
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228451432

Multi-Session Key Management Scheme for Multimedia Group Communications

Article in Journal of Internet Technology · May 2012

CITATIONS

4
READS

76

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Dependable ESB systems based on self-healing and checkpointing principles View project

Transport Protocols View project

Jose Roberto Perez Cruz

Universidad Michoacana de San Nicolás de Hidalgo

17 PUBLICATIONS 26 CITATIONS

SEE PROFILE

Saul Eduardo Pomares Hernandez

Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)

63 PUBLICATIONS 178 CITATIONS

SEE PROFILE

Gustavo Rodríguez Gómez

Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)

57 PUBLICATIONS 241 CITATIONS

SEE PROFILE

Khalil Drira

French National Centre for Scientific Research

128 PUBLICATIONS 412 CITATIONS

SEE PROFILE

All content following this page was uploaded by Gustavo Rodríguez Gómez on 15 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/228451432_Multi-Session_Key_Management_Scheme_for_Multimedia_Group_Communications?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228451432_Multi-Session_Key_Management_Scheme_for_Multimedia_Group_Communications?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Dependable-ESB-systems-based-on-self-healing-and-checkpointing-principles?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Transport-Protocols?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Perez_Cruz?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Perez_Cruz?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Michoacana_de_San_Nicolas_de_Hidalgo?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Perez_Cruz?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saul_Pomares_Hernandez?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saul_Pomares_Hernandez?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Nacional_de_Astrofisica_Optica_y_Electronica_INAOE?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saul_Pomares_Hernandez?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Gomez7?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Gomez7?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Nacional_de_Astrofisica_Optica_y_Electronica_INAOE?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Gomez7?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil_Drira?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil_Drira?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/French_National_Centre_for_Scientific_Research?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil_Drira?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Gomez7?enrichId=rgreq-b153c5d3f3fdcedc8c3697a41f413a35-XXX&enrichSource=Y292ZXJQYWdlOzIyODQ1MTQzMjtBUzo5NzA0MDE1MTM1MTMxMkAxNDAwMTQ3NTgzNTk1&el=1_x_10&_esc=publicationCoverPdf

Multi-session Key Management Scheme for Multimedia
Group Communications

JOSE ROBERTO PEREZ CRUZ 1, SAUL EDUARDO POMARES HERNANDEZ 1, GUSTAVO RODRIGUEZ GOMEZ 1,

KHALIL DRIRA 2,3 and MICHEL DIAZ 2,3
1Department of Computer Science,

National Institute of Astrophysics, Optics and Electronics (INAOE),
Luis Enrique Erro No. 1, 72840, Tonantzintla, Puebla, Mexico

2 CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse, France
3Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France

{jrpc, spomares, grodrig}@inaoep.mx

Abstract

The Internet 2 deployment introduces new capabilities,
such as multi-party collaboration, high-scale multimedia
assembly and multicast communication. For this reason, the
research concerning security is facing new challenges. One
such challenge is to create secure multi-session frameworks
to ensure the confidentiality of exchanged information. In a
multi-session environment, several users are joined at two
or more work sessions simultaneously. The confidentiality
in these environments can be achieved using cryptographic
methods. Unfortunately, the key management, necessary
for such environments, creates two main problems: a high
complexity in key distribution and a high storage cost. In
this paper, we propose an efficient multi-session key
management mechanism for dynamic multimedia group
communication. Our solution proposes a functional
architecture that exploits the overlapping of the user
sessions to reduce the redundancy in key distribution. The
proposed key management makes use of two key
generation strategies: a key derivation technique to reduce
the rekey overhead and a pseudorandom number generator
that allows the users to generate an independent key per
cipher packet.

Keywords: Key management, multi-session, multimedia,
group communication, one key per packet

1 Introduction
The Internet 2 enables new capabilities, such as multi-party
collaboration, high-scale multimedia assembly and
multicast communication. The aim of these new
capabilities is to develop communication platforms where
there may be a high-scale associativity of users
communicating by using multimedia data (audio, video,
text, still images, etc.). To achieve this, the communication
platforms contemplate the support of heterogeneous data
management (transmission of discrete and continuous data)
which must satisfy certain properties in order to not degrade
the quality of service [1]. Specifically, for continuous data

transmission, the communication should support the delay,
the loss and the transposition of packets.

For these reasons, the new communication platforms are
facing new challenges concerning security research. One
such challenge is to create secure environments where
several applications and several users maintaining work
sessions in two or more applications can exist
simultaneously. A description of a multi-session
environment is given by the following example.

Suppose there are several users on the Internet using
some or all of the following three applications: an
interactive meeting through session 1, an iTV show through
session 2, and a multimedia forum through session 3. Some
users coincide in one, two or three of these applications, but
there are many other users that do not coincide at all (see
Figure 1).

Figure 1: Multi-session scenario with three different
applications

As shown in Figure 1, users in gray areas coincide in two

applications respectively, while users in the black area
coincide in all three applications. Users that coincide in
some applications are said to have an overlapping in their
sessions. With this scenario, users involved in sessions 1
and 3 may exchange information with users associated with
these sessions, but users associated only with session 3
should not have access to the information exchanged in
session 1 and vice versa. In other words, the exchanged
information should be confidential, which means that the
information can be accessed only by entities or groups of
authorized entities [2, 3, 4].

A practical way to assure the confidentiality is with the
use of cryptographic methods along with a selective key
distribution technique [5]. Unfortunately, the key
management in multi-session environments presents two
main problems: a high complexity in key distribution and a
high storage cost. These problems arise because users have
to store independent keys for each joined session, and the
number of keys required for rekeying depends on the
number of users in each session.

In addition to the problems associated with key
management in multi-session environments, special
requirements must be met to preserve the quality of service
for continuous data transmission. Since communication
channels are not necessarily reliable nor ordered, there is no
guarantee that all information is received correctly [6].
Therefore, systems should support the delay, loss and
transposition of packets. For these requirements, it is
desirable to use independent keys per transmitted packet, so
that the lost, delayed or transposed packet has no adverse
effects on the quality of service. Furthermore, if there are as
many keys as transmitted packets, the level of
confidentiality would be even greater.

Currently, some solutions exist that are designed for
environments where there are several users with different
access privileges or which are associated with different
work sessions [6, 7, 10, 11]. Unfortunately, such solutions
are not designed to support dynamic formation and
decomposition of groups, since they rely on complex
architectures to organize users and keys.

In this paper, we propose an efficient multi-session key
management mechanism for dynamic multimedia group
communication, which is characterized by the use of an
independent key per cipher packet. Our mechanism uses a
functional architecture that exploits the overlapping present
in the user's sessions, creating groups composed of users
with the same memberships to reduce the key distribution
redundancy. Furthermore, the proposed architecture is
designed to support the dynamic formation and
decomposition of groups.

Along with the architecture, our mechanism uses two key
generation strategies: a derivation technique and a
pseudorandom number generator. Through the derivation
technique, each formed group is organized into an
independent hierarchy to manage the auxiliary keys used in
the rekeying, while it allows the members of each group to
derive the auxiliary keys by themselves, without the Key
Distribution Center (KDC) having to generate, encrypt and
distribute all the keys. With the pseudorandom number
generator, our mechanism allows the users to generate
independent keys for each transmitted packet. By the way
in which independent keys are generated, in our solution,
users can encrypt and decrypt different streams in an ݊ to
݉ communication, unlike many current solutions where
users can only decrypt a specific stream in a 1 to ݊
communication,.

The rest of the paper is organized as follows: in Section 2

we present the related work; in Section 3, we show a
detailed description of our mechanism; in Section 4, we
give the performance analysis of our solution and a
comparison with the related work; and finally, in Section 5,
we present the conclusions.

2 Related work
Our solution can be considered as a multi-group key
management scheme since users are organized into multiple
work groups. For this reason, in this section we present only
related work oriented to the multi-group key management.

Multi-group key management has been little explored;
however, some important solutions have emerged, which
are mainly focused on multi-privileged group
communication environments where users have different
access privileges.

The main solutions concerning key management for
multi-privileged groups are based on the integrated key
graph (IKG) defined in the Centralized Multi-Group Key
Management Scheme (CMGKMS) [6, 7]. With the IKG,
users with the same access privileges form a Service Group
(SG), represented by a key tree. At that point, all the formed
trees are connected by their roots and by other auxiliary
keys to form a hierarchy of SGs (see Figure 2(b)). Thus,
users may increase or decrese their privileges switching
through the SGs.

(a)

(b)

Figure 2: (a)Service Groups (b)Integrated key graph

For example, suppose that there is a video stream with
three layers: low, medium and high quality. As shown in
Figure 2(a), the users in the white area only have access to
the lowest quality, while users in the darkest area have
access to all the layers. These users are organized through
the hierarchy of Figure 2(b) by three different SGs. Thus,

users in SG3 can access all the Transfer Encryption Keys
(TEKs), which are used to encrypt and decrypt the different
layers of the video stream, while users in SG1 can only
access the first TEK, used to encrypt and decrypt the lowest
layer.

The CMGKMS uses the IKG along with a Flat Table
rekeying strategy, defined in the CFKM scheme [9], in
which users can compute the new keys using one-way
functions. Thus, the KDC only has to transmit some IDs
and keys in order of the logarithm of the number of users in
the affected SG and the height of the SG hierarchy.

The Multi-Group Key Management with Secret Sharing
Scheme (MGKMSS) [10] is another solution based on IKG
that uses a threshold cryptography to reduce the rekeying
overhead, so that instead of keys, the KDC only has to send
secrets that are smaller than a key.

Another solution that uses the IKG is the ID-based
Hierarchical Key Graph Scheme (IDHKGS) [11], which
uses a derivation technique based on the key indentification
to allow the users to compute the keys by themselves,
making the KDC only have to multicast some IDs and the
keys that users cannot compute.

Although the IKG uses the overlapping of the user's
privileges to reduce the redundancy in key distribution, its
construction is too complex. Furthermore, access privileges
can only decrease or increase in one way, making this
scheme inefficient to manage highly dynamic groups.

The Dynamic Access Control for Multi-privileged Group
Communications Scheme (DACMGS) [12] defines a Key
Management Graph (KMG) formed by different key trees,
which allows the dynamic formation of SGs and decreases
the complexity related with the IKG construction. In the
KMG, each SG forms an independent key tree, which has
an additional vertex above the root to store the TEKs related
with the SG. Therefore, if a new SG is formed, the KDC
just builds a new tree without affecting the rest of the graph.
Furthermore, in a rekey operation, the KDC only has to
update the compromised TEKs and the compromised KEKs
in the affected tree, allowing a reduction in rekey overhead.
However, DACMGS is designed for users who act only as
receiver entities, decrypting a specific stream in a 1 to ݊
communication that is not suitable for environments where
users exchange multimedia information among them.

3 Proposed solution
We propose a mechanism named Multimedia Multi-session
Key Management Scheme (MM-MSKMS). The proposed
scheme uses a key forest structure, similar to the Key
Management Graph defined in the Dynamic Access Control
for Multi-privileged Groups Scheme (DACMGS) [12].
MM-MSKMS differs from the DACMGS in three main
aspects: the key forest is combined with a key derivation
technique to reduce the rekeying overhead; the users are
enabled to transmit multimedia information generating
independent keys for each packet, by using a pseudorandom
number generator; and finally, the users can exchange

streams among them in an ݊ to ݉ communication. The
fact that MM-MSKMS uses one key per packet allows the
system to support the delay, the loss and the transposition of
packets, since each packet is completely independent of the
others, avoiding the need for the decryption to be done in a
specific order.

3.1 Notation
The notation used through the paper is shown in Table 1:

Table 1: Notation used in this paper

 ݊ number of users in the system

ݏ number of sessions in the system
௧ܩܱ group of users with overlapped sessions

 identifier of an OG ݐ
݊௧ number of users in an OG

݉ሺݏሻ maximum number of OGs
݉଴ number of OGs in the system
݅, ݆ indices of KEKs

௜,௝ܭ
௧ KEK of tree ݐ
Ω௧ set of Session Keys (SKs) related with an OG

௛ SK related with one session 1ܭܵ ൑ ݄ ൑ ݏ
݀ degree of a KEK tree

ܾ௛ order of the algebraic group
 ௞ exponentiation base; generator in theݔ

 algebraic group delimited by ܾ௛
,௛݌ ௛ݍ prime integers

௜.௝′ܭ
௧ , ௛ updated keys′ܭܵ

3.2 Architecture
In the MM-MSKMS, the KDC maintains a key forest to
organize the joined users according to their membership.
The key forest will be composed by different key trees, each
one associated with a group of users who have an exact
match on their memberships. In other words, each tree
represents a group of users who have a full overlapping in
their sessions. Each group of users with overlapped sessions
is named as Overlapping Group (OG). In this paper, in
order to use a general notation, even those groups where
users are involved with a single session are called OG.

In a system where there are ݏ sessions, there will at most
݉ሺݏሻ Overlapping Groups, where ݉ሺݏሻ is determined by:

݉ሺݏሻ ൌ ∑
௦

ஓୀଵ
ቀ

ݏ
 ቁ (1)ߛ

Thus, the key forest is formed by ݉଴ trees, with
1 ൑ ݉଴ ൑ ݉ሺݏሻ trees (see Figure 3). Each tree is formed
by two kinds of keys: the Key Encryption Keys (KEKs) and
the Session Keys (SKs). KEKs are used as auxiliary keys
for the rekeying operations. SKs are used to generate
independent Data Encryption Keys (DEKs), which are used
to encrypt and decrypt information related with sessions. In
a system with ݏ sessions, there are ݏ SKs, one for each
session.

Figure 3: Key forest for 4 OGs related with three
sessions

KEKs are organized in balanced trees, where each key is

denoted as ܭ௜,௝
௧ , where ݐ indicates the OG associated with

the tree (1 ൑ ݐ ൑ ݉଴), ݅ indicates the vertex level, and ݆
indicates the most left position relative to level ݅. KEKs
situated in the ܭଵ,ଵ

௧ position are called root-KEKs (rKEKs)
and are used to distribute the SKs, while KEKs in the lowest
level are the individual keys of the OG members.

All the SKs associated with the sessions related with an
 ௧ form a set Ω௧, which is represented by an additionalܩܱ
vertex in a level above the KEK-tree.

With such key organization, each OG member must store
all the keys along the tree path where it is joined, from its
individual key to the rKEK, along with the SKs in the
corresponding Ω௧. Unlike KEKs and SKs, DEKs are not
stored by users because they are generated before the
transmission of a packet.

An example of a key forest structure used to organize
different OGs is shown in Figure 3. In such example, it is
assumed that in the system there are 16 users grouped
according to their memberships into 4 of the 7 possible
OGs, related with three different sessions. Thus, the
members of ܱܩଵ have access to the information of session

ଵܵ , using ܵܭଵ ; the members of ܱܩଶ have access to the
information of sessions ଵܵ and ܵଶ , using ܵܭଵ and ܵܭଶ ,
the members of ܱܩଷ have access to the information of
sessions ଵܵ and ܵଷ , using ܵܭଵ and ܵܭଷ , while the

members of ܱܩସ have access to the information of
sessions ଵܵ, ܵଶ and ܵଷ, using ܵܭଵ, ܵܭଶ and ܵܭଷ.

3.3 Key generation
As we mentioned in Section 3.2, members in each OG store
two kinds of keys: KEKs and SKs. KEKs are keys
generated through a derivation technique to avoid having
the KDC generate, encrypt and transmit all the keys related
to the rekeying. SKs are keys designed to allow the users to
generate independent DEKs and to transmit multimedia
packets, using one key per packet.

3.3.1 Generation of KEKs
For the generation of KEKs, our mechanism uses a key
derivation technique similar to the one defined in the SKD
protocol [15]. With this technique, each user can compute
the new KEKs using a function ݂ሺڄሻ and previous keys.
Thus, the KDC only has to transmit the keys that some users
cannot derive, decreasing the computational effort in KDC
and the use of bandwidth. For key derivation, function ݂ሺڄሻ
could be a one-way function, a pseudo-random number
generator or a trap-door function.

3.3.2 Generation of SKs
Each ܵܭ௛ (1 ൑ ݄ ൑ is a packet formed by variables (ݏ
used by the Blum Blum Shub algorithm (BBS) [16]. The
BBS algorithm has the purpose of generating a
pseudo-random number series free of patterns that can be
discovered with any reasonable amount of calculations.
With some bits of each of the generated numbers, issuers
construct an individual DEK to encrypt a packet. Receptors
can recover any DEK generating the corresponding number
series from the packet index and a seed. Thus, users can use
individual keys to encrypt each transmitted packet.

With the BBS algorithm, each number is generated by:
௞ାଵݔ ൌ ሺݔ௞ሻଶmod ܾ, (2)

where ܾ ൌ two large primes congruent ݍ and ݌ being ,ݍ݌
with 3 mod 4 (݌ ؠ 3 mod 4 and ݍ ؠ 3 mod 4).

To start the number generation, a seed must be chosen;
such seed can be a random number ݔ଴ that is a relative
prime with ܾ. Knowing ݔ଴, any user can compute the ݇th
generated number using the equation:

௞ݔ ൌ ଴ݔ
ሺଶೖ୫୭ୢሺሺ௣ିଵሻሺ௤ିଵሻሻሻmod ܾ. (3)

 Thus, each key ܵܭ௛ will be a packet formed by the
variables ݌௛, ݍ௛, ݔ଴೓ and ܾ௛, which will be computed by
the KDC.

3.3.3 Generation of DEKs

Generating independent DEKs. When an user starts the
transmission of multimedia information for each packet

௥ܲ ሺݎ ൌ 1,2, . . . ሻ, the user locally generates an independent
DEK in the following way:

1. Using the variables of ܵܭ௛ ൌ ሼ݌௛, ,௛ݍ ,଴೓ݔ ܾ௛ሽ and
equation (2), the user generates a pseudo random number

series of ݇ elements, depending upon the required key size
(for example, if the system uses AES-128, then one series
of 64 elements should be generated).

2. At most ݈݃݋ଶ݈݃݋ଶܾ௛ bits of each generated number
are taken to form ݇ bit sequences.

3. DEK is formed concatenating the ݇ bit sequences.

Finally, each packet is encrypted with the generated DEK,
using the specified cypher algorithm.

Recovering independent DEKs. When a user receives a
packet ௥ܲ, that user will use the packet index to recover the
DEK to decrypt information in the following way:

1. Using the variables of ܵܭ௛ ൌ ሼ݌௛, ,௛ݍ ,଴೓ݔ ܾ௛ሽ and

equation (3), the user locally generates a pseudo number
series of ݇ elements, starting at element ሺݎ െ 1ሻ݇ ൅ 1

2. At most, ݈݃݋ଶ݈݃݋ଶܾ௛ bits of each generated number
are taken to form ݇ bit sequences.

3. The corresponding DEK is created concatenating the
݇ bit sequences.

Finally, each packet is decrypted with the DEK, using the
specified cypher algorithm.

3.4 Rekeying operations
Rekeying operations must be started by the KDC when a
membership change takes place. We understand as a
membership change when a user joins an OG or leaves any
OG in order to leave the whole system or simply to change
its OGs and its joined sessions.

3.4.1 User join
When a user requests to join the system, the KDC decides
which OG must hold that user, according to its requested
sessions. Then, the KDC randomly generates an individual
key for the new member and sends it through a secure
channel. By secure channel we mean any unicast
communications channel secured using a unicast security
protocol. The particular protocol is not important; any
unicast security protocol that provides
mutual authentication with key exchange can be used.
Moreover, the KDC updates the compromised KEKs and
SKs.
Updating KEKs. The KDC assigns a new vertex in the
KEK-tree to store the individual key of the new member. As
each KEK-tree maintained by the KDC must be balanced,
each new vertex is inserted in the shortest paths of the
KEK-tree.
Assuming that ܭ௩,௝ೡ

௧ , the root vertex of KEK subtree ܺ௩,௝ೡ
௧

is the last internal vertex on the joined path:
• if ܺ௩,௝ೡ

௧ is not full, the new vertex ܭ′௩ାଵ,௝ೡశభ
௧ is inserted,

• if ܺ௩,௝ೡ
௧ is full, the left most vertex ܭ௩ାଵ,௝ೡశభ

௧ is moved
to a lower level, becoming the new vertex ܭ′௩ାଶ,௝ೡశమ

௧
and its old position is replaced by a new intermediate

vertex ܭ′௩ାଵ,௝ೡశభ
௧ . Thus ܭ′௩ାଵ,௝ೡశభ

௧ will be the parent of
௩ାଶ,௝ೡశమ′ܭ

௧ and the vertex associated with the individual
key of the new user, ܭ௩ାଶ,௝ೡశమାଵ

௧ .
In both cases, all the new KEKs, found in unchanged

vertices between the vertex asociated with the key of the
new user and ܭଵ,ଵ

௧ , are computed by:
௜,௝೔′ܭ

௧ ൌ ݂ሺܭ௜,௝೔
௧ ሻ,

where ܭ௜,௝೔
௧ is the previous KEK of that position, named as

derivation key.
If the new intermediate vertex ܭ′௩ାଵ,௝ೡశభ

௧ is inserted, the
new KEK is computed by:

௩ାଵ,௝ೡశభ′ܭ
௧ ൌ ݂ሺܭ′௩ାଶ,௝ೡశమ

௧ ْ ଵ,ଵܭ
௧ ሻ,

where ܭ′௩ାଶ,௝ೡశమ
௧ , the previous KEK ܭ௩ାଵ,௝ೡశభ

௧ is the
derivation key, while the rKEK ܭଵ,ଵ

௧ , named the salt value,
is used to ensure that the derived key is different even when
the same derivation key is used since ܭଵ,ଵ

௧ will be different
each time.

For the remaining OG members, the KDC multicasts a
message to inform the position of the new user. Thus, each
user can compute the necessary KEKs. As the new user
does not know the KEKs involved with its path, the KDC
sends to it a unicast message with the related keys.

Consider the ܱܩଶ of the system shown in Figure 3.
Suppose that user ݑଵ଻ joins the system. The KDC moves
the vertex associated with the individual key of user ݑହ to a
lower level, and replaces that position with the new vertex
ଷ,ଵ′ܭ

ଶ . With this modification, the new intermediate vertex is
the parent of ܭସ,ଵ

ଶ and ܭସ,ଶ
ଶ (see Figure 4), where ܭସ,ଶ

ଶ is
the individual key of the new user.

Figure 4: An example of user join

The compromised KEKs are recomputed by:

ଵ,ଵ′ܭ
ଶ ൌ ݂ሺܭଵ,ଵ

ଶ ሻ,
ଶ,ଵ′ܭ

ଶ ൌ ݂ሺܭଶ,ଵ
ଶ ሻ,

ଷ,ଵ′ܭ
ଶ ൌ ݂൫ܭସ,ଵ

ଶ ْ ଵ,ଵܭ
ଶ ൯.

The new user ݑଵ଻ cannot derive the KEKs related with
its path. For this reason, the KDC unicasts such keys in the
following way:

ܥܦܭ ՜ :ଵ଻ݑ ሼܭ′ଵ,ଵ
ଶ ሽ௄′మ,భ

మ צ ሼܭ′ଶ,ଵ
ଶ ሽ௄′య,భ

మ צ ሼܭ′ଷ,ଵ
ଶ ሽ௄ర,మ

మ
Updating SKs. Once the updating of the corresponding

KEKs has finished, the KDC updates the SKs of the set Ω௧
to preserve the backward secrecy.

To generate each ܵܭ௛, the KDC generates the necessary
variables for the BBS algorithm: two primes ݌௛ and ݍ௛,
congruent with 3mod4 and one number ݔ଴೓ , relative
prime with ܾ௛ ൌ ௛, which will be the seed of the BBSݍ௛݌
generator. Thus, the new key ܵܭ௛ is the packet ሼ݌௛, ݍ௛,
 .଴೓, ܾ௛ሽݔ

To finish the rekeying, the KDC multicasts the new SKs
to all the involved OGs, encrypting each packet with the
corresponding rKEKs.

In the example shown in Figure 4, as ܱܩଶ members are
involved in sessions ଵܵ and ܵଶ, the KDC has to generate
the new ܵܭଵ and ܵܭଶ, which are elements of Ωଶ. Finally,
the KDC multicasts the new SKs to the OGs involved with
these keys, using the corresponding rKEKs to encrypt those
messages. The KDC transmits the new SKs through the
following messages:
ܥܦܭ ՜ :ଵܩܱ ሼܵܭ′ଵሽ௄భ,భ

భ
ܥܦܭ ՜ :ଶܩܱ ሼܵܭ′ଵሽ௄భ,భ

మ צ ሼܵܭ′ଶሽ௄భ,భ
మ

ܥܦܭ ՜ :ଷܩܱ ሼܵܭ′ଵሽ௄భ,భ
య

ܥܦܭ ՜ :ସܩܱ ሼܵܭ′ଵሽ௄భ,భ
ర צ ሼܵܭ′ଶሽ௄భ,భ

ర
The rekeying for the user join process is detailed in

Algorithms 1 and 2.

Algorithm 1 User join algorithm on KDC's side
Input: join_request_messageሺݎ݁ݏݑ,Θ) /*Θ is a set with the
requested sessions*/
Output: Updated Keys
Ω௡௘௪_௨௦௘௥ ൌget_related_SKs_withሺΘሻ
choose_an_OG_whereሺΩ௧ = ݐ ൌ Ω௡௘௪_௨௦௘௥ሻ
 ()generate_key = ݕ݁݇_ݎ݁ݏݑ
unicastሺݕ݁݇_ݎ݁ݏݑ, ሻݎ݁ݏݑ
 ሻݐget_height_ofሺ = ݐ݄݄݃݅݁
ሺ݅, ݆ሻ = get_last_internal_vertexሺݐሻ
if subtreeሺ݅, ݆ሻ is not full then /*verifies if the last internal
vertex can hold a new vertex*/

ሺ݅, ݆ሻ = get_right_most_leafሺݐ, ݐ݄݄݃݅݁ ൅ 1ሻ
௜,௝ାଵܭ

௧ ൌ ݕ݁݇_ݎ݁ݏݑ
else

if ݆ ൏ ݀௛௘௜௚௛௧ିଵ then /*insert a new vertex under the
next available vertex*/

ሺ݅, ݆ሻ = get_left_most_leafሺݐ, ሻݐ݄݄݃݅݁
else /*create a new KEK-tree level*/

ሺ݅, ݆ሻ = get_left_most_leafሺݐ, ݐ݄݄݃݅݁ ൅ 1ሻ
end if
/*new intermediate key derivation*/
௜ାଵ,ௗሺ௝ିଵሻାଵܭ

௧ ൌ ௜,௝ܭ
௧

௜,௝ܭ
௧ ൌ ݂ሺܭ௜,௝

௧ ْ ଵ,ଵܭ
௧ ሻ

௜ାଵ,ௗሺ௝ିଵሻାଶܭ
௧ ൌ ݕ݁݇_ݎ݁ݏݑ

end if
multicastሺjoin_notificationሺ݅ ൅ 1, ݀ሺ݆ െ 1ሻ ൅ 2ሻ, ௧ሻܩܱ
݅ ൌ ݅ െ 1

while ݅ ൐ 0 do /*update of the compromised KEKs*/
݆ ൌ ۀ݀/݆ڿ
௜,௝ܭ

௧ ൌ ݂ሺܭ௜,௝
௧ ሻ

݅ ൌ ݅ െ 1
end while
unicastሺupdated_KEKs(), ሻݎ݁ݏݑ
for each ܵܭ௛ א Ω௧ do /*update of the compromised SKs*/

 ሺ݌, ሻݍ ൌgenerate_two_primes_congruent_withሺ3mod4ሻ
ݔ ൌ generate_a_relative_prime_withሺܾ ൌ ሻݍ݌
௛ܭܵ ൌ ሼ݌, ,ݍ ,ݔ ܾሽ

end for
for each ߚ௚ א ሼܱܩ௔|Ω௔ ת Ω௧ ് ׎ ר ܽ א ሾ1, ݉଴ሿሽ do

 multicastሺሼΩ௚ ת Ω௧ሽ௄భ,భ
೒ , ௚ሻߚ

end for

Algorithm 2 User join algorithm on user's side
Input: join_notificationሺ݅, ݆)
Output: Updated Keys
ݔ ൌ ݅ െ 1
ݕ ൌ ۀ݀/݆ڿ
/*verifies if a new intermediate vertex has been inserted*/
if local_user_individual_key()ൌ ௫,௬ܭ

௧ then
/*new intermediate key derivation*/
௫ାଵ,ௗሺ௝ିଵሻାଵܭ

௧ ൌlocal_user_individual_keyሺሻ
௫,௬ܭ

௧ ൌ ݂ሺܭ௫,௬
௧ ْ ଵ,ଵܭ

௧ ሻ
 ݅ ൌ ݅ െ 1
 ݆ ൌ ۀ݀/݆ڿ

end if
݅ ൌ ݅ െ 1
while ݅ ൐ 0 do /*update of the compromised KEKs*/
 ݆ ൌ ۀ݀/݆ڿ

 if local_user_holdsሺሼܭ௜,௝
௧ ሽሻ then

௜,௝ܭ
௧ ൌ ݂ሺܭ௜,௝

௧ ሻ
 end if
 ݅ ൌ ݅ െ 1

end while
/*update of the compromised SKs*/
wait_until_the_reception_of(ሼΩ௧ሽ௄భ,భ

೟)
decryptሺሼΩ௧ሽ௄భ,భ

೟ ሻ

3.4.2 User leave

Updating KEKs. When a user leaves the system, the
KDC removes the corresponding vertex in the KEK-tree of
the affected OG and updates the compromised keys.

Assuming that ܭ௩,௝ೡ
௧ is the root vertex of the affected

KEK subtree ܺ௩,௝ೡ
௧ ,the KEKs updating is performed in one

of two ways:
• if ܭ௩,௝ೡ

௧ has at least two children, ܭ௩,௝ೡ
௧ is only updated.

• if ܭ௩,௝ೡ
௧ has only a child, ܭ௩,௝ೡ

௧ is replaced by its child
Ԣ௩,௝ೡܭ)

௧ ൌ ௩ାଵ,௝ೡశభܭ
௧).

In both cases, the new KEKs ܭԢ௜,௝೔
௧ of the compromised

path are computed using the previous keys ܭ௜,௝೔
௧ along with

the left most key of the lower level ݅ ൅ 1, located in the
opposite path of the removed vertex, as follows:

Ԣ௜,௝೔ܭ
௧ ൌ ݂ሺܭ௜ାଵ,௝೔శభ

௧ ْ ௜,௝೔ܭ
௧ ሻ,

where ܭ௜ାଵ,௝೔శభ
௧ is the derivation key and the previous key

௜,௝೔ܭ
௧ is used as salt value.
For the remaining OG members, the KDC multicasts a

message to inform the position of the removed user. Thus,
each user can start the rekeying.

As the derivation strategy only benefits users in the
opposite path of the removed vertex, the KDC has to send
the updated KEKs to users that cannot derive those keys.

Consider the ܱܩଶ of Figure 3. Assuming that user ݑଵ଻
leaves the system, the KDC modifies the KEK-tree, moving
the vertex ܭସ,ଵ

ଶ to an upper level, replacing the vertex ܭଷ,ଵ
ଶ

as shown in Figure 5.

Figure 5: An example of user leave

The new KEKs are computed by:
ଵ,ଵ′ܭ

ଶ ൌ ݂ሺܭଶ,ଶ
ଶ ْ ଵ,ଵܭ

ଶ ሻ,
ଶ,ଵ′ܭ

ଶ ൌ ݂ሺܭଷ,ଶ
ଶ ْ ଶ,ଵܭ

ଶ ሻ.

Since not all users can derive the keys, the KDC sends the

following messages to complete the updating process of
KEKs:

ܥܦܭ ՜ :ହݑ ሼܭ′ଶ,ଵ
ଶ ሽ௄య,భ

మ
ܥܦܭ ՜ ହݑ െ :଺ݑ ሼܭ′ଵ,ଵ

ଶ ሽ௄′మ,భ
మ

Updating SKs. To finish the rekeying, the KDC updates
the SKs of the set Ω௧ to preserve the forward secrecy. For
each ܵܭ௛ א Ω௧ , the KDC computes the corresponding
values ݌௛ ௛ݍ , ଴೓ݔ , and ܾ௛ , and then transmits the new
SKs to all the involved OGs, encrypting each packet with
the corresponding rKEKs.

In the example shown in Figure 5, to finish the rekeying,
the KDC updates the SKs of the set Ω2, and multicasts
those keys to the members in the affected OGs through the
following messages:

ܥܦܭ ՜ :ଵܩܱ ሼܵܭ′ଵሽ௄భ,భ
భ

ܥܦܭ ՜ :ଶܩܱ ሼܵܭ′ଵሽ௄భ,భ
మ צ ሼܵܭ′ଶሽ௄భ,భ

మ

ܥܦܭ ՜ :ଷܩܱ ሼܵܭ′ଵሽ௄భ,భ
య

ܥܦܭ ՜ :ସܩܱ ሼܵܭ′ଵሽ௄భ,భ
ర צ ሼܵܭ′ଶሽ௄భ,భ

ర

The rekeying for the user leave process is detailed in
Algorithms 3 and 4.

Algorithm 3 User leave algorithm on KDC's side
Input: leave_request_messageሺܱܩ௧, ݅, ݆)
Output: Updated Keys
multicastሺleave_notificationሺ݅, ݆ሻ, ௧ሻܩܱ
delete_vertexሺ݅, ݆, ሻݐ
if number_of_children_ofሺܭ௜ିଵ,ڿ௝/ௗۀ

௧ ሻ ൌ 1 then
ۀ௝/ௗڿ,௜ିଵܭ

௧ ൌ ௜,௝ܭ
௧ /*move the key to a upper level*/

 ݅ ൌ ݅ െ 1
 ݆ ൌ ۀ݀/݆ڿ

end if
ݕ ൌ ݅
while ݅ ൐ 1 do /*update of the compromised KEKs*/

 ሺ݄, ሻݒ ൌget_left_most_sibling_ofሺ݅, ݆, ሻݐ
௜ିଵ,௝/ௗܭ

௧ ൌ ݂ሺܭ௛,௩
௧ ْ ۀ௝/ௗڿ,௜ିଵܭ

௧ ሻ /*KEKs derivation*/
 ݅ ൌ ݅ െ 1
 ݆ ൌ ۀ݀/݆ڿ

end while
multicast(updated_KEKs(), users_that_cannot_derive())
for each ܵܭ௛ א Ω௧ do /*update of the compromised SKs*/
 ሺ݌, ሻݍ ൌgenerate_two_primes_congruent_with
 (3mod4ሻ

ݔ ൌ generate_a_relative_prime_withሺܾ ൌ ሻݍ݌
௛ܭܵ ൌ ሼ݌, ,ݍ ,ݔ ܾሽ

end for
for each ߚ௚ א ሼܱܩ௔|Ω௔ ת Ω௧ ് ׎ ר ܽ א ሾ1, ݉଴ሿሽ do

 multicastሺሼΩ௚ ת Ω௧ሽ௄భ,భ
೒ , ௚ሻߚ

end for

 Algorithm 4 User leave algorithm on user's side
Input: leave_notificationሺ݅, ݆)
Output: Updated Keys

 ݅ ൌ ݅ െ 1
 ݆ ൌ ۀ݀/݆ڿ

while ݅ ൐ 1 do /*update of the compromised SKs*/
 ሺ݄, ሻݒ ൌget_left_most_sibling_ofሺ݅, ݆ሻ
 if local_user_ holdsሺሼܭ௜ିଵ,ڿ௝/ௗۀ

௧ , ௛,௩ܭ
௧ ሽሻ then

ۀ௝/ௗڿ,௜ିଵܭ
௧ ൌ ݂ሺܭ௛,௩

௧ ْ ۀ௝/ௗڿ,௜ିଵܭ
௧ ሻ /*KEKs

 derivation*/
 end if
 ݅ ൌ ݅ െ 1
 ݆ ൌ ۀ݀/݆ڿ

end while
/*update of the compromised SKs*/
wait_until_the_reception_of(ሼΩ௧ሽ௄భ,భ

೟)
decryptሺሼΩ௧ሽ௄భ,భ

೟ ሻ

 3.4.3 User switch
When a user requires to leave an ܱܩ௬ to join an ܱܩ௭, the
KDC has to modify the KEK-trees of the affected OGs and
update the compromised SKs.

The updating of KEKs is performed as described in
Sections 3.4.1 and 3.4.2. For the KEK-tree of ܱܩ௬ , the
operations related with the user leave event will be
performed, while for the KEK-tree of ܱܩ௭, the process will
be similar to the user join event, with the only difference
being that the KDC does not assign a new individual key to
the user. The KDC only modifies the user key index in
order to incorporate it into the new KEK-tree.

To finish the rekeying, the KDC updates the SKs that sets
Ω௬ and Ω௭ do not have in common. In other words, the
KDC updates the SKs in Ω௬ΔΩ௭. The renewal of the SKs in
the symmetric difference of Ω௬ and Ω௭ , is intended to
ensure backward and forward secrecy in each of the
system's OGs, using the common SKs in order not to raise
the rekeying overhead.

After the KDC computes the new SKs, those keys will be
sent to all the memebers of the OGs involved with the SKs.

For example, consider the ܱܩଶ and the ܱܩସ in Figure 3.
Assuming that user ݑଵହ leaves the ܱܩସ in order to join the
ଶܩܱ , first, the KDC modifies the KEK-tree of ܱܩସ ,
removing the corresponding vertex of the individual user
key. Then, the KDC modifies the KEK-tree of the ܱܩଶ in
order to asign a new vertex for the individual key of ݑଵହ.
We illustrate this process in Figure 6.

Figure 6: An example of user switch

Compromised KEKs are computed by:
Ԣଵ,ଵܭ

ସ ൌ ݂ሺܭଶ,ଵ
ସ ْ ଵ,ଵܭ

ସ ሻ
Ԣଵ,ଵܭ

ଶ ൌ ݂ሺܭଵ,ଵ
ଶ ሻ

Ԣଶ,ଵܭ
ଶ ൌ ݂ሺܭଶ,ଵ

ଶ ሻ
Ԣଷ,ଵܭ

ଶ ൌ ݂ሺܭସ,ଵ
ଶ ْ ଵ,ଵܭ

ଶ ሻ
As users ݑଵହ and ݑଵ଺ cannot derive the KEKs, the KDC

sends those keys through the following messages:
ܥܦܭ ՜ :ଵ଺ݑ ሼܭԢଵ,ଵ

ସ ሽ௄మ,మ
ర

ܥܦܭ ՜ :ଵହݑ ሼܭԢଵ,ଵ
ଶ ሽ௄ᇱమ,భ

మ צ ሼܭԢଶ,ଵ
ଶ ሽ௄ᇱయ,భ

మ צ ሼܭԢଷ,ଵ
ଶ ሽ௄ర,మ

మ
To finish the rekeying, the KDC computes the new ܵܭଷ,

which is the key in ΩଶΔΩସ. Then the KDC transmits the
new ܵܭԢଷ to all the members of ܱܩଷ and ܱܩସ, using the

following messages:
ܥܦܭ ՜ :ଷܩܱ ሼܵܭԢଷሽ௄భ,భ

య ,
ܥܦܭ ՜ :ସܩܱ ሼܵܭԢଷሽ௄భ,భ

ర

4 Performance analysis
In this section we analyze the performance of the
MM-MSKMS, focusing on storage and rekey overheads in
order to demonstrate the efficiency of our solution. Then,
we compared it directly with DACMGS, which is the work
we take as main reference.

4.1 Storage overhead
 As we mentioned above, in the MM-MSKMS we use
trees as storage structures to organize the keys and the
members of the different OGs present in the system.
Particularly, trees used in this work can be viewed as a
graph composed of a KEK-tree connected with an
additional vertex used to store the SKs. Each KEK-tree is
maintained as balanced as possible by positioning the
joining users on the shortest paths.

Let ݊ denote the number of users joined at the whole
system and ݊௧ the number of users involved in a tree (OG).
We use ݈ௗሺ݊௧ሻ to denote the length of the branches of a tree
of ݀ degree. Since each KEK-tree is balanced and it is
possible that not all the branches have the same length at
some point, ݈ௗሺ݊௧ሻ is either ܮ or ܮ ൅ 1 , where
ܮ ൌ logௗ݊௧. Particularly,

• the number of users who are on branches with length ܮ
is ݀௅ െ ቒ௡೟ିௗಽ

ௗିଵ
ቓ,

• and the number of users who are on branches with
length ܮ ൅ 1 is ݊௧ െ ݀௅ ൅ ቒ௡೟ିௗಽ

ௗିଵ
ቓ.

Therefore, the total number of keys in a KEK-tree is
determined by:

ሺ݊௧ሻܭܶ ൌ ݊௧ ൅ ௗಽିଵ
ௗିଵ

൅ ቒ௡೟ିௗಽ

ௗିଵ
ቓ (4)

As the KDC holds the ݏ SKs related to the system
sessions and maintains the KEK-trees of the ݉ሺݏሻ OGs,
the total number of keys stored by the KDC is determined
by:

௄஽஼ܭܶ ൌ ∑
௠ሺ௦ሻ

௧ୀଵ
ሺ݊௧ሻܭܶ ൅ (5) ݏ

Each user joined at an ܱܩ௧ has to store the ݈ௗሺ݊௧ሻ KEKs
involved with its branch and the |Ω௧| SKs related with its
OG. Thus, the total keys stored by each user is determined
by:

ைீ೟א௨ܭܶ ൌ ݈ௗሺ݊௧ሻ ൅ |Ω௧| (6)
Assuming the worst case, where all the combinations of

the ݏ sessions exist, we can take ݉ሺݏሻ as a fixed value
(݉ሺݏሻ ൌ ݉଴) throughout the communication process. If we
also assume that all the OGs have the same number of users
(݊௧ ൌ ݊଴), the number of users in the whole system is
݊ ൌ ݉଴ ڄ ݊଴ . Using (5), the KDC's storage overhead is
calculated as:

௄஽஼ܭܶ ൌ ݉଴ ڄ ሺ݊଴ሻܭܶ ൅ (7) ݏ
Using (6), we have that the user's storage overhead is:

ைீ೟א௨ܭܶ ൌ ݈ௗሺ݊଴ሻ ൅ |Ω௧| (8)
From (4), we have that lim௡బ՜ஶܶܭሺ݊଴ሻ ൌ ௗ

ௗିଵ
݊଴ .

Therefore, as ݏ is a fixed value throughout the
communcation process and ݏ ا ݊଴ when ݊଴ ՜ ∞, using
(7) we can calculate the KDC's asymptotic storage
overhead as:

ܱ~௄஽஼ܭܶ ቀ ௗ
ௗିଵ

݉଴ ڄ ݊଴ቁ ൌ ܱ ቀ ௗ
ௗିଵ

݊ቁ (9)

Since |Ω௧| is fixed for each OG, using (8) we can

calculate the user's asymptotic storage overhead as:

 ைீ೟~ܱሺlogௗ݊଴ሻ (10)א௨ܭܶ

4.2 Communication overhead
The communication overhead is determined by the number
of messages transmitted at rekey operations. Therefore, we
estimate the number of messages involved in the different
rekeying processes (join, leave and switch) to determine the
communication overhead.

Let ݉ሺݏ௥ሻ, the number of OGs involved with the updated
SKs in a rekeying operation. When a new user joins the
system, the KDC unicasts to the new user a message with
all the KEKs of its branch and the SKs related to its OG.
Moreover, the KDC multicasts a join notification with the
information of the join branch to the remaining users, and
݉ሺݏ௥ሻ messages to transmit the SKs to the involved OGs.
Therefore, the number of messages sent out by the KDC is
determined by:

௝௢௜௡ܯ ൌ ݉ሺݏ௥ሻ ൅ 2 (11)
As each ܱܩ௧ is related to |Ω௧| SKs, the total number of

SKs sent by the KDC to the ݉ሺݏ௥ሻ involved groups in a
rekey operation is determined by:

௄ܰ ൌ ∑
௠ሺ௦ೝሻ

௟ୀଵ
|Ω௧ ת Ω௟| (12)

 where Ω௧ denotes the set of SKs related to an ܱܩ௧ and
Ω௟ denotes the set of SKs related to an ܱܩ௟.

Therefore, the number of keys sent out by the KDC in the
user join process, is determined by the following equations:

௃௨௡௜௖௔௦௧ܭܰ
ൌ ݈ௗሺ݊௧ሻ ൅ |Ω௧| (13)

௃௠௨௟௧௜௖௔௦௧ܭܰ

ൌ ௄ܰ (14)
where ܰܭ௃௨௡௜௖௔௦௧

 denotes the number of keys sent out in a
unicast way and ܰܭ௃௠௨௟௧௜௖௔௦௧

 denotes the number of keys
sent out in a multicast way.

When a user leaves the system, the KDC multicasts
ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ messages with the KEKs of the affected
branch to the users which cannot derive them, a message
with a leave notification, and also multicasts ݉ሺݏ௥ሻ
messages with the updated SKs to the involved OGs.
Therefore, the number of messages sent out by the KDC is

determined by:
௟௘௔௩௘ܯ ൌ ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ ݉ሺݏ௥ሻ ൅ 1 (15)

As for the user leave process only the remaining users are
involved, the KDC does not send any message in a unicast
communication. Thus, using 12 the number of keys sent out
by the KDC in the user leave process, is determined by:

௅௠௨௟௧௜௖௔௦௧ܭܰ ൌ ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ ௄ܰ (16)
As the rekey for the user switch process involves the join

and leave processes, from (11) and (15) we know that
ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ 3 messages are necessary to update the
compromised KEKs, 2 messages to update the KEKs in
the joined group and ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ 1 to update the
KEKs of the left group. Assuming that a user switches from
 .Ω௭߂௭, the KDC has to update the SKs in Ω௬ܩܱ ௬ toܩܱ
Let ݉ሺݏ௥ሻ be the number of messages to update such SKs,
the number of messages sent out by the KDC is determined
by:

௦௪௜௧௖௛ܯ ൌ ሺ݀ െ 1ሻ݈ௗሺ݊௧ሻ ൅ ݉ሺݏ௥ሻ ൅ 3 (17)
Using 12, 13, 14 and 16, the total number of keys sent out

by the KDC in the rekeying, needed for the user switch
process is determined by:

ௌ௨௡௜௖௔௦௧ܭܰ ൌ ݈ௗሺ݊௧ሻ ൅ |Ω௧| (18)

ௌ௠௨௟௧௜௖௔௦௧ܭܰ ൌ ݈݀ௗሺ݊௧ሻ ൅ ௄ܰ (19)
 In this case, ௄ܰ involves the number of SKs sent out by

the KDC to the ݉ሺݏ௥ሻ groups, related to the |Ω௬߂Ω௭|
updated SKs.

As the switch process involves join and leave operations,
we can use it to determine the highest bound of transmitted
messages.

Assuming the worst case, when the user switch process
involves an OG related to all the ݏ sessions, and an OG
related with one session, we have that ݉ሺݏ௥ሻ ൌ ݉ሺݏ െ 1ሻ.
Furthermore, if we also assume that all the OGs have the
same number of users, ݊௧ ൌ ݊଴, using (17) the total number
of messages involved in the rekeying process is given by:

ܯ ൌ ሺ݀ െ 1ሻ݈ௗሺ݊଴ሻ ൅ ݉ሺݏ െ 1ሻ ൅ 3 (20)
If ݊଴ ՜ ∞, as ݏ is fixed throughout the communication

process and ݉ሺݏ െ 1ሻ ൏ ݊଴, we can see that the asymptotic
communication overhead is:

 ൫݀logௗሺ݊଴ሻ൯ (21)ܱ~ܯ

4.3 Comparison
In this section we compare the CMGKMS [8], DACMGS

[12] and MM-MSKMS, focusing on two measures: the
storage overhead and the communication overhead. The
communication overhead is compared using the costs of
join, leave and switch processes separately.

In Table 2 we summarize the measurements, which are
expressed in bits. These results are based on the results of
CMGKMS and DACMGS, and on the results obtained in

Table 2 Performance comparison for storage and communication overhead
 CMGKMS DACMGS MM-MSKMS

Storage cost
 KDC ሺ ௗ

ௗିଵ
݊ ൅ ሻܵ௄ ሺݏ2 ௗ

ௗିଵ
݊ ൅ ሻܵ௄ ௗݏ

ௗିଵ
݊ܵ௄ ൅ ௦௞ܵݏ

User ሺlogௗሺ݊௧ሻ ൅ ௄ܰ ൅ 1ሻܵ௄ ሺlogௗሺ݊௧ሻ ൅ |Ω௧|ሻܵ௄ logௗሺ݊௧ሻܵ௄ ൅ |Ω௧|ܵ௦௞

Communication Cost
Join Unicast ሺlogௗሺ݊௧ሻ ൅ ௄ܰ ൅ 1ሻܵ௄ ሺlogௗሺ݊௧ሻ ൅ 1ሻܵ௄ logௗሺ݊௧ሻܵ௄ ൅ |Ω௧|ܵ௦௞

Multicast 0 0 logௗሺ݊௧ሻ ൅ ௄ܰܵ௦௞

Leave Unicast 0 0 0
Multicast ሺ݀logௗሺ݊௧ሻ ൅ ௄ܰሻܵ௄ ݀ሺlogௗሺ݊௧ሻ െ 1ሻܵ௄ ൅ ௄ܰܵ௖௞ ሺ݀ െ 1ሻlogௗሺ݊௧ሻܵ௄ ൅ ௄ܰܵ௦௞

Switch Unicast ሺlogௗሺ݊௧ሻ ൅ ௄ܰ ൅ 1ሻܵ௄ ሺlogௗሺ݊௧ሻ ൅ 1ሻܵ௄ logௗሺ݊௧ሻܵ௄ ൅ |Ω௧|ܵ௦௞

Multicast ሺ݀logௗሺ݊௧ሻ ൅ ௄ܰሻܵ௄ ݀ሺlogௗሺ݊௧ሻ െ 1ሻܵ௄ ൅ ௄ܰܵ௖௞ ݀logௗሺ݊௧ሻܵ௄ ൅ ௄ܰܵ௦௞

Sections 4.2 and 4.1. In Table 2, ܵ௄ denotes the KEK's and
the TEK's size, ܵ௖௞ denotes the size of a secret that is
smaller than a KEK, while ܵ௦௞ denotes the size of a SK. If
we use a cryptosystem with KEKs of 128 bits, the size of
the SKs should be ܱሺ192ሻ bits, using the BBS algorithm
with 32-bit integers. In addition, we use ௄ܰ to denote the
number of keys that the KDC has to distribute and are
related to the sessions or the privileges of a user. In the case
of DACMGS and MM-MSKMS, ௄ܰ is the number of keys
sent by the KDC to the ݉ሺݏ௥ሻ involved groups, ௄ܰ ൌ

∑
௠ሺ௦ೝሻ

௔ୀଵ
|Ω௧ ת Ω௔|. For CMGKMS, ௄ܰ is approximately two

times the number of resources that the user can access
(௞ܰ ൎ 2|Ω௧|).

In Table 2 we can observe that CMGKMS and DACMGS
have lower communication costs than MM-MSKMS.
However, those costs are lower because CMGKMS and
DACMGS are designed for users who work only as
receivers in a 1 to ݊ communication. For that reason, the
KDC does not have to transmit the new keys in the rekeying
process because the new version of the keys are indicated in
the received packets. On the other hand, MM-MSKMS is
designed for ݊ to ݉ communications which support the
delay, the loss and the transposition of packets. In addition,
each user is a transceiver entity that generates independent
keys from the SKs, sent by the KDC. For this reason, the
KDC has to transmit some of the updated keys to avoid
inconsistencies in transmissions. However, the cost of
MM-MSKMS does not differ significantly compared with
the cost of CMGKMS and DACMGS.

5 Conclusion

In this paper we have proposed an efficient multi-session
key management scheme for dynamic multimedia group
communication. The proposed scheme is characterized by
the use of an independent key per cipher packet and allows
the users to exchange streams between them in an n to m
communication. Our solution proposes a functional

architecture that exploits the overlapping of the user
sessions to reduce the redundancy in key distribution, and
makes use of two key generation strategies: a key derivation
technique to reduce the rekey overhead and a
pseudorandom number generator that allows the users to
generate independent keys for each transmitted packet. The
proposed mechanism offers good storage and
communication costs, comparable with the existing
mechanisms based on multi-privileged groups. According
to our knowledge, the MM-MSKMS presented in this paper
is the only one oriented towards the support of multi-group
multimedia environment with n to m communication. The
MM-MSKMS can be used for environments as presented
by [17].

References
[1] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu,
Member, Ya-Qin Zhang, Jon M. Peha, Streaming Video
over the Internet: Approaches and Directions, IEEE
Transactions on circuits and systems for video technology,
Vol. 11, No. 3, 2001, pp. 282-300.
[2] Thomas Hardjono, Lakshminath R. Dondeti, Multicast
and Group Security, Artech House, 2003, pp. 17-43.
[3] Borko Furht, Darko Kirovski, Multimedia Security
Handbook, CRC Press, 2004, pp. 100-120.
[4] Alfred J. Menezes, Paul C. van Oorschot, Scout
Vanstone, Handbook of Applied Cryptography, CRC Press,
1996, pp. 230-260.
[5] Sandro Rafaeli, David Hutchison, A Survey of Key
Management for Secure Group Communication, ACM
Computing Surveys, 2003, pp. 309-329.
[6] Hao-hua Chu, Lintian Qiao, Klara Nahrstedt, A Secure
Multicast Protocol with Copyright Protection, ACM
SIGCOMM Computer Communications Review, Volume
32 , Issue 2, 2002, pp. 42-60.
[7] Yan Sun, K. J. Ray Liu, Multi-Layer Key Management
for Secure Multimedia Multicast Communications,
Proceedings of the 2003 International Conference on
Multimedia and Expo (ICME 2003), Vol. 1, IEEE

Computer Society Press, 2003, pp. 205-208.
[8] Yan Sun, K. J. Ray Liu, Scalable Hierarchical Access
Control in Secure Group Communications, Twenty-third
AnnualJoint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2004), Vol. 2,
IEEE, 2004, pp. 1296-1306.
[9] Marcel Waldvogel, Germano Caronni, Dan Sun,
Nathalie Weiler, Bernhard Plattner, The VersaKey
Framework: Versatile Group Key Management, IEEE
Journal on Selected Areas in Communications, Vol. 17,
IEEE, 1999, pp. 1614-1631.
[10] Scott Dexter, Roman Belostotskiy, Ahmet M.
Eskicioglu, Multi-layer multicast key management with
threshold cryptography, Proceedings of SPIE Security and
Watermarking of Multimedia Contents VI, Vol. 5306,
SPIE, 2004.
[11] Guojun Wang, Jie Ouyang, Hsiao-Hwa Chen, Minyi
Guo, Efficient group key management for multi-privileged
groups, Computer Communications, Vol. 30, Issue 11-12,
Elsevier, 2007, pp. 2497-2509.
[12] Di Ma, Robert H. Deng, Yongdong Wu, Tieyan Li,
Dynamic Access Control for Multi-Privileged Group
Communications, 6th International Conference on
Information and Communications Security (ICICS 2004),
Lecture Notes in Computer Science (LNCS) 3269,
Springer-Verlag, 2004, pp. pp. 508-519.
[13] Ruidong Li, Jie Li, and Hisao Kameda, Distributed
Hierarchical Access Control for Secure Group
Communications, International Conference on Computer
Network and Mobile Computing 2005 (ICCNMC 2005),
Lecture Notes in Computer Science (LNCS) 3619,
Springer-Verlag, 2005, pp. 539-548.
[14] Qijun Gu, Peng Liu, Wang-Chien Lee, Chao-Hsien
Chu, KTR: an efficient key management scheme for secure
data acces control in wireless broadcast services, IEEE
Trans. Dependable Sec. Comput., 2009, pp. 188-201.
[15] Jen-Chiun Lin, Kuo-Hsuan Huang, Feipei Lai,
Hung-Chang Lee, Secure and efficient group key
management with shared key derivation, Computer
Standars and Interfaces, Vol. 31, Issue 1, Elsevier, 2009,
pp. 192-208.
[16] Lenore Blum, Manuel Blum, Michael Shub, A Simple
Unpredictable Pseudo-Random Number Generator, SIAM
Journal on Computing, Vol. 15, No. 2, 1986, pp. 364-383.
[17] Bo Cheng, Xiaoxiao Hu, Junliang Chen, Design and
Implementation for Multimedia Conferencing
Communication Services and Orchestration on Internet,
Journal of Internet Technology, Vol. 12 No. 6, pp. 865-874.

View publication statsView publication stats

https://www.researchgate.net/publication/228451432

