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Abstract 
 

The Internet 2 deployment introduces new capabilities, 
such as multi-party collaboration, high-scale multimedia 
assembly and multicast communication. For this reason, the 
research concerning security is facing new challenges. One 
such challenge is to create secure multi-session frameworks 
to ensure the confidentiality of exchanged information. In a 
multi-session environment, several users are joined at two 
or more work sessions simultaneously. The confidentiality 
in these environments can be achieved using cryptographic 
methods. Unfortunately, the key management, necessary 
for such environments, creates two main problems: a high 
complexity in key distribution and a high storage cost. In 
this paper, we propose an efficient multi-session key 
management mechanism for dynamic multimedia group 
communication. Our solution proposes a functional 
architecture that exploits the overlapping of the user 
sessions to reduce the redundancy in key distribution. The 
proposed key management makes use of two key 
generation strategies: a key derivation technique to reduce 
the rekey overhead and a pseudorandom number generator 
that allows the users to generate an independent key per 
cipher packet. 

 
Keywords: Key management, multi-session, multimedia, 
group communication, one key per packet 

 
1  Introduction 
The Internet 2 enables new capabilities, such as multi-party 
collaboration, high-scale multimedia assembly and 
multicast communication. The aim of these new 
capabilities is to develop communication platforms where 
there may be a high-scale associativity of users 
communicating by using multimedia data (audio, video, 
text, still images, etc.). To achieve this, the communication 
platforms contemplate the support of heterogeneous data 
management (transmission of discrete and continuous data) 
which must satisfy certain properties in order to not degrade 
the quality of service [1]. Specifically, for continuous data 

transmission, the communication should support the delay, 
the loss and the transposition of packets. 

For these reasons, the new communication platforms are 
facing new challenges concerning security research. One 
such challenge is to create secure environments where 
several applications and several users maintaining work 
sessions in two or more applications can exist 
simultaneously. A description of a multi-session 
environment is given by the following example. 

Suppose there are several users on the Internet using 
some or all of the following three applications: an 
interactive meeting through session 1, an iTV show through 
session 2, and a multimedia forum through session 3. Some 
users coincide in one, two or three of these applications, but 
there are many other users that do not coincide at all (see 
Figure 1). 

 
   
 
 
 
 
 
 
 
 

Figure  1: Multi-session scenario with three different 
applications 

   
As shown in Figure 1, users in gray areas coincide in two 

applications respectively, while users in the black area 
coincide in all three applications. Users that coincide in 
some applications are said to have an overlapping in their 
sessions. With this scenario, users involved in sessions 1 
and 3 may exchange information with users associated with 
these sessions, but users associated only with session 3 
should not have access to the information exchanged in 
session 1 and vice versa. In other words, the exchanged 
information should be confidential, which means that the 
information can be accessed only by entities or groups of 
authorized entities [2, 3, 4]. 



A practical way to assure the confidentiality is with the 
use of cryptographic methods along with a selective key 
distribution technique [5]. Unfortunately, the key 
management in multi-session environments presents two 
main problems: a high complexity in key distribution and a 
high storage cost. These problems arise because users have 
to store independent keys for each joined session, and the 
number of keys required for rekeying depends on the 
number of users in each session. 

In addition to the problems associated with key 
management in multi-session environments, special 
requirements must be met to preserve the quality of service 
for continuous data transmission. Since communication 
channels are not necessarily reliable nor ordered, there is no 
guarantee that all information is received correctly [6]. 
Therefore, systems should support the delay, loss and 
transposition of packets. For these requirements, it is 
desirable to use independent keys per transmitted packet, so 
that the lost, delayed or transposed packet has no adverse 
effects on the quality of service. Furthermore, if there are as 
many keys as transmitted packets, the level of 
confidentiality would be even greater. 

Currently, some solutions exist that are designed for 
environments where there are several users with different 
access privileges or which are associated with different 
work sessions [6, 7, 10, 11]. Unfortunately, such solutions 
are not designed to support dynamic formation and 
decomposition of groups, since they rely on complex 
architectures to organize users and keys. 

In this paper, we propose an efficient multi-session key 
management mechanism for dynamic multimedia group 
communication, which is characterized by the use of an 
independent key per cipher packet. Our mechanism uses a 
functional architecture that exploits the overlapping present 
in the user's sessions, creating groups composed of users 
with the same memberships to reduce the key distribution 
redundancy. Furthermore, the proposed architecture is 
designed to support the dynamic formation and 
decomposition of groups. 

Along with the architecture, our mechanism uses two key 
generation strategies: a derivation technique and a 
pseudorandom number generator. Through the derivation 
technique, each formed group is organized into an 
independent hierarchy to manage the auxiliary keys used in 
the rekeying, while it allows the members of each group to 
derive the auxiliary keys by themselves, without the Key 
Distribution Center (KDC) having to generate, encrypt and 
distribute all the keys. With the pseudorandom number 
generator, our mechanism allows the users to generate 
independent keys for each transmitted packet. By the way 
in which independent keys are generated, in our solution, 
users can encrypt and decrypt different streams in an ݊ to 
݉  communication, unlike many current solutions where 
users can only decrypt a specific stream in a 1  to ݊ 
communication,. 

The rest of the paper is organized as follows: in Section 2 

we present the related work; in Section 3, we show a 
detailed description of our mechanism; in Section 4, we 
give the performance analysis of our solution and a 
comparison with the related work; and finally, in Section 5, 
we present the conclusions. 

 
2  Related work 
Our solution can be considered as a multi-group key 
management scheme since users are organized into multiple 
work groups. For this reason, in this section we present only 
related work oriented to the multi-group key management. 

Multi-group key management has been little explored; 
however, some important solutions have emerged, which 
are mainly focused on multi-privileged group 
communication environments where users have different 
access privileges. 

The main solutions concerning key management for 
multi-privileged groups are based on the integrated key 
graph (IKG) defined in the Centralized Multi-Group Key 
Management Scheme (CMGKMS) [6, 7]. With the IKG, 
users with the same access privileges form a Service Group 
(SG), represented by a key tree. At that point, all the formed 
trees are connected by their roots and by other auxiliary 
keys to form a hierarchy of SGs (see Figure 2(b)). Thus, 
users may increase or decrese their privileges switching 
through the SGs. 

 
(a) 

  
(b) 

Figure  2: (a)Service Groups (b)Integrated key graph 
   

For example, suppose that there is a video stream with 
three layers: low, medium and high quality. As shown in 
Figure 2(a), the users in the white area only have access to 
the lowest quality, while users in the darkest area have 
access to all the layers. These users are organized through 
the hierarchy of Figure 2(b) by three different SGs. Thus, 



users in SG3 can access all the Transfer Encryption Keys 
(TEKs), which are used to encrypt and decrypt the different 
layers of the video stream, while users in SG1 can only 
access the first TEK, used to encrypt and decrypt the lowest 
layer. 

The CMGKMS uses the IKG along with a Flat Table 
rekeying strategy, defined in the CFKM scheme [9], in 
which users can compute the new keys using one-way 
functions. Thus, the KDC only has to transmit some IDs 
and keys in order of the logarithm of the number of users in 
the affected SG and the height of the SG hierarchy. 

The Multi-Group Key Management with Secret Sharing 
Scheme (MGKMSS) [10] is another solution based on IKG 
that uses a threshold cryptography to reduce the rekeying 
overhead, so that instead of keys, the KDC only has to send 
secrets that are smaller than a key. 

Another solution that uses the IKG is the ID-based 
Hierarchical Key Graph Scheme (IDHKGS) [11], which 
uses a derivation technique based on the key indentification 
to allow the users to compute the keys by themselves, 
making the KDC only have to multicast some IDs and the 
keys that users cannot compute. 

Although the IKG uses the overlapping of the user's 
privileges to reduce the redundancy in key distribution, its 
construction is too complex. Furthermore, access privileges 
can only decrease or increase in one way, making this 
scheme inefficient to manage highly dynamic groups. 

The Dynamic Access Control for Multi-privileged Group 
Communications Scheme (DACMGS) [12] defines a Key 
Management Graph (KMG) formed by different key trees, 
which allows the dynamic formation of SGs and decreases 
the complexity related with the IKG construction. In the 
KMG, each SG forms an independent key tree, which has 
an additional vertex above the root to store the TEKs related 
with the SG. Therefore, if a new SG is formed, the KDC 
just builds a new tree without affecting the rest of the graph. 
Furthermore, in a rekey operation, the KDC only has to 
update the compromised TEKs and the compromised KEKs 
in the affected tree, allowing a reduction in rekey overhead. 
However, DACMGS is designed for users who act only as 
receiver entities, decrypting a specific stream in a 1 to ݊ 
communication that is not suitable for environments where 
users exchange multimedia information among them. 

 
3  Proposed solution 
We propose a mechanism named Multimedia Multi-session 
Key Management Scheme (MM-MSKMS). The proposed 
scheme uses a key forest structure, similar to the Key 
Management Graph defined in the Dynamic Access Control 
for Multi-privileged Groups Scheme (DACMGS) [12]. 
MM-MSKMS differs from the DACMGS in three main 
aspects: the key forest is combined with a key derivation 
technique to reduce the rekeying overhead; the users are 
enabled to transmit multimedia information generating 
independent keys for each packet, by using a pseudorandom 
number generator; and finally, the users can exchange 

streams among them in an ݊ to ݉ communication. The 
fact that MM-MSKMS uses one key per packet allows the 
system to support the delay, the loss and the transposition of 
packets, since each packet is completely independent of the 
others, avoiding the need for the decryption to be done in a 
specific order. 

 
3.1  Notation 
The notation used through the paper is shown in Table 1:  

  
Table  1: Notation used in this paper 
    
 ݊  number of users in the system  

ݏ  number of sessions in the system  
௧ܩܱ  group of users with overlapped sessions  

  identifier of an OG  ݐ
݊௧  number of users in an OG  

݉ሺݏሻ  maximum number of OGs  
݉଴  number of OGs in the system  
݅, ݆  indices of KEKs  

௜,௝ܭ
௧   KEK of tree ݐ  
Ω௧  set of Session Keys (SKs) related with an OG 

௛  SK related with one session 1ܭܵ ൑ ݄ ൑   ݏ
݀  degree of a KEK tree  

ܾ௛  order of the algebraic group  
 ௞  exponentiation base; generator in theݔ

 algebraic group delimited by ܾ௛  
,௛݌ ௛ݍ  prime integers  

௜.௝′ܭ
௧ ,   ௛  updated keys′ܭܵ

 
  

3.2  Architecture 
In the MM-MSKMS, the KDC maintains a key forest to 
organize the joined users according to their membership. 
The key forest will be composed by different key trees, each 
one associated with a group of users who have an exact 
match on their memberships. In other words, each tree 
represents a group of users who have a full overlapping in 
their sessions. Each group of users with overlapped sessions 
is named as Overlapping Group (OG). In this paper, in 
order to use a general notation, even those groups where 
users are involved with a single session are called OG. 

In a system where there are ݏ sessions, there will at most 
݉ሺݏሻ Overlapping Groups, where ݉ሺݏሻ is determined by:  

݉ሺݏሻ ൌ ∑  
௦

ஓୀଵ
ቀ

ݏ
 ቁ                 (1)ߛ

Thus, the key forest is formed by ݉଴  trees, with 
1 ൑ ݉଴ ൑ ݉ሺݏሻ trees (see Figure 3). Each tree is formed 
by two kinds of keys: the Key Encryption Keys (KEKs) and 
the Session Keys (SKs). KEKs are used as auxiliary keys 
for the rekeying operations. SKs are used to generate 
independent Data Encryption Keys (DEKs), which are used 
to encrypt and decrypt information related with sessions. In 
a system with ݏ sessions, there are ݏ SKs, one for each 
session. 



 

   
 

 
 

Figure  3: Key forest for 4 OGs related with three 
sessions 

 
KEKs are organized in balanced trees, where each key is 

denoted as ܭ௜,௝
௧ , where ݐ indicates the OG associated with 

the tree (1 ൑ ݐ ൑ ݉଴), ݅ indicates the vertex level, and ݆ 
indicates the most left position relative to level ݅. KEKs 
situated in the ܭଵ,ଵ

௧  position are called root-KEKs (rKEKs) 
and are used to distribute the SKs, while KEKs in the lowest 
level are the individual keys of the OG members. 

All the SKs associated with the sessions related with an 
 ௧ form a set Ω௧, which is represented by an additionalܩܱ
vertex in a level above the KEK-tree. 

With such key organization, each OG member must store 
all the keys along the tree path where it is joined, from its 
individual key to the rKEK, along with the SKs in the 
corresponding Ω௧. Unlike KEKs and SKs, DEKs are not 
stored by users because they are generated before the 
transmission of a packet. 

An example of a key forest structure used to organize 
different OGs is shown in Figure 3. In such example, it is 
assumed that in the system there are 16 users grouped 
according to their memberships into 4 of the 7 possible 
OGs, related with three different sessions. Thus, the 
members of ܱܩଵ have access to the information of session 

ଵܵ , using ܵܭଵ ; the members of ܱܩଶ  have access to the 
information of sessions ଵܵ  and ܵଶ , using ܵܭଵ  and ܵܭଶ , 
the members of ܱܩଷ  have access to the information of 
sessions ଵܵ  and ܵଷ , using ܵܭଵ  and ܵܭଷ , while the 

members of ܱܩସ  have access to the information of 
sessions ଵܵ, ܵଶ and ܵଷ, using ܵܭଵ, ܵܭଶ and ܵܭଷ. 

 
3.3  Key generation 
As we mentioned in Section 3.2, members in each OG store 
two kinds of keys: KEKs and SKs. KEKs are keys 
generated through a derivation technique to avoid having 
the KDC generate, encrypt and transmit all the keys related 
to the rekeying. SKs are keys designed to allow the users to 
generate independent DEKs and to transmit multimedia 
packets, using one key per packet. 

 
3.3.1   Generation of KEKs 
For the generation of KEKs, our mechanism uses a key 
derivation technique similar to the one defined in the SKD 
protocol [15]. With this technique, each user can compute 
the new KEKs using a function ݂ሺڄሻ and previous keys. 
Thus, the KDC only has to transmit the keys that some users 
cannot derive, decreasing the computational effort in KDC 
and the use of bandwidth. For key derivation, function ݂ሺڄሻ 
could be a one-way function, a pseudo-random number 
generator or a trap-door function. 

 
3.3.2  Generation of SKs 
Each ܵܭ௛  (1 ൑ ݄ ൑  is a packet formed by variables (ݏ
used by the Blum Blum Shub algorithm (BBS) [16]. The 
BBS algorithm has the purpose of generating a 
pseudo-random number series free of patterns that can be 
discovered with any reasonable amount of calculations. 
With some bits of each of the generated numbers, issuers 
construct an individual DEK to encrypt a packet. Receptors 
can recover any DEK generating the corresponding number 
series from the packet index and a seed. Thus, users can use 
individual keys to encrypt each transmitted packet. 

With the BBS algorithm, each number is generated by:  
௞ାଵݔ                     ൌ ሺݔ௞ሻଶmod ܾ,              (2) 

where ܾ ൌ  two large primes congruent ݍ and ݌ being ,ݍ݌
with 3 mod 4 (݌ ؠ 3 mod 4 and ݍ ؠ 3 mod 4). 

To start the number generation, a seed must be chosen; 
such seed can be a random number ݔ଴ that is a relative 
prime with ܾ. Knowing ݔ଴, any user can compute the ݇th 
generated number using the equation:  

௞ݔ       ൌ ଴ݔ
ሺଶೖ୫୭ୢሺሺ௣ିଵሻሺ௤ିଵሻሻሻmod ܾ.        (3) 

 Thus, each key ܵܭ௛  will be a packet formed by the 
variables ݌௛, ݍ௛, ݔ଴೓ and ܾ௛, which will be computed by 
the KDC. 

 
3.3.3  Generation of DEKs 
 
Generating independent DEKs. When an user starts the 
transmission of multimedia information for each packet 

௥ܲ  ሺݎ ൌ 1,2, . . . ሻ, the user locally generates an independent 
DEK in the following way:   

1. Using the variables of ܵܭ௛ ൌ ሼ݌௛, ,௛ݍ ,଴೓ݔ ܾ௛ሽ  and 
equation (2), the user generates a pseudo random number 



series of ݇ elements, depending upon the required key size 
(for example, if the system uses AES-128, then one series 
of 64 elements should be generated). 

2.  At most ݈݃݋ଶ݈݃݋ଶܾ௛ bits of each generated number 
are taken to form ݇ bit sequences. 

3.  DEK is formed concatenating the ݇ bit sequences.  
 

Finally, each packet is encrypted with the generated DEK, 
using the specified cypher algorithm. 

 
Recovering independent DEKs.  When a user receives a 
packet ௥ܲ, that user will use the packet index to recover the 
DEK to decrypt information in the following way: 

  
1.  Using the variables of ܵܭ௛ ൌ ሼ݌௛, ,௛ݍ ,଴೓ݔ ܾ௛ሽ and 

equation (3), the user locally generates a pseudo number 
series of ݇ elements, starting at element ሺݎ െ 1ሻ݇ ൅ 1  

2.  At most, ݈݃݋ଶ݈݃݋ଶܾ௛ bits of each generated number 
are taken to form ݇ bit sequences. 

3.  The corresponding DEK is created concatenating the 
݇ bit sequences. 

 
Finally, each packet is decrypted with the DEK, using the 
specified cypher algorithm. 

 
3.4  Rekeying operations 
Rekeying operations must be started by the KDC when a 
membership change takes place. We understand as a 
membership change when a user joins an OG or leaves any 
OG in order to leave the whole system or simply to change 
its OGs and its joined sessions. 

 
3.4.1  User join 
When a user requests to join the system, the KDC decides 
which OG must hold that user, according to its requested 
sessions. Then, the KDC randomly generates an individual 
key for the new member and sends it through a secure 
channel. By secure channel we mean any unicast 
communications channel secured using a unicast security 
protocol. The particular protocol is not important; any 
unicast security protocol that provides 
mutual authentication with key exchange can be used. 
Moreover, the KDC updates the compromised KEKs and 
SKs.  
Updating KEKs.  The KDC assigns a new vertex in the 
KEK-tree to store the individual key of the new member. As 
each KEK-tree maintained by the KDC must be balanced, 
each new vertex is inserted in the shortest paths of the 
KEK-tree. 
Assuming that ܭ௩,௝ೡ

௧ , the root vertex of KEK subtree ܺ௩,௝ೡ
௧  

is the last internal vertex on the joined path:   
• if ܺ௩,௝ೡ

௧  is not full, the new vertex ܭ′௩ାଵ,௝ೡశభ
௧  is inserted,  

• if ܺ௩,௝ೡ
௧  is full, the left most vertex ܭ௩ାଵ,௝ೡశభ

௧  is moved 
to a lower level, becoming the new vertex ܭ′௩ାଶ,௝ೡశమ

௧                 
and its old position is replaced by a new intermediate 

vertex ܭ′௩ାଵ,௝ೡశభ
௧ . Thus ܭ′௩ାଵ,௝ೡశభ

௧  will be the parent of 
௩ାଶ,௝ೡశమ′ܭ

௧  and the vertex associated with the individual 
key of the new user, ܭ௩ାଶ,௝ೡశమାଵ

௧ . 
In both cases, all the new KEKs, found in unchanged 

vertices between the vertex asociated with the key of the 
new user and ܭଵ,ଵ

௧ , are computed by: 
௜,௝೔′ܭ

௧ ൌ ݂ሺܭ௜,௝೔
௧ ሻ, 

where ܭ௜,௝೔
௧  is the previous KEK of that position, named as 

derivation key. 
If the new intermediate vertex ܭ′௩ାଵ,௝ೡశభ

௧  is inserted, the 
new KEK is computed by: 

௩ାଵ,௝ೡశభ′ܭ     
௧ ൌ ݂ሺܭ′௩ାଶ,௝ೡశమ

௧ ْ ଵ,ଵܭ
௧ ሻ, 

where ܭ′௩ାଶ,௝ೡశమ
௧ , the previous KEK ܭ௩ାଵ,௝ೡశభ

௧  is the 
derivation key, while the rKEK ܭଵ,ଵ

௧ , named the salt value, 
is used to ensure that the derived key is different even when 
the same derivation key is used since ܭଵ,ଵ

௧  will be different 
each time. 

For the remaining OG members, the KDC multicasts a 
message to inform the position of the new user. Thus, each 
user can compute the necessary KEKs. As the new user 
does not know the KEKs involved with its path, the KDC 
sends to it a unicast message with the related keys. 

Consider the ܱܩଶ  of the system shown in Figure 3. 
Suppose that user ݑଵ଻ joins the system. The KDC moves 
the vertex associated with the individual key of user ݑହ to a 
lower level, and replaces that position with the new vertex 
ଷ,ଵ′ܭ

ଶ . With this modification, the new intermediate vertex is 
the parent of ܭସ,ଵ

ଶ  and ܭସ,ଶ
ଶ  (see Figure 4), where ܭସ,ଶ

ଶ  is 
the individual key of the new user.  

 

   
Figure  4: An example of user join 

   
The compromised KEKs are recomputed by:  

ଵ,ଵ′ܭ 
ଶ ൌ ݂ሺܭଵ,ଵ

ଶ ሻ, 
ଶ,ଵ′ܭ 

ଶ ൌ ݂ሺܭଶ,ଵ
ଶ ሻ, 

ଷ,ଵ′ܭ 
ଶ ൌ ݂൫ܭସ,ଵ

ଶ ْ ଵ,ଵܭ
ଶ ൯. 

The new user ݑଵ଻ cannot derive the KEKs related with 
its path. For this reason, the KDC unicasts such keys in the 
following way: 

ܥܦܭ      ՜ :ଵ଻ݑ ሼܭ′ଵ,ଵ
ଶ ሽ௄′మ,భ

మ צ ሼܭ′ଶ,ଵ
ଶ ሽ௄′య,భ

మ צ ሼܭ′ଷ,ଵ
ଶ ሽ௄ర,మ

మ  
Updating SKs.  Once the updating of the corresponding 



KEKs has finished, the KDC updates the SKs of the set Ω௧ 
to preserve the backward secrecy. 

To generate each ܵܭ௛, the KDC generates the necessary 
variables for the BBS algorithm: two primes ݌௛ and ݍ௛, 
congruent with 3mod4  and one number ݔ଴೓ , relative 
prime with ܾ௛ ൌ  ௛, which will be the seed of the BBSݍ௛݌
generator. Thus, the new key ܵܭ௛ is the packet ሼ݌௛, ݍ௛, 
 .଴೓, ܾ௛ሽݔ

To finish the rekeying, the KDC multicasts the new SKs 
to all the involved OGs, encrypting each packet with the 
corresponding rKEKs. 

In the example shown in Figure 4, as ܱܩଶ members are 
involved in sessions ଵܵ and ܵଶ, the KDC has to generate 
the new ܵܭଵ and ܵܭଶ, which are elements of Ωଶ. Finally, 
the KDC multicasts the new SKs to the OGs involved with 
these keys, using the corresponding rKEKs to encrypt those 
messages. The KDC transmits the new SKs through the 
following messages:  
ܥܦܭ                   ՜ :ଵܩܱ ሼܵܭ′ଵሽ௄భ,భ

భ  
ܥܦܭ  ՜ :ଶܩܱ ሼܵܭ′ଵሽ௄భ,భ

మ צ ሼܵܭ′ଶሽ௄భ,భ
మ  

ܥܦܭ  ՜ :ଷܩܱ ሼܵܭ′ଵሽ௄భ,భ
య  

ܥܦܭ  ՜ :ସܩܱ ሼܵܭ′ଵሽ௄భ,భ
ర צ ሼܵܭ′ଶሽ௄భ,భ

ర  
The rekeying for the user join process is detailed in 

Algorithms 1 and 2. 
 

Algorithm 1 User join algorithm on KDC's side 
Input: join_request_messageሺݎ݁ݏݑ,Θ) /*Θ is a set with the 
requested sessions*/ 
Output: Updated Keys 
Ω௡௘௪_௨௦௘௥ ൌget_related_SKs_withሺΘሻ 
choose_an_OG_whereሺΩ௧ = ݐ ൌ Ω௡௘௪_௨௦௘௥ሻ 
 ()generate_key = ݕ݁݇_ݎ݁ݏݑ
unicastሺݕ݁݇_ݎ݁ݏݑ,  ሻݎ݁ݏݑ
 ሻݐget_height_ofሺ = ݐ݄݄݃݅݁
ሺ݅, ݆ሻ = get_last_internal_vertexሺݐሻ 
if subtreeሺ݅, ݆ሻ is not full then /*verifies if the last internal 
vertex can hold a new vertex*/ 

ሺ݅, ݆ሻ = get_right_most_leafሺݐ, ݐ݄݄݃݅݁ ൅ 1ሻ 
௜,௝ାଵܭ

௧ ൌ  ݕ݁݇_ݎ݁ݏݑ
else 

if ݆ ൏ ݀௛௘௜௚௛௧ିଵ  then /*insert a new vertex under the 
next available vertex*/ 

ሺ݅, ݆ሻ = get_left_most_leafሺݐ,  ሻݐ݄݄݃݅݁
else /*create a new KEK-tree level*/ 

ሺ݅, ݆ሻ = get_left_most_leafሺݐ, ݐ݄݄݃݅݁ ൅ 1ሻ 
end if 
/*new intermediate key derivation*/ 
௜ାଵ,ௗሺ௝ିଵሻାଵܭ

௧ ൌ ௜,௝ܭ
௧  

௜,௝ܭ
௧ ൌ ݂ሺܭ௜,௝

௧ ْ ଵ,ଵܭ
௧ ሻ 

௜ାଵ,ௗሺ௝ିଵሻାଶܭ
௧ ൌ  ݕ݁݇_ݎ݁ݏݑ

end if 
multicastሺjoin_notificationሺ݅ ൅ 1, ݀ሺ݆ െ 1ሻ ൅ 2ሻ,  ௧ሻܩܱ
݅ ൌ ݅ െ 1 

while ݅ ൐ 0 do /*update of the compromised KEKs*/ 
݆ ൌ  ۀ݀/݆ڿ
௜,௝ܭ

௧ ൌ ݂ሺܭ௜,௝
௧ ሻ 

݅ ൌ ݅ െ 1 
end while 
unicastሺupdated_KEKs(),  ሻݎ݁ݏݑ
for each ܵܭ௛ א Ω௧ do /*update of the compromised SKs*/ 

 ሺ݌, ሻݍ ൌgenerate_two_primes_congruent_withሺ3mod4ሻ 
ݔ  ൌ generate_a_relative_prime_withሺܾ ൌ  ሻݍ݌
௛ܭܵ  ൌ ሼ݌, ,ݍ ,ݔ ܾሽ 

end for 
for each ߚ௚ א ሼܱܩ௔|Ω௔ ת Ω௧ ് ׎ ר ܽ א ሾ1, ݉଴ሿሽ do 

  multicastሺሼΩ௚ ת Ω௧ሽ௄భ,భ
೒ ,  ௚ሻߚ

end for   
 
Algorithm 2 User join algorithm on user's side 
Input: join_notificationሺ݅, ݆) 
Output: Updated Keys 
ݔ ൌ ݅ െ 1 
ݕ ൌ  ۀ݀/݆ڿ
/*verifies if a new intermediate vertex has been inserted*/ 
if local_user_individual_key()ൌ ௫,௬ܭ

௧  then 
/*new intermediate key derivation*/ 
௫ାଵ,ௗሺ௝ିଵሻାଵܭ  

௧ ൌlocal_user_individual_keyሺሻ 
௫,௬ܭ       

௧ ൌ ݂ሺܭ௫,௬
௧ ْ ଵ,ଵܭ

௧ ሻ 
   ݅ ൌ ݅ െ 1 
   ݆ ൌ  ۀ݀/݆ڿ

end if 
݅ ൌ ݅ െ 1 
while ݅ ൐ 0 do /*update of the compromised KEKs*/ 
       ݆ ൌ  ۀ݀/݆ڿ

  if local_user_holdsሺሼܭ௜,௝
௧ ሽሻ then 

௜,௝ܭ
௧ ൌ ݂ሺܭ௜,௝

௧ ሻ 
  end if 
  ݅ ൌ ݅ െ 1 

end while 
/*update of the compromised SKs*/ 
wait_until_the_reception_of(ሼΩ௧ሽ௄భ,భ

೟ ) 
decryptሺሼΩ௧ሽ௄భ,భ

೟ ሻ  

 
 
3.4.2  User leave 

  
Updating KEKs.  When a user leaves the system, the 
KDC removes the corresponding vertex in the KEK-tree of 
the affected OG and updates the compromised keys. 

Assuming that ܭ௩,௝ೡ
௧  is the root vertex of the affected 

KEK subtree ܺ௩,௝ೡ
௧ ,the KEKs updating is performed in one 

of two ways: 
• if ܭ௩,௝ೡ

௧  has at least two children, ܭ௩,௝ೡ
௧  is only updated.  

• if ܭ௩,௝ೡ
௧  has only a child, ܭ௩,௝ೡ

௧  is replaced by its child 
Ԣ௩,௝ೡܭ)

௧ ൌ ௩ାଵ,௝ೡశభܭ
௧ ).  



In both cases, the new KEKs ܭԢ௜,௝೔
௧  of the compromised 

path are computed using the previous keys ܭ௜,௝೔
௧  along with 

the left most key of the lower level ݅ ൅ 1, located in the 
opposite path of the removed vertex, as follows:  

Ԣ௜,௝೔ܭ          
௧ ൌ ݂ሺܭ௜ାଵ,௝೔శభ

௧ ْ ௜,௝೔ܭ
௧ ሻ, 

where ܭ௜ାଵ,௝೔శభ
௧  is the derivation key and the previous key 

௜,௝೔ܭ
௧  is used as salt value. 
For the remaining OG members, the KDC multicasts a 

message to inform the position of the removed user. Thus, 
each user can start the rekeying. 

As the derivation strategy only benefits users in the 
opposite path of the removed vertex, the KDC has to send 
the updated KEKs to users that cannot derive those keys. 

Consider the ܱܩଶ of Figure 3. Assuming that user ݑଵ଻ 
leaves the system, the KDC modifies the KEK-tree, moving 
the vertex ܭସ,ଵ

ଶ  to an upper level, replacing the vertex ܭଷ,ଵ
ଶ  

as shown in Figure 5. 

   
Figure  5: An example of user leave 
   
The new KEKs are computed by:  
ଵ,ଵ′ܭ 

ଶ ൌ ݂ሺܭଶ,ଶ
ଶ ْ ଵ,ଵܭ

ଶ ሻ, 
ଶ,ଵ′ܭ 

ଶ ൌ ݂ሺܭଷ,ଶ
ଶ ْ ଶ,ଵܭ

ଶ ሻ. 
 
Since not all users can derive the keys, the KDC sends the 

following messages to complete the updating process of 
KEKs:  

ܥܦܭ  ՜ :ହݑ ሼܭ′ଶ,ଵ
ଶ ሽ௄య,భ

మ  
ܥܦܭ  ՜ ହݑ െ :଺ݑ ሼܭ′ଵ,ଵ

ଶ ሽ௄′మ,భ
మ  

 
Updating SKs.  To finish the rekeying, the KDC updates 
the SKs of the set Ω௧ to preserve the forward secrecy. For 
each ܵܭ௛ א Ω௧ , the KDC computes the corresponding 
values ݌௛ ௛ݍ , ଴೓ݔ ,  and ܾ௛ , and then transmits the new 
SKs to all the involved OGs, encrypting each packet with 
the corresponding rKEKs. 

In the example shown in Figure 5, to finish the rekeying, 
the KDC updates the SKs of the set Ω2, and multicasts 
those keys to the members in the affected OGs through the 
following messages:  

ܥܦܭ  ՜ :ଵܩܱ ሼܵܭ′ଵሽ௄భ,భ
భ  

ܥܦܭ  ՜ :ଶܩܱ ሼܵܭ′ଵሽ௄భ,భ
మ צ ሼܵܭ′ଶሽ௄భ,భ

మ  

ܥܦܭ  ՜ :ଷܩܱ ሼܵܭ′ଵሽ௄భ,భ
య  

ܥܦܭ  ՜ :ସܩܱ ሼܵܭ′ଵሽ௄భ,భ
ర צ ሼܵܭ′ଶሽ௄భ,భ

ర  
 
 

The rekeying for the user leave process is detailed in 
Algorithms 3 and 4. 

 
Algorithm 3 User leave algorithm on KDC's side 
Input: leave_request_messageሺܱܩ௧, ݅, ݆) 
Output: Updated Keys 
multicastሺleave_notificationሺ݅, ݆ሻ,  ௧ሻܩܱ
delete_vertexሺ݅, ݆,  ሻݐ
if number_of_children_ofሺܭ௜ିଵ,ڿ௝/ௗۀ

௧ ሻ ൌ 1 then 
ۀ௝/ௗڿ,௜ିଵܭ   

௧ ൌ ௜,௝ܭ
௧  /*move the key to a upper level*/ 

   ݅ ൌ ݅ െ 1 
   ݆ ൌ  ۀ݀/݆ڿ

end if 
ݕ ൌ ݅ 
while ݅ ൐ 1 do /*update of the compromised KEKs*/ 

   ሺ݄, ሻݒ ൌget_left_most_sibling_ofሺ݅, ݆,  ሻݐ
௜ିଵ,௝/ௗܭ   

௧ ൌ ݂ሺܭ௛,௩
௧ ْ ۀ௝/ௗڿ,௜ିଵܭ

௧ ሻ /*KEKs derivation*/ 
   ݅ ൌ ݅ െ 1 
   ݆ ൌ  ۀ݀/݆ڿ

end while 
multicast(updated_KEKs(), users_that_cannot_derive()) 
for each ܵܭ௛ א Ω௧ do /*update of the compromised SKs*/       
        ሺ݌, ሻݍ ൌgenerate_two_primes_congruent_with  
             (3mod4ሻ 

ݔ    ൌ generate_a_relative_prime_withሺܾ ൌ  ሻݍ݌
௛ܭܵ    ൌ ሼ݌, ,ݍ ,ݔ ܾሽ 

end for 
for each ߚ௚ א ሼܱܩ௔|Ω௔ ת Ω௧ ് ׎ ר ܽ א ሾ1, ݉଴ሿሽ do 

   multicastሺሼΩ௚ ת Ω௧ሽ௄భ,భ
೒ ,  ௚ሻߚ

end for 
 

  Algorithm 4 User leave algorithm on user's side 
Input: leave_notificationሺ݅, ݆) 
Output: Updated Keys 

   ݅ ൌ ݅ െ 1 
   ݆ ൌ  ۀ݀/݆ڿ

while ݅ ൐ 1 do /*update of the compromised SKs*/ 
   ሺ݄, ሻݒ ൌget_left_most_sibling_ofሺ݅, ݆ሻ 
   if local_user_ holdsሺሼܭ௜ିଵ,ڿ௝/ௗۀ

௧ , ௛,௩ܭ
௧ ሽሻ then 

ۀ௝/ௗڿ,௜ିଵܭ      
௧ ൌ ݂ሺܭ௛,௩

௧ ْ ۀ௝/ௗڿ,௜ିଵܭ
௧ ሻ  /*KEKs   

                                         derivation*/ 
   end if 
   ݅ ൌ ݅ െ 1 
   ݆ ൌ  ۀ݀/݆ڿ

end while 
/*update of the compromised SKs*/ 
wait_until_the_reception_of(ሼΩ௧ሽ௄భ,భ

೟ ) 
decryptሺሼΩ௧ሽ௄భ,భ

೟ ሻ 



  3.4.3  User switch 
When a user requires to leave an ܱܩ௬ to join an ܱܩ௭, the 
KDC has to modify the KEK-trees of the affected OGs and 
update the compromised SKs. 

The updating of KEKs is performed as described in 
Sections 3.4.1 and 3.4.2. For the KEK-tree of ܱܩ௬ , the 
operations related with the user leave event will be 
performed, while for the KEK-tree of ܱܩ௭, the process will 
be similar to the user join event, with the only difference 
being that the KDC does not assign a new individual key to 
the user. The KDC only modifies the user key index in 
order to incorporate it into the new KEK-tree. 

To finish the rekeying, the KDC updates the SKs that sets 
Ω௬ and Ω௭ do not have in common. In other words, the 
KDC updates the SKs in Ω௬ΔΩ௭. The renewal of the SKs in 
the symmetric difference of Ω௬  and Ω௭ , is intended to 
ensure backward and forward secrecy in each of the 
system's OGs, using the common SKs in order not to raise 
the rekeying overhead. 

After the KDC computes the new SKs, those keys will be 
sent to all the memebers of the OGs involved with the SKs. 

For example, consider the ܱܩଶ and the ܱܩସ in Figure 3. 
Assuming that user ݑଵହ leaves the ܱܩସ in order to join the 
ଶܩܱ , first, the KDC modifies the KEK-tree of ܱܩସ , 
removing the corresponding vertex of the individual user 
key. Then, the KDC modifies the KEK-tree of the ܱܩଶ in 
order to asign a new vertex for the individual key of ݑଵହ. 
We illustrate this process in Figure 6.  

   
Figure  6: An example of user switch 
   

Compromised KEKs are computed by:  
Ԣଵ,ଵܭ          

ସ ൌ ݂ሺܭଶ,ଵ
ସ ْ ଵ,ଵܭ

ସ ሻ 
Ԣଵ,ଵܭ          

ଶ ൌ ݂ሺܭଵ,ଵ
ଶ ሻ 

Ԣଶ,ଵܭ          
ଶ ൌ ݂ሺܭଶ,ଵ

ଶ ሻ 
Ԣଷ,ଵܭ          

ଶ ൌ ݂ሺܭସ,ଵ
ଶ ْ ଵ,ଵܭ

ଶ ሻ 
As users ݑଵହ and ݑଵ଺ cannot derive the KEKs, the KDC 

sends those keys through the following messages: 
ܥܦܭ    ՜ :ଵ଺ݑ ሼܭԢଵ,ଵ

ସ ሽ௄మ,మ
ర  

ܥܦܭ      ՜ :ଵହݑ ሼܭԢଵ,ଵ
ଶ ሽ௄ᇱమ,భ

మ צ ሼܭԢଶ,ଵ
ଶ ሽ௄ᇱయ,భ

మ צ ሼܭԢଷ,ଵ
ଶ ሽ௄ర,మ

మ  
To finish the rekeying, the KDC computes the new ܵܭଷ, 

which is the key in ΩଶΔΩସ. Then the KDC transmits the 
new ܵܭԢଷ to all the members of ܱܩଷ and ܱܩସ, using the 

following messages: 
ܥܦܭ                ՜ :ଷܩܱ ሼܵܭԢଷሽ௄భ,భ

య , 
ܥܦܭ ՜ :ସܩܱ ሼܵܭԢଷሽ௄భ,భ

ర  
 

4  Performance analysis 
In this section we analyze the performance of the 
MM-MSKMS, focusing on storage and rekey overheads in 
order to demonstrate the efficiency of our solution. Then, 
we compared it directly with DACMGS, which is the work 
we take as main reference. 

 
4.1  Storage overhead 
  As we mentioned above, in the MM-MSKMS we use 
trees as storage structures to organize the keys and the 
members of the different OGs present in the system. 
Particularly, trees used in this work can be viewed as a 
graph composed of a KEK-tree connected with an 
additional vertex used to store the SKs. Each KEK-tree is 
maintained as balanced as possible by positioning the 
joining users on the shortest paths. 

Let ݊ denote the number of users joined at the whole 
system and ݊௧ the number of users involved in a tree (OG). 
We use ݈ௗሺ݊௧ሻ to denote the length of the branches of a tree 
of ݀  degree. Since each KEK-tree is balanced and it is 
possible that not all the branches have the same length at 
some point, ݈ௗሺ݊௧ሻ  is either ܮ  or ܮ ൅ 1 , where         
ܮ ൌ logௗ݊௧. Particularly, 

• the number of users who are on branches with length ܮ 
is ݀௅ െ ቒ௡೟ିௗಽ

ௗିଵ
ቓ,  

• and the number of users who are on branches with 
length ܮ ൅ 1 is ݊௧ െ ݀௅ ൅ ቒ௡೟ିௗಽ

ௗିଵ
ቓ. 

Therefore, the total number of keys in a KEK-tree is 
determined by:  

ሺ݊௧ሻܭܶ ൌ ݊௧ ൅ ௗಽିଵ
ௗିଵ

൅ ቒ௡೟ିௗಽ

ௗିଵ
ቓ                 (4) 

As the KDC holds the ݏ  SKs related to the system 
sessions and maintains the KEK-trees of the ݉ሺݏሻ OGs, 
the total number of keys stored by the KDC is determined 
by:  

௄஽஼ܭܶ ൌ ∑  
௠ሺ௦ሻ

௧ୀଵ
ሺ݊௧ሻܭܶ ൅  (5)                       ݏ

Each user joined at an ܱܩ௧ has to store the ݈ௗሺ݊௧ሻ KEKs 
involved with its branch and the |Ω௧| SKs related with its 
OG. Thus, the total keys stored by each user is determined 
by:  

ைீ೟א௨ܭܶ ൌ ݈ௗሺ݊௧ሻ ൅ |Ω௧|                        (6) 
Assuming the worst case, where all the combinations of 

the ݏ sessions exist, we can take ݉ሺݏሻ as a fixed value 
(݉ሺݏሻ ൌ ݉଴) throughout the communication process. If we 
also assume that all the OGs have the same number of users 
(݊௧ ൌ ݊଴ ), the number of users in the whole system is 
݊ ൌ ݉଴ ڄ ݊଴ . Using (5), the KDC's storage overhead is 
calculated as:  



௄஽஼ܭܶ ൌ ݉଴ ڄ ሺ݊଴ሻܭܶ ൅  (7)                       ݏ
Using (6), we have that the user's storage overhead is:  

ைீ೟א௨ܭܶ ൌ ݈ௗሺ݊଴ሻ ൅ |Ω௧|                         (8) 
From (4), we have that lim௡బ՜ஶܶܭሺ݊଴ሻ ൌ ௗ

ௗିଵ
݊଴ . 

Therefore, as ݏ  is a fixed value throughout the 
communcation process and ݏ ا ݊଴ when ݊଴ ՜ ∞, using 
(7) we can calculate the KDC's asymptotic storage 
overhead as:  

ܱ~௄஽஼ܭܶ ቀ ௗ
ௗିଵ

݉଴ ڄ ݊଴ቁ ൌ ܱ ቀ ௗ
ௗିଵ

݊ቁ             (9) 
 
Since |Ω௧| is fixed for each OG, using (8) we can 

calculate the user's asymptotic storage overhead as:  
 

 ைீ೟~ܱሺlogௗ݊଴ሻ                         (10)א௨ܭܶ
 
  

4.2  Communication overhead 
The communication overhead is determined by the number 
of messages transmitted at rekey operations. Therefore, we 
estimate the number of messages involved in the different 
rekeying processes (join, leave and switch) to determine the 
communication overhead. 

Let ݉ሺݏ௥ሻ, the number of OGs involved with the updated 
SKs in a rekeying operation. When a new user joins the 
system, the KDC unicasts to the new user a message with 
all the KEKs of its branch and the SKs related to its OG. 
Moreover, the KDC multicasts a join notification with the 
information of the join branch to the remaining users, and 
݉ሺݏ௥ሻ messages to transmit the SKs to the involved OGs. 
Therefore, the number of messages sent out by the KDC is 
determined by:  

௝௢௜௡ܯ ൌ ݉ሺݏ௥ሻ ൅ 2                             (11) 
As each ܱܩ௧ is related to |Ω௧| SKs, the total number of 

SKs sent by the KDC to the ݉ሺݏ௥ሻ involved groups in a 
rekey operation is determined by:  

௄ܰ ൌ ∑  
௠ሺ௦ೝሻ

௟ୀଵ
|Ω௧ ת Ω௟|                            (12) 

 where Ω௧ denotes the set of SKs related to an ܱܩ௧ and 
Ω௟ denotes the set of SKs related to an ܱܩ௟. 

Therefore, the number of keys sent out by the KDC in the 
user join process, is determined by the following equations:  

௃௨௡௜௖௔௦௧ܭܰ
ൌ ݈ௗሺ݊௧ሻ ൅ |Ω௧|                      (13) 

  
௃௠௨௟௧௜௖௔௦௧ܭܰ

ൌ ௄ܰ                            (14) 
where ܰܭ௃௨௡௜௖௔௦௧

 denotes the number of keys sent out in a 
unicast way and ܰܭ௃௠௨௟௧௜௖௔௦௧

 denotes the number of keys 
sent out in a multicast way. 

When a user leaves the system, the KDC multicasts 
ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ  messages with the KEKs of the affected 
branch to the users which cannot derive them, a message 
with a leave notification, and also multicasts ݉ሺݏ௥ሻ 
messages with the updated SKs to the involved OGs. 
Therefore, the number of messages sent out by the KDC is 

determined by:  
௟௘௔௩௘ܯ ൌ ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ ݉ሺݏ௥ሻ ൅ 1          (15) 

As for the user leave process only the remaining users are 
involved, the KDC does not send any message in a unicast 
communication. Thus, using 12 the number of keys sent out 
by the KDC in the user leave process, is determined by:  

௅௠௨௟௧௜௖௔௦௧ܭܰ ൌ ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ ௄ܰ             (16) 
As the rekey for the user switch process involves the join 

and leave processes, from (11) and (15) we know that 
ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ 3 messages are necessary to update the 
compromised KEKs, 2 messages to update the KEKs in 
the joined group and ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ 1  to update the 
KEKs of the left group. Assuming that a user switches from 
 .Ω௭߂௭, the KDC has to update the SKs in Ω௬ܩܱ ௬ toܩܱ
Let ݉ሺݏ௥ሻ be the number of messages to update such SKs, 
the number of messages sent out by the KDC is determined 
by:  

௦௪௜௧௖௛ܯ ൌ ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ ݉ሺݏ௥ሻ ൅ 3           (17) 
Using 12, 13, 14 and 16, the total number of keys sent out 

by the KDC in the rekeying, needed for the user switch 
process is determined by:  

ௌ௨௡௜௖௔௦௧ܭܰ ൌ ݈ௗሺ݊௧ሻ ൅ |Ω௧|           (18) 
  

ௌ௠௨௟௧௜௖௔௦௧ܭܰ ൌ ݈݀ௗሺ݊௧ሻ ൅ ௄ܰ                (19) 
 In this case, ௄ܰ involves the number of SKs sent out by 

the KDC to the ݉ሺݏ௥ሻ  groups, related to the |Ω௬߂Ω௭| 
updated SKs. 

As the switch process involves join and leave operations, 
we can use it to determine the highest bound of transmitted 
messages. 

Assuming the worst case, when the user switch process 
involves an OG related to all the ݏ sessions, and an OG 
related with one session, we have that ݉ሺݏ௥ሻ ൌ ݉ሺݏ െ 1ሻ. 
Furthermore, if we also assume that all the OGs have the 
same number of users, ݊௧ ൌ ݊଴, using (17) the total number 
of messages involved in the rekeying process is given by:  

ܯ ൌ ሺ݀ െ 1ሻ݈ௗሺ݊଴ሻ ൅ ݉ሺݏ െ 1ሻ ൅ 3      (20) 
If ݊଴ ՜ ∞, as ݏ is fixed throughout the communication 

process and ݉ሺݏ െ 1ሻ ൏ ݊଴, we can see that the asymptotic 
communication overhead is:  

 ൫݀logௗሺ݊଴ሻ൯                          (21)ܱ~ܯ
 
 
 

4.3  Comparison 
In this section we compare the CMGKMS [8], DACMGS 

[12] and MM-MSKMS, focusing on two measures: the 
storage overhead and the communication overhead. The 
communication overhead is compared using the costs of 
join, leave and switch processes separately. 

In Table 2 we summarize the measurements, which are 
expressed in bits. These results are based on the results of 
CMGKMS and DACMGS, and  on the results obtained in  



Table 2 Performance comparison for storage and communication overhead 
      CMGKMS   DACMGS   MM-MSKMS  

Storage cost    
 KDC   ሺ ௗ

ௗିଵ
݊ ൅ ሻܵ௄   ሺݏ2 ௗ

ௗିଵ
݊ ൅ ሻܵ௄   ௗݏ

ௗିଵ
݊ܵ௄ ൅   ௦௞ܵݏ

User   ሺlogௗሺ݊௧ሻ ൅ ௄ܰ ൅ 1ሻܵ௄ ሺlogௗሺ݊௧ሻ ൅ |Ω௧|ሻܵ௄ logௗሺ݊௧ሻܵ௄ ൅ |Ω௧|ܵ௦௞
 

Communication Cost   
Join  Unicast   ሺlogௗሺ݊௧ሻ ൅ ௄ܰ ൅ 1ሻܵ௄ ሺlogௗሺ݊௧ሻ ൅ 1ሻܵ௄ logௗሺ݊௧ሻܵ௄ ൅ |Ω௧|ܵ௦௞

Multicast  0  0 logௗሺ݊௧ሻ ൅ ௄ܰܵ௦௞
 

Leave  Unicast   0  0 0  
Multicast  ሺ݀logௗሺ݊௧ሻ ൅ ௄ܰሻܵ௄   ݀ሺlogௗሺ݊௧ሻ െ 1ሻܵ௄ ൅ ௄ܰܵ௖௞  ሺ݀ െ 1ሻlogௗሺ݊௧ሻܵ௄ ൅ ௄ܰܵ௦௞

 
Switch  Unicast   ሺlogௗሺ݊௧ሻ ൅ ௄ܰ ൅ 1ሻܵ௄ ሺlogௗሺ݊௧ሻ ൅ 1ሻܵ௄ logௗሺ݊௧ሻܵ௄ ൅ |Ω௧|ܵ௦௞

Multicast  ሺ݀logௗሺ݊௧ሻ ൅ ௄ܰሻܵ௄ ݀ሺlogௗሺ݊௧ሻ െ 1ሻܵ௄ ൅ ௄ܰܵ௖௞ ݀logௗሺ݊௧ሻܵ௄ ൅ ௄ܰܵ௦௞
 

Sections 4.2 and 4.1. In Table 2, ܵ௄ denotes the KEK's and 
the TEK's size, ܵ௖௞  denotes the size of a secret that is 
smaller than a KEK, while ܵ௦௞ denotes the size of a SK. If 
we use a cryptosystem with KEKs of 128 bits, the size of 
the SKs should be ܱሺ192ሻ bits, using the BBS algorithm 
with 32-bit integers. In addition, we use ௄ܰ to denote the 
number of keys that the KDC has to distribute and are 
related to the sessions or the privileges of a user. In the case 
of DACMGS and MM-MSKMS, ௄ܰ is the number of keys 
sent by the KDC to the ݉ሺݏ௥ሻ  involved groups, ௄ܰ ൌ

∑  
௠ሺ௦ೝሻ

௔ୀଵ
|Ω௧ ת Ω௔|. For CMGKMS, ௄ܰ is approximately two 

times the number of resources that the user can access 
( ௞ܰ ൎ 2|Ω௧|). 

In Table 2 we can observe that CMGKMS and DACMGS 
have lower communication costs than MM-MSKMS. 
However, those costs are lower because CMGKMS and 
DACMGS are designed for users who work only as 
receivers in a 1 to ݊ communication. For that reason, the 
KDC does not have to transmit the new keys in the rekeying 
process because the new version of the keys are indicated in 
the received packets. On the other hand, MM-MSKMS is 
designed for ݊ to ݉ communications which support the 
delay, the loss and the transposition of packets. In addition, 
each user is a transceiver entity that generates independent 
keys from the SKs, sent by the KDC. For this reason, the 
KDC has to transmit some of the updated keys to avoid 
inconsistencies in transmissions. However, the cost of 
MM-MSKMS does not differ significantly compared with 
the cost of CMGKMS and DACMGS. 

 
5  Conclusion 

In this paper we have proposed an efficient multi-session 
key management scheme for dynamic multimedia group 
communication. The proposed scheme is characterized by 
the use of an independent key per cipher packet and allows 
the users to exchange streams between them in an n to m 
communication. Our solution proposes a functional 

architecture that exploits the overlapping of the user 
sessions to reduce the redundancy in key distribution, and 
makes use of two key generation strategies: a key derivation 
technique to reduce the rekey overhead and a 
pseudorandom number generator that allows the users to 
generate independent keys for each transmitted packet. The 
proposed mechanism offers good storage and 
communication costs, comparable with the existing 
mechanisms based on multi-privileged groups. According 
to our knowledge, the MM-MSKMS presented in this paper 
is the only one oriented towards the support of multi-group 
multimedia environment with n to m communication. The 
MM-MSKMS can be used for environments as presented 
by [17]. 
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