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Lidia Nuñez Carrera • Eduardo F. Morales •
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Abstract Pathological and age-related changes may

affect an individual’s gait, in turn raising the risk of falls. In

elderly, falls are common and may eventuate in severe

injuries, long-term disabilities, and even death. Thus, there

is interest in estimating the risk of falls from gait analysis.

Estimation of the risk of falls requires consideration of the

longitudinal evolution of different variables derived from

human gait. Bayesian networks are probabilistic models

which graphically express dependencies among variables.

Dynamic Bayesian networks (DBNs) are a type of BN

adequate for modeling the dynamics of the statistical

dependencies in a set of variables. In this work, a DBN

model incorporates gait derived variables to predict the risk

of falls in elderly within 6 months subsequent to gait

assessment. Two DBNs were developed; the first (DBN1;

expert-guided) was built using gait variables identified by

domain experts, whereas the second (DBN2; strictly com-

putational) was constructed utilizing gait variables picked

out by a feature selection algorithm. The effectiveness of

the second model to predict falls in the 6 months following

assessment is 72.22 %. These results are encouraging and

supply evidence regarding the usefulness of dynamic

probabilistic models in the prediction of falls from patho-

logical gait.

Keywords Probabilistic models � Dynamic Bayesian

networks � Elderly � Gait analysis � Risk of falls

1 Introduction

According to the National Institute of Rehabilitation (INR

acronym in Spanish), the risk of falls in elderly (over 65) is

higher than in other groups of society. For the elderly, a fall

can cause severe injuries and even death. Statistics from

the INR rank falls as the first cause of death for the elderly.

This research aims at getting a better understanding of the

evolution and relationships of human gait parameters

leading to a probabilistic model for the prediction of falls

in elderly.

A gait analysis study is conducted by experts with

knowledge regarding the role of specific gait variables in

expressing gait degradation of people. Gait analysis

depends on subjective observations made by experts,

along with objective measurements of body movement,

mechanics, and muscle activity [23, 36]. However, it is

unclear what gait variables are ruling the risk of fall in the

elderly and how their specific values modulate this risk

[1, 12, 18, 35].
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Computer scientists investigating gait analysis have

developed solutions for individual recognition by means of

image processing of videos of people walking [19, 32, 34],

classification and/or estimation of the number of people

walking in public spaces [4, 22, 30], and design of ambu-

latory technologies for gait monitoring [24, 25]. Fall

detection has been attempted from people tracking [20].

Other research have analyzed parameters observed

while a subject is walking to obtain information regarding

his gait condition [5, 9, 28, 33]. In this sense, the expert

appraises certain parameters that are believed pertinent for

fall prediction.

Predicting falls from gait data has already been

attempted [17, 38]. In [17], and the feasibility of a balance

impairment detection model using tasks of sample cate-

gorization and falls risk estimation was tested. In this work,

a first stage discriminates a random sample of a healthy

elder from that of an elder with balance impairments into

‘‘healthy’’ or ‘‘faller’’ categories. Following, a second stage

estimates the level of relative risk of falling for those

individuals with balance impairments. The authors classify

whether an elder exhibits balance impairments and assess

his/her risk of falling based on the falls history of the

people with balance impairments in the study. In contrast,

we aim to estimate the risk of falling prospectively in a

specific time interval (6 months).

In [38] the objective was (1) to determine whether sta-

bility and limb support play analogous roles in dictating

slip outcome in gait-slip movement and in sit-to-stand-slip

movement and (2) whether the prediction of slip could also

be derived from measures of these variables during regular,

unperturbed movements. The authors found that immedi-

ately before recovery step touchdown, stability, and limb

support could together predict falls for gait-slip movement

and sit-to-stand-slip movement. This study was not cen-

tered on elderly but instead assessed a cohort suffering

unexpected slip-perturbation induced in gait or unexpected

slip-perturbation during sit-to-stand movement. In contrast,

we are interested in estimating the risk of falling by means

of appreciating the normal degradation of human gait, that

is, without perturbations, on the elderly.

In this paper we developed a model assimilating the

degradation of the human gait for the assessment of risk of

falls in the elderly. In particular, we propose a DBN to

estimate risk of falls in elderly using spatio-temporal gait

data and further explore the use of feature selection algo-

rithms to automatically choose the gait parameters relevant

for predicting falls.

The model should predict falls of the elderly at different

time intervals in the future. Thus, the model is able to

represent and evaluate the dynamics of gait parameters

estimating the risk of falling based upon observed gait

changes. Observations of gait parameters may be

incomplete, inaccurate and at times contradictory, and

therefore, it is critical for the model to handle the uncer-

tainty of the process.

BNs are graphical representations of dependencies for

probabilistic reasoning. A BN is a graph in which vertices

represent random variables and edges represent direct-

dependency relationships among variables. BNs have been

extensively used in artificial intelligence (AI) to model

probabilistic relationships among interacting variables.

DBNs are an extension of BNs that can represent the

evolution of variables course over time and can handle

uncertainty in the data. DBNs have been applied in medical

applications such as diagnosis of pneumonia associated

with the use of medical devices [10], as well as mainte-

nance diagnostic of industrial equipment [3, 15].

The remainder of the paper is organized as follows: In

Sect. 2, we describe the methods used in this work. In Sect.

3, we depict the experiments and results obtained with the

DBNs, and finally in Sect. 4, we provide conclusions and

discuss future research directions.

2 Methods

2.1 Gait analysis

Gait analysis is based on specialized equipment for 2D or

3D motion capture sensed using motion tracking multi-

camera systems, ground surface pressure detectors, and

force platforms, among others. Data from walking for this

study was acquired using a GaitRite system (CIR Systems

Inc, Havertown, PA, USA), a system for monitoring spatio-

temporal patterns of human locomotion (for a detailed

description of the GaitRite system, see [6]).

Researchers of the Human Motion Analysis Laboratory

at the INR in Mexico City longitudinally acquired gait data

from 18 women aged 70 ± 10 years diagnosed with oste-

oporosis. Osteoporosis is a condition resulting in brittle

bones which may lead to unsteady gait and falls. The

participants walked on a 3.0-m-long GaitRite walkway.

The GaitRite system measures the temporal and spatial gait

parameters declared in Table 1.

Gait data were obtained from each subject every

6 months during 3 years. In addition, occurrence of falls

was also logged for the duration of the trial. The number of

assessment sessions differed among patients because sub-

jects occasionally failed to comply with appointments and

there were subjects who dropped out from testing.

DBNs models were built utilizing data from 18 patients

distributed as follows: 16 patients that fell and 2 patients

that did not fall during the study. A total of 66 records were

used: 18 records—0 months, 17 records—6 months, 17

records—12 months, and 14 records—18 months.
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2.2 Relevant variables

BNs and DBNs, being rooted in classical statistics, benefit

from a large number of observations and few variables

from those observations to identify significant probabilistic

relationships. A number of methods have been proposed to

alleviate problems with high-dimensional data when only a

small number of instances are available, such as for

instance oversampling and reduction of dimensionality.

Reduction of dimensionality can be achieved by feature

selection strategies dropping a subset of variables consid-

ered to be less informative. In this work, we reduce the

dimensionality of our problem in two different ways: first,

by keeping only those gait variables picked by an expert,

and second, by applying a well-known feature selection

algorithm, namely forward sequential selection (FSS), to

filter the gait variables with low predictive value from the

set of gait parameters acquired with the GaitRite system.

Accordingly, we have built two DBNs for prediction of

fall from two different reduced sets of variables of human

gait. The first model is expert-guided and capitalizes on the

set of variables identified by gait analysis experts from the

Human Motion Analysis Laboratory of the INR as perti-

nent for figuring out the risk of falling. These variables are

shown in the top half of Table 2.

The second model is strictly computational and is

founded on the set of relevant variables as automatically

selected by the FSS algorithm [21]. The FSS algorithm was

run taking into consideration all the records from the 18

patients, that is, all 66 records added up in Table 2. In this

case, the FSS algorithm achieves a reduction of the original

31 variables in Table 1 to 7 relevant variables. These

variables are shown in the bottom half of Table 2.

2.2.1 Forward sequential selection

Let X be a matrix whose rows correspond to points (or

observations) and columns correspond to features (or pre-

dictor variables). And let Y be a column vector of response

values or class labels for each observation in X. FSS starts

with an empty feature or variable set. It then creates can-

didate feature subsets by adding each of the features not yet

selected. For each candidate feature subset, FSS performs a

tenfold cross-validation, by repeatedly calling an evalua-

tion function, called FUN, that defines the CRITERION

that FSS uses to select features and determines when to

stop. See Eq. (1)

Table 1 Spatio-temporal gait parameters obtained with the GaitRite

system

No. Parameter (unit of measure)

1 Walking distance (cm)

2 Ambulation time (s)

3 Walking velocity (cm/s)

4 Mean normalized velocity

5 Number of steps

6 Cadence

7 Left and right step time differential (s)

8 Left and right step length differential (cm)

9 Left and right cycle time differential (s)

10 Left step time (s)

11 Right step time (s)

12 Mean step time (s)

13 Mean step cycle time (s)

14 Left step length (cm)

15 Right step length (cm)

16 Left stride length (cm)

17 Right stride length (cm)

18 Base of support left step (cm)

19 Base of support right step (cm)

20 Percentage of single support left (%GC)

21 Percentage of single support right (%GC)

22 Percentage of double support left (%GC)

23 Percentage of double support right (%GC)

24 Left swing percentage (%GC)

25 Right swing percentage (%GC)

26 Left stance percentage (%GC)

27 Right stance percentage (%GC)

28 Step length/extremity length ratio left

29 Step Length/extremity length ratio right

30 Left toe in/out angle (�)

31 Right toe in/out angle (�)

Table 2 Relevant variables and their abbreviated names

CAD Cadence

Variables selected by gait analysis experts

LPI Left step length (cm)

LPD Right step length (cm)

BSI Base of support left step

(cm)

LPCI Left stride length (cm)

LPCD Right stride length (cm)

BSD Base of support right step

(cm)

Variables selected by FSS

TPD Right step time (s)

BSI Base of support left step

(cm)

BSD Base of support right step

(cm)

SDI Left double support (%GC)

RPED Right step/extremity ratio

TIOI Left toe in/out angle (�)

TIOD Right toe in/out angle (�)
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CRITERION ¼ FUNðXTRAIN ; YTRAIN ;XTEST ; YTESTÞ ð1Þ

where XTRAIN, XTEST, YTRAIN, YTEST are a partition in

training and test subsets of X and Y, respectively. FUN uses

XTRAIN and YTRAIN to train or fit a model, then it predicts

values for XTEST using that model, and finally, returns

measurements of distance or loss of those predicted values

from YTEST. We applied ten-time cross-validation to obtain

representative results for each candidate feature set. FSS

sums the values returned by FUN across all test sets and

divides that sum by the total number of observations. Then

it uses that mean value to evaluate each candidate feature

subset. Commonly used loss measures for FUN include the

sum of squared errors for regression models and the

number of misclassified observations for classification

models.

Given the mean loss values for each candidate feature

subset, FSS chooses the one that minimizes the mean

value. This process continues until adding more features

does not decrease the criterion value.

In our case, the GLMFIT function of MATLAB

(MathWorks, MA, USA) was used to retrieve the CRITE-

RION for FSS. GLMFIT fits a generalized linear model

(GLM) using the predictor matrix X, response Y, and a

distribution DISTR. GLM is a flexible generalization of

ordinary linear regression for response variables that are

not normally distributed. We use the values generated by

DISTR, XTEST and YTEST. The result is a vector of coeffi-

cient estimates. Acceptable values for DISTR are normal,

binomial, Poisson, gamma, and inverse Gaussian. We set a

binomial distribution. In most cases, Y is an column vector

of observed responses, and it is common to use the bino-

mial distribution when Y is a binary vector indicating

success or failure for each observation.

2.3 Bayesian networks

BNs have become a popular representation in AI for

encoding uncertainty in knowledge [7, 16]. Extensions of

the basic BNs scheme further expand their capabilities for

probabilistic representation and reasoning [3, 15]. BNs are

directed acyclic graphs that represent the conditional

independence relationships for joint probability distribution

of a set of random variables. These models belong to the

family of models referred to as probabilistic graphical

models and have been successfully applied in many

domains, as for instance, fault diagnosis due to their

capability for handling uncertainty in data. BNs offer

advantages over alternative AI approaches such as neural

networks [27] or fuzzy logic [31] such as, for instance, the

capability of representing dynamic and uncertain data.

BN nodes or vertices represent variables of the process

and directed edges represent both relationships and

conditional independence-relationship among variables. A

node is independent of other non-descendant nodes, given

the values of its parents. Figure 1 illustrates a Bayesian

network where node d is independent of node c, given

node a.

The definition of a Bayesian network requires the esti-

mation of conditional probability table (CPT) for each

node. The total joint distribution for a BN is given by the

following product:

PðX1; . . .;XnÞ ¼
Yn

i¼1

PðXijPaðXiÞÞ ð2Þ

where X1; . . .;Xn is the set of n variables comprising the

network and Pa(Xi) represents the parent nodes of node Xi.

There are several exact and approximate algorithms for

inference of the posterior distribution of one or more

observed variables in a BN. A BN can be manually defined

or automatically induced from data.

2.4 Dynamic Bayesian networks

An ordinary BN is a static model representing a joint

probability distribution at a fixed point or time interval.

Instead, a DBN can model the evolution of the probabilistic

dependencies within a system over time. In particular,

variables are represented at multiple time points within the

same network structure.

A number of ways to represent the passage of time in

BNs exist, but perhaps the most popular is the method

proposed by Dean [13]. In this approach, time is modelled

discretely as in a discrete Markov chain. Each variable,

Xt, has a time index subscript indicating the time slice to

which it belongs. Each time slice in the DBN is an ordinary

BN holding the static dependencies among the variables for

a particular time interval. Additional temporal dependen-

cies are represented in a DBN by edges between time

slices. In many cases, it is only necessary to consider first-

order time dependencies, in which case a two-slice network

is sufficient to render all relationships. The two-slice

Fig. 1 Bayes network example
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network can be regarded as being ‘‘unrolled’’ over the

number of time slices required to solve the problem at

hand. However, the actual number of slices on which

inference is performed depends, of course, on the particular

domain.

The definition of the conditional independence rela-

tionship is the same for both dynamic and static networks.

An example of a DBN, with n time steps, is illustrated in

Fig. 2. In this figure a2 is independent of c1 and d1, given a1

and b1. The conditional probability relationship between

time steps, such as P(a2|a1, b1), are referred to as the

transition model. The task of a DBN is to make inferences

about the posterior distribution, or belief state, of non-

observable variables from previous time steps and from

current observations.

DBNs are appropriate for monitoring and predicting

values of random variables and are capable of representing

the system state at any time.

2.5 Construction of DBN to gait model

For constructing a DBN-based gait model, the information

from all 18 subjects across the four assessment sessions

was used: first record (at study onset, or 0 months), second

record (6 months from onset), third record (1 year from

onset), and fourth record (18 months from onset), for a

total of 66 records (as indicated in Sect. 2). Each record is

originally a 31D vector which has been reduced in

dimensionality as afore described by either expert selection

or automatic feature selection. Each record is an observa-

tion, which can be labelled in a group with registered falls

or ‘‘fallers’’, or in a group without registered falls or ‘‘non

fallers’’. In addition, sets of up to four observations or

records represent longitudinal assessment of a single

patient. We used a portion of the data to build the model

and the rest for evaluation as explained in Sect. 3.

In order to build a DBN, a static model of the phe-

nomenon is generated. This requires learning the

relationships among the nodes of the static model (vertical

structure). Then a copy of the model is created for each

instant within the time range of interest. Finally, existing

relationships among the nodes of two consecutive static

networks are established (horizontal structure). The con-

nections in the static model represent dependencies

between nodes at a particular time-slot and the connections

between consecutive static networks represent the depen-

dencies between consecutive observations or time-slots.

Before training the DBN, the next step is qualifying how

the nodes are related among them and also how their

relationships change over time. To do so, it is necessary to

characterize the possible values of the nodes or variables of

the model.

Relevant variables express related but essentially dif-

ferent information of the observed phenomenon, i.e. the

human gait, measured in different measurement units and

scale. Hence, we expressed the values of the nodes of the

model in terms of their implicit change. In this sense,

values of relevant variables are binarized so to reflect the

trend variations of a variable between two consecutive

records, through the function Change defined as follows:

ChangePX ¼ 1 if jPXrec2 � PXrec1j[ PXrec1 � DetFac
0 otherwise

�

ð3Þ

where, PX is a certain parameter of gait analysis PXrec1 is

the value of the parameter in the antecedent record, PXrec2

is the value of the parameter in the subsequent record, and

DetFac is an experimental threshold value allowing for the

‘‘normal’’ deterioration factor of human gait.

In this paper, we set DetFac = 0.05, meaning that a

difference greater or equal to 5 % between a given gait

parameter at two consecutive times is necessary to consider

it as an abnormal deterioration.

Previously, up to 8 % difference between the same

elderly gait parameter has been considered normal [29, 37].

This study proposed a 5 % threshold since this value has

Fig. 2 A DBN example with

n time steps

Med Biol Eng Comput (2013) 51:29–37 33

123



been widely accepted to represent clear deviations from

normal deterioration. Also we wanted to obtain a 95 % of

statistical confidence between the differences in gait values

[2, 8, 14].

From Eq. 3, the values that any node of the model

can take and the corresponding meanings are, 0 = no

change or normal deterioration, 1 = change beyond normal

deterioration.

Once the nodes of the model and their possible values

are defined, the next step establishes how these nodes are

proxy for the risk of falling. The K2-learning algorithm

[11] was applied to learn the structure of our DBNs. This

algorithm is available in MATLAB.

The K2-learning algorithm is a Bayesian algorithm that

finds probabilistic dependencies among the variables of a

dataset. Basically, the algorithm searches for a Bayesian

network that has a high posterior probability given the

dataset and outputs the mentioned structure and its proba-

bility. In other words, this algorithm learns the vertices or

relationships among variables from data survey.

At this point, we have the nodes of the model, the values

of these nodes, as well as both, horizontal and vertical,

relationships among these nodes. To complete the DBN

models, we still have to compute the CPTs: listing the

probabilities of the values of a child node given the values

of its parents. For the computation of the CPTs, an algo-

rithm that counts the combination of each value for each

node and its parents and estimates the conditional proba-

bilities from there has been implemented in MATLAB.

This algorithm is first run over the whole set of 66

observations to establish the CPTs at any given time t. The

result is represented in Fig. 3a. This vertical structure was

replicated twice, i.e. representing a given time t and its

subsequent time t ? 1, because the goal is to forecast of

risk of falling [within the first 6-month period (that is at

time t)] that will be referred to for the rest of the paper as

imminent and the risk of falling [within the second 6-month

period (at time t ? 1)] that will be referred to for the rest of

the paper as 6 months. Then, the algorithm to learn the

CPTs is again applied to relate variables relevant at time

t with the variables relevant at time t ? 1, corresponding to

consecutive assessments of the patients, thus sketching the

dynamics of variables over time as illustrated in Fig. 3b.

For this second round, 55 observations of the available 66

were employed. Those not used were the cases in which the

subsequent assessment at t ? 1 was missing for a given

antecedent assessment at time t. In other words, registers

lacking subsequent information were discarded.

Finally, Hugin (Hugin Experts, Aalborg, Denmark) [26],

a specialized software package for designing and building

BNs, was used for testing the models. The structures of

both DBNs, as well as the CPTs and the dataset, were

provided to Hugin.

The aforedescribed procedure was repeated for the set of

relevant variables picked by the gait analysis experts and

the set of relevant variables picked by the FSS algorithm.

In both cases, information of falls recorded from patients

during the study was incorporated in addition to data of the

GaitRite system. In this regard, an additional node called

fall was added to the models. This new node fall can take

one of two values, 0—no fall; and 1—fall.

The evaluation of the two DBN models is described in

the next section.

3 Results

Two conceptual models, one based on the expert’s chosen

relevant variables, and another based on the relevant

variables automatically picked out, were evaluated with

real data from elderly. The models achieved an average

(a) Vertical structure.

(b) Horizontal structure.

Fig. 3 a Probabilistic dependency of variables Vi at times t learned

with K2. b Probabilistic dependency of variables Vi between two

times, learned with K2
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precision of 70 % in predicting both imminent falls and 6

months risk of falling.

Both models were evaluated using leave-one-out cross

validation (LOOCV). The LOOCV is a technique that

facilitates estimation of performance of a predictive model

when the available number of samples is low, as it occurs

in this case where data from 18 patients only are available.

During LOOCV, observations are left out one at a time and

a model instance is trained with the remaining observations

and tested on the observation left out. This procedure is

repeated for all of the observations and the predictive

power of the model is considered to be the average of all

the model instances.

Thereby, for each of the two conceptual models (the

expert selection based and the FSS selection based), 18

different model instances were built using data from 17

patients and tested on the remaining patient on the most

probable value of the node fall, 0 = no fall or 1 = fall. Note

that here we exclude all observations corresponding to the

longitudinal assessments for a given subject at a time,

rather than dropping every single observation separately.

Figure 4 shows the DBNs built by Hugin using human gait

data.

The effectiveness of the forecasting of imminent falls

and 6 months risk of falling is defined as the ratio of the

number of falls predicted by the model divided by the

number of falls that actually occurred in the corresponding

time interval.

The effectiveness of the forecasting of imminent falls

and 6 months risk of falling were 72.22 % in both cases for

the DBN model built upon the variables selected by the

domain experts, and 72.22 and 66.66 % for the DBN built

upon the variables that were automatically selected with

FSS algorithm. These results are summarized in Fig. 5.

The effectiveness of both models is presented without

confidence intervals due to the small number of samples.

Tables 3 and 4 detail he confusion matrices for the two

conceptual models at the two time intervals considered;

imminent and 6 months, respectively. The confusion

matrices presented have been built from the agglomerate

results during the LOOCV.

Finally, the sensitivity and specificity of the conceptual

models have been estimated. Sensitivity (also called recall

rate in some fields) measures the proportion of actual

positives which are correctly identified over the total real

positives (i.e. the percentage of elders who are correctly

(a) DBN based on expert’s variables.

(b) DBN based on automatic selected
variables.

Fig. 4 a DBN based on gait parameters selected by experts, b DBN

based on gait parameters selected by the FSS algorithm. See Table 2

for the definition of abbreviations

Fig. 5 Comparison of the prognosis results of the two models
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identified as fallers). Specificity measures the proportion of

negatives which are correctly identified over the total real

negatives (i.e. the percentage of elders who are correctly

identified as not fallers). The sensitivity and specificity of

both conceptual models are presented in Table 5.

4 Discussion

This research aims at generating a model for prediction of

fall in the elderly that capitalizes on quantifying probabi-

listic dependencies among gait variables. Our objective has

been to develop an intelligible model for non-experts in

probabilistic reasoning that afford them with complemen-

tary information. Distinctly from related work [17, 38], our

model incorporates people’s gait degradation as captured

by assessment instruments and learns the probabilistic

relationships among the variables recorded by such

instruments to forecast the risk of fall of an elder.

A strictly computational model based on selected

information extracted from gait assessments was compared

with an analogous model based on information drawn from

the gait assessments by experts. For estimating the risk of

fall, the computational feature selection method picked out

variables of human gait that were not considered relevant

by the experts. Nevertheless, both conceptual models

yielded comparable performances.

Although the model based upon automatic feature

selection exhibits lower performance for the 6 months

prediction, this model emerges from a very limited dataset

and still afforded competitive performance. In this sense,

the experts base his/her selection on an experience cer-

tainly spanning more observations than those in the dataset.

In general, the larger the training dataset the more reliable

model can be expected.

This work demonstrates the feasibility of employing

probabilistic models such as DBNs to estimate the proba-

bility of a fall. We have presented two probabilistic models

of fall risk assessment that were developed from actual

records of spatio-temporal gait parameters. To our

knowledge, these are the first probabilistic models of fall

risk assessment that exploit relationships among relevant

variables. Since a gait model is now available, it can be

applied by human gait experts and clinicians to obtain

additional elements to enrich their decisions about treat-

ment and therapies to be prescribed to elders with different

degrees of gait impairment.

Note that both, the strictly computational model and the

expert-guided model achieve comparable performances as

measured by sensitivity and specificity outcomes. This can

be indicative that there is a further reduced set of variables

of human gait relevant for predicting falls, perhaps in the

intersection of the subsets of variables considered by both

models.

We are currently bettering the models by enlarging the

dataset. Models for predicting falls within 12 and

18 months will be developed as we grow our cohort size

and expand follow-up times. We will also incorporate

information from people with normal gait to compare their

assessments with those from individuals with pathological

gait.
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Table 3 Confusion matrix to prognostic of imminent falls

Negative Positive

Predicted using information get with computational techniques

Actual

Negative 31 2

Positive 13 9

Predicted with information get of experts

Actual

Negative 30 3

Positive 12 10

Table 4 Confusion matrix to prognostic of 6 months risk of fall

Negative Positive

Predicted using information get with

computational techniques

Actual

Negative 34 4

Positive 14 3

Predicted with information get of experts

Actual

Negative 36 2

Positive 13 4

Table 5 Sensitivity and specificity measures

Imminent fall Six months risk of fall

FSS INR FSS INR

Sensitivity 0.952 0.930 0.902 0.952

Specificity 0.704 0.714 0.708 0.734
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