discuss each modification in more detail.

10 while testing this naive approach on the setting in Experiment 1 in Section 7 with only 2 agents, it consistently ran out of memory on a machine with
12 GB of RAM after expending > 2 hours of computation.
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State space  The new MDP takes into account the effect of agent i’s actions, as well as those of agents A_; who are executing
their policies beyond agent i’s control. In order to determine these actions, the MDP needs to include knowledge of the
policies of agents A_;, as well as their current states.

Thus, we define composite states, which combine the atomic state — the states of the single-agent MDP defined in
Section 4.1.3 — of agent i with the composite state of agent j:

Definition 26 (Multi-agent patrolling state). Let S denote the atomic states of the form (T, 1) as in Definition 21. The multi-
agent state for agent i is given by the following recursive relation:

S1 =§1
s2 = (52,51)
si = (i, Si—1) (10)

Transition function To determine the successor state s; obtained by applying action a; of agent i, the multi-agent transition
function first determines the state s;_, that results from the actions of agents A_;. State s; is then obtained by applying
action a; to s;_;.

With this in mind, we define the multi-agent transition functions as follows:

Definition 27 (Multi-agent patrolling transition function). The multi-agent patrolling transition function §; for agent i is recur-
sively defined as:

s'1 =81(s1,a1)

s'2 =82(81(s1, 1 (51)), az)

s'i=6; (8,',1 (51;1 , TTi—1 (51’71))» ai)

where 81 is equal to the patrolling transition function for single agents as in Definition 24.
The following example demonstrates the multi-agent state space and transition function.

Example 7. Consider the environment in Fig. 3 and bipartite graph G[C] in Fig. 4 with two agents. At time step t, the atomic
states S of these agents are $1 = (T7,[7,7,7,7,7,0],-) and S, = (T, [T, 7,0, T, 7,0],-) (and the composite state of agent 2
is s = (52, 51)). Thus, agent 1 has just patrolled cluster Cg and is now positioned at T-. Similarly, agent 2 has just patrolled
cluster C3 and is now positioned at T¢. Note that agent 2 is aware of the fact that agent 1 patrolled Cg, but agent 1 — being
unaware of the existence of agent 2 — does not know about the new state of cluster C;.

Reward function To ensure the reward function only takes into account marginal observation value, we need to exclude
double counting. There are two types of double counting. First, synchronous double counting, which occurs when two agents
patrol the same cluster within the same time step. In this case the reward for patrolling the cluster is received twice.
Second, asynchronous double counting, which is a little more subtle. For ease of exposition, we will illustrate this with an
example.

Example 8 (Continued from Example 7). At time step t, agent 1 patrols C3 by choosing action (T7, C3, T;) and transitions to
(Ts3,[t, 7,0, 7, 1,0]). The reward for this transition is equal to the observation value obtained from patrolling cluster C3 in
state 7. In reality, however, much less value is obtained, since agent 2 patrolled C3, and reset its visitation time A3 to 0. Put
differently, agent 2 “stole” the reward of agent 1 for patrolling Cs.

Thus, asynchronous double counting occurs whenever an agent i patrols a cluster C before agent j (j < i), such that j’s
belief of A¢ is less than its true value.

To prevent double counting — both synchronous and asynchronous — we introduce a penalty P for agent i that compen-
sates for the reduction of reward of the agent j (j < i) that patrols C next, as follows:

Ri(s,(T.C,T")) =R(s. (T,.C, T)) — P (11)

Here, R(-,-) is the reward function defined in Section 4.1.3, and P is the loss incurred by agent j (j < i) that will patrol
cluster C next. This is the (discounted) difference between the expected reward (which agent j would have received in
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Fig. 10. The potential reward for patrolling cluster C in the scenario of Example 9.

Table 3
The actual and marginal rewards received by the agents in Example 9.
Time step Actual reward Marginal reward
Agent 1 Agent 2 Agent 1 Agent 2
to 1 1
t3 0.4y3 0.4y3 —0.6y°
te 0.4y y6
Total 1+ 0.4y3 +0.4y° 1+ 0.4y3 +0.4y5

the absence of agent i) and its actual reward, discounted by the number of time steps t, that will elapse before agent j
patrols C:

P= Vt” (Rexpected — Ractuar) (12)
The rewards Rexpected and Rgcruqr are defined as:

Rexpected = I(C, min(t, )A\C +tn), fstam fend) (13)
Ractuat = I1(C, tn — B, 7A‘start» fend) (14)

where I[(C,Ac, T, T’) is the value of a subpatrol (Eq. (6)), A¢ is the last visitation time of cluster C in agent j's current state;
Tstare and Tepg are the entry and exit transit nodes chosen by agent j for its next visit to C.
The following example illustrates the behaviour of the new reward function.

Example 9. Consider a scenario with two agents and a single cluster C. Agent 1 patrols this cluster at t =0 and t =6, and
agent 2 at t = 3. Furthermore, suppose that the maximum reward for patrolling C is 1, that T =6 and that the reward
increases 0.2 every time step the cluster is not patrolled. Fig. 10 shows the function of potential reward as a function of
time for this scenario, which is realised only when the cluster is patrolled. The two lines in Fig. 10 represent the beliefs
agents 1 and 2 have of this reward.

The rewards received by the agents are as follows (see Table 3). First, agent 1 patrols C at t =0 and receives a reward
of 1. Second, agent 2 patrols the cluster at t =3 and receives a reward of 0.4. At this point, the beliefs of the agents
diverge, because agent 1 is not aware of agent 2’s actions. Finally, agent 1 patrols the cluster at t = 6. Contrary to its beliefs,
it receives a reward of 0.4 instead of 1. In total the team receives a (discounted) reward of 1+ 0.4y 3 + 0.4y6.

Now, consider the marginal rewards of the agents, i.e. the additional observation value received by adding an extra agent.
To compute these rewards for agent 1, we need only consider the beliefs of agent 1, because it believes it is alone. It patrols
the cluster twice when the reward equals 1 (at time step 0 and 6), so its reward is 1+ y5. For agent 2, we need to consider
its reward for patrolling the cluster at time step 3, but also the loss of reward of agent 1 at time step 6 for which it is
responsible. This loss is 0.6)¢, which makes its marginal reward 0.4y 3 —0.6y5. To see that these penalties are correct, note
that the sum of marginal rewards is equal to the sum of actual rewards, as desired.

This concludes the definition of the MDP for multiple agents. Using value iteration to solve this MDP as before, we obtain
a policy for each individual agent, which, when combined, form a policy for the entire team. This team policy is not optimal,
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since the policy for agent i is computed greedily with respect to the policies of agents A_;. Despite this, we can still derive
performance guarantees on the observation value obtained by the team, as we show in the next section.

5. Theoretical analysis

As mentioned in the introduction, performance guarantees are important in critical domains such as space exploration
and security, since the existence of pathological behaviour should be ruled out. In this section, we will therefore derive
performance guarantees on the solution quality achieved by the algorithm presented in the previous section, as well as
bounds on its computation overhead.

5.1. Solution quality

We will first derive a lower bound on the solution quality of the single-agent algorithm, by proving the following lemma:

Lemma 1. If diam(C) < D = %B(,/%" + O1)~1, Algorithm 2 computes a subpatrol Pr.c 1 with an observation value
I(C, Ac, T, T’) of at least

VB<1_ (k;1>k>f(o*)

Here, f(0%) is the value of the optimal set of observations made at k vertices of C, ignoring the movement constraints of G.

Proof. The proof consists of two steps. In the first, we use a result by Moran [29] to prove that any TSP in a graph with k
vertices with diameter D has a cost less than B. Moran [29] proved a bound on the length L of the TSP of an arbitrary graph
with k vertices. Specifically, for a graph G embedded in two-dimensional Euclidean space, the following relation holds:

L< (,/%k + O(]))diam(G)

By applying this relation to line 11 of Algorithm 2, we know that n > k holds when this algorithm terminates. The extra cost
of including T and T’ (which are contained in C) into the TSP is compensated by the fact that we set the cost of moving
between T and T’ to O (since we require a path from T to T’, not a cycle). As mentioned earlier, instead of solving the TSP
optimally (which is an NP-complete problem), we use the approximation algorithm by Christofides [6]. This algorithm has
an approximation ratio of 2, which accounts for the factor of % on bound of the diam(C).

In the second step of this proof, we apply the following theorem by Nemhauser and Wolsey [30] for obtaining a bound
on the value of the greedily selected vertices (lines 2-5 of Algorithm 2):

Theorem 1. Let f:2F — R be a non-decreasing submodular set function. The greedy algorithm that iteratively selects the element
e € E that has the highest incremental value with respect to the previously chosen elements I C E:

e=argmax f(eUI)— f(I)

ecE\I

until the resulting set I has the desired cardinality k, has an approximation bound ;EIIG; of at least 1 — (’%)", where I* C E is the
optimal subset of cardinality k that maximises f.

This theorem states that the ratio between the value of the first k greedily selected elements and the value of the optimal
k elements is at least 1 — ("%1)". The factor of & stems from the fact that it is unknown in which order these k elements
are visited by the TSP. However, it is known that these elements are visited within B time steps. Thus, we obtain a lower
bound by discounting the incremental values obtained at these k elements by B time steps, which completes the proof. O

The MERGE operation of the algorithm (Section 4.1.3) uses these subpatrols and concatenates them into a single overar-
ching patrol. The problem of finding an optimal sequence of subpatrols is represented as an MDP, which is optimally solved
by value iteration. Consequently, the following holds for the value of the initial state s, which is equal to the discounted
observation value received by the agent by following policy 7= (Eq. (8)):

B k— k
ez (1 - ( . 1) )fmin(O*) (15)

where fnin(0*) is the minimum value of fi,i,(0*) over all clusters C.

To prove a bound on the solution quality of the multi-agent algorithm, we prove that the observation value of a set of
policies is submodular. To do this, we define a set function g over a set of single-agent policies [, ..., Ty], that computes
the discounted observation value of a set of policies:
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Fig. 11. The worst-case bound on the approximation ratio of the multi-agent algorithm proved in Corollary 1 as a function of the number of agents M.

M

g, .. o) =Y VHG)
i=1
Here, 7; is a policy for agent i of the form discussed in Section 4.2, which behaves identically in the presence of agents

1,...,i—1 as policy 7; does in isolation. Thus, policy 7; visits the same clusters as 7;, and in the same order. Since
the discounted marginal observation value of a single policy 77; received from initial state 5 is equal to V7i(s), function g
computes the discounted observation value of a team of agents 1, ..., M.

We can now state the following result:
Lemma 2. Function g is a non-decreasing submodular set function.

Proof. The non-decreasing property follows trivially from the fact that adding more agents never reduces the observation
value they receive as a team (since existing agents do not change their policies). To prove submodularity, we need to show
that, for every set of policies &’ C & and policy 7 ¢ ' the following holds:

g(mpun’) —g(n') > g({myum) — g(m)
To prove that this holds, we just need to prove that adding a policy 7 to a set of policies & instead of m’ C  reduces
reward and increases penalty (Eq. (11)). To prove the former, observe that agent i’s belief of the last visitation time Aic of
cluster C is non-increasing in i, and Eq. (6) is non-increasing in Aic. Thus, adding predecessors to agent i reduces its reward
for any subpatrol in any cluster. To prove the latter, observe that, with additional predecessors, the number of time steps
tn, before any predecessor visits the same cluster C decreases or remains unchanged. Since penalty P is a strictly increasing
function of t, (see Egs. (12), (13), and (14)), adding 7 to 7 instead of &’ C 7 indeed increases the penalty. O

Since the multi-agent algorithm maximises the incremental value of g by greedily computing a policy of agent i with
respect to the policies of agents 1,...,i — 1, Theorem 1 by Nemhauser and Wolsey [30] can be directly applied to obtain
the following result:

Corollary 1. For M agents, the policies computed by the multi-agent algorithm are at least (1 — (%)M) as valuable as the optimal
M policies of the type computed by the single-agent algorithm.

See Fig. 