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a b s t r a c t

The purpose of this work is to model ternary mixtures using the theory of pattern
formation and of polyelectrolytes, with mean-field approximations. The model has
two local, non-conserved order parameters. In the free energy short-range and long-
range nonlocal interactions between elements of the mixture are considered. The
spatiotemporal dynamics of the system is described by coupling the time-dependent
Ginzburg–Landau equation and the Swift–Hohenberg equation. These non-linear partial
differential equations are solved with numerical methods to study the emergent spatially
stable configurations. The model shows a large diversity of patterns, which permit an
interpretation of the behavior of some biological systems and presents different growth
lengths within its spatial structures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many biological, chemical and physical systems present the property of spatial self-organization, which is the result
of the interactions between its components. Examples are the pigmentation patterns of vertebrates (such as birds, fish and
reptiles), biological lipidmembranes, the formation of copolymeric and ferromagnetic layers, mixtures of binary and ternary
liquids like suspensions, emulsions and microemulsions, convective phenomena, formation of ferromagnetic systems and
binary alloys. In all these systems there are non-linear and symmetry breaking mechanisms whose behavior results in
spatially stationary patterns [1,2].

There is a discussion about how to model the pigmentation patterns of some animals. On the one hand, there are
mechanochemical models that reproduce the formation of skin patterns in birds by using coupled partial differential
equations for modeling the interactions between dermis elements, meanwhile the epidermis is modeled by using a
deformationmatrix [1,3]. Thesemodels are capable of reproducingmore complex patterns that those that do not use coupled
terms, but they are difficult to analyze both analytically and numerically. On the other hand, there exist reaction–diffusion
models with Turing instability for modeling some kinds of fish skin patterns [4–6]. They consist of linear, quadratic or
cubic couplings of two Turing bi-dimensional systems. These models are easy to analyze both analytically and numerically,
without losing the complexity of the generated patterns. However in this case the dermis and epidermis are assumed to
constitute chemical substances (activator and inhibitor) or morphogens that react in forming spatial stable patterns.
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It is well known that in phenomena with domain coarsening (like in Rayleigh Bénard convection, diblock-copolymer
melts, magnetic materials, or fluid binary mixtures), the characteristic length L(t), grows as a power law: L(t) ∼ tz . For
instance in ferromagnetic systems, with uniform phases and nonconserved local order parameter that satisfies the time-
dependent Ginzburg–Landau equation [7,8], it is found that z = 1/2. In other work [9], the microemulsions are modeled
as ternary mixtures with hydrodynamic effects, using two order parameters that are conserved φ y ρ. There φ represents
the difference in the concentration of water and oil (for example), and ρ the surfactant density; again, in this case z = 1/2.
In the models of ferromagnetic binary systems with conserved order parameter, z = 1/3 [7,8]. In systems that present
spinodal decomposition [10–12], a lipid binary mixture is modeled using a conserved parameter and the value of z is 1/3,
just like in the ferromagnetic theory for coarse-grained fluids with competing interactions [13]. However, in bi-dimensional
ternary systems, for the case of spinodal decomposition modeled with two independent and conserved order parameters, a
law is reported for the growth of the characteristic length with z = 1/3 [14,15]. Evenmore, in ternary systems for modeling
microemulsions with two conserved order parameters andwith a Ginzburg–Landau free energy functional, a slower growth
power law L(t) ∼ ln(t) [16,17] is found.

The specific proposal in this work, consists in the construction of a model for ternary mixtures with two local
order parameters, both not conserved. Its free energy is the product of mean-field approximations in models of
polyelectrolytes [18]. Furthermorewe add terms of attractive interaction for short range and non local repulsive interactions
for long range [19]. The morphology of the obtained patterns with this model show that this is convenient to use
nonlinear dynamic approaches (Swift–Hohenberg lakemodels) instead like of lattice-gasmodels inwhich explicitmolecular
interaction potentials are used [14]. The results of this research analyzes the different length scales for the patterns obtained.
Furthermore a wide variety of pattern morphologies are found. This is also a property of Turing and mechanochemical
systems. However in Ref. [5] the disadvantages for models that couple reaction–diffusion systems and mechanochemical
models are presented. When their dynamical equations are uncoupled, these can exhibit disadvantages like: the fact that
the complexity of the patterns and its dynamics depend upon the choice of initial conditions, or the lack of patterns, which
are not present in themodel proposed. One inherent property of the proposedmodel is thewide variety of length scales. The
model also provides the possible explanations of the nonlinear mechanisms that cause different stable biological patterns.

In the presentedmodel an important approximation is used: the supposition of the deterministic character of dynamical
equations, in which noisy fluctuations are not considered. In stochastic models [20] the fluctuations are considered as
additive or multiplicative noise. In order to distinguish between internal or external fluctuations, the origin of the noise
must be taken into account. These stochastic models also present emergent patterns similar to that of the deterministic
models. Examples are found in experimental, theoretical and numerical studies of hydrodynamic systems [21,22], chemical
reactions [23] and biological systems like in the neuronal dynamics [24] or in the nature of calcium dynamic at cellular and
tissue level [25].

The arguments mentioned before, are organized in the following sections: in Section 2 the construction of the model is
presented, in Section 3 the numerical method for solving the dynamic equations is explained, in Section 4 the results are
presented, in Section 5 there is a discussion of applications to biological systems, Section 6 refers to the conclusions and
Section 7 is an Appendix with simulation details.

2. The model

In the present section amodel for ternarymixtures based on polyelectrolyte theory is shown. Thismodel ismore general,
in the context of the morphogenesis, than the Ginzburg–Landau and Swift–Hohenberg models. The model considers a local
order parameter φ, that represents the concentration difference of two polymeric solutions. This order parameter fulfills a
nonlinear partial differential equation similar to the Ginzburg–Landau equation and it is coupled with an additional order
parameter ψ , that forms modulated phases. This latter parameter satisfies a Swift–Hohenberg-like equation. The physical
meaning of ψ is defined below.

The first step is to consider two non conserved order parameters that fulfill [26]:

∂φ

∂t
= −Mφ

∂F [φ,ψ]

∂φ

∂ψ

∂t
= −Mψ

∂F [φ,ψ]

∂ψ

(1)

whereMφ andMψ are two mobilities of the system, F [φ,ψ] is the Helmholtz free-energy functional and it is proposed as a
functional of the type of Ginzburg–Landau, that contains a term similar to the Edwards free energy [18]:

FEdwards[φ,ψ] =

∫
dr


β

2
|∇φ(r, t)|2 +

ν

4
φ4(r, t)−

α

2
φ2(r, t)


. (2)

In this equation α is the chemical potential of the system and the coefficients β and ν are taken as unitary for consistency
with the Ginzburg–Landau functional [7,8]. The first term of the Eq. (2) represents the short range interactions between
elements of polymeric chains, the second term takes into account the excluded volume of a good solvent and the last term
corresponds to the interactions of the monomer with the chemical potential (reservoir of the system). On the other hand,
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the free energy that refers to the solvent FSolvent , depends on the nonconserved scalar order parameter, that represents
the electrostatic potential of the solvent or its density. The free energy that takes into account the Coulomb’s electrostatic
contributions, is expressed as [18]:

FSolvent [φ,ψ] =

∫
dr


−λ|∇ψ |

2
+


−Hψ(r, t)+

µ

2
ψ2(r, t)−

g
3
ψ3(r⃗, t)+

1
4
ψ4(r⃗, t)


+
ε

2
φ2(r⃗, t)ψ(r⃗, t)


. (3)

Again, the first term represents the short range interactions, but in this case, the electrostatic interactions between the
charges (small ions and charged monomers) are presented. The second term determines the concentration of the small ions
and their interaction. At this point a fourth order series expansion is proposed. The third term represents the coupling of two
scalar fields φ(r⃗, t) andψ(r⃗, t), and the parameter εmeasures the relative strength of the coupling term. This parameter is
associated with the reduced temperature of the system.

Lastly, the functional F [φ,ψ] has a free energy term, Fstretch, that does not permit the miscibility between the
concentrations, represented by φ, and considers superficial deformations, like bending and stretching [19]. If the molecular
order deformations are taken into account, the following equation is obtained:

Fstretch[φ,ψ] =

∫
dr


σ

2
|∇ψ(r⃗, t)|2 +

λ

2
|∇

2ψ(r⃗, t)|2 +Λφ(r⃗, t)∇2ψ(r⃗, t)

. (4)

In this equation, the meaning of ψ is the difference of the surface electrostatic potential that can be formed from a ternary
mixture. The first term contains the superficial tension σ , the second term is the bending modulus λ and the last term is a
measure of the elasticityΛ of the coupling term between the local curvature ∇

2ψ and the polymeric order parameter φ. In
this case we assume that the last term in Fstretch is negligible, that isΛ ≈ 0.

Hence, themodel for the free energy functional of the ternarymixture is: F = FEdwards+Fsolvent +Fstretch. However, without
loss of generality, we assume that the superficial tension energy is bigger than the bending modulus, for instance: σ = 4λ,
µ = λ + γ and H = 0. So, taking into account the last assumption in Eq. (4), and substituting it and Eqs. (2) and (3) in F ,
the equation takes the form:

F [φ,ψ] =

∫
dr


−
α

2
φ2

+
1
4
φ4

+
1
2
|∇φ|

2
+
ε

2
φ2ψ +

γ

2
ψ2

−
g
3
ψ3

+
1
4
ψ4

+
λ

2
|(∇2

+ 1)ψ |
2


(5)

that is the proposed model in this paper.
Finally, substituting the functional F in the Eqs. (1), the following equations are obtained:

∂φ

∂t
= αφ + ∇

2φ − φ3
− εφψ

∂ψ

∂t
= −γψ − λ(∇2

+ 1)2ψ −
ε

2
φ2

+ gψ2
− ψ3

(6)

where for simplicityMφ = 1 and Mψ = 1. Eqs. (6) describe the dynamics of the whole system and are solved numerically.

3. Numerical method

In order to consider the spatial variations in the nonlinear partial differential equations, we need to solve the model
numerically.

Eqs. (6) are solved using the semi-implicit pseudospectral method and we follow the procedure for the temporal
integration described in Ref. [27]. An advantage is that the spatial term of the partial differential equations becomes a scalar.
For instance, the function ψ obeys the relationship

∂ψ

∂t
= eψ − (∇2

+ 1)2ψ + N(∂2xψ, ∂
2
yψ, ∂xψ, ∂yψ,ψ) (7)

where e is a control parameter for the system, and N represents the nonlinear terms. We define its Fourier transform as
well, as:

ψ̃(qx, qy, t) =
1

LxLy

∫ Lx

0
dx

∫ Ly

0
dyψ(x, y, t) exp(−iqxx) exp(−iqyy),

and applying the trapezoid rule to ψ̃ . We can define the discrete Fourier transform as:

ψ̃(qx, qy, t) =

Nx−
i=1

Ny−
j=1

ψ(xi, yj, t) exp(−i(qx)ixi) exp(−i(qy)jyj)
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where (qx)I = 2π I/Lx, (qy)J = 2π J/Ly,−(Nx/2 − 1) ≤ I ≤ Nx/2 and −(Ny/2 − 1) ≤ J ≤ Ny/2 for a grid of Nx × Ny. Then
if we apply the Fourier transform ψ̃ to Eq. (7) it follows that:

∂ψ

∂t
= bψ̃ + Ñ (8)

where b = e−[1−(q2x+q2y)]
2 and Ñ represents the Fourier transformof the nonlinear terms. The termwith the Laplacian has

been transformed to a scalar in the complex Fourier space. Eq. (7) has been reduced to a timedependent nonlinear differential
equation. The final step is to compute Ñ(ψ̃), this is done approximating the nonlinear term by N ≈ Ñ0 + Ñ1(t − t ′) in the
interval t ≤ t ′ ≤ t +∆t . For calculating Ñ0 and Ñ1(t − t ′), it is necessary to solve Eq. (8) by using the integral factor method,
for which the factor is exp(−bt). Subsequently the modified Euler method is applied and give the numerical solution: [27]

ψ̃(t +∆t) = exp(b∆t)ψ̃(t)+ Ñ0

[
1 − exp(b∆t)

b

]
+ Ñ1

[
exp(b∆t)− (1 + b∆t)

b2∆t

]
(9)

where Ñ0 = Ñ(ψ̃(t)) and Ñ1 = Ñ(ψtemp(t + ∆t)) − Ñ(ψ̃(t)). We can obtain ψ̃temp letting Ñ1 = 0 in Eq. (9). ∆t is the
time step, that in this case can be larger than in the typical Euler methods, because the discrete Fourier transform tends to
converge faster with each iteration.

To calculateψ(t +∆t), we compute the inverse transform of ψ̃(t +∆t), after that N(ψ(t +∆t)) is obtained and Eq. (9)
is iterated.

In the remainder of this section we deduce the approximated solution for the equation system (6), using the method
described above. So we define the φ and ψ correspondent Fourier transforms as:

φ(q⃗, t) =

∫
∞

−∞

dr⃗ exp(−q⃗ · r⃗)φ(r⃗, t)

ψ(q⃗, t) =

∫
∞

−∞

dr⃗ exp(−q⃗ · r⃗)ψ(r⃗, t)
(10)

where r⃗ is a point in the grid. The inverse transforms of Eqs. (10) are:

φ(r⃗, t) =
1

(2π)2

∫
∞

−∞

dq⃗ exp(q⃗ · r⃗)φ̃(q⃗, t)

ψ(r⃗, t) =
1

(2π)2

∫
∞

−∞

dq⃗ exp(q⃗ · r⃗)ψ̃(q⃗, t).
(11)

Using Eqs. (10) and (11) we can see that Eqs. (6) are transformed in the Fourier space as:

∂φ̃

∂t
(q, t) = c(α, qx, qy)φ̃(q, t)+ Ñ(φ(q, t), ψ(q, t))

∂ψ̃

∂t
(q, t) = d(γ , qx, qy)ψ̃(q, t)+ Ñ ′(φ(q, t), ψ(q, t))

(12)

where c(α, qx, qy) = α − q2 and d(γ , qx, qy) = −(γ + λ[1 − q2]2) with q2 = q2x + q2y,N ≈ Ñ0 + Ñ1(t − t ′), Ñ ′
≈

Ñ ′

0 + Ñ ′

1(t − t ′), Ñ0 = −εφψ(q, t)− φ3(q, t) and Ñ ′

0 = −εφ2(q, t)/2 + gψ2 − ψ3. Applying the same algorithm to Eq. (9)
we conclude that Eqs. (12) can be solved approximately in the [t0, t0 +∆t] interval, such that they fulfill:

φ̃(t +∆t) = exp(c∆t)φ̃(t)+ Ñ0

[
1 − exp(c∆t)

c

]
+ Ñ1

[
exp(c∆t)− (1 + c∆t)

c2∆t

]
ψ̃(t +∆t) = exp(d∆t)ψ̃(t)+ Ñ ′

0

[
1 − exp(d∆t)

d

]
+ Ñ ′

1

[
exp(d∆t)− (1 + d∆t)

d2∆t

] (13)

if φ̃temp and ψ̃temp correspond to φ̃(q, t0 + ∆t), ψ̃(q, t0 + ∆t), which are obtained where Ñ1 = 0 and Ñ ′

1 = 0 in Eq. (13).
Finally the Ñ1, Ñ ′

1 coefficients are given by:

Ñ1 = −


ε(φψ)temp + φ2

temp


(q, t0 +∆t)−

φψ + φ2

(q, t0)


Ñ ′

1 = −

ε
2
(φ2)temp − g φ3

temp + ψ3
temp


(q, t0 +∆t)−

ε
2

φ2 − g φ3 + ψ3

(q, t0)

 .
Then, Eqs. (13) are the way to compute the numerical solutions for the system (6).
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Fig. 1. Patterns obtained from Eqs. (6) with parameters fixed in Table 1 of Appendix.

4. Results

Numerical solutions of Eqs. (13) are obtained discretizing on a square grid of mesh size ∆x = 1 with 256 × 256 nodes,
and the wavelength is set to λ0 = 8∆x. This value is suitable for bi-dimensional pattern formation of coarsening stripe
phases [28,29] and grain boundaries in solids [30]. Also, the result of stability analysis [31] defines the critical wave number
q0 = 2π/λ0, which strips leads to pattern formation. The temporal evolution of the system is performed with a time step
∆t = 0.1. The initial conditions forφ andψ are randomvariableswith aGaussian distribution of zero averages and variances
⟨φ2

⟩ = 0.1 and ⟨ψ2
⟩ = 0.1.

In Fig. 1 the results obtained by Eqs. (13) with ϵ = 0 and the other parameters with values listed in Table 1 of
Appendix are shown. The morphology of the patterns can be associated with Turing systems [5,32], time dependent
Ginzburg–Landau [7,8,10,19] and Swift–Hohenberg [28,30,29]models. Fig. 1a shows a stripe phase pattern for fieldψ , which
is similar to spatial configurations obtained by Turing systems [5,32] and the Swift–Hohenberg model [29]. The pattern in
picture 1b is like a glassy dynamic patterns that is also obtained by the Swift–Hohenberg model [28]. Fig. 1d and e show the
patterns that have been reported in the study of grain boundaries [30], ferromagnetic [7,8] and polymeric [10,19] systems.

On the other hand, the emergent patterns obtained fromEqs. (13), also presentmany similitudeswith spatially stationary
configurations obtained experimentally in biological, physical and chemical systems. Ref. [2] displays a picture of marine
angelfish, Pomacanthus imperatur in adult form. This picture and a section of the pattern in Fig. 1a, show that they are similar.
A picture of the domain formation in the stripe phase of ferromagnetic garnet is shown in the Ref. [19]. Again, similarity
between this pattern and Fig. 1b is observed, which is a typical spatial configuration produced by the Swift–Hohenberg
model [28]. Finally, the hexagonal arrays experimentally obtained and shown in Ref. [33], compare well with the pattern of
Fig. 1c. Fig. 1(c) can simulate a polymeric film (SiNx) coating the surface of a semiconductor layer (GaAs), after the polymeric
layer is removed a hole pattern on the semiconductor surface is produced.
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Fig. 2. Diversity of patterns obtained from Eqs. (13) for different parameter values (see Table 2 of Appendix).

4.1. Morphologies and similarities with biology and chemical systems

The most interesting case is obtained when ϵ ≠ 0, Fig. 2 displays three different types of temporal evolutions (up to
t = 10, 000 adimensional units). Fig. 2a shows patterns for the fields φ andψ at different times. The field φ is characterized
by two phases, positive (here in blue) and negative (white), where both are slightly modulated by a hexagonal phase. Even
we can observe that this modulation is responsible for sharp edges or linear edges in the positive phase domain. For the field
ψ , we find that the pattern is characterized by two microphases, positive (white) and negative (gray), which are composed
by points and small stripes, also slightly modulated by a hexagonal phase.
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Another interesting pattern is shown in Fig. 2b (with parameter values listed in Appendix). The most important
characteristic of the pattern corresponds to the fieldφ: it is composed of two uniformphases, one positive (blue) and another
negative (white). This pattern presents an interfacial structure between different phase domain (light blue). Now, for the
field ψ , the pattern is dominated by a phase positive and an interfacial structure corresponding to the domain boundaries
in φ. Fig. 2b shows the field ψ in gray scale.

The last case considered in this work is obtained by changing the values of the parameters γ and ε (see Fig. 2c and
Appendix). It is important to mention that we use a grid of 512 × 512 nodes, in this case for each field of φ and ψ , to
discretize the space. The pattern of the field φ is composed by amajority of positive phase (light blue) and twomore phases,
one positive (blue) and another negative (white). The two phases (positive and negative) form domains in which there is
a fourth phase (pale blue). On the other hand for the field ψ we get a dominant phase (light gray) and a negative phase
(dark gray), which form domains in which there is another phase inside.

There are biological systems with similar patterns as those described above. Namely a membrane composed of lipid
bilayers, skin patterns of certain reptile species and random patterns in ternary membranes. Fig. 3a and b, are the skin
patterns of a Gila monster (a certain reptile species) that can be depicted as a field φ which is lightly modulated by an other
fieldψ with dots and stripes. The pattern in Fig. 3b is obtained by plotting the difference between the fields φ andψ and its
present edges, which form the perimeter of the positive phase (blue spots) that is inside a dominant negative phase (white).
Both phases and domains have point arrays slightly modulated by a hexagonal phase (sky blue or white). The morphology
of this pattern is similar to obtained one in the Ref. [2].

Fig. 2b, presents typical patterns for microemulsion ternary systems [16,17] (for instance water, oil and some surfactant
at t = 100,1000–10,000), in which there is a structure of the third species (surfactant) between the positive and negative
phases. Themodels inmicroemulsions have applications in Biology, for instance for explaining themechanisms of formation
of lipidmembranes [11]. Another important aspect about the dynamics of those ternary systems, is that they are determined
by the superficial tension in the interfacial phase; the result is that the total energy of the systemdecreasewhen temperature
increases [9,34,35]. Fig. 2b corresponds to a pattern with very low superficial tension (almost zero). At least qualitatively
our model corresponds to experimental observation [36].

The pattern that explains the mechanism of formation in ternary membranes with unordered bulk domains is shown
in Ref. [12]. The same reference, shows a structure of a membrane obtained by atomic force microscopy (AFM), which is a
cut of a real membrane [12]. The conditions for forming this membrane require a certain quantity of water salinity and a
low temperature (close to zero 0C). This suggests that the salinity corresponds to parameter γ whereas ε can be associated
to the system’s temperature, see Eqs. (6). The parameters ε and γ in the case of the pattern in Fig. 5a. One final comment
is that the domains of the membrane are porous, which implies that the picture shown in Ref. [12] is a 3D pattern whose
associated image shows similarities with Fig. 5a.

An important chemical system that shows experimental evidence of Turing patterns, is the chlorite-iodide-malonic-acid
(CIMA) reaction, reported in Ref. [37]. The CIMA reaction presented in this reference occurs in a two-dimensional layer
constituted by an activator (iodide) and an inhibitor (chlorite) leading to stripe or/and dot morphologies. The layer of dots
and stripes are quite similar to the patterns of Fig. 2(a) that correspond to spatial configuration of the order parameterψ , and
the patterns with stripes only correspond to the Fig. 1(b) forψ . This suggests thatψ is related to a concentration difference
between activator and (malonic acid) indicator, φ being the inhibitor in this case.

4.2. Coarsening and correlations length

At this point only qualitative aspects have been analyzed, characterizing the patterns morphologically. This section
studies coarsening phenomena and defines some length scales to describe the evolution of partially ordered systems. If
φ(x⃗, t) is a nonconserved order parameter, we define the correlation function as C(r⃗, t) = ⟨φ(x⃗ + r⃗, t)φ(x⃗, t)⟩ (where x⃗ is
a point on the grid) or its Fourier transform, the structure factor, S(k⃗, t) = ⟨φ(k⃗, t)φ(−k⃗, t)⟩. Similar equations are defined
for the field ψ .

It is well known that the growth of order in many binary systems far from equilibrium (i.e. ferromagnetic domains and
spinodal decomposition of binary mixtures) fulfill a dynamic scaling law. This property can be enunciate as:

. . . at late times, a single characteristics length scale L(t) such that the domain structure is (in a statistical sense)
independent of time when lengths are scaled by L(t). [7]

L(t) can be a correlation length, defined through Eq. (14). The dynamic scaling hypothesis states that L(t) is the unique
important length in the system, given that the structure remain the same statistically, if all lengths are scaled by L(t). Also, the
scaling length is proportional to the curvature radius or to the distance between the domains in the same phase. Beginning
from a random initial condition, the length grows like a power law, and in many cases takes the form: L(t) ∼ tz .

Using the scaling hypothesis, the correlation function and the structure factor have the form:

C(r⃗, t) = f


r
L(t)


, S(k⃗, t) = Ldg(kL(t)) (14)
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Fig. 3. Fig. (a) is a section of a Gila monster’s skin. The pattern of Fig. (b) is obtained from the fields φ–ψ , after numerically solving Eqs. (12) with fixed
values for the parameters (see Table 2). Fig. (c), presents the structure factor S(k, t) for the field φ. The graph (d) show the collapse of structure factor
curves in the scaling function. The graphs (e) and (d) represents the growth curves for the fields φ and ψ , with the exponent z = 0.02 for the field φ and
z = 0.18 for ψ .

where d is the spatial dimension of the system and g(kL) the Fourier transform of f (r/L). Both f and g are time independent
scaling functions.

Solving Eq. (13) numerically, the circular average of the factor S(k⃗) to |
−→
k | is calculated by using the discrete Fourier

transform method. It is defined ⟨|k⃗|⟩φ as in Ref. [8]: ⟨|k⃗|⟩φ =

dk⃗S(k⃗, t)k/


dk⃗S(k⃗, t), it is supposed that ⟨|k⃗|⟩φ scales as

1/L(t) or

L(t) ∝
1

⟨|k⃗|⟩φ
. (15)
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For a modulated phase with wave number k0 (which is often the case of ψ , here), one can define an other characteristic
length as

L(t) ∝
1

⟨|k⃗ − k⃗0|⟩ψ
(16)

and ⟨|k⃗ − k⃗0|⟩φ =

dk⃗S(k⃗, t)(k − |k⃗0|)/


dk⃗S(k⃗, t)4.

The rest of the section shows the scaling laws for the correlation lengths in the patterns mentioned above.
Fig. 3 presents the results for the pattern with morphological similarities to the Gila monster’s skin (see Fig. 3a and b).

Fig. 3c and d display the structure factors for the fieldsφ andψ respectively, for time from t = 40 up to t = 10, 000. The plot
of the correlation length L(t) for the field φ is shown in Fig. 3(e) and we get approximately that L(t) ∼ tz with an extremely
slow growth, z = 0.02 ± 0.005 for t > 100 (from a least squares fit).

Fig. 3f represents a growth plot for the correlation length of the field ψ as a function of time and a growth exponent
z = 0.18±0.03 is found. Using Eqs. (15) and (16) for the fields φ andψ , it is concluded that there exist several length scales
describing the system evolution and only one characteristic length for ψ , which do not obey typical scaling laws. This fact
can be understood qualitatively as follows: the coupling termgives an origin to spatialmodulationswith a slightly hexagonal
phase when ε ≠ 0, which have the effect of a disordered blocking black potential. Then, the dots act like a potential barrier
that inhibits the growth of the two field bistable φ phases. This result means that the system has extremely slow dynamics
with metastable disordered or glassy states.

The analysis of the patterns similar to the membranes composed by lipids are shown in Fig. 4. The Eqs. (14) and (15) are
computed only be solved for the fieldφ in this case, asψ does not frommodulated phases. Fig. 4c shows the structure factors
plottedwhen t goes from 50 up to 3000, and the scaling function inwhich the structure factors plots collapses. Fig. 4d shows
the growth of the correlation length L(t) for which we find L(t) ∼ tz where z = 0.54 ± 0.01. Furthermore, when the value
of ε decrease and the of γ increase (see values of this parameters in Fig. 4d), it is found that z = 0.33 ± 0.05. This behavior
of growth lengths corresponds to the typical scaling laws [7,8,16,17]. The decrease in the value of z is due to the decrease of
free energy (see parameters ε and γ in Table 2). This happens because the interfacial structure of the fieldψ , is blocking the
dynamics of the uniform phases of φ. Another implication, is that the interfacial structure takes the form of a bilayer, which
is shown in Fig. 4e.

Finally the last case presents more complex morphologies (see Fig. 5a). In Fig. 5b and in the inset of Fig. 5c the structure
factors for t units are plotted, when t varies from 50 up to 6000 in intervals of 100, and every 1000 time units for
1000 < t < 10, 000. Also the growth laws for the fields φ andψ are presented in Fig. 5d and e. In this case, the exponent of
the growth law is z = 0.33± 0.02 for the field φ and z = 0.8± 0.1 forψ . The growth law for the field φ, corresponds with
results obtained experimentally [12]. The scaling function is shown in Fig. 5c. Instead, for the field ψ there is not scaling
function (dynamical scaling from), although it has a correlation length.

5. Discussion

A framework over the layers that constitute the skin of animal vertebrate (fishes, reptiles or chick embryos), is shown
in the Refs. [3,4]. These works considered only three outer layers that form the skin: epidermis, dermis and basal laminar.
The latter couples and allows the interactions among the other two skin layers. On the other hand, has been demonstrated
that the dermis determines the location, size, number and structure of skin appendage, while its orientation is defined
by the epidermis [38]. The outcomes are perspectives for skin modeling: the coupling reaction–diffusion systems and a
mechanochemical model coupled to a reaction–diffusion system. The first one considers that the dermis and epidermis
are formed as activator–inhibitor (morphogens), both aremodeled by a nonlinearly coupled reaction–diffusion systemwith
Turing instability [4–6]. In the second perspective, considering the epidermis as previously explained, the dermis ismodeled
by conservation equations, which are coupled by a mechanical force balance equation [1,3,39]. In relation to Eqs. (6) of the
model proposed, a possible interpretation is that φ represents the dermis, which consists of morphogens, and the field ψ
represents the density the density of dermis (as well as their constituents). Additionally, the interaction between φ andψ is
related to the experimental behavior reported: the dermis has an influence on the epidermis (for instanceψ modulates the
dynamic of φ in the pattern of the Gila monster’s skin). Another important result has been published in Ref. [21], where it
is demonstrated that the conservation flows equations of Navier–Stokes are reduced by a linear combination that come out
to be the field ψ . So, the equation for ψ is analogous in its behavior to the equations of the mechanochemical model. The
previous arguments suggest that Eqs. (6) are otherways formodeling the skinwith reaction–diffusion andmechanochemical
equations.

On the other hand, an important aspect of the interpretation for the fields φ and ψ , is that these give more information
for the mechanism of membrane formations. Previously, it has been stated that the experimental and simulation results, in
which the scalar field φ is associated to polymeric density [10,12]. Ref. [12] does not explain the causes of the deformation
in the membrane pores, compared with the pattern obtained by AFM. Instead in the present study, Eqs. (6) explain that
φ is responsible for the deformations and spatial patterns of the pores and ψ represents the local electric potential and
modulates the curvature energy. So, the deformation of the pores is due to the interaction between the polymeric density
and scalar potential of the solvent (or its density). Additionally, this explains that in each pore the value of electric potential
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Fig. 4. Fig. (a) is a final pattern obtainedwith the difference of fields φ−ψ , where φ andψ are the numerical solutions of Eqs. (13). Fig. (b) is the pattern of
fieldψ . Fig. (c) shows the collapse of structure factor curves on the scaling function when z = 0.54± 0.01. Graph (d) in log–log, present the growth length
and the exponent z for different parameter values. The graph (e), represents a concentration profile of the field ψ , where y-coordinate is fixed (y = 80).

is greater than outside. It is represented by gray scale of ψ patterns (see Fig. 3a). Again, this suggests the mechanism by
which the charged particles (positive or negative) are attracted or repelled in the membrane pores.

In the case of CIMA reaction previouslymentioned, there is another study [40], for which a transition of patterns between
themorphologies of stripes and dotswas presented. This behavior of the patterns, is probably implicit in the Eqs. (6), because
the equations exhibit a wide variety of spatial stable configurations. This point well motivate future studies.

The mechanism of the additive noise described in the Fitz–Nagumo equations, can originate instabilities from which
emerge a state of synchronization in the whole system. In such state, there is a characteristic spatial frequency associated
to the spatially stable pattern. These behaviors are characteristic of calcium dynamic [24] and neuronal dynamics [25].
The spatial dynamics of these systems depend a lot on the noise intensity. When the noise is very intense, the dynamics
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Fig. 5. The pattern of Fig. (a), is obtained by numerical simulation of Eqs. (13) (see the values of the parameters in Table 2). Fig (b) presents the structure
factor S(k, t) for the fieldψ . Graph (c), represents the collapse of structure factor curves on the scaling function (18 curves for different times from t = 50
up to t = 6000). Figs. (d) and (e), show the growth lengths for the fields φ and ψ , with the exponent value: z = 0.8 for ψ and z = 0.33 for φ.

of the system exhibit emergent patterns that are similar to phenomena of domain coarsening the calcium dynamic. For
intermediate noise level, emerging waves nucleate in the system (pattern with spiral structures). In the case of neuronal
behavior, when noise is at an intermediate level, there is spiral wave nucleation, but at low noise level, the spatial patterning
is that of domain coarsening. It also is a property of a chemical system like the chlorite dioxide-iodide-malonic acid (CDIMA)
reaction [23]. The noise in this reaction, only enhances the phases difference of the pattern. It would be interesting to study
the patterns emerging from a stochastic version of Eqs. (6), keeping the same parameter values as in Table 2 in order to
compare with the deterministic case. For instance, can be addend to the deterministic Eqs. (6), an additive noise ξ(r⃗, t) in
the order parameterφ, and/ormultiplicative noise η(r⃗, t) for the parameter of control ε −→ ε+η(r⃗, t) (orα −→ α+η(r⃗, t)
and/or γ −→ γ + η(r⃗, t)). The physical meaning of ξ(r⃗, t) is for example the internal thermal fluctuations, and η(r⃗, t) is
associated to the external fluctuations in the parameter of control. Both terms would be given as in the Ref. [20].
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Table 1
Values of parameters in Fig. 1.

Parameters Fig. 1(a) Fig. 1(b) Fig. 1(c) Fig. 1(d) Fig. 1(e)

α 0.5 0.5 0.5 0.5 0.5
ε 0.0 0.0 0.0 0.0 0.0
γ −0.2 −0.2 −0.1 −0.1 0.2
g 0.0 0.0 −1.0 1.0 1.0
λ 0.5 1.0 0.8 1.0 0.6
t 9000 5000 5000 5000 800
scalar field ψ ψ ψ ψ φ

Table 2
Values of parameters in Figs. 2–5.

Parameters Figs. 2(a) and 3(b) Figs. 2(b), 4(a) and (b) Figs. 2(c) and 5(a)

α 0.5 0.5 0.5
ε −0.6 −0.2 −2.4
γ −0.5 1.0 −2.3
g −1.0 −1.0 1.0
λ 0.8 1.0 0.5

Finally, it is important to mention that the loss of scaling in the correlation length for ψ or φ, in some cases previously
presented, and the slow growth length that may take the form, L(t) ∼ ln(t) has not been explained. This will be the scope
of future studies.

6. Conclusions and summary

Patterns similar to the Gila monster’s skin or to the CIMA reaction, are obtained by the model proposed here. The phase
ordering dynamics of these patterns present a characteristic scaling length (L(t) ∼ tz where z = 0.18) which is slower than
those reported in Refs. [7,8,10,14–17,28] for binary and ternary systems. This dynamic is sluggish, or ‘‘glassy’’, with many
metastable states.

The patterns obtained from Eqs. (13) with behavior similar to membranes with lipid bilayers, exhibit a characteristic
length scales that grows with time as a power-law with exponent z = 0.5, which corresponds to the results reported in
the literature [8,10], when the fields are not locally conserved. For a smaller coupling parameter ε, the exponent lowers
to z = 0.3. This z value has not been obtained in models with nonconserved order parameters. Another important aspect
related to these patterns, is the decrease of the superficial tension. Such results are in accordance with the experiments [34]
and the results of numerically solved models, that have been published in Ref. [36].

A last experimental fact reproduced for the emergent patterns obtained from the proposed model, for other values of γ
and ε, is the porous membranes formation. The pores growth obeys a growth length that takes the form L(t) ∼ tz where
z = 0.29 ± 0.01, which has been published elsewhere [12], while in the present study it is found that z = 0.3 ± 0.03.

The difference between the coupled Ginzburg–Landau and Swift–Hohenberg equation and the ternary mixture models
of lattice gas type [34,36] or continuous models with two conserved order parameters [16,17], is that these do not produce
patterns with greater complexity. Instead, depending on the parameters, modulated patterns emerge (for instance patterns
with patterns similar to the skin of Gila monster’s or porous membranes or CIMA reaction). The kinds of patterns obtained
here, like in the Ginzburg–Landau and Swift–Hohenberg models, are independent of the initial conditions. A property of the
phases analyzed here is thatψ acts on φ as an effective periodic potential, with important consequences on the dynamics of
the system. This effect is difficult to obtain with more sophisticated models such as two coupled reaction–diffusion systems
or diffusion-driven instability [4–6] or mechanochemical models [1,3,39].
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Appendix. Numerical simulation details

See Tables 1 and 2.
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