
Automatic Hierarchical Nesting of

Partially Observable Markov Decision

Processes for Task Planning in Service

Robotics

por

Sergio Arredondo Serrano

Tesis sometida como requerimiento parcial para obtener el grado

de

Maestro en Ciencias en el área de Ciencias Computacionales

por el

Instituto Nacional de Astrof́ısica, Óptica y Electrónica

Noviembre, 2019

Tonantzintla, Puebla

Supervisada por:

Dr. Luis Enrique Sucar Succar

c©INAOE 2019

Derechos Reservados

El autor(a) otorga al INAOE el permiso de

distribuir y reproducir copias de esta tesis en su

totalidad o en partes mencionando la fuente.

Agradecimientos

En primer lugar, me gustaŕıa agradecer al CONACyT por otorgarme la beca no.

634966 sin la cual jamás hubiera podido llevar a cabo mis estudios de maestŕıa. A

mis profesores de clase, por proveerme de herramientas que resultaron indispensables

en el desarrollo de mi trabajo de tesis. A mis cuatro revisores, les agradezco su

profesionalismo al criticar a mi trabajo, contribuyendo a llevar el producto final a

un mejor término. A mi asesor, el Dr. Luis Enrique Sucar, por la dedicación y

paciencia con la que me guió durante el desarrollo de la investigación, aśı como por

dar un ejemplo de ética profesional y calidad humana.

A mi familia, por creer en este proyecto y apoyarme incondicionalmente desde el

principio. A mi amá y apá, por sus palabras de aliento que en muchas ocasiones

fueron la gasolina que me mantuvo andando. A mi hermano, por celebrar mis éxitos,

estar conmigo en los tiempos dif́ıciles, seguirme la curas y nunca dejarme abajo.

Por compartir camino conmigo y hacer broma de la adversidad, agradezco a Ri-

cardo, Josué, Aco, Oswualdo, Madrid, Bruno, Jessica, Kenpa, Diana, Jonathan,

Jeymy, Juan, Loreth, Freddy, Anibal, Ángel, Estefańıa y Carlos, después de todo,

¿somos una banda que no?, hay que apoyarnos...

iii

Abstract

A wide variety of approaches have been proposed to address the problem of task

planning in robotics, from which partially observable Markov decision processes

(POMDP) stand out due to their capacity to model the uncertainty of actions and

keep track of the state of the world by means of a partially observable representation

of it. Nonetheless, there are some drawbacks inherent to the use of POMDPs, such

as designing a representation that models as best as possible a particular problem,

along with the complexity that represents to find a good policy for POMDPs with

large state spaces. Therefore, in order to mitigate these challenges, in this thesis

we propose an architecture for task planning oriented towards service robot appli-

cations, that combines a knowledge representation scheme and POMDPs to build a

hierarchy of actions that enables the decomposition of problems into several smaller

ones. The knowledge representation defines a list of parameters, so that domain

specific information can be encoded by a designer, and used by the architecture to

automatically generate and execute plans to solve tasks. Using the hierarchy of ac-

tions to generate plans, the system is able to exploit the structure of the environment

and ignore those regions in the state space that are irrelevant for a specific task. To

evaluate the proposed architecture, a mobile robot navigation domain is employed as

case study. Experimental results show that, in scenarios with moderate uncertainty,

the architecture is able to perform both reliably and time efficiently, as it generates

plans in a time that is several orders smaller than baseline methods.

Keywords: Task Planning, Hierarchical POMDPs, Service Robotics, Declar-

ative Programming, General Architecture.

v

Resumen

Una amplia variedad de enfoques han sido propuestos para abordar el problema de

planificación de tareas en robótica, entre los cuales destacan los procesos de decisión

de Markov parcialmente observables (POMDP por sus siglas en inglés) debido a su

capacidad para modelar la incertidumbre en las acciones y realizar un seguimiento del

estado del mundo mediante una representación parcialmente observable del mismo,

lo cual es particularmente importante en robótica. No obstante, existen algunas

desventajas inherentes al uso de los POMDPs, tales como el diseño de una rep-

resentación que modele lo mejor posible un problema en particular, aśı como la

complejidad que representa encontrar una buena poĺıtica para POMDPs con espa-

cios de estado grandes. Aśı, con el objetivo de mitigar estas dificultades, en esta tesis

presentamos una arquitectura para la planificación de tareas orientada a aplicaciones

de robótica de servicio, que combina un esquema de representación de conocimiento

y POMDPs para construir una jerarqúıa de acciones que permite la descomposición

de problemas en varios más pequeños. La representación del conocimiento define una

lista de parámetros que permite que un diseñador codifique información espećıfica

del dominio, y su utilización por parte de la arquitectura para generar y ejecutar, de

manera automática, planes con el objetivo de resolver tareas. Utilizar la jerarqúıa

de acciones para planificar permite que el sistema aproveche la estructura del en-

torno e ignore regiones del espacio de estados que son irrelevantes para una tarea

en espećıfico. Para evaluar la arquitectura propuesta, un dominio de navegación

de un robot móvil es empleado como caso de estudio. Resultados experimentales

muestran que, en escenarios de incertidumbre moderada, la arquitectura es capaz de

desempeñarse de manera confiable y eficiente, dado que genera planes en un tiempo

que es menor en varios órdenes de magnitud al requerido por otros métodos base.

Palabras clave: Planificación de Tareas, POMDP Jerárquico, Robótica de

Servicio, Programación Declarativa, Arquitectura General.

vii

Contents

Agradecimientos iii

Abstract v

Resumen vii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem description . 4

1.3 Research Questions . 4

1.4 Hypothesis . 4

1.5 Objectives . 5

1.6 Scope and limitations . 5

1.7 Description of the proposed method 6

1.8 Contributions . 9

1.9 Document organization . 10

2 Theoretical framework 11

2.1 ASP: Answer Set Programming . 11

ix

2.1.1 SPARC . 14

2.1.1.1 Directives and sort definitions 15

2.1.1.2 Predicate Declarations 17

2.1.1.3 Program rules . 17

2.1.1.4 Answer sets . 18

2.1.2 Action Language for transition diagrams 19

2.1.3 Action Language in SPARC 21

2.2 Markov Decision Processes . 25

2.2.1 Policies . 27

2.2.2 Partially Observable Markov Decision Processes 28

2.3 Hierarchical Reinforcement Learning 30

2.3.1 Abstract actions . 31

2.3.2 State abstraction . 32

2.3.3 Optimality . 33

2.4 Chapter Summary . 34

3 Related work 35

3.1 Architectures applied towards service robotics 35

3.2 Hierarchical approaches for solving MDPs and POMDPs 44

3.3 Discussion . 48

3.4 Chapter Summary . 51

4 Proposed method 53

4.1 General overview . 53

4.2 Knowledge base construction . 56

4.2.1 General knowledge . 56

4.2.1.1 Basic modules . 56

4.2.1.2 Domain dynamics 59

4.2.1.3 Hierarchical function 65

4.2.2 Specific knowledge . 66

4.3 Architecture initialization . 67

4.3.1 Construction of bottom POMDP 67

4.3.2 Hierarchy of actions . 70

4.3.2.1 State space tree . 70

4.3.2.2 Concrete and abstract components 72

4.3.2.3 Modeling abstract actions 73

4.4 Architecture operation . 80

4.4.1 Planning . 80

4.4.1.1 Relevant sub-space 80

4.4.1.2 Hierarchical policy 81

4.4.2 Plan execution . 85

4.4.2.1 Hierarchical policy execution 85

4.4.2.2 Local policy execution 87

4.5 Chapter Summary . 91

5 Experiments and results 95

5.1 Navigation domain as study case . 95

5.2 Experiment parameters . 97

5.2.1 Baseline methods and failure criteria 97

5.2.2 Control parameters . 100

5.2.3 Independent variables . 102

5.2.4 Dependent variables . 103

5.2.5 Statistical parameters . 104

5.3 Experiment 1 . 106

5.3.1 Objective . 106

5.3.2 Hypothesis . 106

5.3.3 Results . 106

5.4 Experiment 2 . 111

5.4.1 Objective . 111

5.4.2 Hypothesis . 111

5.4.3 Results . 111

5.5 Experiment 3 . 116

5.5.1 Objective . 116

5.5.2 Hypothesis . 116

5.5.3 Results . 116

5.6 Experiment 4 . 121

5.6.1 Objective . 121

5.6.2 Hypothesis . 121

5.6.3 Results . 121

5.7 Experiment 5 . 125

5.7.1 Objective . 125

5.7.2 Description . 125

5.7.3 Results . 126

5.8 Discussion . 130

5.9 Chapter Summary . 135

6 Conclusions and future work 137

6.1 Conclusions . 137

6.2 Contributions . 138

6.3 Future Work . 139

List of Figures

1.1 Task planning in a household domain 2

1.2 Knowledge base structure . 9

2.1 MDP model for the interaction between an agent and the world . . . 26

2.2 POMDP model for the interaction between an agent and the world . 29

2.3 Example of a task hierarchy . 32

2.4 Ranking of different types of optimality for policies in hierarchical

systems . 34

3.1 Multi-layer representation from [Hanheide et al., 2011] 37

3.2 Task hierarchy from [Pineau and Thrun, 2002] 46

3.3 Hierarchical POMDP from [Theocharous et al., 2001] 48

4.1 Example of a navigation domain scenario 54

4.2 Methodology followed by the proposed architecture to solve task plan-

ning problems . 55

4.3 Multi-resolution representation of a navigation domain environment . 71

4.4 Hierarchical representation of a navigation domain environment . . . 72

4.5 Example of a hierarchical policy . 82

xv

5.1 Example of an environment of two buildings, generated for a config-

uration in experiment 1 . 102

5.2 Success ratio scores in experiment 1 108

5.3 Average relative error scores in experiment 1 108

5.4 Average path relative cost scores in experiment 1 109

5.5 Average planning time scores in experiment 1 109

5.6 Confidence intervals for differences found in experiment 1 110

5.7 Success ratio scores in experiment 2 112

5.8 Average relative error scores in experiment 2 113

5.9 Average path relative cost scores in experiment 2 113

5.10 Average planning time scores in experiment 2 114

5.11 Confidence intervals for differences found in experiment 2 115

5.12 Success ratio scores in experiment 3 118

5.13 Average relative error scores in experiment 3 118

5.14 Average path relative cost scores in experiment 3 119

5.15 Average planning time scores in experiment 3 119

5.16 Confidence intervals for differences found in experiments 3 and 4 . . . 120

5.17 Success ratio scores in experiment 4 123

5.18 Average relative error scores in experiment 4 123

5.19 Average path relative cost scores in experiment 4 124

5.20 Average planning time scores in experiment 4 124

5.21 Map generated using 2D SLAM . 128

5.22 Arrangement of markers employed to track the robot’s position . . . 128

5.23 Tracking of the robot’s position within the robotics laboratory 129

5.24 Gaussian probability density function plots 129

5.25 Failure ratio of the proposed architecture in experiment 3 133

List of Tables

3.1 Comparison of task planning architectures 44

5.1 Comparison of results obtained by HP in an environment made of 11

buildings . 134

xix

Chapter 1

Introduction

1.1 Motivation

Recently, service robots have shown that they can be very helpful with a variety of

tasks, usually found in domestic environments such as offices and households, that

involve cleaning chores and taking care of people. By having a service robot in charge

of assisting elderly people, for instance, it would mean a solution to a 24 hours a

day caring problem, one that does not need to rest, gets distracted nor bored while

working. Whereas for domestic chores, a service robot would take care of repetitive

labors, such as doing the dishes, cleaning surfaces or receiving packages. This would

free people from these tasks so they could invest all of their time in creative work and

recreational activities. In general, society can benefit from service robotics systems

by putting them in charge of tasks that either require full attention from the worker

for long continuous periods of time, or consist of repetitive and non-creative duties,

pretty similar to what robotic arms have done for the manufacturing industry.

Since service robots are developed towards domestic domains with a user-oriented

approach, there is a series of challenges that ought to be overcome before a robot

operates at a degree of autonomy that enables it to handle any scenario that might

arise during work. Among the set of skills a service robot is expected to have,

goal reasoning, human-robot interaction and acting are the ones that standout in

the context of interacting and assisting to people. Goal reasoning is a monitoring

function at the highest level of mission management [Ingrand and Ghallab, 2017],

1

2 CHAPTER 1. INTRODUCTION

and its main objective is to keep track of the feasibility and relevance of the robot’s

goals, as well as to create new goal if required for the task at hand. Human-robot

interaction studies algorithms, techniques, models, and frameworks necessary to

build robotic systems that engage in social interactions with humans [Thomaz et al.,

2016]. With regards to acting, it refers to the refinement of planned actions into

commands appropriate for the current context and reacts to events [Ingrand and

Ghallab, 2017]. Furthermore, generating sequences of actions can be studied as two

types of planning problems: motion planning and task planning, being the latter the

topic this thesis focuses on.

Figure 1.1: The purpose of developing service robots is to assist people in activities com-
monly found in indoor domains, such as households and offices. The problem of task
planning is concerned with generating plans that an agent (in this case the robot) can fol-
low to solve a particular task. However, because people will not provide the details of how
tasks can be solved, even activities as simple as bringing a beverage require from a robot
certain degree of knowledge of the environment in order to perform them.

While motion planning studies problems such as computing collision-free paths

among moving obstacles and performing motions to produce certain relations be-

tween objects [Latombe, 2012], task planning produces a high level plan whose

whose steps requiring motions can be handled by a specific motion planner [In-

grand and Ghallab, 2017]. Plans are modeled either as a sequence of actions or a

policy, however, uncertainty of action outcomes and partial observability of the envi-

ronment’s true state are aspects that must be considered while planning in robotics.

Thus, Partially Observable Markov Decision Processes (POMDP) have been widely

employed for task planning problems since they are capable of modeling an envi-

ronment’s uncertainty and partial observability [Foka and Trahanias, 2007, Zhang

1.2. PROBLEM DESCRIPTION 3

et al., 2013, Kim et al., 2018, Pusse and Klusch, 2019], however, one of the ma-

jor drawbacks POMDPs have is the high computational cost required to compute

an optimal policy (as results from a complexity analysis performed by [Papadim-

itriou and Tsitsiklis, 1987] suggest that finding an ε-optimal policy for a POMDP is

PSPACE-complete).

In order to mitigate the computational burden of computing POMDP policies,

two main type of approaches have been studied: approximate solving algorithms

and problem decomposition. Although, works using the former approach have shown

results that compete with those of other exact methods [Pineau et al., 2003, Kur-

niawati et al., 2008], they still have their limitations, whereas proposals following

the latter approach have explored methods that leverage independence relations be-

tween variables to transform the original problem into a set of small POMDPs, that

can be solved independently, and executed concurrently [Corona-Xelhuantzi et al.,

2009] or sequentially [Foka and Trahanias, 2007]; nevertheless, the structure of such

decomposition has to be acquired from either, data or an expert in the domain.

Therefore, because of the task diversity inherent to service robotics, extracting a

problem’s structure from data seems unfeasible. On the other hand, since service

robots are designed to perform tasks people already handle with certain degree

of expertise, by employing a scheme that defines the dynamics of a skill set as a

list of logical and probabilistic parameters, and by integrating various skills into

a single planning process based on their individual definitions, people could pass

the underlying structure in tasks to a robot. Hence, in this thesis a general task

planning architecture is proposed, based on the premise that by obtaining knowledge

on individual skills from a human expert, it is possible to automatically integrate

them into a hierarchy of actions (modeled as POMDPs) that is able to solve any task

that can be solved through a sequence of actions included in the skill set definitions.

Thus, with the integration of a knowledge base as a representation scheme to a

method for the construction of a hierarchy of actions, the architecture addresses

task diversity and automatically designs the POMDPs required to solve a specific

task. Furthermore, given that POMDPs are being used to model abstract actions,

state uncertainty and partial observability are taken into account while generating

and executing plans.

4 CHAPTER 1. INTRODUCTION

1.2 Problem description

In the previous section it has been emphasized how important it is for a service

robot to be able to behave in a robust way within its environment, of how difficult it

is to model a POMDP and how this problem has been addressed in different ways.

Excepting approximate algorithms, the rest of the discussed approaches use domain

information in some way to reduce the POMDP’s size (i.e. the cardinality of its

state, observation and action spaces), while looking to decrease as little as possible

its effectiveness in task planning. In a similar way, this thesis addresses the following

problem:

In task planning for service robotics, the characteristics of the environment that

represent a greater challenge to find a plan that successfully solves a given task are

its size, uncertainty in outcomes of events, partial observability of its true state and

task diversity. Since the computational complexity of plan search is a non-decreasing

function of the environment’s size and the task diversity, while its uncertainty and

partial observability preclude to guarantee the success of a plan, there is a need for

a task planning methodology that simultaneously addresses plan search complexity,

uncertainty and partial observability in order to suffice the short response time and

high degree of reliability required in planning for tasks related to service robotics

applications.

1.3 Research Questions

• Can domain specific knowledge be employed to build a hierarchy of POMDPs?

• Can recursively optimal POMDP policies perform as effective as a global op-

timal POMDP policy in task planning problems for service robotics?

1.4 Hypothesis

In task planning problems for service robotics applications, using domain specific

knowledge along with a recursive formulation allows to build hierarchies of POMDPs

1.5. OBJECTIVES 5

that perform as effectively and more efficiently than a standard POMDP.

1.5 Objectives

The general objective of this research is:

To develop an architecture to perform task planning for service robotics applications

using domain specific knowledge and a hierarchical representation of the domain

based on hierarchies of POMDPs.

The specific objectives are:

1. Define a representation for domain knowledge.

2. Design a structure for a knowledge base to organize and represent domain

information.

3. Implement a method to convert a symbolic description of the environment into

a POMDP.

4. Develop a method to build a hierarchy of POMDPs to model a hierarchy of

actions.

5. Develop a method to execute a hierarchy of actions in order to solve a task.

1.6 Scope and limitations

This research is delimited by the following conditions:

• This work focuses on solving task planning, that is, motion planning is out of

the scope of this thesis.

• The scenarios where the architecture is evaluated are expected to be indoor

and static environments, i.e., once a map of the the environment is built,

the position and orientation of things that are part of the map (for instance

furniture) shall not be changed.

6 CHAPTER 1. INTRODUCTION

• A closed world is assumed, that is, a description of the entire environment at

some degree of detail is expected to be provided.

• For the architecture to receive task requests from a user, it is assumed there is

an external module in charge of parsing requests to a format the architecture

understands as a goal state, the robot knows its current state at the moment

a task is requested, and requests will not be issued while the robot is solving

a task.

• To evaluate the proposed architecture, the navigation domain is considered as

the evaluation scenario. Despite other domains could also be addressed with

our architecture, such as object manipulation or object recognition, the state

spaces in navigation domains have a high degree of structure and tend to be

large in real world scenarios, even when the state space is discretized. Thus, the

navigation domain is a good fit to evaluate the impact a hierarchical approach

with several levels of abstraction might have in problems with a large space.

1.7 Description of the proposed method

The proposed architecture for service robotics task planning is constituted by two

main elements: declarative programming and probabilistic graphical models. Declar-

ative programming is used to represent knowledge of the domain over which planning

will take place. This representation includes a set of objects, relations, predicates

and functions, that altogether make up the knowledge base required to specify the

states, actions and observations of a POMDP. Moreover, as an additional form of a

priori knowledge, a collection of basic modules (which are capable each of solving

a specific type of task) is required. In order to use a basic module in a task plan-

ning problem, they are modeled in the knowledge base with a set of states, actions

and observations that they are capable of modifying, performing, and perceiving,

respectively.

Once a designer has provided a symbolic description of the environment and the

robot’s skill set, using action language theory, a non-deterministic transition diagram

is built to model a POMDP. The POMDP represents the robot in the environment as

a dynamic system, and is employed as starting point by a recursive method to build

1.7. DESCRIPTION OF THE PROPOSED METHOD 7

a hierarchy of POMDPs, in a bottom-up way. The hierarchy of POMDPs enables

the agent to probabilistically model task planning problems in an efficient way, as

the structure of the hierarchy implicitly provides information of what aspects of the

environment can be safely omitted for a specific task, and still be able to solve it.

The proposed method can be divided in three main phases: the knowledge base

construction (KBC), architecture’s initialization (AI) and architecture’s operation

(AO) phase, all three are described below.

1. [KBC] Knowledge base construction. A designer creates an instance of

a knowledge base by providing two types of knowledge (see Fig. 1.2): general

knowledge, which is associated with the robot’s skill set and the aspects of

the environment that it is capable of modifying and perceiving through such

skills, while specific knowledge is related to facts that are true for a particular

environment in which the robot will operate.

• General knowledge: Description of the domain’s dynamics, the robot’s

basic modules (each one representing a skill it is capable of doing), re-

lations that can be used to abstract into a hierarchy those objects the

robot will interact with, and statistics (in the form of probability distri-

bution functions) that describe the probability each basic module has of

generating a set of possible outcomes.

• Specific knowledge: Information of the particular environment in which

the robot will operate, i.e. a list of facts that are true within such en-

vironment. These facts serve as values of the variables that are relevant

for the task planning problem and are modeled in the domain’s dynamics

description. For instance, a list of the rooms that constitute the agent’s

working environment, as well as their spatial arrangement.

2. [AI] Construction of hierarchy of actions. From the symbolic description

of the environment and the basic modules, a POMDP is built to model the

dynamics of the environment at the concrete level in the hierarchical represen-

tation. Then, the hierarchy of POMDPs is built that will be required later on

in the AO phase.

3. [AO] Planning on a task basis. When a task request is received, the

following steps are performed:

8 CHAPTER 1. INTRODUCTION

(a) A subregion of the state space is selected, based on the goal state for that

task and the robot’s current state.

(b) For each level in the hierarchy of the selected subregion, a local policy

is computed to reach the goal state at every level of resolution in the

subregion hierarchy.

(c) The local policies are sequentially executed in a top-down order.

4. [AO] Step 3 is performed for every task request received in the future.

In order to evaluate the proposed architecture, a mobile robot navigation domain is

employed as study case. Four experiments were designed to evaluate the effectiveness

(percentage of successful runs) and efficiency (time required to plan and amount of

actions executed to reach a goal state) of the architecture and two baseline methods,

for different configurations of uncertainty of the agent’s true state, and size of the

environment. The first two experiments are constituted by several scenarios that

vary in uncertainty, while the last two vary in size. Experimental results show

that the proposed architecture is more prone to fail than both baseline methods as

uncertainty increases. However, in scenarios with moderate values of uncertainty

and large environments, our architecture is able to perform near optimal (in terms

of steps taken to reach the goal state) and generate plans in a time that is several

orders smaller than other baseline methods.

1.8. CONTRIBUTIONS 9

Figure 1.2: Knowledge base composed by general and specific knowledge. The general
knowledge is constituted by a description of the domain dynamics that model through a
set of rules an agent’s interaction with the the environment, a set of basic modules descrip-
tions (each one represents a skill set domain) and a hierarchical function that represents a
relation by which the architecture builds a hierarchical representation of the state space.
The specific knowledge is formed by lists of particular objects that describe the specific
environment (in which the robot will operate) at a concrete and abstract level, as well
as the pairs of objects that are neighbors by some action, or are directly related by the
hierarchical function.

1.8 Contributions

The main contributions of the work presented in this research are:

1. A general framework for hierarchical task planning, capable of integrating new

skills into a planning problem, without having to modify the description of

those skills that already are part of the system.

2. A method that automatically builds an arbitrarily deep hierarchy of POMDPs

from a hierarchical representation of the state space and a POMDP that models

the bottom level of such representation.

3. A methodology to generate and execute a multi-resolution plan in a sub-region

of the original state space, employing its hierarchical representation and a

hierarchy of POMDPs.

10 CHAPTER 1. INTRODUCTION

1.9 Document organization

The rest of the document is organized as follows. In chapter 2 is presented the

base theoretical framework used throughout this document. The related work to

this research is analyzed in chapter 3. Next, in chapter 4 the proposed architecture

is described in detail. Then, the experimental results are shown in chapter 5, and

finally the conclusions and future work are presented in chapter 6.

Chapter 2

Theoretical framework

In this chapter, we present the basic theory necessary to understand the method

proposed by this research. We start by covering Answer Set Programming as a

representation paradigm for the knowledge base of our architecture, followed by

Markov Decision Processes as way to model reinforcement learning problems, such as

decision-theoretic planning. Then, Partially Observable Markov Decision Processes

are presented. Finally, we end this chapter with a brief description of the main

concepts in Hierarchical Reinforcement Learning.

2.1 ASP: Answer Set Programming

Based on the stable model semantics of logic programming [Gelfond and Lifschitz,

1988], answer set programming (ASP) is a type of declarative programming. Among

the most common applications for ASP, there are all kind of difficult search problems,

mainly because in ASP search problems can be translated into computing stable

models with the help of answer set solvers [Lifschitz, 2008]. Being ASP a declarative

programming language, contrary to an imperative language (whether it is procedural

or object-oriented) in which a program consists of a list commands that must be

executed in a given order, an ASP program is made of a collection of rules and

objects that define a problem configuration [Gelfond and Kahl, 2014]. Thus, instead

of indicating a system how a problem should be solved, ASP programs describe what

a solution to the problem looks like.

11

12 CHAPTER 2. THEORETICAL FRAMEWORK

In Answer Set Prolog, which is an instance of an ASP language, a program Π

is constituted by a signature Σ and a list of rules. The signature is the program’s

alphabet, while the rules describe the problem the program is designed to solve.

These concepts are presented below.

Definition 1 A Signature Σ of an ASP program Π is a four-tuple < O,F ,P ,V >
of sets, that contain the objects, functions, predicates and variables that can be used

within the program.

Definition 2 The following cases are Terms.

1. Let p be an object constant and X a variable, then both p and X are Terms.

2. Let t1, ..., tn be terms and f a function symbol of arity n, then f(t1, ..., tn) is a

Term.

Definition 3 Let t1, ..., tn be terms and p a predicate symbol of arity n, then an

expression of the form p(t1, ..., tn) is an Atomic Statement or Atom.

Definition 4 Let p(t1, ..., tn) be an atom and ¬p(t1, ..., tn) its negation, then both

p(t1, ..., tn) and ¬p(t1, ..., tn) are Literals.

Definition 5 Let p(t1, ..., tn) be an atom and t1, ..., tn terms that are all constant

objects or functions with no arguments that are variables or have variables as argu-

ment, then both p(t1, ..., tn) and its negation ¬p(t1, ..., tn) are Ground Literals.

Definition 6 Let l be a literal, the Default Negation of l, not l, expresses that

it is not believed that l is true.

Definition 7 Let l1 and l2 be literals, the Epistemic Disjunction of l1 and l2, l1

or l2, expresses that l1 is believed to be true or l2 is believed to be true.

2.1. ASP: ANSWER SET PROGRAMMING 13

Contrary to classical logics, i.e. those in which predicates can take one of two

possible values (usually true and false), in Answer Set Prolog a literal can be believed

to be true, false or neither. That is, upon scenarios with incomplete information a

system can stay neutral with respect to what it believes of a given literal for which

there is no evidence. Thus, the default negation of a literal l is true if ¬l is true,

or if there is no evidence about l at all. Moreover, the epistemic disjunction of a

collection of literals l0, ..., lm forces the system to believe that exactly one of those

literals is true, which differs from the definition of the classical disjunction ∨. While

the classical disjunction outputs a true or false, the epistemic disjunction outputs a

literal, which the system believes to be true.

Definition 8 Let l0, li, li+1, ..., lm, lm+1, ..., ln be literals, then a statement of the form

l0 or ... or li ← li+1, ..., lm, not lm+1, ..., not ln.

is a Rule, where the epistemic disjunction on the left-hand side of the rule, called

Head, is said to be believed by the program if the conjunction of the literals and

default negations in the right-hand side of the rule, called Body, is believed.

Definition 9 Let l0, ..., lm, not lm+1, ..., not ln be the body of a rule, then a rule with

an empty head of the form

← li+1, ..., lm, not lm+1, ..., not ln.

is a Constraint.

Definition 10 Let l0 or ... or li be the head of a rule, then a rule with an empty body

of the form

l0 or ... or li.

is a Fact.

Similar to the distinction between classical and epistemic disjunction, ASP rules

should not be read as a logical implication in the classical sense, but rather as a

statement in which if the system believes all the literals and default negation of

literals in a rule’s body to be true, then it is forced to believe one of the literals in its

14 CHAPTER 2. THEORETICAL FRAMEWORK

head to also be true. Furthermore, when the literals in the body of a constraint are

believed to be true, since this rule has an empty head the system is forced to believe

nothing, which could be interpreted as a dead end point for a syllogism. Whereas for

facts, since they do not have a body that must be believed in the first place, their

head is automatically believed to be true. Hence, based on the concepts of literals

and rules, is built the definition of answer set.

Definition 11 Let Π be an ASP program with signature Σ and S a consistent set

of ground literals from Σ, such that S is consistent with the rules of Π and S is

minimal, i.e., there is no proper subset of S that is consistent with the rules of Π,

then S is an Answer Set of Π.

Informally, the definition for the answer set of an ASP program Π says that, an

answer set represents a belief (in the form of a set of literals) that believes in both

the body and head of every rule in Π, does not believe in contradictions and follows

the Rationality Principle, that says: “Believe nothing you are not forced to believe”

[Gelfond and Kahl, 2014].

2.1.1 SPARC

SPARC is a declarative programming language that is an extension of CR-Prolog,

which is a version of Answer Set Prolog with consistency restoring rules [Balduccini

and Gelfond, 2003]. SPARC integrates sorts to CR-Prolog to enable programmers to

explicitly define sorts, as well as properties and relationships between them. Further-

more, by explicitly separating the sort definitions from their properties and relations,

SPARC promotes programmers to define rules that describe general properties of a

domain without referring to a domain in particular [Balai et al., 2013b].

In this section, the syntax and semantics (from [Gelfond and Kahl, 2014, Balai

et al., 2013b]) for SPARC are presented. The syntax is constituted by the definition

of directives, sorts, predicates and rules, while its semantics are an extension to the

answer set definition of Answer Set Prolog programs.

2.1. ASP: ANSWER SET PROGRAMMING 15

2.1.1.1 Directives and sort definitions

A SPARC program is constituted by four consecutive sections. The first section,

called directives, is made of a collection of statements with the following format

#const < identifier >=< natural number > .

#maxint =< natural number > .

The second section starts with the keyword sorts followed by a list of sort defini-

tions of the form

sort name = sort expression.

where sort name is an identifier preceded by the pound sign (#), while sort expression

represents a list of strings called sorts. The sort expression component can be take

any of the following six forms.

1. Numeric range:

number1..number2

where number1 and number2 are natural numbers such that number1 ≤ number2

holds. This expression is equivalent to the set of integer numbers in the closed

interval bounded by number1 and number2. For example, given the definition

#sort = 1..3 then #sort is constituted by the set of numbers {1, 2, 3}.

2. Identifier range:

id1..id2

where id1 and id2 are identifiers that start with lowercase letter. Also, id1 must

be lexicographically smaller or equal than id2, and id1 must have a smaller

length than id2. For example, given the definition #sort = a..d then #sort is

constituted by the set of letters {a, b, c, d}.

3. Set of ground terms:

{t1, ..., tn}

A set of ground terms may consist of any of the following elements, num-

bers and identifiers are ground terms; If f is an identifier and α1, ..., αn are

ground terms, then f(α1, ..., αn) is a ground term. For example, #sort1 =

{f(a), a, b, 2}.

16 CHAPTER 2. THEORETICAL FRAMEWORK

4. Set of records:

f(sort name1(var1), ..., sort namen(varn)) : condition(var1, ..., varn)

where f is an identifier, every sort namei occurs in one of the preceding

sort definitions and the condition on variables is defined as follows. If vari

and varj occur in the sequence var1, ..., varn and � ∈ {>,<,≤,≥}, then

vari � varj is a condition on var1, ..., varn; if C1 and C2 are conditions on

var1, ..., varn and ⊕ ∈ {∩,∪}, then C1 ⊕ C2 is a condition on var1, ..., varn.

Finally, if C is a condition on var1, ..., varn, then not(C) is a condition on

var1, ..., varn. For example, given a pair of sort definitions, #s = 1..2. and

#sf = f(s(X), s(Y), s(Z)), then the sort #sf consists of the set of records

{f(1, 1, 1), f(1, 1, 2), f(1, 2, 1), f(1, 2, 2), f(2, 1, 1), f(2, 1, 2), f(2, 2, 1), f(2, 2, 2)},
where X, Y, Z are variables and s(·) is predicate that is automatically gener-

ated by the SPARC compiler for sort #s. Predicate s(·) is true only if its

input argument is an element of the sort #s, that is why #sf is made of every

possible permutation of length 3 that can be built with elements of #s.

5. Set theoretic expression:

• #sort name

• An expression of the form (3), denoting a set of ground terms.

• An expression of the form (4), denoting a set of record.

• (S15 S2), where 5 ∈ {+,−, ∗} (stand for union, difference and intersec-

tion, respectively), and both S1 and S2 are set theoretic expressions.

For example, given a pair of sort definitions #sort1 = {a, b, 2} and #sort2 =

{1, 2, 3}+{a, b, f(c)}+f(#sort1), then #sort2 consists of the following ground

terms {1, 2, 3, a, b, f(c), f(a), f(b), f(2)}.

6. Concatenation:

[b stmt1]...[b stmtn]

where every b stmti is a basic statements, which is defined as follows. State-

ments of the forms (1), (2) and (3) are basic; also, statements of the form (5)

if,

• It does not contain sort expressions of the form (4), denoting sets of

records.

2.1. ASP: ANSWER SET PROGRAMMING 17

• None of the curly brackets occurring in S contains a record.

• All sorts occurring in S are defined by basic statements.

For example, given a pair of sort definitions #sort1 = {b} and #sort2 =

[#sort1][1..100], then #sort2 consists of identifiers {b1, b2, ..., b100}.

2.1.1.2 Predicate Declarations

The third section of a SPARC program begins with the keyword predicates, which

is followed by statements of the form,

pred symbol(#sort name1, ...,#sort namen)

where pred symbol is an identifier and #sort name1, ...,#sort namen are sorts de-

fined in the previous section of the program. Additionally, multiple declarations

containing the same predicate symbol are not allowed, 0-arity predicates must be

declared as pred symbol(), and for any sort name #s the system automatically in-

cludes the declaration #s(#s). Predicates automatically included for a sort are

used to verify if an element belongs to that sort. For instance, let #sort1 = {a}
and #sort2 = {b} be two sorts of a SPARC program, then #sort1(b) and #sort2(a)

would be false, while #sort1(a) and #sort2(b) would turn to be true.

2.1.1.3 Program rules

The fourth section of a SPARC program starts with the keyword rules, which is

followed by standard ASP rules (as described in section 2.1), enhanced by consistency

restoring rules (cr-rule), that are of the form:

l0
+← l1, ..., lk, not lk+1, ..., not ln (2.1)

where ls are literals. A cr-rule, is a special type of rule that is only believed by

the program to be true if there is no way to obtain a consistent set of beliefs using

solely standard ASP rules. A cr-rule enables the integration of indirect exceptions

to defaults of ASP programs. Take the following ASP program as an example.

18 CHAPTER 2. THEORETICAL FRAMEWORK

p(X) ← c(X), not ¬p(X).

q(X) ← p(X).

c(x).

¬q(x).

Given observation c(x), and that p(x) has not been observed, the body of the

first rule is believed, and consequently p(x). Then, due to the second rule, q(x) is

also believed to be true, however, it contradicts observation ¬q(x). By adding to

the program above a cr-rule of the form ¬p(X)
+← c(X), its consistency would be

restored, since by including the cr-rule is the only way for the program to generate

non-empty answer sets. Furthermore, cr-rules are employed to model the contingency

axiom for rules that represent defaults over objects.

The contingency axiom states that “Any element of class c can be an exception

to the default d(X), but such a possibility is very rare and, whenever possible, should

be ignored”. That is, it is always possible for a default rule (such as the first one in

the program above) to be wrong about an object having a property when there is no

information about it. Thus, cr-rules make possible for an ASP program to retract

about all the consequences derived from mistakenly assuming something.

2.1.1.4 Answer sets

A set of ground literals S is an answer set of a SPARC program Π, with regular rules,

only if S is an answer set of an ASP program consisting of the same rules. However,

in order to define the semantics of a general SPARC, it is necessary to define it as

a CR-Prolog program (after all, SPARC is a sorted version of CR-Prolog). Thus, a

CR-Prolog is defined by a tuple of four elements: a) A signature, b) a collection of

regular ASP rules, c) a collection of rules of the form of Eq. 2.1, and d) a partial

order defined on the sets of cr-rules. According to [Gelfond and Kahl, 2014], the

inference engine of CR-Prolog supports only two relations:

1. ≤1: R1 ≤1 R2 holds if and only if R1 ⊆ R2.

2. ≤2: R1 ≤2 R2 holds if and only if |R1| ≤ |R2|.

2.1. ASP: ANSWER SET PROGRAMMING 19

Now, let α(r) denote a regular ASP rule obtained from a consistency restoring rule

r by replacing
+← by ←; α is expanded in a standard way to a set R of consistency

restoring rules, i.e. α(X) = {α(r) : r ∈ R}. Also let Πr and Πcr be sets of regular and

consistency restoring rules, respectively, of a CR-Prolog program Π, then abductive

support and the semantics for a CR-Prolog program are defined as follows.

Definition 12 A minimal (with respect to one of the partial orders ≤1 or ≤2) col-

lection R of cr-rules of Π, such that Πr

⋃
α(R) has at least one answer set, is called

an abductive support of Π.

Thus, a set A is called an answer set of a CR-Prolog program Π if A is an answer

set of a regular program Πr ∪ α(R) for some abductive support R of Π. Therefore,

if A is an answer set for a CR-Prolog program, then it also is an answer set for a

SPARC program.

2.1.2 Action Language for transition diagrams

Transition diagrams offer a feasible alternative to model systems that change over

time. A state transition diagram is a directed graph employed to model objects and

systems that have a finite amount of possible states. In a transition diagram graph,

the vertices represent states the system can reach, while the directed arcs denote

transitions, that correspond to certain event that triggers that transition from the

starting to the ending state [Attenborough, 2003]. Moreover, in a transition diagram

with a single agent system (for which it is assumed that the agent is the only entity

able to modify the state of the system), arcs will model the agent’s actions.

Given that action languages are formal models that serve as a tool to describe the

behavior of dynamic systems, as well as their respective transition diagram [Gelfond

and Kahl, 2014], they seem to be a natural approach to model the interaction of an

agent with its environment if the rules that govern such interactions can be provided.

Thus, the syntax for an action language is briefly described below.

An action language AL is defined by a sorted signature containing three spe-

cial sorts: statics, fluents and actions. Statics and fluents are properties that are

20 CHAPTER 2. THEORETICAL FRAMEWORK

employed to describe a domain (e.g., the robot’s location, or its battery charge sta-

tus). The difference between statics and fluents is that the value of a fluent can be

changed over time, while statics’ values cannot, furthermore, fluents are divided into

two subcategories: defined and inertial fluents. The difference between them is that

the value of a defined fluent depends on the value of other value of other fluents,

while the value of an inertial is independent to other fluents (e.g., for a program that

has fluents battery level and battery discharged that describe the level of charge of

a robot’s battery and whether it is discharged or not, the latter would depend on

the value of the former). Both statics and fluents are also called domain properties,

and a domain literal is a domain property p or its negation ¬p. If a domain literal

l is formed by a fluent, then it is called a fluent literal, otherwise, it is a static lit-

eral. With regards to the sort of actions, it will hold the set of actions an agent can

perform. In an action language AL, the following statements are allowed:

1. Causal laws:

a causes lin if p0, ..., pm (2.2)

2. State Constraints:

l if p0, ..., pm (2.3)

3. Executability Conditions:

impossible a0, ..., ak if p0, ..., pm (2.4)

where ai is an action, l is an arbitrary domain literal, lin is a literal formed by an

inertial fluent, p0, ..., pm are domain literals, k ≥ 0, and m ≥ −1 (in case that m =

−1, then keyword if is omitted). Thus, a system description SD of AL is a collection

of AL statements [Gelfond and Kahl, 2014]. Furthermore, non-deterministic causal

laws can be incorporated to describe stochastic transitions, i.e., transitions that have

a set of several possible ending states. To do so, a defined fluent must be added to Eq.

2.2, leading to Eq. 2.5. For non-deterministic rules, a defined fluent df is required to

define the set of literals that qualify as a possible outcome after performing action a

in a stochastic domain, such that every possible outcome is a literal, from {l0, ..., lq},
that satisfies df . The defined fluent can take as input arguments some of the literals

that are, either part of the rule’s premise or not; this will be up to the knowledge

2.1. ASP: ANSWER SET PROGRAMMING 21

the designer has on which fluents influence the effect of action a in the real world.

a can cause l0 or...or lq if p0, ..., pm such that df (2.5)

2.1.3 Action Language in SPARC

In order to define a system description of AL in SPARC, in [Gelfond and Kahl,

2014] a formulation to encode the signature and statements of a system description

is provided. Such notation, that converts an action language system description to

an ASP program, has its equivalent for a sorted language such as SPARC, which is

described below.

The encoding Π(SD) of a system description SD consists of a SPARC program

that results from the encoding of the signature of SD and rules obtained from the

statements of SD.

• Encoding of the signature: Let sig(SD) be the encoding of the sorted

signature of SD.

– For each constant symbol c of sort sort name other than fluent, static or

action, sig(SD) contains a sort definition #sort name such that sort name(c)

is true.

– For every static g of SD, sig(SD) contains the sort definition #static

such that static(g) is true.

– For every inertial fluent f of SD, sig(SD) contains the sort definition

#inertial fluent such that inertial fluent(f) is true.

– For every defined fluent f of SD, sig(SD) contains the sort definition

#defined fluent such that defined fluent(f) is true.

– For every action a of SD, sig(SD) contains the sort definition #action

such that action(f) is true.

• Encoding of the statements: Since only two time steps (0 and 1) are

required to encode a transition, then for the encoding of statements, the pair

22 CHAPTER 2. THEORETICAL FRAMEWORK

of time steps is encoded with the following sort definitions:

#const n = 1.

#step = 0..n.

Moreover, to simplify the description of the encoding, the notation of h(l, i)

and occurs(a, i) are introduced, where l is a domain literal, a an action and i

a time step. If f is a fluent, h(l, i) denotes holds(f, i) if l = f , or ¬holds(f, i)
if l = ¬f , at time step i. Also, occurs(a, i) denotes that action a occurred at

time step i. Thus, the statements of SD are encoded as follows:

– For every causal law

a causes l if p0, ..., pm

Π(SD) contains

h(l, I + 1)← h(p0, I), ...,

h(pm, I),

occurs(a, I),

I < n.

(2.6)

where Eq. 2.6 says that if at instant I the set of literals {p0, ..., pm}
are true, action a is performed and instant I is not that last instant of

time in the SPARC program, then the fluent l will be true at instant I+1.

– For every non-deterministic causal law

a can cause l if p0, ..., pm such that df

Π(SD) contains

1{h(l, I + 1) : h(df, I)}1 ← h(p0, I), ...,

h(pm, I),

occurs(a, I),

I < n.

(2.7)

Similar to Eq. 2.6, Eq. 2.7 states that if the elements of the rule’s body

are true at instant I, then every fluent l that satisfies the defined fluent at

2.1. ASP: ANSWER SET PROGRAMMING 23

instant I is a possible outcome at instant I + 1. In SPARC, the notation

a{l : c}b describes the epistemic disjunction of every set of literals with

cardinality greater than or equal to a and less than or equal to b, where

every element l of each set satisfies property c.

– For every state constraint

l if p0, ..., pm

Π(SD) contains

h(l, I)← h(p0, I), ...,

h(pm, I).
(2.8)

where Eq. 2.8 states that if the set of literals {p0, ..., pm} is true at instant

I, then literal l will also be true at instant I.

– Π(SD) contains the Closed World Assumption for defined fluents:

¬h(F, I)← defined fluent(F),

not h(F, I).
(2.9)

where Eq. 2.9 says that if a defined fluent F was not observed to be true

at instant I, then the system will assume that it is false at instant I.

– For every executability condition

impossible a0, ..., ak if p0, ..., pm

Π(SD) contains

¬occurs(a0, I) or ... or ¬occurs(ak, I)← h(p0, I), ...,

h(pm, I)
(2.10)

where Eq. 2.10 states that if the set of literals {p0, ..., pm} is true at in-

stant I, then any of the actions in the set {a0, ..., ak} can be executed at

instant I.

24 CHAPTER 2. THEORETICAL FRAMEWORK

– Π(SD) contains the inertia axiom:

h(F, I + 1)← inertial fluent(F),

h(F, I),

not ¬h(F, I + 1),

I < n.

(2.11)

¬h(F, I + 1)← inertial fluent(F),

¬h(F, I),

not h(F, I + 1),

I < n.

(2.12)

where Eq. 2.11 and Eq. 2.12 state that the value of an inertial fluent F

at instant I + 1 will remain the same as from instant I, if the value of F

was not observed to change from instant I to I + 1.

– Π(SD) contains Closed World Assumption for actions:

¬occurs(A, I)← not occurs(A, I). (2.13)

Similar to Eq. 2.9 for defined fluents, Eq. 2.13 states that if action a

was not observed to occur at instant I, then the system will assume that

action a did not occur at instant I.

An important remark has to be made, although Eq. 2.5 and Eq. 2.7 are not part

of the definitions provided in [Gelfond and Kahl, 2014] (the main source document

for section 2.1.3) they are supported in SPARC and I believe this is the correct

section to present them as they will be required in chapter 4.

Thus, after defining the notation to encode a system description into a SPARC

program Π(SD), what remains is to specify what constitutes a transition within

the transition diagram represented by SD. Let h(σ0, 0) be an initial state and

occurs(a, 0) an action, then their encodings are:

2.2. MARKOV DECISION PROCESSES 25

h(σ0, 0) = {h(l, 0) : l ∈ σ0}
occurs(a, 0) = {occurs(ai, 0) : ai ∈ a}

Also, let Π(SD, σ0, a) = Π(SD) ∪ h(σ0, 0) ∪ occurs(a, 0), then a transition in the

transition diagram represented by the encoding Π(SD) is defined as follows.

Definition 13 Let a be a nonempty collection of actions and σ0 and σ1 be states of

the transition diagram T (SD) defined by a system description SD. A state-action-

state triple < σ0, a, σ1 > is a transition of T (SD) if and only if Π(SD, σ0, a) has

an answer set A such that σ1 = {l : h(l, 1) ∈ A}.

2.2 Markov Decision Processes

Markov decision processes are a framework employed to model, and eventually

solve (i.e. compute its policy), sequential decision problems in systems whose state

changes over time. An MDP is focused on problems that satisfy the following prop-

erties: a) time is discretized into instants of time, b) the system is controlled by an

agent, and c) the agent always knows with certainty its current state. Every time

an agent interacts with the world by executing an action, the state of the world

changes and the agent receives a reward (which depends on the world’s state at the

moment the action was performed) as a scalar real value. The main goal of an MDP

is to maximize the expected reward in the long run, thus, by assigning reward values

to state-action pairs a designer can model the desired behavior it expects from the

agent [Puterman, 2014].

A Markov decision process is formally defined by a tuple < S,A,Φ, R >, where

• S is a finite set of states {s1, ..., sn};

• A is a finite set of actions {a1, ..., am};

• Φ : S×A×S → [0, 1] is the state transition function that specifies a probability

distribution, for each state and action, over all states, where Φ(s, a, s′) is the

probability of ending in state s′ after executing action a while being in state

s; and

26 CHAPTER 2. THEORETICAL FRAMEWORK

• R : S ×A→ R is the reward function, where R(s, a) is immediate reward the

agent receives after performing action a in state s.

Once the four tuple of an MDP problem has been fully-defined, what follows is to

solve the MDP, however, since its main objective is to maximize its expected utility

in the long run, it is necessary to define first what the MDP shall consider long term.

From this question, MDPs are classified into two categories: a) finite horizon and b)

infinite horizon. For finite horizon problems, the process is bounded by a fixed finite

known duration, whereas for infinite horizon problems we do not know how long the

decision making process will last.

Knowing how much time is left to finish a task is an important aspect that should

influence the behavior of a rational agent, lets take the example of a basketball

player agent. In basketball, there is a 24 seconds period of possession within which

the players of the team that has the ball are forced to make a shoot, or otherwise,

the ball is given by the referee to the other team and the timer resets. If an agent

had the ball and there was plenty of time, the most intelligent thing to do would be

to wait until one of its teammates is in a good position to receive a pass and has

a high probability of scoring. However, if there was only a few seconds remaining,

the agent should shoot regardless of how far it is from the basket. It might have a

low probability of scoring, but it still beats its team chances to score if it decides to

make a pass to one of its teammates that are being guarded.

Figure 2.1: In the MDP framework, after the agent executes an action (a) it will immedi-
ately receive a reward (r) and update its state (s). In order to select an action, the agent’s
policy will revise its state and decide which action turns to be the best one.

2.2. MARKOV DECISION PROCESSES 27

Once we have an MDP tuple defined, and we know whether it is a finite or infinite

horizon problem, the MDP is solved and a policy is obtained. A policy can be seen

as a function that tells the agent what is the best possible action to be made, based

on its current state. Hence, policies for finite horizon MDPs are known to be non-

stationary with respect time, while optimal policies for infinite horizon problems,

under some circumstances, can show a stationary behavior [Sucar, 2015].

2.2.1 Policies

Let a decision rule be a function dt : S → A that chooses an action based on an

state for a given instant. Decision rules are namely classified by two aspects: how

information from previous instants of time is included, and by the way they select

actions. Hence, there are four different types: history dependent and deterministic

(HD), history dependent and randomized (HR), Markovian and deterministic (MD),

and Markovian and randomized (MR); where history dependent rules integrate infor-

mation on past states and actions to select an action, while Markovian rules depend

only on their current state (as any system that has the Markovian property). A

deterministic decision rule dt selects an action based on some historic data dt(ht)

(history dependent) or its current state dt(st) (Markovian). On the other hand, a

randomized decision rule specifies a probability distribution function over the set of

actions, also, based on historic data qdt(ht)(·) or its current state qdt(st)(·) [Puterman,

2014].

A policy for an MDP, is a Markovian deterministic decision rule (since it bases

its decision solely on the agent’s current state, in a deterministic way), and also a

function π : S → A that selects an action ai ∈ A for every state sj ∈ S, where A

and S are the sets of actions and states of the MDP, respectively. Furthermore, an

optimal policy π∗ selects the best action, i.e. that maximizes the expected reward in

the current state. For an infinite horizon MDP, with a discount factor of 0 ≤ γ < 1,

the optimal policy is described by equation 2.15, which is obtained from equation

2.14 (Bellman equation [Bellman, 1957]).

V π(s) = maxa

{
R(s, a) + γ

∑
s∈S

Φ(s, a, s′)V π(s′)

}
(2.14)

28 CHAPTER 2. THEORETICAL FRAMEWORK

π∗(s) = argmaxa

{
R(s, a) + γ

∑
s∈S

Φ(s, a, s′)V π(s′)

}
(2.15)

Vt(s) = maxa

{
R(s, a) + γ

∑
s∈S

Φ(s, a, s′)Vt−1(s
′)

}
(2.16)

Among the methods used to find an optimal MDP policy, value iteration is one

of the basic methods. It starts by initializing the value of every state with 0, and

iteratively updates state values with equation 2.16 for every state and action. This

update operation is repeated until |Vt(s) − Vt−1(s)| < ε is true for every state, for

certain convergence threshold ε. Furthermore, as an alternative to value iteration,

policy iteration is a policy solving algorithm that, although has greater computa-

tional complexity, tends to converge in fewer iterations than value iteration [Sucar,

2015].

2.2.2 Partially Observable Markov Decision Processes

Full observability of the system’s state is an assumption that holds for many se-

quential decision problems, thus, an MDP is employed in such cases. For instance,

a dice player agent could be modeled as an MDP since the outcome of throwing a

dice is uncertain, however, the agent can know with certainty the state that is being

reached, say the sum of a couple of dices. Yet, there are domains that do not comply

this assumption, being robotic systems one of those. For these domains, there is an

extension to the MDP framework, known as partially observable Markov decision

processes (POMDP). A POMDP is an MDP that relaxes the full-observability as-

sumption for states, and does not know with certainty its true state. A POMDP

employs a probability distribution function over the state space, called belief state,

to keep a track of its location within the belief space, i.e., where it believes it is

[Kaelbling et al., 1998].

A partially observable Markov decision process is formally defined by a tuple

< S,A,Φ, R,O,Ω, B0 >, where

• S is a finite set of states {s1, ..., sn};

2.2. MARKOV DECISION PROCESSES 29

• A is a finite set of actions {a1, ..., am};

• Φ : S×A×S → [0, 1] is the state transition function that specifies a probability

distribution, for each state and action, over all states, where Φ(s, a, s′) is the

probability of ending in state s′ after executing action a while being in state s;

• R : S ×A→ R is the reward function, where R(s, a) is the immediate reward

the agent receives after performing action a in state s;

• O is a finite set of observations {o1, ..., ol};

• Ω : S × A× O → [0, 1] is the observation function that specifies a probability

distribution, for each state and action, over all observations, where Ω(s, a, o)

is the probability of perceiving observation o after taking action a and state s

is reached; and

• B0 is the initial state distribution that describes the probability of being in

each state at the first instant of time.

Figure 2.2: In the POMDP framework, after the agent executes an action (a), it will im-
mediately receive a reward (r) and perceive an observation (o), by means of measuring
the environment with some sort of sensor. In order for the agent’s policy to select the best
action, first, it updates its belief state distribution (b), using the latest action, observation
and the current belief distribution.

Instead of tracking the agent’s state, the belief state is updated at every time step,

based on the its latest action, observation and current belief state, using equation

30 CHAPTER 2. THEORETICAL FRAMEWORK

2.17, where η is a normalizing coefficient. Moreover, according to [Kaelbling et al.,

1998] if the belief state is properly computed, then there is no information that

previous observations and actions could provide, so that the agent would gain more

knowledge of its current state.

bt+1(s
′) = ηΩ(s′, a, o)

∑
s∈S

Φ(s, a, s′)bt(s) (2.17)

With regards to the policy of a POMDP, just like an MDP policy, it is a Markovian

deterministic decision rule, however, instead of selecting an action given its current

state, it determines which of the policy’s α-vectors bounds the region (in the be-

lief space) that contains the point equivalent to the current belief state, then, it

selects the action associated to that α-vector [Pineau et al., 2003]. In fact, there are

also versions of value iteration and policy iteration [Braziunas, 2003] for POMDPs,

however, because computing optimal policies for POMDPs becomes computation-

ally intractable as the problem grows, several methods have been proposed and have

shown to provide near optimal solutions by taking an approximate approach, for

instance, PBVI [Pineau et al., 2003] (which is employed in the research presented in

this document), PERSEUS [Spaan and Vlassis, 2005], SARSOP[Kurniawati et al.,

2008].

2.3 Hierarchical Reinforcement Learning

Reinforcement learning (RL) is concerned with problems that model a dynamic

system, i.e. changes over time, as a set of states and actions, where the objective

is to have an agent to learn a behavior that, through actions, controls the system’s

state in a way that maximizes certain criterion of optimality [Kaelbling et al., 1996].

Because MDPs use states and actions to model the interaction between an agent

and its environment, they have become standard framework to model RL problems,

among which we find decision theoretic planning to be one of them.

With regards to algorithms used to solve an MDP, there are two main types:

model-based and model-free. This dichotomy arises from the assumption that the

transition-state and reward functions, Φ and R respectively, are available to the

algorithm (model-based). On the other hand, model-free algorithms estimate these

2.3. HIERARCHICAL REINFORCEMENT LEARNING 31

functions by means of interacting with the environment. However, both approaches

have difficulties to scale for large and complex problems.

Hierarchical reinforcement learning (HRL) aims at using the structure of a problem

to decompose it into several sub-problems, that are individually easier to solve and

whose solutions can be combined to solve the original problem, commonly known as

the divide and conquer strategy [Hengst, 2012]. Particularly, HRL focuses on systems

that show a hierarchical structure, that is, they are constituted by several sub-

problems that might also have a hierarchical structure. According to [Polya, 1945],

hierarchical systems have the nearly decomposable property which refers to the fact

that intra-component links are stronger than inter-component linkages, therefore,

enabling the transformation of a hierarchical problem into an equivalent hierarchy

of several, hopefully smaller, problems.

Since HRL is concerned on specifying a useful hierarchical decomposition of an

RL problem, and RL problems are partially defined by a set of actions and a set

of states, the concepts of abstract action and state abstraction present two ways

in which the decomposition of the problem can take place, each offering different

advantages that should be analyzed to determine if they suit a particular problem,

both are described below.

2.3.1 Abstract actions

Abstract actions are defined as temporally persistent actions, given that when they

are invoked, a sequence of several actions takes place leading to a multi-step duration

action. In the context of HRL, abstract actions are modeled as policies, that are

invoked by a policy (parent action) and in turn invoke other policies (child action).

For RL problems that are decomposed into several MDPs, if an MDP incorporates

abstract actions, it is known as a semi Markov Decision Process (SMDP) [Puterman,

1990], which is a formalism to model abstract actions as a generalization of primitive

actions (those in the original MDP’s set of actions) by adding the variable of time

to describe the amount of steps an action lasts. Thus, primitive actions are a special

type of abstract action that always last one time-step.

32 CHAPTER 2. THEORETICAL FRAMEWORK

From the parent-child relationship between abstract actions arises a structure that

represents the behavior of the agent, as shown in Fig. 2.3. Moreover, if such structure

is made of SMDPs, it is called a task hierarchy [Dietterich, 2000], in which nodes

with children nodes are abstract actions, while those with no children are primitive

actions, since they cannot invoke other actions. Furthermore, if there is knowledge

available on the problem at hand, a designer could use it to define a task hierarchy

that might help to learn the overall policy faster than a standard MDP would.

Figure 2.3: By means of a parent-child relation, a task hierarchy describes the tasks that
must be solved (child tasks) before attempting to solve more general and complex tasks
(parent tasks). For instance, in an apartment that had no furniture, just dirty dishes and a
dusty floor, cleaning chores would consist of sweeping the floor and washing the dishes.
However, in order to solve these last two tasks, a robot must first be able to sweep, move
through the apartment, scrub and rinse dishes.

2.3.2 State abstraction

An abstracted state space is smaller than the original one (in which every state the

system can take is included), and leads to RL problems with a smaller complexity.

Since the reduction or abstraction of the state space could endanger the possibility of

finding a solution for the task at hand, i.e. by omitting relevant information about

the system’s state or a state that is necessary to eventually transit to a goal state,

in [Dietterich, 2000] are presented two conditions under which state abstraction can

be performed: eliminating irrelevant variables and funneling.

• Eliminating Irrelevant Variables: Variables that do not have an effect on

the learning process of a policy for a given task can be omitted, since the

state-transition and reward signal do not depend in any way to the value of

2.3. HIERARCHICAL REINFORCEMENT LEARNING 33

such variables. For instance, learning to grasp a glass bottle in a kitchen during

summer, should be exactly the same to grasping the same bottle during winter,

thus, the variable that describes the current season could be safely removed

from the learning process. Thus, by ignoring an irrelevant variable, the states

that differ only in the value of the ignored variable are grouped into a single

block, leading to a reduced state space in which each block is a state.

• Funneling: For decomposed problems in which abstract actions tend to finish

their execution within a small set of states after they are invoked from an

element of a large set of initial states, then the original state space can be

reduced to a space in which each state corresponds to the set of resulting

states of each abstract action. Because the starting state does matter as much

as the ending state, modeling only resulting states maintains the amount of

information required to finish the overall task, while it might significantly

reduce the complexity of the problem.

2.3.3 Optimality

As good as HRL is in terms of reducing a problem’s complexity, it also has a major

drawback. Given that by decomposing a task into several smaller ones, it is necessary

to specify what a goal is for each one of these new sub-tasks, which in the context

of the original problem can be seen as sub-goals. Each sub-goal is modeled in a way

that induces an optimal behavior within its sub-task, however, depending on the

problem’s decomposition, this same behavior might or might not be optimal in the

context of the original problem, since sub-goals incorporate information relevant to

their respective sub-task. Therefore, three different criteria of optimality are defined

to describe the quality of local policies in a hierarchy. These concepts are presented

below and Fig. 2.4 summarizes how they rank against each other.

• Hierarchically optimal (HO): A hierarchically optimal policy for MDP M

is a policy that achieves the highest cumulative reward among all policies

consistent with the given hierarchy [Dietterich, 2000]. That is, local policies

that seek to maximize the hierarchy’s overall reward, which strongly depends

on how sub-goals are modeled.

• Recursively optimal (RO): A recursively optimal policy is one that seeks to

34 CHAPTER 2. THEORETICAL FRAMEWORK

maximize the reward within its local sub-task, regardless of what its resulting

state would mean in a broader scheme for the global problem.

• Hierarchical greedy optimality (HGO): Since the conditions that make

a given abstract action the best option might change along the way during

its execution, by committing to finish it might induce a sub-optimal behavior.

Thus, [Dietterich, 2000] defines a hierarchical greedy execution as the process

of constantly interrupt the execution of an abstract action to evaluate at in-

between time steps if there is a better abstract action that should take control.

Figure 2.4: Since RO policies consider only local information they cannot do better than
HO. According to [Hengst, 2012], although HGO does not offer any guarantee for global
optimality (GO), it does guarantee to be no worse than HO, thus, it is safe to rank HGO
right between GO and HO.

2.4 Chapter Summary

In this chapter, the basic theory on answer set programming, partially observable

Markov decision processes and hierarchical reinforcement learning has been pre-

sented, which is employed in the work of this thesis document. By using an ASP

language such as SPARC in tandem with an action language, it is possible to model

stochastic dynamic systems as non-deterministic transition diagrams from a system

description, encoded as an ASP program made of sorts, predicates and rules. Also,

the POMDP framework has been introduced as a tool to model planning problems

in partially observable environments, as well as some approximate model-based al-

gorithms to compute its policy. Finally, basic theory on hierarchical reinforcement

learning, including hierarchical system, abstract action, state abstraction and types

of optimality for policies within hierarchical structures, have been presented to show

how standard reinforcement learning concepts are incorporated in hierarchical solu-

tions.

Chapter 3

Related work

Task planning in service robotics is a problem that has been addressed in a variety

of approaches that differ mainly in the representation used to model the problem, as

well as the way the planning system interacts with the domain. In order to present

an analysis of the most related research, the reviewed literature has been grouped

in two sections. First, related work on architectures designed for service robotics

applications is presented. Next, hierarchical approaches for MDPs and POMDPs are

summarized. This chapter is concluded with a discussion of the reviewed literature,

with the purpose to establish where this work presented stands compared to the

analyzed research.

3.1 Architectures applied towards service robotics

Since in domestic robotics domains, task planning problems can encompass a wide

variety of tasks, it is necessary to endow service robots with a representation model

that integrates into a single framework all these tasks in order to generate plans

that solve all of them. According to [Ingrand and Ghallab, 2017], approaches for

the specification of deliberation models for planning and acting can be grouped in

two categories: single model and multiple model. While the former comprises into

a single representation both, descriptive models (those employed to the describe the

scenario’s state) and operational models (those used to specify how actions should

be performed), the latter approach uses separate representations, which leads to

35

36 CHAPTER 3. RELATED WORK

a design philosophy that promotes modularity, as several operational models are

supported. In this section, a collection of architectures are presented, which employ

the multiple model approach in tandem with a diversity of planning techniques to

address the problem of task planning in service robotics.

In [Galindo et al., 2008], in order to represent the environment they use seman-

tic maps, which combine hierarchical spatial information and semantic knowledge,

which is employed as the search space for task planning problems. Such structures

model spatial connectivity between locations and semantic labels for them. By as-

signing a label to each location, the architecture can infer implicit information such

as those objects that are most likely to be there. With its inference mechanism,

the system is able to discard locations that are irrelevant for a particular planning

problem, thus improving planning efficiency with respect to not using inference.

One of the greatest challenges robots must face when solving task planning prob-

lems is reasoning with incomplete information and the partial observability of the

environment. For instance, [Weser et al., 2010] address both challenges by defining

a set of possible exceptions which are handled either by re-planning or planning for

the purpose of gathering missing information. Also, in order to fill for incomplete

information the architecture is able to integrate assumptions that, if wrong, the ac-

tual scenario is treated as an exception and re-planning is performed. Alternatively,

[Chen et al., 2010] deal with incomplete information by integrating to their plan-

ning architecture a natural language processing (NLP) module to gather domain

related information via spoken dialog. The architecture has a knowledge base where

new information is stored and used for future task planning problems, by means of

non monotonic inference, using answer set programming (ASP). One of the major

contributions of this work is that, thanks to the expressive power of ASP, the sys-

tem is able to acquire new causal knowledge through dialogs, which demonstrate to

increase the types of tasks it can solve. Furthermore, [Hanheide et al., 2011] pro-

pose an architecture that integrates a conceptual layer (very similar to the semantic

knowledge graph from [Galindo et al., 2008], see Fig. 3.1) that models commonsense

knowledge with probabilistic relations among concepts represented in a graph; such

relations are computed using co-occurrences from the locations database provided

by the Open Mind Indoor Common Sense project. They use Bayesian inference to

update the probability of relations when new evidence is perceived. What is more,

3.1. ARCHITECTURES APPLIED TOWARDS SERVICE ROBOTICS 37

they use a switching planning system that interleaves between a deterministic clas-

sical and a decision theoretic planner; by integrating a POMDP, their architecture

is able to execute actions that have several possible outcomes.

Figure 3.1: Image taken from [Hanheide et al., 2011], shows the conceptual map that
integrates into a single framework concepts and instances of objects that describe the en-
vironment at different layers of abstraction. Elements in the conceptual map are linked
with deterministic and probabilistic relations, that altogether are employed to represent
and reason about commonsense knowledge. As new sensory data is perceived, the rela-
tional representation is compiled into a chain graph and Bayesian inference is preformed.
For plan execution, the planner starts executing a sequence of actions until the probability
of the outcome goes below 0.95, then it switches to decision-theoretic planning.

Besides being robust against incomplete information of the world’s state, efficiency

in planning turns to be essential, since service robotics applications are user-event-

driven (i.e., most of them are triggered by an action executed by the human user)

and short response times are required. In [Kaelbling and Lozano-Pérez, 2011] this

issue is addressed by combining symbolic and geometrical planning, and using a

hierarchical top-down approach to decompose abstract actions into more primitive

ones. They model the domain’s states with conjunctions of fluents, and actions as

causal rules. The main advantage this architecture has over classical planners is that

it constructs a plan at an abstract level of the hierarchy and commits to it, then

38 CHAPTER 3. RELATED WORK

proceeds to plan and execute actions to complete the first task, without building

the remaining of the plan. However, this approach relies on the assumption that the

execution of a first step will not preclude the execution of following steps is true,

which might not always be the case. As a matter of fact, the hierarchical approach by

which problems are decomposed into more simple ones, has been adopted by many

authors in the design of general purpose architectures, probably because it provides

an elegant way to solve subtasks separately and combine their outputs into a single

solution. Such is the case of [Keller et al., 2012], which propose an architecture for

a planning application, which in turn is part of a larger service robot system. They

use a symbolic representation of the domain over which plans of high-level actions

are built, while the details of how these actions are performed are encapsulated in

independent modules called semantic attachments, that take care of the information

required to execute a particular action. In this way, by having separate models for

the planning and execution components, the architecture supports the integration

of new skill sets without modifying those that are already part of the system.

Given that the representations employed for task planning to model the world

in which the agent is confined, are actually an abstraction (a simplification that

does not include aspects considered irrelevant for the task at hand), it is possible to

leave out some phenomena that might influence variables that are part of the model.

Because the representation does not have the elements to explain nor predict such

phenomena, unexpected events are usually modeled as uncertainty. One way plan-

ning architectures deal with uncertainty is by re-planning when the representation

of the state of the world they have is inconsistent with the observed evidence, just

like [Weser et al., 2010] do. However, depending on the amount of variables that

must be considered, re-planning can become a computationally expensive process

(in terms of time) that service robotics application cannot afford. Instead, some

authors go beyond rectifying a failed plan, by including probability distributions of

the agent’s actions in the planning process. For instance, in [Zhang et al., 2012]

a non-monotonic logic programming language paradigm (ASP, for knowledge rep-

resentation and inference), and a hierarchical structure of POMDPs (for modeling

the uncertainty of sensors) are combined and evaluated in indoor domains to com-

plete the task of locating objects. They also merge the POMDP belief state with a

biased distribution generated from the information in the knowledge base of where

the object might be found; showing that the more the biased distribution is trusted,

3.1. ARCHITECTURES APPLIED TOWARDS SERVICE ROBOTICS 39

the less it takes to find an object, however, the accuracy also decreases (as a conse-

quence of the uncertainty in the state of the world, objects will not always be where

the prior knowledge base indicates). Furthermore, another interesting application of

non-monotonic representations can be found in [Pineda et al., 2017], where a knowl-

edge base is specified as a hierarchy of classes using a non-monotonic language, in

order to support defaults and exceptions. Their system was evaluated in a real ser-

vice robot, within a scenario in which the robot takes petitions from the user about

what object she desires to be brought to her. They show how their reasoning sys-

tem takes advantage of the inheritance of properties, among objects in the hierarchy

of classes, to adapt to unexpected situations (such as an object being tipped over,

hence, precluding its grasping) and still be able to comply a request.

Extending the previous work, [Zhang et al., 2014] generalize the logic and proba-

bilistic based task planning architecture to a two-level scheme, in which at the high

level answer set programming is used for representation of the domain and reason-

ing, while at the low level abstract actions from the high level are implemented as

POMDPs. Both levels are coupled using a formalization based on an action lan-

guage [Gelfond and Kahl, 2014]. With this coupling, plans for any domain, that is

fully described in ASP, can be implemented as series of POMDPs, in this way they

take advantage of the best of both classical and decision-theoretic planning. Also, in

[Zhang et al., 2015] the authors evaluate how by integrating default knowledge into

an architecture that combines declarative programming and probabilistic models can

improve its accuracy on locating objects within an office environment. Furthermore,

their system is able to terminate the search of an object based on a beta distribu-

tion (models the target existence), whose prior is computed using the evidence in the

knowledge base and the amount of times the desired object was found to exist or not

in previous searches in other similar domains. This work shows how a task planning

architecture can use historical knowledge to improve the behavior of a robot, i.e.

by deciding that a particular search task cannot be solved, without having to visit

every existing location.

In [Sridharan, 2016], they integrate to an architecture, that uses a declarative

programming along with POMDPs, the capacity to learn new knowledge about its

environment, as a reinforcement learning problem. In this way, the system is able

to learn previously unknown domain rules. The architecture’s learning skills were

40 CHAPTER 3. RELATED WORK

evaluated on multiple simulated trials in which the robot had to arrange objects in

specific configurations. At the beginning of the experiments some relevant axioms

were not given to the robot on purpose, which eventually led to failed plans. How-

ever, once the architecture learned the initially missing rule (e.g. that bigger books

should not be stacked on smaller ones), and added them to its domain description,

it was able to generate successful plans. Alternatively, [Chen et al., 2016] propose a

general purpose architecture that uses a plan-execute-monitor-re-plan control loop

that enables the system to continuously update its representation of the world’s

current state via sensory data and human-robot interaction. In this way, the robot

increases the amount of facts stored in its knowledge base (which can be seen as a

form of learning), that are used to generate future plans that are consistent with the

latest version of the world’s state. From experimental results, they show that despite

the architecture does not integrate probabilistic models, by means of continuously

sensing and consulting information from humans, they can mitigate uncertainty to

such degree that a symbolic representation and planning system is sufficient for a

service robot designed to take orders from people. Furthermore, in [Zhang et al.,

2017] a logic-probabilistic-based architecture shows to be robust against exogenous

phenomena without including it in its model. When the low level components of the

system, those in charge of performing the concrete actions, perceive an observation

that leads to facts that are inconsistent with the description of the world in the

knowledge base, the world’s description is updated, a new set of possible states is

computed, and used to build on-the-fly an MDP that considers the latest evidence

into its planning process. The architecture’s adapting capability is evaluated in a

navigation problem, which has a random walker in the hall as exogenous phenomena.

In this experiment it is shown that by including new evidence in the construction of

the MDPs (which perform the planning between two point in the environment), the

system significantly reduces the time consumed in execution, in comparison to not

adapting to evidence of exogenous events.

In addition to using sensory information to update an architecture’s knowledge

base to adapt to external changes of the environment that were not initially mod-

eled, other approaches have been proposed to handle the large environments service

robots are usually immersed in. That is, since architectures that use a symbolic

representation and deterministic planning rely on hand-crafted descriptions of the

problem’s domain, by automating the acquisition of domain knowledge a system

3.1. ARCHITECTURES APPLIED TOWARDS SERVICE ROBOTICS 41

would not be limited by the designer’s expertise. For instance, [Lu et al., 2017] in-

tegrate to a service robot task planning architecture a mechanism to automatically

build causal rules from an online repository of semantic dictionaries (FrameNet1). A

meta-language is presented to formalize the semantic roles of common verbs found

in the repository, then the descriptions of actions are converted from meta-language

to causal rules in answer set programming (which is the language used for symbolic

representation and planning). Once the system has built a set of abstract actions

(that are implemented by other low level actions the robot was initially endowed

with) from FrameNet, it is ready to receive task petitions issued by a user. On

the other hand, although the amount of actions the system is capable of building

depends greatly on the semantic parser used to retrieve frames (which is how ac-

tions are grouped in FrameNet), through experimentation the authors show that

by combining the answer set programming planner and their retrieval method, they

significantly improve the system’s capability to generate plans in comparison to not

using semantic online information.

Another approach that has revealed to be a feasible alternative to tackle the com-

plexity of planning in service robotics applications, is modeling the environment as

an open world, i.e. instead of assuming that the elements of a domain can be listed,

the system starts with a knowledge base whose size is increased as the agent gathers

new observations via sensory input; such approaches require of methods that enable

planning with incomplete information and a high degree of uncertainty. Such is the

case of [Hanheide et al., 2017], which proposes an architecture that operates within

open and uncertain worlds by using a series of assumptions to fill in for the missing

information at planning time. Their architecture makes a distinction between the

knowledge that is known to be true by fact, and the assumptions about the value of

unknown variables. The values assumed to be true are used to guide the determin-

istic planning process when relevant information has not been discovered yet, which

results in a sequence of actions that are executed afterwards; if an action has several

possible outcomes, then a POMDP is built for that section of the planning problem.

In this way, the architecture confronts uncertainty and, what is more, is capable of

generating explanations for failed plans. From their experiments, the architecture

was observed to be robust on exploration tasks, however, it only succeeded half of the

runs on searching for an object in the environment, because in some cases planning

1https://framenet.icsi.berkeley.edu/fndrupal/

42 CHAPTER 3. RELATED WORK

took too long, while in others errors in the robot’s sensors caused the failure. Al-

together, the system demonstrated a robust behavior for exploration tasks, whereas

search tasks with few information still constitute a difficult problem.

In addition to being able to handle incomplete information, partial observability,

uncertainty, and large environments, the generality of task planning architectures is

also an important parameter due to the high degree of task diversity and variability

found in service robotics applications [Ingrand and Ghallab, 2017]. For instance,

[Köckemann et al., 2018] propose to use general purpose domains (GPD) as an

approach for task planning in real-world robot systems. They claim that it is easier

to extend a general domain to a particular context than creating a new one; which

is more likely to hold when several tasks will be addressed with the same robotic

platform. The problem of domain reasoning is described as determining a specific

domain to be used by a task planner given a GPD and the current context. In

other words, domain reasoning can be seen as a function that maps a GPD to a

particular domain, as a result of performing a series of modifications to the original

one, e.g. variable substitution, removing unwanted constraints and operators, and

structure generation/alteration; thus offering an alternative to address the problems

of scalability and extensibility in the deployment of robotic systems. Meanwhile,

[Lima et al., 2018] use an architecture composed of a planning coordinator and a set

of automatons that implement high level actions, in this way the details related to

a particular task, such as navigation or object manipulation, are hidden within each

independent automaton; another important consequence of separating the task and

motion planning is that the size of the task planner’s search space can be significantly

reduced in comparison when these problems share the search space. The planning

coordinator, which in turn is an automaton, implements a control loop that generates

a plan whenever new facts are added to the knowledge base, or the current plan failed.

Once a plan is generated, by means of deterministic planning, each of its actions are

executed by one of the high level action automatons.

Furthermore, [Sridharan et al., 2018] propose a general purpose architecture that

combines the advantages of non-monotonic logical inference and probabilistic prob-

abilistic reasoning in a single framework. A two-level hierarchical representation of

the domain is used in order to reduce the computational cost of the deterministic

planning (which occurs at a coarse resolution level), while the uncertainty associ-

3.1. ARCHITECTURES APPLIED TOWARDS SERVICE ROBOTICS 43

ated to the output of sensors, as well as executing actions that change the state of

the environment, is handled by a POMDP at the fine resolution level. The coarse

and fine levels in the hierarchical representation are coupled by a methodology that

converts a coarse transition diagram (expressed in an action language) into a fine

resolution version, from which a POMDP is derived. Among the main contribu-

tions of this work stands out that they detail the formalization used along with the

action language in order to generate a description of a domain that can be used

in their hierarchical representation. Through a set of experiments, they show how

their architecture significantly improves its performance in comparison with a simple

POMDP in terms of planning time, amount of executed actions, and success rate.

In Table 3.1 we present a brief comparison of the reviewed architectures. Among

the reviewed features, those architectures that were designed for general purpose

and perform some sort of hierarchical planning are highly desirable, since they would

not be restricted to a domain in particular and, probably, would scale better than a

system that does not employ a hierarchical approach in the face of large problems.

By employing a non-monotonic representation, the system does not need to revise

for consistency in its knowledge base as new knowledge is added. Moreover, decision-

theoretic planning enables robust planning in uncertain domains, while deterministic

planning provides explainability on the agent’s actions. In section 3.3 a discussion

is presented, which includes an analysis on how the proposed architecture stands in

comparison to the reviewed architectures, with respect to the features presented in

Table 3.1.

44 CHAPTER 3. RELATED WORK

Table 3.1: Comparison of task planning architectures, which are summarized by the as-
pects reviewed in section 3.1. The second and third columns specify if an architecture
integrates deterministic and probabilistic planning techniques, respectively. The fourth
column indicates if some form of hierarchical decomposition is performed to the planning
problem, while the fifth and sixth columns show those architectures that incorporate a
non-monotonic representation language and are not restricted to a particular type of task
planning problem.

Author Deterministic
planning

Decision-
theoretic
planning

Hierarchical
planning

Non-monotonic
representation

General
purpose

[Galindo et al., 2008] x x
[Weser et al., 2010] x x x
[Chen et al., 2010] x x x x

[Hanheide et al., 2011] x x x x
[Kaelbling and Lozano-Pérez, 2011] x x

[Keller et al., 2012] x x
[Zhang et al., 2012] x x x x
[Zhang et al., 2014] x x x x x
[Zhang et al., 2015] x x x x
[Sridharan, 2016] x x x x
[Chen et al., 2016] x x x
[Zhang et al., 2017] x x

[Lu et al., 2017] x x
[Hanheide et al., 2017] x x x x

[Köckemann et al., 2018] x
[Lima et al., 2018] x x x

[Sridharan et al., 2018] x x x x x
Our architecture x x x x

3.2 Hierarchical approaches for solving MDPs and POMDPs

Given that MDPs provide a framework to model sequential decision making prob-

lems that encompass events with uncertainty in their outcome, they have become the

standard model for planning problems in robotics. Among its variants, POMDPs

stand out due to their capacity to plan in scenarios where full observability of the

state is not met. However, as the size of the problem’s state space increases, to

compute the policy of either of them becomes intractable. In an effort to reduce

the computational burden that represents computing policies, among others, hier-

archical approaches have been proposed, which consist in decomposing the problem

into several smaller sub-problems, and arranging them into a hierarchy, so that the

solution for the original problem can be obtained by combining the solutions to the

sub-problems. Hierarchical approaches offer advantages such as solving smaller (and

thus easier) problems, policies can be reused across different contexts, and state un-

3.2. HIERARCHICAL APPROACHES FOR SOLVING MDPS AND POMDPS 45

certainty can be decreased (in case of POMDPs that perform state abstraction). In

this section, research related to hierarchical MDPs and POMDPs is presented, in

which some form of hierarchical decomposition is performed.

[Hauskrecht et al., 1998] propose a hierarchical model that employs MDPs along

with macro-actions in order to reduce the time required to converge to an optimal

solution. Among the most important consequences of employing macro-actions is

that the state space of the MDP is a subset of the original problem, due to each

macro-action is designed to transit the agent between a particular pair of states from

the original state space. Once the original state space has been divided in subregions

(state abstraction), those states that are adjacent to a subregion to which they do

not belong are called peripheral states, and are the ones that constitute the MDP’s

set of states. Furthermore, since the MDP’s state space can be drastically smaller

than the problem’s original space (which includes every state the system can take),

this framework offers an alternative to address large problems, however, it has the

major drawback that the point of convergence of the learned value function strongly

depends on the design of the macro-actions. Given that the ending state of each

macro-action is hand crafted, there is a risk that the agent reaches a state for which

there is no permutation of macro actions that can take it to the goal state from

there.

[Pineau et al., 2001] use an action decomposition approach. Instead of structuring

the state space, they define a hierarchy of tasks in which leaf nodes represent con-

crete actions, while internal nodes correspond to abstract actions defined by a set of

child nodes, which in turn may be abstract or concrete actions, see Fig. 3.2. In this

framework, each subtask is implemented as a POMDP whose actions are the child

nodes in the task hierarchy, while its sets of states and observations correspond to

those of the original problem. For each POMDP, a local optimal policy is computed;

this is done in a bottom-up approach, by first solving those subtask that have only

concrete actions as children, and then propagating upwards the parameters for the

transition, observation and reward functions of its parent subtask by means of the

children policies. Also, in order to reduce the size of the overall hierarchy, on a

subtask basis they perform a reduction of the state space to those states that are

relevant. Moreover, in [Pineau and Thrun, 2002], which is an extension of the pre-

vious work, they keep the action decomposition approach to build a hierarchy of

46 CHAPTER 3. RELATED WORK

POMDPs, however, among the upgrades made since the last version, the clustering

of states and observations is the one that stands out. They extend the algorithm

for model minimization of [Dean and Givan, 1997] to also consider the probability

of perceiving observations when evaluating stability between clusters. Furthermore,

in order to minimize the set of observations, they keep those observations that have

a probability greater than zero of being perceived after one of the POMDP’s ac-

tions is executed, and reaches one of the states that remained after the state space

minimization. The framework is evaluated on three simulated domains, as well as

in a real world service robotic platform. Overall, their architecture appears to suit

information contingent problems, it also showed a good performance after operating

for two days and guiding six different elderly people. During this period of experi-

mentation, the robot had to handle high levels of uncertainty by interacting through

dialog with the assisted people.

Figure 3.2: Image taken from [Pineau and Thrun, 2002] shows an example of how tasks
are represented with a task hierarchy that decomposes the action space. In this example,
the original task is decomposed into the set of sub-tasks {h0,h1,h2,h3}, each one with
their respective set of actions, which may contain abstract ({a0,a1,a2,a3}) or concrete
({a4,a5,a6,...,a9}) actions.

Furthermore, besides using action decomposition to take advantage of the struc-

ture of partially observable domains related to service robotics, state abstraction has

3.2. HIERARCHICAL APPROACHES FOR SOLVING MDPS AND POMDPS 47

also been employed to exploit the underlying structure of such environments. For in-

stance, [Theocharous et al., 2001] propose a framework based on Hierarchical Hidden

Markov Models (HHMMs) [Fine et al., 1998] to build a hierarchy of POMDPs, see

Fig. 3.3. In this approach, HHMMs are extended by adding a set of actions to them,

which result in a hierarchical POMDP, also the hierarchical Baum-Welch algorithm

(used to learn HHMMs) is extended to suit hierarchical POMDPs learning. There-

fore, instead of using a dynamic programming approach to compute the hierarchical

POMDP’s policy, a set of sequences of observations are used to train the POMDPs

at the bottom of the hierarchy. In their experiments, they observed that hierarchi-

cal POMDPs that trained its low level sub-models separately, converge faster (and

sometimes to a higher value) than the flat model and the hierarchical model that

trained all its low level sub-models simultaneously. Also, [Theocharous and Ma-

hadevan, 2002] extend their previous framework by integrating multiple entry and

exit states to the concept of abstract state, which suits well for abstract states with

several neighbor states, such as corridor intersections. By having a multi-resolution

representation of the environment, and keeping track of the agent’s belief state at

each level, as shown in their evaluation results, the architecture is able to make good

decisions because it selects which macro-action will be executed at a level in the

hierarchy where the entropy of its true location is low (due to the small amount of

states at that level).

48 CHAPTER 3. RELATED WORK

Figure 3.3: Image taken from [Theocharous et al., 2001], shows an example of a hierar-
chical POMDP that is result of extending the HHMM framework with a set of actions. A
hierarchical POMDP has production states (leaf nodes), internal states (states that repre-
sent a stochastic process) and end-states (terminate the execution of a stochastic process
and return control to their parent node). During execution, to map the belief state to an ac-
tion, heuristics such as Most Likely State (MLS) and Q-MDP are employed. Furthermore,
in order learn a policy, instead of using Dynamic Programming techniques, the model is
trained from a set of sequences of observations, similar to how Hidden Markov Models
are learned.

3.3 Discussion

Each work analyzed in this chapter addresses task planning in robotics by propos-

ing a way to either, mitigate the computational cost of computing policies, reduce

the agent’s state uncertainty, or model a wider variety of tasks. In real scenarios,

service robots are expected to bear all these challenges simultaneously, hence the

need to develop systems that integrate a general representation that task planning

architectures usually employ, as well as the hierarchical decomposition performed

by works presented in section 3.2. Thus, this section presents a discussion on the

aspects (found in the analyzed literature) that are essential for the development of

a general task planning system oriented towards service robotics applications, and

which of those are part of the work presented in this thesis.

3.3. DISCUSSION 49

One of the main components of the proposed architecture is a knowledge base

that contains information about the dynamics of the service robot’s domain, a set

of descriptions for each skill the robot is capable of executing, information of the

underlying structures present in the domain, and a description of the particular

environment in which the robot will operate. The knowledge base is employed to

store a hierarchical representation of the environment’s state space, and build a

hierarchy of POMDPs that enable the agent to create a plan to solve a particular

task a user may request; for which the architecture was not specifically designed for.

In the case of [Pineau et al., 2001, Pineau and Thrun, 2002], despite they take

advantage of the hierarchical structure of the task at hand, and use a hierarchy

of POMDPs to handle uncertainty while executing a plan, their architecture does

not automatically generate a plan for a task other than the one represented by the

hierarchy task network from which the hierarchy of POMDPs was built. Meanwhile,

even though the architecture proposed by [Theocharous et al., 2001, Theocharous

and Mahadevan, 2002] does not depend on a specific task decomposition (since it

performs state abstraction), it does rely on the assumption that a set of training

examples on how to perform the task at hand will be available, which is difficult to

satisfy as the environment gets larger and the amount of actions available increases,

since the set of sequences that can possibly be perceived will increase even faster.

Also, besides having trouble to plan for a task without the specific details of it

beforehand, neither of both approaches (task decomposition and HHMM) shows a

methodology to integrate new skills in the planning process, which is necessary in

general purpose service robotics, given its high degree of task diversity [Ingrand and

Ghallab, 2017].

With regards to the reviewed task planning architectures that are constituted by

several components (for instance, knowledge base, multiple modules, multi-layered

structure, etc.), most of them integrate a deterministic planning component which

enables their systems to generate plans as a static sequence of actions. These type of

plans can be useful when used with a symbolic representation, however, for a service

robot they are insufficient due to the uncertainty on the effects of the agent’s actions

when it interacts with its environment. Even though some of these architectures

[Weser et al., 2010, Chen et al., 2010, Chen et al., 2016] include methods to mitigate

uncertainty (by constantly evaluating the state of the world in order to re-plan)

50 CHAPTER 3. RELATED WORK

they present a disadvantage compared to those works that do include probabilis-

tic planning techniques (such as MDPs and POMDPs) in terms of efficiency, i.e.,

despite computing a policy for an MDP or POMDP in many real world scenarios

has a high computational cost, this step is usually performed only once during the

planning process. On the other hand, a pure deterministic planning system might

be computationally more expensive, in the long term, as larger and more uncertain

problems are addressed, given that the amount of re-planning steps will increase.

Moreover, having a compact representation of the search space (such as hier-

archies) for planning systems that are constantly requested to generate plans for

different tasks turns to be essential. However, from the reviewed works that use

decision-theoretic planning, a subset of them employ a hierarchical structure of the

problem in an effort to keep the planning search space as compact as possible. Fur-

thermore, from those that implement both decision-theoretic and hierarchical tech-

niques in their architecture, only two of them, [Hanheide et al., 2017] and [Sridharan

et al., 2018] which are extensions to [Hanheide et al., 2011] and [Zhang et al., 2014]

respectively, are intended to serve as general purpose planning systems (within the

service robotics realm), i.e. they propose architectures that are able to model other

skills that were not shown in their study cases or experiments.

Regarding the two most related works, the assumption they do about the com-

pleteness of their knowledge about the world sets our architecture closer to one of

them than the other. While [Hanheide et al., 2017] assume an open world, i.e. they

do not expect to have a description of the entire environment in any form, and thus

use assumptions to guide the planning process, on the other hand, [Sridharan et al.,

2018] do assume that the domain description stored in the knowledge base, at some

resolution, encompasses the whole environment. However, given that so far no works

have been found that indicate that planning for closed worlds is a sub-problem of

doing so for open worlds, we consider them as two variants of task planning, and

therefore regard [Sridharan et al., 2018] as the most closely related work to ours.

While our proposal shares a fair amount of similarities with [Sridharan et al., 2018],

there are some key differences, in which our architecture takes into consideration

aspects related to the size of the environment; such features are described below:

3.4. CHAPTER SUMMARY 51

• When available, the proposed architecture uses relations among classes of ob-

jects to automatically build deep hierarchical representations of the state space,

while the architecture in [Sridharan et al., 2018] is restricted to a two level hi-

erarchical representation. As shown by one of our experiments, hierarchical

planning systems with deeper representations seem to scale better in terms of

planning time, which is an important advantage of our architecture.

• In the proposed architecture, a recursive definition for abstract actions is pro-

posed, which exploits hierarchical structures of the environment to decompose

the task planning problem, by automatically building a hierarchy of POMDPs

from an initial POMDP and a hierarchy that abstracts its state space. While

in [Sridharan et al., 2018] abstract actions are only invoked in the coarse level,

and employed to execute concrete actions, in our architecture abstract actions

can either invoke concrete or abstract actions. Hence, as shown by experimen-

tal results, our architecture is able to achieve higher success ratio scores (in

problems with large state spaces) than a hierarchical planning system with two

levels (such as the one proposed by [Sridharan et al., 2018]), by distributing

the computational burden of planning among the models that constitute the

hierarchy of POMDPs.

Since we do not have access to the code for the implementation of [Sridharan

et al., 2018], nor they evaluated their architecture in a public benchmark problem,

we implemented a hierarchical planning system in order to replicate theirs as close

as possible. Despite such implementation is not an exact copy, it does meet two

of the main aspects we are interested in: i) at coarse level deterministic planning

is performed, and ii) it models and executes each action in the coarse level as a

POMDP. Therefore, this implementation and a standard POMDP are employed as

baseline to compare the performance of the proposed architecture, and evaluate how

much impact it is to use deeper hierarchies, in terms of efficiency and effectiveness.

3.4 Chapter Summary

In this chapter, it has been analyzed the most related research (to the proposed ar-

chitecture) on task planning for service robotics, which address the problem within

52 CHAPTER 3. RELATED WORK

a wide variety of approaches that range from deterministic planning, decision the-

oretic planning, commonsense reasoning, combination of the previous three, and

hierarchies of MDPs and POMDPs using state or action abstraction.

Furthermore, by comparing it with the most closely related works ([Sridharan

et al., 2018, Hanheide et al., 2017]) it has been established that the proposed ar-

chitecture, which combines several forms of domain knowledge to plan for service

robotics applications, differs from others in that it is capable of constructing arbi-

trarily deep hierarchies of POMDPs, while it simultaneously enables the integration

of several skills into the same planning problem without having to modify skills that

are already part of the architecture. In this sense, the problems of large environ-

ments, uncertainty, partial observability and task diversity are addressed within a

single framework in a way that has not been found in the reviewed literature so far.

Chapter 4

Proposed method

4.1 General overview

The proposed architecture for task planning is based on the idea that humans have

information about structures present in their indoor environments, that follow cer-

tain organization scheme and are valid for most of the indoor scenarios. Further-

more, having knowledge of how objects are organized, e.g. spatially, temporarily or

causally, can be exploited for planning given that it would help to mitigate the un-

certainty on the outcomes from events. In task planning, whether it is deterministic

or probabilistic, the fewer amount of actions that can be executed in a single state,

the better. In other words, since the amount of possible transitions among the set

of all states constitutes the size of the search space in a planning problem, if there is

information about which transitions are inconsistent to the description of a planning

problem in particular, this information could be leveraged to decrease the size of the

search space and, consequently, reduce the time required to find a successful plan.

Thus, in order to mitigate the burden that large search spaces represent, the

proposed architecture addresses the task planning problem in service robotics by

integrating a knowledge representation scheme and a probabilistic planning model.

The knowledge representation is employed to capture the available knowledge about

the environment, and is exploited to probabilistically generate and execute plans.

53

54 CHAPTER 4. PROPOSED METHOD

The methodology followed by the proposed architecture, which is summarized in

Fig. 4.2, is segmented in three main phases: a) knowledge base construction, b)

architecture’s initialization and c) architecture’s operation. In the first phase, a hu-

man is required to endow the architecture with information about the robot’s skill

sets and the environment in which it will operate. This information is encoded into

the knowledge base using a scheme that encompasses features of the domain that

are necessary to describe the dynamics of the environment. Next, during initializa-

tion, the architecture builds a hierarchy of actions that will be invoked during the

operation phase in order to execute plans.

For instance, in the example of a navigation domain scenario shown in Fig. 4.1,

a service robot is asked to go to specific locations in the environment, which is

discretized into twelve possible locations (cells). To accomplish this type of tasks,

the designer should endow the architecture with a basic module (see section 4.2.1.1)

that describes the robot’s navigation skill set and a hierarchical description of the

environment (see section 4.2.1.3), which in this example four levels of granularity

are employed: cell, section, room, and building. This basic module should include

actions that enable the robot to transit between cells and monitor its location. Thus,

the architecture could use the description of the environment and the robot’s actions

to generate plans that solve specific task requests, such as going to cell C5 or to

room R3. For illustration purposes, this example scenario is revisited along this

chapter as each one of the three phases are described in detail.

Figure 4.1: Example of a navigation domain constituted by twelve cells (C). As the hierar-
chical description of the environment in the right shows, the cells are grouped (abstracted)
into six sections (S), which are also grouped into three rooms (R), that in turn are grouped
into two buildings (B). This hierarchical description enables the proposed architecture to
decompose planning problems, so they can be solved as a set of smaller tasks.

4.2. KNOWLEDGE BASE CONSTRUCTION 55

Figure 4.2: The proposed architecture follows a three phase methodology to solve task
planning problems. First, a human designer encodes general information about the robot’s
domain, as well as about the specific environment in which the robot will operate. Next,
the architecture initializes by building a POMDP that models the environment at a concrete
level, and builds a hierarchy of POMDPs from it. Both phases need to be performed
only once, whereas the third phase will be carried out every time the robot receives a
task request. It consists of two steps, first, based on a task request and the hierarchy
of POMDPs, a hierarchical policy is built as a sequence of POMDP policies (π0, ..., πn)
to model a plan for the respective task. Finally, the policies in the hierarchical policy
are executed in a top-down way to gradually bring the agent closer to the goal state that
represents the solution to the task at hand.

56 CHAPTER 4. PROPOSED METHOD

4.2 Knowledge base construction

During the knowledge base construction, the information related to the domain,

within which the robot will operate, is encoded and organized following a criterion

of specificity. The knowledge base is constituted by two main blocks of information:

general and specific knowledge. The general knowledge stores information associ-

ated to the robot’s skill sets, i.e. the aspects of the environment it is capable of

modifying and perceiving through its actuators and sensors. On the other hand,

specific knowledge represents facts that are true for a particular environment and

may not hold for other scenarios. Hence, the criterion of specificity allows the archi-

tecture to reuse a knowledge base in different environments and avoid constructing

it from scratch, by redefining the specific knowledge component, so that it matches

the new scenario. As for the representation language, SPARC [Balai et al., 2013a]

is employed to construct the knowledge base as a system description (section 2.1.3)

defined by a sorted ASP program containing a collection of sorts, relations, rules

and facts.

4.2.1 General knowledge

The general knowledge is constituted by three parts that altogether define the system

description for the actions a robot can perform. First, for each skill set, a basic

module description will contain the list of actions the robot can perform by means

of such skills, the set of variables these actions modify, the observations that can

be perceived after a variable is modified, as well as the probability distributions of

possible outcomes for each action. Second, a set of rules that define the actions’

effects, under which situations they cannot be executed, and inherent constraints of

the domain. Finally, a function that describes the hierarchical structure in which

one of the variables could be abstracted.

4.2.1.1 Basic modules

A basic module is defined by six components: i) four sets (actions, state variables,

variable value sets and variable observations sets) and ii) two probability distribution

functions (a transition and an observation function). In order to integrate a basic

4.2. KNOWLEDGE BASE CONSTRUCTION 57

module into the knowledge base, all six components must be specified by the designer

in the form of SPARC sorts and statements, each one of them is described in detail

below.

• Actions: Set of actions the module can perform, where each action must mod-

ify at most one state variable. Actions are listed in the #action sort.

• State variables: Set of variables that can be modified by at least one of the

module’s actions. Each variable is specified as an inertial fluent and must be

in the #inertial fluent sort.

• State variable values: For each state variable, a unique sort (for instance

#var0 values) must be defined. This sort will list the set of values the variable

can hold. If a set of values depends on the particular environment, then the

elements of its sort must be specified when the specific knowledge is encoded.

• State variable observations: For each state variable, a unique sort (for

instance #var0 obs) must be defined. This sort will contain the set of obser-

vations that can be perceived when an action that modifies the state variable is

performed. Similar to the variable’s values, if the set of observations depends

on the particular environment, then it must be specified during the encoding

of the specific knowledge.

• Transition probability distribution: For each action and each value

its respective variable can take, a probability distribution must be

provided to describe the action’s transition probabilities. The distribu-

tions can specify the probabilities for particular state transitions, e.g.

< door is open, close door, door is closed, 0.65 >, or transitions defined by

a neighborhood relation, e.g. < move to left, at left of, 0.65 >, where

move to left is an action and at left of is a binary relation defined over

the set of values the variable can take. That is, the relation-based definition

specifies a transition < X,move to left, Y, 0.65 > for every pair (X, Y) such

that (X, Y) ∈ at left of (neighborhood relations are described in section

58 CHAPTER 4. PROPOSED METHOD

4.2.1.2).

• Observation probability distribution: For each action and each value its

respective variable can take, a probability distribution must be provided to de-

scribe the action’s observation probabilities. Similar to transition distributions,

an observation distribution can specify probabilities for tuples with particular

state-observation values, or for tuples defined with observation neighborhood

relations, e.g. < scan,ObservableWith3D, 0.55 > would specify the proba-

bility of 0.55 for the observation tuple < X, scan, Y, 0.55 > for every state-

observation pair (X, Y) such that (X, Y) ∈ ObservableWith3D (observation

neighborhood relations are described in section 4.2.1.2).

The transition and observation probability values must be provided by the designer

of the knowledge base. Since these probabilities correspond to events associated to

a single variable, one could estimate them by performing a series of experiments in

which actions are executed several times, and the resulting state and observation of

each trial is registered, as suggested by [Sridharan et al., 2018].

Recalling the example scenario from Fig. 4.1, the description in SPARC of a basic

module for navigation would be specified as:

#cell = c[1..12].

#loc obs = #cell.

#loc values = #cell.

#action = {up, down, left, right}.
#inertial fluent = loc(#loc values).

Whereas the transition and observation distributions would be modeled by neigh-

borhood relations as:

4.2. KNOWLEDGE BASE CONSTRUCTION 59

• Transition distributions

up = {< up, above, 0.9 >,< up, current cell, 0.1 >}
down = {< down, below, 0.9 >,< down, current cell, 0.1 >}
left = {< left, at left, 0.9 >,< left, current cell, 0.1 >}
right = {< right, at right, 0.9 >,< right, current cell, 0.1 >}

• Observation distributions

ACTION ={< ACTION, above, 0.1 >,

< ACTION, below, 0.1 >,

< ACTION, at left, 0.1 >,

< ACTION, at right, 0.1 >,

< ACTION, current cell, 0.6 >}

where the transition and observation probability values are given by the de-

signer of the knowledge base, and the method employed to compute such prob-

abilities is out of the scope of this research. Furthermore, since the observation

distribution in this example is the same for every action, just substitute the

actual action name instead of ACTION to obtain its distribution.

This basic module description indicates that the agent can perform four actions to

modify the state variable loc. The values and observations for this state variable are

the cells in the environment, whereas the transition distribution of every action has

two possible ending states: staying in the same cell and reaching the target cell. The

observation distribution is the same for the four actions, and consists of a 4 connected

neighborhood. Moreover, from the transition and observation distributions employed

in this example, one can tell that actions have a considerable chance of success (0.9),

while the precision of the robot’s sensing device seems to be relatively good, as it

has a probability of 0.6 of returning the correct observation.

4.2.1.2 Domain dynamics

The domain dynamics description encompasses the relations that characterize the

structure of an environment, as well as the rules that define the stochastic effects of

60 CHAPTER 4. PROPOSED METHOD

actions, inherent domain constraints and the scenarios under which actions cannot be

executed. Encoded as SPARC statements (see section 2.1.3), The domain dynamics

description is constituted by five components: neighborhood relations, deterministic

causal laws, non-deterministic causal laws, state constraints and executability condi-

tions. This section starts by introducing the definitions of neighborhood relation and

observation neighborhood relation, followed by the description of its components.

Definition 1 (Neighborhood relation) Let Ai be an action defined in a basic

module, Vj the state variable action Ai can modify, V alj = {v0, ..., vk} the set of

values Vj can take, and N(Ai) a binary relation defined over V alj, then we call

N(Ai) the neighborhood relation of action Ai.

Definition 2 (Observation neighborhood relation) Let Ai be an action defined

in a basic module, Vj the state variable action Ai can modify, V alj = {v0, ..., vk} the

set of values Vj can take, Obsj = {o0, ..., ol} the set of observations that can be per-

ceived after modifying Vj, and N(Ai) a binary relation defined over V alj × Obsj,

then we call N(Ai) the observation neighborhood relation of action Ai.

It is worth noting that it is not necessary for neighborhood relations to have any

property other than being binary, given that their purpose is to model the connec-

tivity between values for a given action. For example, to specify the transition and

observation distributions for the actions at the end of section 4.2.1.1, every neigh-

borhood relation is defined over the sort #cell, since both values and observations

are defined by this sort. Hence, the domain dynamics components are presented.

• Neighborhood relation: For each action Ai in each basic module, define

a neighborhood relation that represents how the value of its respective vari-

able Vj changes when Ai is performed, in other words, which pairs of values

from V alj are neighbors by means of executing Ai. In a similar fashion for

observation neighborhood relations, one must specify the relations that asso-

ciate values with observation given an action. Also, the pairs of particular

values that comply a given neighborhood relation are specified in the specific

knowledge. The relation must be defined in a SPARC program as an element

of the #static fluent sort, specifying the sorts it receives as arguments. For

4.2. KNOWLEDGE BASE CONSTRUCTION 61

instance, to specify the relation above in the navigation scenario, one would

use the following SPARC code:

#static fluent = above(#cell,#cell).

• Deterministic causal law: For each action in each basic module, a determin-

istic causal law (see section 2.1.3) is defined in SPARC to model the effect such

action would have in a deterministic environment. Let ai, nai(#val,#val),

and varj(#val) be the SPARC definitions of an action, its neighborhood rela-

tion, and its variable, respectively. Also, let X1 and X2 be variables that can

be substituted by elements of the sort #val, I be a variable that represents

the instant of time at which a fluent has certain value or an action occurs and

n be the last instant of time included in the SPARC program (see section 2.1.3

for the encoding of statements). Then, the deterministic causal law for action

ai is defined by

h(varj(X2), I + 1) ← h(varj(X1), I),

h(nai(X1, X2), I),

occurs(ai, I),

I < n.

(4.1)

For instance, to specify the deterministic causal law of the action up, one would

use the SPARC code presented by Eq. 4.6, that states that such action will

change the robot’s location to the cell that is above of its current position.

Moreover, the meaning of variables X1, X2, I and n presented for Eq. 4.1 is

the same for Eqs. 4.2, 4.3, 4.4, 4.5 and 4.6, while in Eqs. 4.7, 4.8, 4.9, 4.10 and

4.11 the SPARC variables X1 and X2 are substituted by elements from sort

#cell.

• Non-deterministic causal law: Similar to its deterministic counterpart, a

non-deterministic causal law is intended to model the stochastic effects of an

action, based on several neighborhood relations, where the set of relations must

be specified by the designer, based on its knowledge of the domain. Thus, let ai,

nai(#val,#val), varj(#val), aif(#val), and X3 be the SPARC definitions

of an action, its neighborhood relation, its variable, the defined fluent that

62 CHAPTER 4. PROPOSED METHOD

describes the set of possible outcomes, and a SPARC variable that can be

substituted with an element from sort #val, then the non-deterministic causal

law for action ai is defined by

1{h(varj(X3), I + 1) : h(aif(X3), I)}1 ← h(varj(X1), I),

h(nai(X1, X2), I),

occurs(ai, I),

I < n.

(4.2)

where, the defined fluent aif(#val) is defined by a collection of SPARC rules

of the form

h(aif(X2), I) ← h(varj(X1), I),

h(nak(X1, X2), I).
(4.3)

where nak(#val,#val) is a neighborhood relation defined over values in sort

#val. Thus, if the transition and observation distributions are defined with

neighborhood relations, those relations must be included in the definition of

fluent aif(#val) (for a description of the syntax of non-deterministic rules

in SPARC, see the description of Eq. 2.7). Furthermore, Eq. 4.8 presents an

example that specifies the non-deterministic causal law of action up, which

includes the current cell and the one above it as possible outcomes. That is,

Eq. 4.8 incorporates the possibility of having the robot to drift in its current

position when attempting to move upwards.

• State constraints: State constraints are used to model inherent properties

of the domain that are always true, regardless of the particularities of an envi-

ronment. Thus, let var(b), and {vari(c), ..., vark(d)} be the SPARC code for

an inertial fluent, and an arbitrary large set of inertial fluents with particular

values, then a state constraint that states var(b) will be true anytime the set

{vari(c), ..., vark(d)} is true is defined by

h(var(b), I + 1) ← h(vari(c), I), ...,

h(vark(d), I).
(4.4)

4.2. KNOWLEDGE BASE CONSTRUCTION 63

and the same can be done for properties that are false, that is

¬h(var(b), I + 1) ← h(vari(c), I), ...,

h(vark(d), I).
(4.5)

For instance, the fact that a robot cannot be at two different locations simulta-

neously should be encoded as state constraints in a domain where the robot’s

spatial location is relevant for planning (in Eq. 4.10 this restriction is specified

for the navigation scenario of Fig. 4.1).

• Executability conditions: Executability conditions state under which sce-

narios an action cannot be performed. Therefore, for each action a in each basic

module, a collection of SPARC rules of the following form, specify conditions

in which a cannot be executed.

¬occurs(a, I) ← h(vari(c), I), ...,

h(vark(d), I)
(4.6)

where {vari(c), ..., vark(d)} is the set values that prohibit the execution of

a. Furthermore, the designer can define as many executability conditions are

required for each action. For example, Eq. 4.11 states the restriction that the

robot cannot perform more than one action at a time.

In regards to our example from Fig. 4.1, the domain dynamics description would

look like:

• Neighborhood relations

#static fluent =above(#cell,#cell)+

below(#cell,#cell)+

at left(#cell,#cell)+

at right(#cell,#cell)+

current cell(#cell,#cell).

where these five relations work for values and observations, since both are

defined by the set of cells.

64 CHAPTER 4. PROPOSED METHOD

• Deterministic causal law

h(loc(X2), I + 1) ← h(loc(X1), I),

h(above(X1, X2), I),

occurs(up, I),

I < n.

(4.7)

The deterministic causal law for the other three actions is similar to this one,

what changes is the neighborhood relation used in the body of the rule, for

instance, for action down the below relation would be used.

• Non-deterministic causal law

1{h(loc(X3), I + 1) : h(up df(X3), I)}1 ← h(loc(X1), I),

h(above(X1, X2), I),

occurs(up, I),

I < n.

(4.8)

where the defined fluent up df specifies the possible outcomes, that must be

consistent to the ending states in the action’s transition distribution specified

in the basic module. Thus, up df is specified with the following rules:

h(up df(X2), I) ← h(loc(X1), I),

h(above(X1, X2), I).

h(up df(X2), I) ← h(loc(X1), I),

h(current cell(X1, X2), I).

(4.9)

That is, Eq. 4.9 specifies as possible outcomes the cell above and the current

cell, as it is plausible for the robot to reach the cell above with action a, as it

could also drift and stay in its current cell. Thus, the non-deterministic causal

law for the other actions could be specified by substituting the action and

the above neighborhood relation by its respective relation. Moreover, Eqs. 4.8

and 4.9 also define observation distributions, with the difference that a set of

observation neighborhood relations is employed in the definition of the defined

fluent.

4.2. KNOWLEDGE BASE CONSTRUCTION 65

• State constraint
¬h(loc(X2), I) ← h(loc(X1), I),

X1 ! = X2.
(4.10)

This state constraint says that it is impossible for the robot to be at several

locations simultaneously.

• Executability conditions

¬occurs(X2, I) ← occurs(X1, I),

X1 ! = X2.
(4.11)

This condition states that the robot cannot execute several actions at once.

4.2.1.3 Hierarchical function

In order for the architecture to build a hierarchy of concrete and abstract actions, it

is necessary to abstract the state space into a hierarchical representation. Therefore,

a function that establishes the links between objects, to build a hierarchy, must be

defined. Let E be the set containing the values a state variable vari can have, as

well as the more abstract form of those values, then a function F : E → E is said to

abstract the state space with respect to variable vari, if for every input argument x

then F (x) returns a more abstract form of x. In this way, F represents a hierarchy

whose leaf nodes are the values vari can take.

In SPARC, a hierarchical function is specified as a static fluent with two input

arguments, that is, hf(#h sort,#h sort), where #h sort is the sort defined as the

union of the sorts defined for each level of the hierarchy. For instance, in the navi-

gation example from Fig. 4.1, a hierarchical function that represents the relation of

is in between locations at different levels of resolution would be defined as

#static fluent = is in(#location,#location)

66 CHAPTER 4. PROPOSED METHOD

where

#cell = c[1..12].

#section = s[1..6].

#room = r[1..3].

#building = b[1..2].

#location = {root}+ #building + #room+ #section+ #cell.

These sort definitions correspond to the example scenario presented in Fig. 4.1,

which includes the twelve cells that are distributed in six sections, three rooms and

two buildings.

4.2.2 Specific knowledge

As aforementioned, the specific knowledge refers to a collection of facts that are true

for a particular environment in which the robot will operate. In the knowledge base,

the designer must specify four types of facts: particular values for state variables,

abstract forms of particular values, pairs of values that are in a neighborhood relation

and pairs of values that are in the hierarchical function.

• Concrete values: For each state variable Vi whose set of values was not

specified in the definition of the basic module, the designer must provide the

set of values V ali variable Vi can take within the particular environment, as well

as the set Obsi of observations that can possibly be perceived when variable

Vi is modified.

• Abstract values: Values that represent the internal nodes in the hierarchical

representation of the state space.

• Neighborhood relation pairs: For each neighborhood relation N(Ai) de-

fined over the set of values V alj, every pair of values from V alj that are in

N(Ai) must be specified.

• Hierarchical function pairs: For every value in the set that defines the

domain of the hierarchical function F , specify its parent value as a pair (a, b)

where F (a) = b.

4.3. ARCHITECTURE INITIALIZATION 67

For the navigation example, the concrete values are specified by the list of cells,

whereas the abstract values are the lists of sections, rooms and buildings. The pairs

of values that are in the neighborhood relation in this example are every pair of

cells that comply with any of the five neighborhood relations defined in the domain

dynamics, for instance, current cell(c1, c1), below(c1, c3), at right(c1, c2). With

regards to the hierarchical function pairs, in this scenario the following pairs should

be included: is in(c1, s1), is in(s1, r1), is in(r1, b1), is in(r2, b1), and so on.

Once the specific knowledge of a particular environment has been encoded, the

architecture is able to build the stochastic transition diagram that describes how the

system may change after the agent performs an action. The next section starts by

introducing the construction of the POMDP that will model the environment at the

bottom level in the hierarchy of actions.

4.3 Architecture initialization

In this section, the procedure followed to initialize the architecture is presented. The

initialization sets the architecture ready to receive task requests and solve them, and

consists of two main steps: a) building the bottom POMDP, and b) building the

hierarchy of actions. After specifying a base POMDP (section 4.3.1) and a hierar-

chical representation for its state space (section 4.3.2.1), a recursive formulation is

employed to build a hierarchy of abstract actions (section 4.3.2.3).

4.3.1 Construction of bottom POMDP

In order to build a hierarchy of actions, it is necessary to first have a POMDP built

from which the hierarchy will start its construction (that will be referred to as base

POMDP or bottom POMDP indistinctly). In section 2.2.2 it is mentioned that

a POMDP is defined by a tuple M =< S,A,Φ, R,O,Ω, B0 >, however, since the

purpose of the base POMDP is to describe the dynamics of the environment and not

to model a particular planning problem, its construction consists in specifying all of

the parameters in M except the reward function R and the initial belief distribution

B0.

68 CHAPTER 4. PROPOSED METHOD

The construction of the bottom POMDP takes place by using the sets of values,

observations and actions, specified in the basic modules and specific knowledge, to

define the S, A, and O parameters, while Φ and Ω are built from the probability

distributions specified for each action. The details on the definition of each parameter

are presented below.

• S: Let V = {v0, ..., vi, ..., vn} be the set containing the set of values vi of every

state variable defined in a basic module, then, the set of states S of the bottom

POMDP is defined by the cross product of every element in V , that is

S = v0 × ...× vi × ...× vn (4.12)

• A: Let B = {b0, ..., bm} be the set of all basic modules defined in the knowledge

base, and a(bi) the set of actions defined in basic module bi, then the set of

actions A for the bottom POMDP is defined by the union of all the sets of

actions defined in each basic module, that is

A =
⋃
bi∈B

a(bi) (4.13)

• O: Let B = {b0, ..., bm} be the set of all basic modules defined in the knowledge

base, sv(bi) the set of state variables defined in basic module bi, and o(sv) the

set of observations defined for state variable sv, then the set of observations O

for the bottom POMDP is defined by the union of all the sets of observations

defined in each basic module, that is

O =
⋃
bi∈B

⋃
sv∈sv(bi)

o(sv) (4.14)

• Φ: Let B = {b0, ..., bm} be the set of all basic modules defined in the knowledge

base, a(bi) the set of actions defined in basic module bi, t(a) the set of transition

probability distributions of action a, p the probability of transiting from state

sj to sk after executing a, and s ∈ S a state of the bottom POMDP defined

as an n-tuple, where the l-th element of s, s[l], is a value for the l-th state

variable. Then the transition function Φ for the bottom POMDP is defined by

the set of every tuple < sj, a, sk, p > that satisfies one of the following cases:

4.3. ARCHITECTURE INITIALIZATION 69

1. Case 1: There is a state transition t ∈ t(a), specified as a particular-value

transition, such that t =< sj[l], a, sk[l], p >, where p is the probability of

transiting to value sk[l] from sj[l] after executing a, bi ∈ B is a basic

module, a(bi) returns the set of actions defined in bi, and a ∈ a(bi) is an

action that modifies the l-th state variable.

2. Case 2: There is a state transition t ∈ t(a), specified as a neighborhood

defined transition, such that t =< a,N, p >, where (sj[l], sk[l]) ∈ N , p

is the probability of transiting to value sk[l] from sj[l] after executing

a, bi ∈ B is a basic module, a(bi) returns the set of actions defined in

bi, a ∈ a(bi) is an action that modifies the l-th state variable, and N is

a neighborhood relation defined over the set of values for the l-th state

variable.

• Ω: Let B = {b0, ..., bm} be the set of all basic modules defined in the knowl-

edge base, a(bi) the set of actions defined in basic module bi, z(a) the set of

observation probability distributions of action a, s ∈ S a state of the bottom

POMDP defined as an n-tuple, where the l-th element of s, s[l], is a value for

the l-th state variable, and o ∈ O an observation of the bottom POMDP. Then

the observation function Ω for the bottom POMDP is defined by the set of

every tuple < sj, a, ok, p > that satisfies one of the following cases.

1. Case 1: There is an observation transition z ∈ z(a), specified as a

particular-value transition, such that z =< sj[l], a, ok, p >, where p is

the probability of perceiving ok when value sj[l] is reached after execut-

ing a, bi ∈ B is a basic module, a(bi) returns the set of actions defined in

bi, and a ∈ a(bi) is an action that modifies the l-th state variable.

2. Case 2: There is an observation transition z ∈ z(a), specified as a neigh-

borhood defined transition, such that z =< a,N, p >, where p is the

probability of perceiving ok when value sj[l] is reached after executing a,

(sj[l], ok) ∈ N , bi ∈ B is a basic module, a(bi) returns the set of actions

defined in bi, a ∈ a(bi) is an action that modifies the l-th state variable,

and N is an observation neighborhood relation defined over the set of

values and observations for the l-th state variable.

70 CHAPTER 4. PROPOSED METHOD

Hence, the tuple BP =< S,A,O,Φ,Ω > models the environment according to the

domain knowledge encoded in the knowledge base. This tuple will serve as starting

point for the construction of the hierarchy of abstract actions.

4.3.2 Hierarchy of actions

From the bottom POMDP, a hierarchy of POMDPs is built in a bottom-up approach.

At every level in the hierarchical description for the bottom POMDP’s state space,

starting at the bottom level going all the way to the top, POMDPs are modeled

over subsets of the full state space to transit to neighbor subsets. Besides enabling

the system to transit between sub-regions of states, for each POMDP a pair of

probability distributions (transition and observation) are computed so that they can

be employed as an action in a POMDP at the immediate upper level.

4.3.2.1 State space tree

For a given hierarchical structure that describes a particular environment, in order for

it to be employed it must abstract the state space in disjoint subsets of states, whose

union results in the complete state space, at every level in the hierarchical structure.

If this requirement is met, the architecture employs such hierarchical representation,

which we call State Space Tree (SST), see Fig. 4.4 which corresponds to the SST

of the building shown in Fig. 4.3. Within this representation, as explained later in

section 4.4.1.1, one can define a Relevant Sub-Space (RSS) to bound a sub-region

from the original state space, in order to reduce (at the operation phase) the size

of the state space that needs to be considered to solve a specific task. The building

process of an SST for a state space using a hierarchical function F is described below.

Let F be the hierarchical function that performs abstraction with respect to the

i-th state variable, and S the set of states of the bottom POMDP, where each state s

is defined as an n-tuple and the i-th element s[i] is a value for the i-th state variable.

For every s ∈ S, the parent state P (s) of s in the SST hierarchy is the resulting

n-tuple from setting the i-th element of s with F (s[i]). After creating the set parent

4.3. ARCHITECTURE INITIALIZATION 71

states P (S), the process is repeated to generate P (P (S)), ... and so on until the level

at which the root of the hierarchy is located is reached. Furthermore, neighborhood

relations for states in the bottom POMDP are propagated upwards in the SST.

Definition 3 (Neighbor states) Let N(Ai) be the neighborhood relation of action

Ai, Vj the state variable action Ai can modify, States(P) and Actions(P) the sets

of states and actions in POMDP P , and s ∈ States(P) be a state of a POMDP P ,

defined as a tuple s =< v0, ..., vk, ..., vn > where s[k] = vk is the value for the k-th

state variable defined in the knowledge base. For a pair of states sk, sl ∈ States(P), if

there is an action Ai ∈ Actions(P) such that (sk[j], sl[j]) ∈ N(Ai) or (sl[j], sk[j]) ∈
N(Ai), then sk and sl are said to be neighbor states.

Once every state has a parent state assigned in the SST, by means of the hier-

archical function, neighborhood relations are propagated as follows: for every pair

of neighbor states, if they have different parents in the SST, then their parents be-

come neighbors. However, in order to build an SST a single variable is employed

to perform state abstraction, therefore, if the designer can provide more than one

hierarchical function, only one of them can be used at a time.

Figure 4.3: Hierarchical description of a navigation domain environment, with four levels
of resolution: buildings, rooms, subsections, cells (from top to bottom in the hierarchy).
This particular is constituted by a single building with four rooms, each with four subsec-
tions which in turn have four cells each.

72 CHAPTER 4. PROPOSED METHOD

Figure 4.4: Hierarchical representation of the environment depicted in Fig. 4.3, in the form
of a State Space Tree. The polygons enclose the Relevant State Space for different pairs
of initial and goal states. The initial state is depicted by the yellow leaf node, whilst the
green and orange nodes represent two different goal states, located at different resolutions.

4.3.2.2 Concrete and abstract components

After the state space has been abstracted into a hierarchy, resulting in the envi-

ronment’s SST, the architecture proceeds to build abstract actions that will serve

to transit the agent between abstract states. However, before the method for the

construction of abstract action is presented, the differences between concrete and ab-

stract components are introduced. As states are used to model the possible scenarios

the agent might encounter in the environment, in a hierarchical representation, there

are two types of states.

• Concrete states: Concrete states have the highest resolution possible, that is,

is the finest representation in which the agent can reason about the state space.

• Abstract states: Abstract states are constituted by a collection of states

with higher resolution, which are its children in the SST, that can either be

concrete or abstract states. Abstract states can be seen as clusters of states

with a higher resolution.

The dichotomy between concrete and abstract actions depends on whether the

computation of a policy is required to model them.

4.3. ARCHITECTURE INITIALIZATION 73

• Concrete actions: Concrete actions are executed from concrete states, and

generate concrete observations.

• Abstract actions: Abstract actions are modeled as POMDP policies, and

invoked from abstract states.

On the other hand, the concept of clustering elements of a higher resolution to form

more abstract ones is not transferable to observations, instead, these are modeled as

follows.

• Concrete observations: A concrete observation o is associated with concrete

states and actions; having a probability Ω(s, a, o) greater than zero of being

perceived for at least one pair (s, a), where s and a are a concrete state and

action, respectively.

• Abstract observations: Abstract observations are defined over each level of

the SST, assigning an abstract observation for each abstract state, in order to

model the partial observability at any level in the hierarchy of the state space.

For more detail on how abstract observations are defined, see section 4.3.2.3.

4.3.2.3 Modeling abstract actions

In order to model an abstract action as a POMDP within a hierarchy of actions, it

is necessary to define the set of parameters that characterize the POMDP, as well

as those required at a higher level in the hierarchy to incorporate it as an action in

another POMDP. This section starts by introducing the formulation used to define

a POMDP that models a specific abstract action at a given depth in the hierarchy,

followed by a definition for abstract action’s parameters required by POMDPs at

a higher level, and ends with the algorithm used to build the hierarchy of actions,

based on the definition of abstract action.

Let sdi and sdj be two abstract states located at depth d in a SST and C(s) the set

of states that are children of state s in the SST. An abstract action adij designed to

transit from state sdi to sdj is modeled as a POMDP using the following formulation:

74 CHAPTER 4. PROPOSED METHOD

1. Sdij: Set of states from the immediate lower level in the SST that are relevant

for abstract action adij, defined by

Sdij = {s | s ∈ C(sdi)}
⋃
{s | s /∈ C(sdi),∃sk ∈ C(sdi), neighbors(s, sk)} (4.15)

Equation 4.15 says that the POMDP’s set of states is the union of the children

states of sdi and the set of states adjacent to some child of sdi that are not part

of its children.

2. Adij: Set of actions that can be executed at the immediate lower level in the

SST that are relevant for abstract action adij.

Adij = {a | ∃sk, sl ∈ Sdij,Φd+1(sk, a, sl) > 0} (4.16)

Equation 4.16 states that Adij is made of actions defined at level d+1 that have

a probability greater than zero of transiting between states that are in Sdij.

3. Od
ij: Set of observations from the immediate lower level in the SST that are

relevant for abstract action adij, defined by

Od
ij = {o | ∃s ∈ Sdij, ∃a ∈ Adij,Ωd+1(s, a, o) > 0} (4.17)

Equation 4.17 says that the set of observations is made of those that have

a probability greater than zero of being perceived after executing any of the

actions in Adij and a state contained in Sdij is reached.

4. Φd
ij: The transition function simply takes the probability values defined in Φd+1

(transition function of the immediate lower level in the SST) for every pair of

states in Sdij, that is

∀sk, sl ∈ Sdij,∀a ∈ Adij,Φd
ij(sk, a, sl) = Φd+1(sk, a, sl) (4.18)

Furthermore, for every pair of starting state and action that are in Sdij and Adij,

respectively, that has a transition probability distribution with ending states

that are not in Sdij, such probability distribution is normalized over the ending

states that are in Sdij.

4.3. ARCHITECTURE INITIALIZATION 75

5. Ωd
ij: The observation function is defined similarly to the transition function.

It takes the probability values defined in Ωd+1 for all the elements in Sdij, A
d
ij,

and Od
ij.

∀s ∈ Sdij,∀a ∈ Adij,∀o ∈ Od
ij,Ω

d
ij(s, a, o) = Ωd+1(s, a, o) (4.19)

6. Rd
ij: Because the abstract action is designed to transit to a particular abstract

state sdj , the reward function must model this behavior by assigning a large

positive reward to transitions that end in any state contained in C(sdj), whilst

a large negative reward for transitions that end in states that are not contained

in C(sdj) nor C(sdi), that is, those that end in a children state of a neighbor of

sdi that is not sdj . Hence, the reward function is defined as follows,

∀s ∈ Sdij ∧ s ∈ C(sdj), R
d
ij(·, ·, s) = <+ (4.20)

∀s ∈ Sdij ∧ s /∈ C(sdi)
⋃

C(sdj), R
d
ij(·, ·, s) = <− (4.21)

∀s ∈ C(sdi), R
d
ij(·, ·, s) = −1 (4.22)

Once the tuple < Sdij, A
d
ij, O

d
ij,Φ

d
ij,Ω

d
ij, R

d
ij > for an abstract action adij is fully

defined, a POMDP solving algorithm is employed to find a policy. It is worth noting

that this notation is valid for abstract actions built at any level in the SST, since the

recursive formulation uses the components of the immediate lower level in the SST

to build the local POMDP (which is defined over a subregion of the state space),

regardless of whether they are concrete or abstract.

At this point, the abstract action adij is ready to be invoked, however, because adij
is intended to be used as an action by a POMDP in the immediate higher level of

the SST, it is necessary to also define the following parameters:

• Set of observations at depth d that can be perceived after adij is executed.

• Transition probability between abstract states at depth d when adij is executed.

76 CHAPTER 4. PROPOSED METHOD

• Observation probability of perceiving observations at depth d after adij is exe-

cuted.

In order for an abstract action to be invoked from a POMDP policy, the parameters

that describe how such action interacts with the state and observation spaces, at its

respective level, must be defined. These parameters are formulated as follows.

• Od: Set of abstract observations. Let d be the depth of the SST at which an

abstract action ad, from the set Ad, can be executed, and Sd the set of abstract

states at depth d. The set of abstract observations at depth d is made up by

one observation od for each abstract state sd ∈ Sd.

• Φd: Transition function at depth d. For an abstract action adij at depth d

designed to transit from state sdi to sdj , the transition probability distribution

defined over abstract states at depth d is given by,

Φd(sdi , a
d
ij, s

d
j) = sim prob(sdj) (4.23)

Φd(sdi , a
d
ij, s

d
i) = sim prob(sdi) (4.24)

∀sdk ∈ Sd | neighbors(sdi , sdk), sdj 6= sdk,Φ
d(sdi , a

d
ij, s

d
k) = sim prob(sdk) (4.25)

∀sdk ∈ Sd | ¬neighbors(sdi , sdk), sdi 6= sdk,Φ
d(sdi , a

d
ij, s

d
k) = 0.0 (4.26)

∀sdk ∈ Sd | sdi 6= sdk,Φ
d(sdk, a

d
ij, ·) = 0.0 (4.27)

Eq. 4.26 and 4.27, represent the probabilities of transiting from a state different

than sdi , and to a state that is not adjacent to sdi , respectively. As for Eq. 4.24,

4.23, and 4.25, represent the probability of staying in sdi , transiting to the goal

state and to non-goal neighbor states, which are estimated by simulating the

policy computed for the POMDP that models abstract action adij.

4.3. ARCHITECTURE INITIALIZATION 77

That is, let N be the amount of simulations performed for the policy com-

puted from the POMDP that models abstraction action adij, SimCount(s
d) the

amount of simulations that ended at a child of abstract state sd, and Neig(sdi)

the set of states that are neighbors of sdi , then the transition probabilities

estimated from simulation for abstract action adij are given by

∀sd ∈ {sdi }
⋃

Neig(sdi),

sim prob(sd) =
SimCount(sd)

N

(4.28)

• Ωd: Observation function at depth d. For an abstract action adij at depth d

designed to transit from state sdi to sdj , the probability of perceiving an abstract

observation after executing adij is given by,

Ωd(sdk, a
d
ij, o

d
k) =

Φd(sdi , a
d
ij, s

d
k) if sdk 6= sdi

0 if sdk = sdi
(4.29)

Ωd(sdk, a
d
ij, o

d
i) = 1− Ωd(sdk, a

d
ij, o

d
k) (4.30)

where odk is the observation associated to state sdk. The heuristic used to model

the observation distribution is: when an abstract action finishes its execution,

the agent should always be relatively doubtful about its success of moving away

from the initial state, because in case that it did not leave sdi it could simply

fix it by executing adij again. Thus, the observation probability distribution is

made of two elements: odk and odi , when sdk 6= sdi . In this way, the higher the

probability a state has of being reached from state sdi with action adij, the more

the agent will believe that it has been reached when the associated observation

odk is perceived. Therefore, if the agent remains doubtful about transiting out

of sdi , it will invoke adij again and become more confident about not being in sdi .

Thus, the execution of action adij might take place several times until the agent

is confident enough of reaching the abstract state sdj . If an abstract action

policy is relatively good, it should not have problems to eventually reach its

goal state sdj .

78 CHAPTER 4. PROPOSED METHOD

Hence, in order to build an abstract action at level d, it is necessary to specify a pair

of abstract states (starting and ending states) and to have a tuple < S,A,O,Φ,Ω >

modeling the environment at level d + 1 in the SST. Algorithm 1 describes the

procedure followed to build a hierarchy of abstract actions, starting from the en-

vironment’s bottom POMDP (see section 4.3.1). Let BP be the bottom POMDP,

SST the state space tree of a particular environment, and N the amount of times

abstract actions should be simulated to estimate their transition and observation

distributions, then Algorithm 1 will return a vector of tuples H, where each of its

tuple model the environment at a particular level in the SST, and the actions in tu-

ple H[i] invoke actions from H[i− 1]. Thus, the environment’s hierarchy of actions

is given by the actions in each tuple of H.

In Algorithm 1, H is initialized with the bottom POMDP, next, for every level

i = [depth(SST)−1, depth(SST)−2, ..., 2, 1] (starting in the one above the concrete

level, all the way up to the level below the root node) a tuple < S,A,O,Φ,Ω > is

built. In lines 9-10, the set of abstract states is extracted from the SST and the set

of observations is defined for those states, for level i, whereas in lines 11-13 the set of

actions, transition and observation functions are initialized as empty sets. Then, for

every ordered pair of neighbor states in S, in line 16, using tuple from level i+ 1, an

abstract action a is built to transit from s0 to s1, followed by line 17 that simulates

N times action a to estimate its transition (t) and observation (z) distributions. In

lines 18-20, a, t, and z are included in the sets of all actions, state transitions and

observation transition, respectively. Once the outer for loop has terminated, the

tuple < S,A,O,Φ,Ω > that models the environment at level i, is added to H.

Recalling example from Fig. 4.1, the process to build the hierarchy of actions

would start by constructing the actions to transit between sections. For instance,

to transit from section s1 to s2, cells c1, c2, c3, c4, c5 would make the state space of

the abstract action, where cells c3, c4 would be the goal cells. For abstract action to

transit from s1 to s3, only the goal state would be changed (to c5). This procedure

would be performed for every pair of sections that are neighbors, and when done,

the construction of abstract actions to transit between rooms would be next. This

process would be also performed to transit between buildings.

4.3. ARCHITECTURE INITIALIZATION 79

Algorithm 1 Construction of hierarchy of actions
1: .BP : Bottom POMDP
2: . SST : State space tree of a particular environment
3: .N : Amount of times abstract actions should be simulated to estimate their parame-

ters
4: procedure BUILDHIERARCHYACTIONS(BP , SST , N)
5: i← depth(SST)− 1
6: H ← []
7: Append(H,BP)
8: while i > 0 do
9: S ← States(SST [i])

10: O ← GenerateObs(S)
11: A← ∅
12: Φ← ∅
13: Ω← ∅
14: for all s0 ∈ S do
15: for all s1 ∈ NeighborStates(s0) do
16: a← BuildAbstractAction(s0, s1, H[length(H)− 1])
17: t, z ← EstimateTZ(a, S,O,N)
18: A← A

⋃
{a}

19: Φ← Φ
⋃
t

20: Ω← Ω
⋃
z

21: end for
22: end for
23: Append(H,< S,A,O,Φ,Ω >)
24: i← i− 1
25: end while
26: return H
27: end procedure

80 CHAPTER 4. PROPOSED METHOD

So far, it has been described how to formulate abstract actions, as a POMDP

policy, designed to transit between states at any depth in the SST. However, any

of these abstract actions by themselves are insufficient for solving tasks in which

the goal state is not a neighbor to the agent’s initial state. In the next section, the

architecture’s operation phase is introduced, which is constituted by methods that

build and execute global policies that are capable of solving any task, through the

execution of abstract and concrete actions.

4.4 Architecture operation

At the operation phase, the architecture is ready to receive task requests. Every time

a request is received, the architecture starts a two part procedure to solve the task at

hand. First, by bounding the state space based on the robot’s current state and the

goal state (section 4.4.1.1), planning is performed to generate a task specific plan,

called hierarchical policy (section 4.4.1.2). Then, the hierarchical policy is executed

in a top-down approach until the goal state is reached.

4.4.1 Planning

A hierarchical policy is a sequence of standard POMDP policies defined over several

levels of the SST. The system takes advantage of the hierarchical representation by

generating plans over a reduced version of the state space. Below is described how

the state space is bounded to a Relevant sub-space (RSS), followed by the method

that builds a hierarchical policy based on the task’s RSS.

4.4.1.1 Relevant sub-space

Once a task request is issued to the agent, the architecture proceeds to bound the

state space to the smallest sub-region that still allows the agent to reach the goal

state. The following elements are used to generate such sub-region known as Relevant

Sub-Space, based on definition 4.

1. The particular environment’s State Space Tree.

4.4. ARCHITECTURE OPERATION 81

2. The goal state.

3. The robot’s state at the time the request is made.

Definition 4 (Relevant Sub-Space) Let S be the initial state and G the goal

state for a given task request, then the sub-tree whose root node is the deepest common

ancestor of S and G in SST is the task’s Relevant Sub-Space.

For instance, in Fig. 4.4 the RSS for the task that has the green goal state (enclosed

by a green polygon) reduces significantly the state space, since the initial (yellow leaf

node) and goal states are contained in Room-2. However, in the case of the orange

goal state, its RSS remains the same as the SST because the only ancestor it shares

with the initial state is SST’s root node.

4.4.1.2 Hierarchical policy

By defining a sequence of policies, one for each level in the RSS hierarchy, the

agent is be able to determine the best action at each resolution of the environment.

Before specifying the hierarchical policy structure, the concept of a hierarchical state

[Hengst, 2004] is introduced, which has been modified to fit into the context of the

RSS representation, also, an extension of this definition that enables to specify a

hierarchical state down to a given depth is presented.

Definition 5 (Hierarchical state) A hierarchical state is defined by a sequence of

states, one for each level of the RSS hierarchy, such sequence starts with RSS’s root

node.

Definition 6 (D-hierarchical state) A D-hierarchical state is a hierarchical state

specified from depth 0 all the way to depth D, over an RSS hierarchy.

Thus, let G be a goal state located at depth d in the RSS hierarchy, and GH

the d-hierarchical state that contains G as the sequence’s last element. We define a

hierarchical policy over GH as follows.

82 CHAPTER 4. PROPOSED METHOD

Definition 7 (Hierarchical Policy) Let SH = [s0, ..., sD] be a D-hierarchical state

with length D+1, and ΠH = [π0, ..., πD−1] a sequence of policies with length D, where

the i-th policy in ΠH was computed for a POMDP modeled over the children states of

the i-th state in SH , then ΠH is a Hierarchical Policy defined over the D-hierarchical

state SH .

For instance, hierarchical policy ΠH = [π0, π1] is defined over 2-hierarchical state

SH = [B1, R1, S3], both shown in Fig. 4.5. It is worth noting that a hierarchical

policy will have one less element than the D-hierarchical state GH over which it

is defined, because a policy is required to guide the agent towards each state in

GH except for its first state, which is RSS’ root node. Thus, after having defined

the D-hierarchical state and hierarchical policies, the algorithm employed to build a

hierarchical policy is presented below.

Figure 4.5: 2-hierarchical and 3-hierarchical states are depicted as green and orange
traces, respectively. Also, hierarchical policy ΠH is defined over the green 2-hierarchical
state. For each policy in ΠH , a dotted rectangle encloses the sub-state space over which
the policy executes its actions.

Let G be a goal state for which the relevant sub-space RSS is defined, d the level

in RSS at which G is located and H the vector of tuples that model the environment

at every level of the SST, except to level 0, then Algorithm 2 builds a hierarchical

policy that enables the agent to reach goal state G that is located at depth d in the

task’s RSS hierarchy. In line 6, GH is initialized with the d-hierarchical state that

4.4. ARCHITECTURE OPERATION 83

Algorithm 2 Construction of hierarchical policy
1: .G: Goal state
2: .RSS: Relevant sub-space for G
3: . d: Depth level at which G is located in RSS
4: .H: Vector of tuples that model the environment at every level of the SST
5: procedure HIERARCHICALPOLICY(G, RSS, d, H)
6: GH ← DHierarchicalState(G, d)
7: ΠH ← []
8: parent node← GH [0]
9: i← 1

10: while i < length(GH) do
11: j ← length(H)− (RootLevel(RSS) + i)
12: S ← Children(parent node)
13: S ← S

⋃
{ps | ps /∈ S,∃s ∈ S, neighbors(ps, s)}

14: A← RelevantActions(S,H[j][1])
15: O ← RelevantObservations(S,H[j][2])
16: Φ← H[j][3]
17: Ω← H[j][4]
18: R← GoalBasedReward(S,A,GH [i])
19: π ← SolvePolicy(S,A,O,Φ,Ω, R)
20: Append(ΠH , π)
21: parent node← GH [i]
22: i← i+ 1
23: end while
24: return ΠH

25: end procedure

84 CHAPTER 4. PROPOSED METHOD

contains G. In line 7, hierarchical policy ΠH is initialized as an empty sequence,

while line 8 initializes parent node with the RSS’ root node. Once the procedure

has entered the while loop, in every cycle a POMDP is formulated and solved by

doing the following:

• Line 11: Since the first tuple in H corresponds to the last level in the

environment’s SST, and RSS is a sub-tree of the SST, then index j is

computed so it corresponds to level i in RSS, where RootLevel(R) returns

the level in the SST at which the root of R is located.

• Lines 12-13: Defines the set of states S as the union of parent node’s

children in RSS hierarchy with the set of peripheral states (those that are

not children of parent node and are adjacent to some of its children, such

peripheral states are not necessarily in RSS).

• Lines 14-15: RelevantActions selects the set of actions that have a prob-

ability greater than zero of transiting the agent between (at least) a pair of

states in S, while RelevantObservations selects those observations that have

a probability greater than zero of being perceived after executing any of the

actions in A while reaching any state in S.

• Lines 16-17: The transition and observation functions are extracted from

tuple H[j], which models the environment at level i in the RSS.

• Line 18: A reward function is defined over sets S and A, in which transitions

that end in local goal state GH [i] have a large positive reward, transitions

that end in any other peripheral state have a large negative reward, while any

other transition has a reward value of -1.

• Lines 19-20: SolvePolicy returns a policy computed for the formulated

POMDP, which is subsequently added to the ΠH sequence.

4.4. ARCHITECTURE OPERATION 85

• Line 21: parent node’s value is updated with the next local goal state, i.e.

GH [i].

4.4.2 Plan execution

Since a hierarchical policy is constituted by several standard policies, it is necessary

to define how they pass control to each other in order for the agent to reach the goal

state.

4.4.2.1 Hierarchical policy execution

Let GH be a D-hierarchical state that represents the agent’s goal, and ΠH a hier-

archical policy defined over GH in the RSS for the pair of states gD and s0, which

are the last state in GH and the agent’s initial state, respectively. Then the task of

executing a plan represented by ΠH is reduced to determine at any time step which

of the policies in ΠH must have control until the agent believes it has reached its goal

state gD. Thus, this section starts by defining a condition called Hierarchical con-

tain for a pair of D-hierarchical states, followed by the description of the hierarchical

policy execution algorithm.

Definition 8 (Hierarchical contain) Let hsa and hsb be two D-hierarchical states

with lengths length(hsa) and length(hsb), where length(hsa) ≤ length(hsb), and

every state in hsa is also in hsb. Then we say that hsa hierarchically contains hsb.

In other words, we say that hsa hierarchically contains hsb if hsb is a D-hierarchical

state defined at a greater depth than hsa, and the last state in hsa is an ancestor

node to the last state in hsb with respect to the SST hierarchy. Thus, reaching

a goal state is equivalent to having a goal’s D-hierarchical state to hierarchically

contain the agent’s current hierarchical state. The algorithm for the execution of a

hierarchical policy is presented below.

Algorithm 3 executes hierarchical policy ΠH to take the agent from an initial

hierarchical state sH to a state that is hierarchically contained in GH . To do so, the

algorithm performs the following steps:

86 CHAPTER 4. PROPOSED METHOD

Algorithm 3 Execution of a hierarchical policy

1: . ΠH : Hierarchical policy
2: . sH : Hierarchical state of initial state s
3: .GH : D-hierarchical state of goal state G
4: procedure EXECUTEHIERARCHICALPOLICY(ΠH , sH , GH)
5: B ← init(sH)
6: Z ← initNull(length(sH))
7: A← initNull(length(sH))
8: i← 0
9: while i < length(GH) do

10: if sH [i] 6= GH [i] then
11: while i < length(GH) do
12: ExecuteLocalPolicy(ΠH [i− 1], B, Z, A, i)
13: i← i+ 1
14: end while
15: else
16: i← i+ 1
17: end if
18: end while
19: end procedure

• Lines 5-7: At line 5 a list of belief state vectors is initialized from the

hierarchical state sH . Each belief state vector (one for each level in the RSS

hierarchy) is initialized by assigning a probability of 1 to the agent’s state at

the beginning of the task, and 0 for every other states. As for lines 6 and 7,

they initialize vectors Z and A of empty elements, one element for each level in

the RSS hierarchy. These vectors are required for the ExecuteLocalPolicy

procedure to keep track of the latest observations perceived and actions

performed by the agent at each level of RSS.

• Lines 9-10: When the procedure has entered the first while loop, it compares

the states in GH and sH until it finds the shallowest level at which GH and

sH differ. At this level, the hierarchical policy starts its execution.

• Line 11-12: The (i−1)-th policy of ΠH is invoked to take the agent to the i-th

state of GH . The ExecuteLocalPolicy procedure finishes when the executed

policy has reached its local goal state. This step is repeated until the last

4.4. ARCHITECTURE OPERATION 87

policy in ΠH is executed, meaning that the agent has reached the goal state.

In general, what Algorithm 3 does is to use each policy in ΠH to move the agent

within the sub-space contained by the abstract state the policy has for goal. For

instance, in Fig. 4.5 in which the orange trace represents the agent’s initial state,

the first policy the ExecuteHierarchicalPolicy procedure would invoke is π0, since

GH and sH differ in the room level of the RSS. After policy π0 is done, it is safe to say

that the agent is within room 1, however, there is uncertainty with respect to the

subsection of room 1 the agent is located in. Then, the algorithm proceeds to invoke

policy π1, thus, after π1 is done we can assure that the agent is within subsection 3,

which is the goal state, and ExecuteHierarchicalPolicy terminates its execution.

Algorithm 3 can be seen as the main controller of the system that is in charge of

determining the order in which sub-policies are invoked, however, the detail of how

these local policies invoke the actual actions that move the agent to the goal state is

hidden within the ExecuteLocalPolicy procedure, which is described in the next

section.

4.4.2.2 Local policy execution

Similarly to the execution of a hierarchical policy ΠH , special care must be taken

when executing policies of ΠH because they are not defined over the full state space,

but over sub-regions of it. For this reason, a method that handles the update of the

global belief state with observations returned by abstract actions is required.

In general, Algorithm 4 executes a local policy by invoking actions and updat-

ing the local POMDP’s belief state; while simultaneously keeps track of the latest

observation and action, perceived and performed respectively, at every level in the

RSS, that might be used by other local policies invoked at the same level. In fact,

the input parameters for Algorithm 4 are assumed to be passed by reference, which

means that changes made to them within one call to the procedure, will remain after

the procedure has returned control to the point from where it was called.

The ExecuteLocalPolicy procedure receives as input parameters:

88 CHAPTER 4. PROPOSED METHOD

Algorithm 4 Execution of local policy
1: . π: Local policy
2: .B: List of initial belief state vectors
3: . Z: Vector of the last observations perceived at each level in the RSS
4: .A: Vector of the last actions performed at each level in the RSS
5: . d: Depth in the RSS hierarchy at which local policy π executes
6: procedure EXECUTELOCALPOLICY(π, B, Z, A, d)
7: b← null
8: if Z[d] 6= null and A[d] 6= null then
9: zspace ← getObsSpace(π)

10: b← updateBelief(uniformBelief(zspace), Z[d], A[d])
11: else
12: b← B[d]
13: end if
14: a← getAction(π, b)
15: while a 6= terminate execution do
16: z ← null
17: if a is concrete then
18: z ← executeAction(a)
19: else
20: z ← ExecuteLocalPolicy(a,B, Z,A, d+ 1)
21: end if
22: b← updateBelief(b, z)
23: Z[d]← z
24: A[d]← a
25: a← getAction(π, b)
26: end while
27: s← getMostLikelyState(b)
28: zd−1 ← getAssociatedObservation(s)
29: return zd−1
30: end procedure

4.4. ARCHITECTURE OPERATION 89

• π: Local policy to be executed.

• B: List of initial belief state vectors, which is used by a local policy at depth

d only if it is the first time such depth has been reached by a recursive call of

ExecuteLocalPolicy.

• Z: Vector that holds the latest observation perceived at every level in the

RSS hierarchy. If a given depth d has already been visited by a ExecuteLo-

calPolicy call, then for future local policies located at depth d, they will use

the observation and action stored in Z[d] and A[d] to generate their initial

belief state.

• A: Vector that holds the latest action performed at every level in the RSS

hierarchy.

• d: Depth in the RSS hierarchy at which local policy π executes.

As for the main steps of Algorithm 4, these are detailed below.

• Lines 8-13: The initial belief state for policy π is built; whether it uses the

latest observation and action, perceived and performed, at depth d to update

a uniform belief state, or the global initial belief state B.

• Line 14: Gets the first action from policy π and initial belief state b.

• Lines 16-21: Once the procedure has entered the while loop (which is

finished by the policy invoking the terminate execution action), the current

selected action a is invoked. If a is a concrete action, it is executed by invoking

the correspondent basic module (see section 4.2.1.1). Whereas for abstract

actions, are executed as a local policy by the ExecuteLocalPolicy procedure.

90 CHAPTER 4. PROPOSED METHOD

• Lines 22-25: With the observation z returned by executing action a,

the local belief state b is updated, observation z is stored in Z, action a is

stored in A, and the next action to be executed is obtained from local policy π.

• Lines 27-29: Once the terminate execution is called and breaks the while loop,

the observation associated to the most likely state (according to b) is returned

by the procedure, in case the local policy being executed is an abstract action.

Thus, the recursive definition of Algorithm 4 makes possible to invoke both, poli-

cies from a hierarchical policy ΠH , and abstract actions. Moreover, since the proce-

dure takes care of passing control among local policies, one must only worry about

deciding what action should be taken at the end of the execution of the local policy,

which in the context of the planning architecture, the ExecuteHierarchicalPolicy

procedure is responsible of making this decision in line 12 of Algorithm 3.

Lets take for example the task request depicted by the yellow and orange cells

in Fig. 4.4. The hierarchical policy to solve this task would be made of three

policies, defined over the rooms, subsections and cells. Thus, the execution of such

hierarchical policy would be as follows:

1. The local policy defined over rooms would be executed and stopped until R3

was reached.

2. Local policy defined over sections in R3 would then be executed, since at this

point the robot is already in R3, and it would stop when the agent entered

the subsection containing the orange cell.

3. Finally the third local policy would be executed to make sure that the robot

reaches the orange cell, given that it already is within the same subsection.

4.5. CHAPTER SUMMARY 91

4.5 Chapter Summary

To summarize, the key-points that constitute the proposed planning architecture are

presented below.

• This planning scheme relies on two assumptions: the state of the robot is

known at the moment it starts executing a task, and the designer can provide

domain specific knowledge necessary to describe the domain’s dynamics.

• A knowledge base is employed to represent the description provided by the

designer for: the skill sets the robot is endowed with, the dynamics of the

environment, a hierarchical function and a characterization of the particular

environment in which the robot will operate.

• A hierarchical representation of the state space (SST) is employed to abstract

the original state space and eventually decompose tasks. Such structuring

enables to define sub-regions at which local policies can be executed.

• The POMDP formulation is used to model abstract actions, which are

recursively built upon lower level components (less abstract actions, states

and observations).

• To address a task request issued by the user, the following steps are performed:

1. Knowledge base construction: A designer provides domain specific

knowledge which is required to perform planning.

2. Architecture initialization: The architecture extracts from the

knowledge base information related to the domain dynamics and its

hierarchical structure to build a hierarchy of actions, which are modeled

as POMDP policies.

92 CHAPTER 4. PROPOSED METHOD

3. Architecture operation: After performing only once steps 1 and 2, if

the agent receives a task request it will perform the following operations.

(a) Based on the initial and goal state, an RSS is specified.

(b) A hierarchical policy is built over the D-hierarchical goal state used

to specify the RSS.

(c) The local policies that constitute the hierarchical policy are executed

in a top-down way, until the goal state is reached, which terminates

the execution of the hierarchical policy.

(d) Steps a-c are repeated for every future task request.

With the proposed architecture described in this chapter, the following contribu-

tions are presented:

1. A general framework for hierarchical task planning, capable of integrating

new skills into a planning problem, without having to modify the description

of those skills that already are part of the system.

2. A recursive definition for abstract actions (as POMDPs) that enables the

construction of arbitrarily deep hierarchies of POMDPs for task planning

problems, starting from a standard POMDP and a hierarchical representation

of its state space.

3. A methodology to generate and execute a multi-resolution plan in a sub-region

of the original state space, employing its hierarchical representation and a

hierarchy of POMDPs.

In the next chapter, a set of experiments are presented with the purpose of eval-

uating the performance of the proposed architecture, in comparison to two baseline

methods, in terms of efficiency and effectiveness. The experiments are designed to

4.5. CHAPTER SUMMARY 93

estimate the impact the size of the environment, and the agent’s state uncertainty

have in the planning systems’ performance, which are believed to be the variables

that can most increase the difficulty of generating a plan and executing it, respec-

tively.

Chapter 5

Experiments and results

A set of five experiments were performed under several scenarios, that vary in the

size of the environment and state uncertainty of the agent, to evaluate the planning

architecture’s effectiveness and efficiency. Furthermore, two baseline methods (stan-

dard POMDP and a two level hierarchical planner) were tested and their results

compared to the ones obtained by the proposed architecture. This chapter starts

by introducing the navigation domain that was used as study case, followed by a

description of the parameters that specify an experimental configuration, i.e. the

control variables, evaluation metrics and statistical model employed to evaluate the

obtained results. Next, the configuration and results of each experiment are pre-

sented, followed by a discussion on the experimental results and finally the chapter’s

summary.

5.1 Navigation domain as study case

In order to evaluate the proposed architecture, a mobile robot navigation domain

was selected as test scenario. Since this type of domain has an inherent high degree of

structure, and real-world problems tend to have large environments, it seemed a good

option to study the impact a hierarchical approach might have in the performance

of a task planning system. To model the bottom POMDP of the environment, the

space was discretized into a grid of square cells (with identical dimensions) aligned

horizontally and vertically, while the agent’s spectrum of actions was constituted

95

96 CHAPTER 5. EXPERIMENTS AND RESULTS

by movements that led to any cell, horizontally or vertically, adjacent to its cur-

rent location. The probability distributions for the state transition and observation

functions were modeled to have two and nine possible outcomes, respectively. The

details on the bottom POMDP parameters are presented below.

• S: There is a state for each cell in the environment.

• A: There is an action to move the agent to each of its horizontal and vertical

neighbor cells, that is, {move up,move down,move left,move right}.

• O: There is an observation for each cell in the environment.

• Φ: The transition probability distribution of each action has two possible

outcomes, defined by the following neighborhood relations and probabilities.

move up = {< move up, above, 0.9 >,< move up, current cell, 0.1 >}
move down = {< move down, below, 0.9 >,< move down, current cell, 0.1 >}
move left = {< move left, at left, 0.9 >,< move left, current cell, 0.1 >}
move right = {< move right, at right, 0.9 >,< move right, current cell, 0.1 >}

The first transition in each set stands for the action’s goal cell, while the

transitions defined by the current cell neighborhood relation model the

possibility of staying in the agent’s current cell.

• Ω: The observation probability distribution of each action is modeled with

the same set of nine observation neighborhood relations, above, below, at left,

at right, above left, above right, below left, below right, current cell. A 3×
3 Gaussian kernel centered, with respect both axes, to the transition’s ending

state is modeled with the set of observation neighborhood relations. In contrast

to the state transition distributions, because the agent’s state uncertainty is one

of the control variables, the specific observation probabilities are not fixed, but

rather depend on the standard deviation used to compute the discrete Gaussian

5.2. EXPERIMENT PARAMETERS 97

for each experimental configuration. The particular observation probabilities

are calculated with Eq. 5.1.

gx,y = η
e

−r2
2σ2

2πσ2
(5.1)

where gx,y is the probability of perceiving the observation located at column

x and row y (with respect to the kernel’s origin), r is the Euclidean between

(x, y) and the kernel’s center coordinate (expressed in standard deviations), σ

is the standard deviation and η a normalization factor. Moreover, by using a

Gaussian distribution to model the observation function it is possible to estab-

lish a comparison between the synthetic scenarios generated for experiments

1− 4 and a real robot, as shown in experiment 5 (see section 5.7).

The hierarchical function, employed to abstract the state space, considered four

levels of resolution (from less to more abstract): cells (concrete level), subsections,

rooms and buildings. The amount of levels a hierarchical function has is result of how

much knowledge the designer is able to provide about the environment’s structure.

For the experiments of this thesis, it is believed that four levels are enough to study

the impact state abstraction might have in the effectiveness and efficiency of a task

planning system.

5.2 Experiment parameters

This section describes the baseline methods employed for comparison purposes, pa-

rameters that define an experimental configuration, as well as the metrics employed

to measure the experiments’ independent and dependent variables. At the end of

this section, the details on the statistical model used to evaluate the experimental

results are presented, followed by a description of the sampling technique performed.

5.2.1 Baseline methods and failure criteria

In order to measure the impact state abstraction has in task planning, two baseline

methods were employed as reference for comparison purposes. The first one is a

98 CHAPTER 5. EXPERIMENTS AND RESULTS

standard POMDP [Kaelbling et al., 1998] (equivalent to our architecture’s bottom

POMDP), while the second baseline is a method that performs a single step of state

abstraction to solve tasks in a hierarchical representation with two levels, which

is an implementation we did in an attempt to replicate the planning architecture

proposed by [Sridharan et al., 2018]. Despite this implementation omits several

features of the original work, it does maintain three properties that establish it

as a middle point between the standard POMDP and our proposal: employs a

hierarchical representation of the state space of two levels, performs deterministic

planning in the top level and abstract actions (those in the top level) are performed

as POMDP policies in the bottom level. Both baseline methods are described in

detail below.

• Standard POMDP: The standard or flat POMDP (FP), is a POMDP that

shares the same parameters than the bottom POMDP (see section 4.3.1),

that is, S, A, O, Φ and Ω. In every simulation run, the flat POMDP defines

its reward function, by assigning a large positive reward for transitions that

end in the goal cell for that run, and then its policy is computed.

• Two level planner: The two level planner baseline (TLP), in its initial-

ization step, abstracts the state space in a hierarchy with two levels: i) the

concrete level (cells) and ii) the top-level, that has a state for each building

in the environment. The process of state abstraction is followed by comput-

ing two policies to transit between each pair (Buildingi, Buildingj), one from

Buildingi to Buildingj, and the other one for the opposite direction. After

the initialization step has been finished for an environment, the following steps

are performed in every simulation run.

1. For a pair (cell0, cellgoal), where cell0 is the initial position and cellgoal

the goal cell, the method builds a sequence P = [p0, ..., pn] of policies

(computed in the initialization step), that will take the agent from its

current building to Buildinggoal (the one that contains cellgoal).

2. Computes a policy Pfinal for a POMDP whose state space is defined as

the set of cells contained in Buildinggoal.

3. Executes in sequence the policies in P , followed by the execution of Pfinal.

5.2. EXPERIMENT PARAMETERS 99

Furthermore, since having a policy wondering around for an undetermined amount

of steps was a possibility, failure criteria were defined for each one of the evaluated

methods, including the proposed architecture.

• Standard POMDP failure criteria

1. The amount of steps taken surpasses the POMDP’s state space size, i.e.

|S|.

2. The policy terminates its execution in a cell different to the goal cell.

• Two level planner failure criteria

1. The amount of steps taken by a single policy pi, computed to transit

from Buildingi to Buildingj, surpasses its POMDP state space size, i.e.

the amount of cells in Buildingi plus the amount of cells in Buildingj

that are adjacent to a cell in Buildingi.

2. A policy pi, computed to transit from Buildingi to Buildingj, terminates

its execution in a cell that is not contained in Buildingj.

3. Policy Pfinal takes the agent to a cell that is not contained in Buildinggoal.

4. Policy Pfinal terminates its execution in a cell different to cellgoal.

• Proposed architecture failure criteria

1. The amount of steps taken by a policy, whether is an abstract action or

an element from a hierarchical policy, surpasses the size of its POMDP

state space.

2. A policy, whether is an abstract action or an element from a hierarchi-

cal policy, takes the agent to a state that was not modeled in its POMDP.

100 CHAPTER 5. EXPERIMENTS AND RESULTS

3. An abstract action returns an observation that has a probability of 0.0

of being returned, according to the observation probability distribution

estimated for that abstract action.

4. A hierarchical policy terminates its execution in a cell different to cellgoal.

Hence, during a simulation run, if a method entered to any of its failure scenar-

ios, the simulation is stopped and considered to be a failed run for that method.

Furthermore, from now on, the standard POMDP, two level planner and proposed

architecture, will be referred as FP, TLP and HP, respectively.

5.2.2 Control parameters

The parameters that define an experimental configuration can be classified as those

with a fixed value and those whose value is modified across the set of experiments.

• Fixed parameters

– POMDP solving algorithm: In order to compute the policy for any

POMDP (FP, POMDPs in TLP, abstract actions and elements from a

hierarchical policy in HP), Point-based value iteration [Pineau et al.,

2003] (PBVI) is used, which is an approximate solving algorithm.

– Number of belief points: Instead of computing an exact solution, PBVI

solves a POMDP for finite set of belief points, where the larger the set

of belief points is, the better the computed solution will approximate

the exact solution. For every FP and POMDPs in TLP, 250 belief

points were employed, while for every POMDP in HP 75 were used.

As explained in [Pineau et al., 2003], for any belief set B and horizon

n, PBVI generates an estimate V B
n . The denser B samples the belief

simplex (whose size depends on the POMDP’s state space size), V B
n

converges to V ∗n , the true value function. Therefore, a larger set of belief

points is employed for FP and TLP than for HP, since their simplex will

always be larger than the ones in HP. However, given that no heuristic

5.2. EXPERIMENT PARAMETERS 101

has been found in literature to select the amount of belief points based

on the problem’s dimension, the criterion followed to select these values

was that they should be large enough so that each method could find

good policies in the first experimental configurations, but also that they

were small enough so that the total amount of simulations could be

finished in a reasonable amount of time.

– Discount factor and horizon: For the computation of every policy for the

three evaluated methods, a discount factor of 0.95 and a horizon of 10

were used.

– Number of simulations for parameters estimation: To estimate the

transition and observation distributions of an abstract action (see section

4.3.2.3) 100 simulations were performed for each abstract action.

– Number of cells connecting rooms: When an environment is generated,

the pairs of cells that connect adjacent rooms are randomly selected, and

the amount of pairs is equal to the room’s side length (in cells) divided by

two. For instance, in Fig. 5.1 the pairs 〈c4, c5〉, 〈c28, c29〉 were randomly

selected to connect the pair of upper rooms in the leftmost building.

– Number of cells connecting buildings: Similar to the cells that connect

rooms, the amount of pairs of cells connecting adjacent buildings is equal

to the subsection height (in cells). However, the set of connecting pairs

were always arranged as an uninterrupted sequence, whose position was

randomly selected.

• Variable parameters

– Number of buildings: Amount of buildings that constitute an environ-

ment, where all buildings in an environment have the same dimensions.

The relative position of a building to an adjacent one was randomly

selected.

102 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.1: Example of an environment made of two buildings, which was employed for
the fourth experimental configuration in experiment 1 (see section 5.3). In this environ-
ment, subsections (green squares) have a dimension of 2, and the same goes for rooms
and buildings.

– Subsection dimension: The width and height dimension (in cells) every

subsection has.

– Room dimension: The width and height dimension (in subsections) every

room has.

– Building dimension: The width and height dimension (in rooms) every

building has.

– Standard deviation for Ω: The value of σ used to compute the discrete

Gaussian kernel to model the observation distribution (see Eq. 5.1).

5.2.3 Independent variables

In order to characterize the agent’s state uncertainty and the environment’s size,

which are the independent variables in every experiment, a pair of variables that

take into account the values of the variable parameters are employed.

5.2. EXPERIMENT PARAMETERS 103

• Size of the environment: The size of the environment is measured by the total

amount of cells.

• State uncertainty: Since the agent’s state uncertainty is expected to be larger

as the kernel size and standard deviation increase, Shannon entropy for a

Gaussian discrete kernel is used instead, given by Eq. 5.2. Hence, since the

same observation distribution is used across an environment, the Shannon

entropy value for such distribution describes the amount of uncertainty an

agent is expected to face during a task.

H(g) = −
width(g)−1∑

x=0

height(g)−1∑
y=0

gx,ylog2(gx,y) (5.2)

where gx,y is the probability of perceiving the observation located at coordinate

(x, y) within kernel g.

5.2.4 Dependent variables

In the same way independent variables describe the environment properties of inter-

est, the purpose of dependent variables is to measure the effect independent variables

have in the phenomenon that is being studied, i.e., the planning methods. For the

set of experiments presented in this chapter, efficiency and effectiveness are the

phenomenon’s properties of interest, and their operational definitions are presented

below.

• Efficiency in planning: The time required to compute a plan (policy) measured

in seconds. For FP is the time required to compute its policy, for TLP is the

time required to determine the sequence of policies, and compute the final

building policy. Whereas for HP, is the total time required to compute all the

policies that constitute the hierarchical policy.

• Efficiency in execution: During execution, efficiency is measured by means of

the path relative cost, which is the amount of actions required to take the agent

from the initial cell to the goal cell, compared to the shortest path between

104 CHAPTER 5. EXPERIMENTS AND RESULTS

them, that is:

Path relative cost =
actionsexe
lengthopt

(5.3)

where lengthopt is the length of the shortest path between the initial and goal

cell of a task, and actionsexe is the amount of concrete actions performed by

the agent. Moreover, since the paths of simulations in which the evaluated

method does not reach the goal state might be shorter than the optimum

path (because of the early termination), the path relative cost is computed

only for runs in which the goal state is reached, in order that the average of

this metric does not misinform about the method’s actual performance.

• Effectiveness: The purpose of measuring the effectiveness of a planning method

is to establish how reliable it is in solving tasks. To measure effectiveness in

planning, success ratio and relative error are employed, given by the following

equations.

Success ratio =
Nsuccess

Ntotal

(5.4)

Relative error =
error dist

lengthopt
(5.5)

where Ntotal is the total amount of simulations executed in an experimental

configuration, Nsuccess the amount of simulations in which the goal cell was

reached, and error dist the length of shortest path between the agent’s final

location and the goal cell for a simulation run. Hence, while Eq. 5.4 expresses

the proportion of simulations in which a model succeeded, Eq. 5.5 describes

how far the agent was from the goal cell at the end of a simulation, relative to

how far it was at the beginning of it (which is a normalized value).

5.2.5 Statistical parameters

With regards to the parameters employed to sample data and evaluate the experi-

mental results, these are described below.

• Sample size: In order to detect a difference of 0.2 and 0.3 standard deviations,

between two means at the 5% significance level with statistical power 90%,

5.3. EXPERIMENT 1 105

samples of size 233 and 525, respectively, are employed for different experi-

ments.

• Statistical model: Since the sample sizes are not large, the t distribution is

employed to find a difference between two means.

• Sampling procedure: Let B0 and Bn be the sets of cells contained in the

leftmost and rightmost buildings in the environment, respectively. Then, for

a sample size of N , Algorithm 5 is performed to sample the set of initial-goal

state pairs for an experimental configuration.

Algorithm 5 Procedure to sample pairs of initial and goal states
1: .N : Sample size
2: .B0: Set of cells contained in the leftmost building
3: .Bn: Set of cells contained in the rightmost building
4: procedure SAMPLE(N , B0, Bn)
5: i← 0
6: S ← []
7: while i < N do
8: s0 ← SampleState(B0

⋃
Bn)

9: sgoal ← NULL
10: if s0 ∈ B0 then
11: sgoal ← SampleState(Bn)
12: else
13: sgoal ← SampleState(B0)
14: end if
15: Append(S,< s0, sgoal >)
16: i← i+ 1
17: end while
18: return S
19: end procedure

In Algorithm 5, sub-routine SampleState(A) returns an element randomly

selected (with replacement) from set A, and Append(V, t) appends tuple t at

the end of vector V . Hence, Algorithm 5 guarantees that the initial and goal

cells will be selected from opposite ends of the environment.

106 CHAPTER 5. EXPERIMENTS AND RESULTS

5.3 Experiment 1

Experimental setting:

• Number of buildings: 2

• Subsection dimension: 2

• Room dimension: 2

• Building dimension: 2

• Standard deviation: [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]

• Amount of simulations: 233

5.3.1 Objective

To determine if the magnitude of uncertainty in the agent’s state decreases the

effectiveness and efficiency of HP as much as it does to FP or TLP.

5.3.2 Hypothesis

If the state uncertainty increases, then HP will consistently behave as equal or more

effectively, and more efficiently, than FP and TLP.

5.3.3 Results

In Figs. 5.2, 5.3, 5.4, and 5.5 the success ratio and average scores on relative error,

path relative cost, and planning time for FP, TLP, and HP obtained in each exper-

imental configuration in experiment 1 are shown. In addition, in Fig. 5.6 the 95%

and most significant (widest interval that does not include 0) confidence intervals

for the mean differences found between HP and the two baselines are shown.

5.3. EXPERIMENT 1 107

Each plot in Figs. 5.6, 5.11 and 5.16 shows the confidence intervals found for

the difference of means between a pair of methods (FP, TLP or HP), with respect

to a certain metric (path relative cost, planning time or relative error). For each

experimental configuration (horizontal axis), two confidence intervals are plotted:

the 95% (since it is a standard practice to report this confidence interval) and the

most significant interval (i.e., the widest interval that does not cover the value 0) in

blue and green, respectively. Also, the left axis shows the value for the center and

ends of each interval, while the right axis shows the percentage of confidence (which

is plotted as a green bar) of each most significant interval. Therefore, the wider a

green interval is, it means that there is more confidence that the difference between

the pair of methods for that configuration is not due to randomness.

From Figs. 5.2 and 5.3 one can observe that, although HP and TLP obtained a

similar relative error (according to Fig. 5.6f), TLP dominated HP and FP in terms

of effectiveness across the overall set of trials, by obtaining the highest success ratio

and lowest relative error. For the first couple of trials (σ = 0.2, 0.4), HP showed

to be more effective than FP, however, at σ = 0.6 HP experimented the largest

decrease, with respect to σ = 0.4, among the three methods and from there on its

success ratio kept going lower. With regards to the methods’ efficiency, Figs. 5.4

and 5.5 show that TLP obtained the lowest value for the path relative cost for most

of the trials, while HP reported the lowest planning time over the full set of trials.

In view of HP not reporting the highest success ratio and, simultaneously, the

lowest planning time over the full set of trials, it is concluded that there is insufficient

evidence to support the following hypothesis: If the state uncertainty increases, then

HP will consistently behave as equal or more effectively, and more efficiently, than

FP and TLP. Moreover, in section 5.8 a discussion that covers the results found in

each experiment is presented.

108 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.2: Success ratio (left axis) and Shannon entropy in Gaussian kernel (right axis)
in experiment 1.

Figure 5.3: Average relative error (left axis) and Shannon entropy in Gaussian kernel
(right axis) in experiment 1.

5.3. EXPERIMENT 1 109

Figure 5.4: Average path relative cost scores (left axis) and Shannon entropy in Gaussian
kernel (right axis) in experiment 1.

Figure 5.5: Average planning time (left axis) and Shannon entropy in Gaussian kernel
(right axis) in experiment 1, where init-TLP and init-HP stand for the time required for
the initialization phases of TLP and HP, respectively.

110 CHAPTER 5. EXPERIMENTS AND RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Confidence intervals (C.I.) for the mean differences (HP - FP) (left column)
and (HP - TLP) (right column), in experiment 1, of the path relative cost (R.C.), planning
time (P.T.), and relative error (R.E.), where blue intervals have 95% confidence, while the
green ones are the most significant (M.S.) intervals (the widest one that does not include
0 in it). Left axes are for intervals and right axes for the % of confidence of the M.S.
intervals.

5.4. EXPERIMENT 2 111

5.4 Experiment 2

Experimental setting:

• Number of buildings: 2

• Subsection dimensions: 4

• Room dimension: 2

• Building dimension: 2

• Standard deviation: [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]

• Amount of simulations: 233

5.4.1 Objective

To determine if by increasing the state space of abstract actions modeled with con-

crete elements, the effectiveness of HP increases with respect to when smaller state

spaces are defined.

5.4.2 Hypothesis

If the state uncertainty increases and an HP H1 uses larger subsections than another

HP H2, then H1 will consistently behave as equal or more effectively than H2.

5.4.3 Results

In Figs. 5.7, 5.8, 5.9, and 5.10 the success ratio and average scores on relative error,

path relative cost, and planning time for FP, TLP, and HP obtained in each exper-

imental configuration in experiment 2 are shown. In addition, in Fig. 5.11 the 95%

and most significant (widest interval that does not include 0) confidence intervals

for the mean differences found between HP and the two baselines are shown.

112 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.7: Success ratio (left axis) and Shannon entropy in Gaussian kernel (right axis)
in experiment 2.

From Figs. 5.7 and 5.8, it is shown that for the first three trials HP obtained

the largest success ratio, but it moved to the second best for the remaining trials.

However, in terms of relative error, HP showed the lowest score in the overall set of

trials, whereas FP reported the lowest success ratio over the whole experiment and

the largest relative error for most of the trials. With regards to efficiency, HP showed

the lowest value for path relative cost for most of the trials, while the lowest planning

time in the whole experiment. It is worth noting that the confidence intervals for

the differences between HP and FP with respect to the path relative cost (see Fig.

5.11a) could not be computed, since FP did not reach the goal state more than once.

Given that the version of HP with larger subsections failed to report a higher

success ratio than the version with smaller subsections across the full set of experi-

mental configurations, it is concluded that there is insufficient evidence to support

the following hypothesis: If the state uncertainty increases and an HP H1 uses larger

subsections than another HP H2, then H1 will consistently behave as equal or more

effectively than H2. Moreover, in section 5.8 a discussion that covers the results

found in each experiment is presented.

5.4. EXPERIMENT 2 113

Figure 5.8: Average relative error (left axis) and Shannon entropy in Gaussian kernel
(right axis) in experiment 2.

Figure 5.9: Average path relative cost scores (left axis) and Shannon entropy in Gaussian
kernel (right axis) in experiment 2.

114 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.10: Average planning time (left axis) and Shannon entropy in Gaussian kernel
(right axis) in experiment 2, where init-TLP and init-HP stand for the time required for
the initialization phases of TLP and HP, respectively.

5.4. EXPERIMENT 2 115

(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Confidence intervals for the mean differences (HP - FP) (left column) and
(HP - TLP) (right column), in experiment 2, of the path relative cost (R.C.), planning time
(P.T.), and relative error (R.E.), where blue intervals have 95% confidence, while the green
ones are the most significant (M.S.) intervals (the widest one that does not include 0 in it).
Left axes are for intervals and right axes for the % of confidence of the M.S. intervals.

116 CHAPTER 5. EXPERIMENTS AND RESULTS

5.5 Experiment 3

Experimental setting:

• Number of buildings: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20]

• Subsection dimensions: 2

• Room dimension: 2

• Building dimension: 2

• Standard deviation: 0.2

• Amount of simulations: 525

5.5.1 Objective

To determine if the magnitude of the environment’s size decreases the effectiveness

and efficiency of HP as much as it does to TLP.

5.5.2 Hypothesis

If the state space size increases, then HP will consistently behave as equal or more

effectively, and more efficiently, than a TLP.

5.5.3 Results

In Figs. 5.12, 5.13, 5.14, and 5.15 the success ratio and average scores on relative

error, relative error, and planning time for FP, TLP, and HP obtained in each exper-

imental configuration in experiment 3 are shown. In addition, in Fig. 5.16 the 95%

and most significant (widest interval that does not include 0) confidence intervals

for the mean differences found between HP and TLP for experiments 3 and 4 are

shown.

5.5. EXPERIMENT 3 117

From Figs. 5.12 and 5.13, it is shown that for the first half of trials, HP obtained

a near perfect performance, however, from the 10th trial its success ratio dropped

to, and remained in, the bottom of the scale. As for TLP, for the first two trials

it obtained the same performance than HP, nevertheless, despite it showed several

ups and downs, it never reported a success ratio as low as HP did for the second

half. With regards to efficiency, Figs. 5.14 and 5.15 show that for the first half

of trials, HP obtained the lowest value for path relative cost, while for the second

half it could not be calculated, since HP never reached a goal cell. Furthermore,

the initial planning for both HP and TLP grew linearly with respect to the amount

of buildings, while their average iterative planning time (the one that is not the

initial planning time) remained constant, where HP reported the lowest planning

time over the whole experiment. It is worth noting that the confidence intervals for

the differences between HP and TLP with respect to the path relative cost (see Fig.

5.16a) could not be computed, since HP did not reach the goal state even once for

the second half of the experimental configurations.

Given that HP failed to report a higher success ratio and, simultaneously, a lower

planning time than TLP over the full set of experimental configurations, it is con-

cluded that there is insufficient evidence to support the following hypothesis: If the

state space size increases, then HP will consistently behave as equal or more effec-

tively, and more efficiently, than a TLP. Moreover, in section 5.8 a discussion that

covers the results found in each experiment is presented.

118 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.12: Success ratio (left axis) and total amount of cells in the environment (right
axis) in experiment 3.

Figure 5.13: Average relative error (left axis) and total amount of cells in the environment
(right axis) in experiment 3.

5.5. EXPERIMENT 3 119

Figure 5.14: Average path relative cost scores (left axis) and total amount of cells in the
environment (right axis) in experiment 3.

Figure 5.15: Average planning time (left axis) and total amount of cells in the environment
(right axis) in experiment 3, where init-TLP and init-HP stand for the time required for
the initialization phases of TLP and HP, respectively.

120 CHAPTER 5. EXPERIMENTS AND RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Confidence intervals for the mean differences (HP - TLP) in experiment 3
(left column) and experiment 4 (right column) of the path relative cost (R.C.), planning
time (P.T.), and relative error (R.E.), where blue intervals have 95% confidence, while the
green ones are the most significant (M.S.) intervals (the widest one that does not include
0 in it). Left axes are for intervals and right axes for the % of confidence of the M.S.
intervals.

5.6. EXPERIMENT 4 121

5.6 Experiment 4

Experimental setting:

• Number of buildings: 2

• Subsection dimensions: [2, 3, 3, 3]

• Room dimension: [2, 2, 3, 3]

• Building dimension: [2, 2, 2, 3]

• Standard deviation: 0.2

• Amount of simulations: 233

5.6.1 Objective

To determine if by increasing the environment’s size in a way that does not in-

crease the amount of abstract states in TLP, but does in HP, increases the difference

between HP and TLP in terms of effectiveness and efficiency.

5.6.2 Hypothesis

If the subsections, rooms and buildings’ dimensions increase, then the difference in

effectiveness and efficiency between HP and TLP will increase.

5.6.3 Results

In Figs. 5.17, 5.18, 5.19, and 5.20 the success ratio and average scores on relative

error, relative error, and planning time for TLP, and HP obtained in each experi-

mental configuration in experiment 4 are shown. In addition, in Fig. 5.16 the 95%

and most significant (widest interval that does not include 0) intervals for the mean

differences found between HP and TLP for experiments 3 and 4 are shown.

122 CHAPTER 5. EXPERIMENTS AND RESULTS

Figs. 5.17 and 5.18 show that, in terms of effectiveness, HP obtained a near perfect

performance over the full set of experimental configurations, while TLP showed a

good performance in the first trial, and considerably decreased towards the following

configurations. With regards to the efficiency, as shown in Figs. 5.19 and 5.20, TLP

reported the highest path relative cost and planning time in every trial. Moreover,

unlike the planning time results obtained in experiment 3 (see section 5.5), that

maintained a constant behavior across the full set of trials, Fig. 5.20 shows that

TLP’s planning time not only grows, but it does to such magnitude that even HP’s

initial planning time is lower than TLP’s average planning time in the last three

configurations.

Given that HP succeeded in constantly reporting a success ratio and planning

time that kept moving away from the ones reported by TLP, as the size of the

environment increased, it is concluded that there is sufficient evidence to support the

following hypothesis: If the subsections, rooms and buildings’ dimensions increase,

then the difference in effectiveness and efficiency between HP and TLP will increase.

Moreover, in section 5.8 a discussion that covers the results found in each experiment

is presented.

5.6. EXPERIMENT 4 123

Figure 5.17: Success ratio (left axis) and total amount of cells in the environment (right
axis) in experiment 4.

Figure 5.18: Average relative error (left axis) and total amount of cells in the environment
(right axis) in experiment 4.

124 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.19: Average path relative cost scores (left axis) and total amount of cells in the
environment (right axis) in experiment 4.

Figure 5.20: Average planning time (left axis) and total amount of cells in the environment
(right axis) in experiment 4, where init-TLP and init-HP stand for the time required for
the initialization phases of TLP and HP, respectively.

5.7. EXPERIMENT 5 125

5.7 Experiment 5

5.7.1 Objective

In order to gain insight on how the proposed architecture would behave in a real sys-

tem, such as the RB1 service robot1 available in the robotics laboratory in INAOE, in

this experiment the error of the RB1’s localization system is estimated and compared

to the experimental configurations employed in the previous experiments. In this

way, the uncertainty in the robot’s localization system can be used to extrapolate

the results found in simulation to the real world.

5.7.2 Description

Currently, the RB1 robot uses the 2D SLAM implementation of the Active Vision

Group [Seib et al., 2016]. This implementation enables the robot to generate a

description of the environment (known as map) to locate itself within it, as shown

in Fig. 5.21. To measure the error in the robot’s 2D SLAM system, a set of five

VICON VANTAGE cameras2 were set in the room to track the robot’s position and

serve as ground truth, because of their high precision.

To estimate the error in the robot’s 2D SLAM system, the following steps were

performed:

1. A map of a section of the robotics laboratory, from INAOE, was generated.

Then, a collection of ten starting points and a target point were set in the

map, as shown in Fig. 5.21.

2. A set of four markers were mounted on the robot’s head, in this way, the

VICON cameras could detect its position within their range of view at any

time, as shown in Figs. 5.22 and 5.23.

1https://www.robotnik.eu/manipulators/rb-one/
2https://www.vicon.com/hardware/cameras/vantage/

126 CHAPTER 5. EXPERIMENTS AND RESULTS

3. The robot was commanded to move (once) from each starting point to the

target point (using the navigation system also implemented by [Seib et al.,

2016]). At the end of every run, the robot’s position reported by the VICON

system (Ci
x,y) was registered.

4. The standard deviation was computed for the set of final positions C =

{C1
x,y, ..., C

i
x,y, ..., C

10
x,y} using Eq. 5.6.

σ =

√√√√ 1

10− 1

10∑
i=1

(
EucDist(Ci

x,y, Avgx,y)
)2 (5.6)

where Avgx,y is the average coordinate from the positions in C and

EucDist(·, ·) is a function that returns the Euclidean distance between two

points.

5.7.3 Results

After performing the ten runs, a standard deviation of 0.0993673 ≈ 0.1 (meters)

was obtained. Furthermore, given that in Eq. 5.1 (which models the observation

distribution) the distance of a cell to the center of the kernel is expressed in standard

deviations, and assuming that the error in the robot’s localization system follows a

Gaussian distribution, then it is possible to match an observation distribution, from

previous experiments, to a setting for the RB1 robot.

In experiment 1, it was shown that the proposed architecture obtained success ratio

scores > 0.8, for standard deviation values of 0.2 and 0.4 (see Fig. 5.2). In order

to extrapolate the performance of HP observed in simulation, instead of modifying

RB1’s standard deviation (≈ 0.1 meters), the distances by which adjacent cells

should be separated to replicate the observation distribution for standard deviation

values of 0.2 and 0.4 (shown in Fig. 5.24) were computed.

Eq. 5.8 (derived from Eq. 5.7 which is a variation of Eq. 5.1 that was employed

to compute the probability values in the observation distribution, but omits the

normalization factor η) computes the euclidean distance (r in standard deviations)

5.7. EXPERIMENT 5 127

between the center of a Gaussian built with σ standard deviations, and a point in

space that has a probability of p.

Let G0.2 and G0.4 be two Gaussian functions with σ values of 0.2 and 0.4, respec-

tively (shown in the left and middle columns in Fig. 5.24). Then, p0.2 and p0.4 are

probabilities of a point located at 1 standard deviation apart from the center of G0.2

and G0.4.

p =
e

−r2
2σ2

2πσ2
(5.7)

r =
√
−2σ2 ln(2πpσ2) (5.8)

Using p0.2 and p0.4, with σ = 1, in Eq. 5.8 the distance values of r0.2 ≈ 4.31 and

r0.4 ≈ 1.61 were computed, which are expressed in standard deviations. By multiply-

ing r0.2 and r0.4 by 0.1 (which is RB1’s actual standard deviation), d0.2 = 0.431 and

d0.4 = 0.161 were obtained (in meters). Therefore, for a standard deviation of 0.1

meters in its localization system, the RB1 robot (with HP in charge of planning) is

expected to behave similarly to how HP did in those configurations with a standard

deviation of 0.2 and 0.4, by descretizing environments into a grid of adjacent cells

separated by 0.431 and 0.161 meters, respectively.

128 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.21: Map of a section of the robotics laboratory in INAOE. The map was generated
using a laser sensor and the 2D SLAM implementation of the Active Vision Group [Seib
et al., 2016]. In this map, the yellow marker corresponds to the target location that the
robot was instructed to go, the letters “S” indicate the 10 starting points from which the
robot moved to the target, and the purple circle shows the robot’s location at the moment
the picture of the map was taken.

Figure 5.22: The image on the left shows the arrangement of markers set on the robot’s
head, so that the VICON cameras could detect them at any moment. On the right side
are shown the markers being tracked, from which the VICON system creates a coordinate
system that represents the robot’s true position.

5.7. EXPERIMENT 5 129

Figure 5.23: The image on the right side shows the robot’s position being tracked within
the robotics laboratory, which corresponds to its location in the image on the left.

Figure 5.24: Two dimensions Gaussian probability density function plots with different
standard deviation values (from left to right: 0.2, 0.4 and 1 standard deviations, respec-
tively). Plots in the bottom row correspond to the top view of the plots in the row on the
top. The green dots represent the center of the cells in a 3× 3 kernel (employed to model
the agent’s observation distribution in previous experiments), which are horizontally and
vertically separated by 1 standard deviation.

130 CHAPTER 5. EXPERIMENTS AND RESULTS

5.8 Discussion

In experiment 1, as the differences found with respect to time planning (illustrated

in Figs. 5.6c and 5.6d) suggest, HP is significantly more efficient in planning time

regardless of the agent’s state uncertainty. With regards to path relative cost, HP

reports the lowest value only for the first two experimental configurations and from

the third one it ranks in second place. As for effectiveness, unlike the baseline

methods, HP is the only one that consistently decreases its success ratio and increases

its relative error as entropy increases. Also, the Shannon entropy seems to have a

proportional effect in the success ratio of HP (as Fig. 5.2 shows), as both show a

steep slope in the interval [0.4,0.6], and slowly and consistently converge.

Thus, because of the trends shown by the success ratio and differences between

HP and TLP in terms of relative error (see Figs. 5.2 and 5.6f), results in experiment

1 do not support the hypothesis of HP consistently behaving as effectively and more

efficiently than FP and TLP. Therefore, it is safe to state that the performance of

HP suffers the most, compared to the baseline methods. Given that HP executes

concrete actions through policies computed to model abstract actions, and the set of

states over which an abstract action invokes actions is a subset of the environment’s

state space (as Eq. 4.15 specifies), there is a possibility that the agent transits to a

state that is not in the abstract action’s state space.

Furthermore, as the entropy in the observation distribution increases, so does the

probability for the agent to perceive observations that do not represent its true state.

Hence, by combining a high degree of uncertainty of its current state with a small

state space, in HP, it is likely that the agent will perform actions that take it out

of its state space before it reaches the goal state. Moreover, despite that the agent

might also take sub-optimal actions in FP and TLP, due to the large state space in

which it operates, it has a larger margin of error to get back in track towards its

goal state. Therefore, the smaller margin for error would explain why HP was the

method with the lowest success ratio for most of the trials, and was the motivation

for experiment 2, which evaluates if by enlarging tha abstract actions’ state space,

HP reports a better success ratio.

5.8. DISCUSSION 131

The success ratio and planning time results for HP in experiment 2 support two

observations (that also appeared in results from experiment 1): first, uncertainty

does not appear to have any effect in planning time of HP, and second, uncertainty

seems to have a direct negative effect in HP’s success ratio. As Fig. 5.10 shows, HP

has a flat trace for both, initial and iterative planning times over the whole set of

values for standard deviation. Whereas in Fig. 5.7, HP shows again a trace that

looks like a horizontally mirrored version of the Shannon entropy trace. Thus, even

in a scenario with larger sub-sections, HP struggles to maintain the high success

ratio score (reported in configurations with low entropy) in configurations with a

Shannon entropy of 2.5 or higher. Furthermore, as Fig. 5.8 illustrates, similar to

the relative error results from experiment 1, HP seems to stabilize at a relative error

of 0.5. Therefore, since the success ratio and relative error performance of HP were

pretty much replicated in experiment 2, this suggests that increasing the sub-section

dimension does not mitigate the negative effects uncertainty has over HP. Thus,

results from experiment 2 do not support the hypothesis that larger sub-sections

improve the effectiveness of HP.

However, despite the performance of HP did not improve in a scenario of larger

sub-sections, it did remain pretty similar to experiment 1, which cannot be said

for FP and TLP. With regards of FP, its success ratio remained near to 0 across

the full set of experimental configurations, whilst TLP suffered a significant drop in

success ratio, compared to its results from experiment 1. Even though TLP reported

a higher success ratio score than HP for most of the experimental configurations, in

Figs. 5.8, 5.9, 5.11f, and 5.11b is shown that HP obtained the smallest relative error

for every configuration and the smallest path relative cost for most of them. This

seems to suggest that the environment’s size does not affect the performance of HP,

at least not as much it does to FP and TLP.

In experiment 3, HP showed the lowest initial and iterative planning (see Figs.

5.15 and 5.16c) across the full set of experimental configurations. With regards to

the first half of the trials, HP reported a success ratio of 1 and a relative error of 0 for

every configuration in the range [2, 10] with exception of amount of buildings = 3.

Furthermore, the path relative cost of HP, similar to its score on effectiveness, shows

a consistent behavior (see Figs. 5.14 and 5.16a). However, the performance of

HP completely drops for the second half of experimental configurations, while TLP

132 CHAPTER 5. EXPERIMENTS AND RESULTS

maintains the erratic behavior shown in the whole experiment. Therefore, given

that HP completely fails, for the second half of trials, to reach the goal cell even

once, then the results from experiment 3 do not support the hypothesis that HP

consistently behaves as effectively and more efficiently than TLP as the state space

size increases.

Recalling the description of failure criterion 2 for HP, it is caused by the agent

transiting to a state that is not part of the current state space. As Fig. 5.25 shows,

all of HP’s failures occurred in the second half of the experimental configurations,

were caused by failure of type 2. By having HP always failing because a not mod-

eled state was reached, while simultaneously barely moving away from its starting

position (as shown in Fig. 5.13), could be caused by policies (at the most abstract

level in the SST, i.e. where buildings are states) consistently executing abstract

actions that were built to be invoked from an abstract state different to the current

one. Furthermore, in [Pineau et al., 2003] they state in the definition of the conver-

gence and error bound for PBVI that with a denser sampling of belief points, the

estimated value function converges to the true value function, which means that HP

would benefit by using a set of belief points larger than the 75 employed in these

experiments.

However, given that decrease in performance of HP occurred abruptly, it is likely

that the horizon value, employed to compute every policy, caused the poor decision

making at the buildings level in the SST. Since the pair of initial and goal states

are sampled from the pair of buildings at the ends of the environment (see section

5.2.5), using a horizon of 10 would explain why the policy does not know what the

best action is while the agent is 10 transitions away form the goal state.

Hence, in order to determine if any of our hypotheses can explain the sudden

failure of HP in the scenario of 11 buildings, two additional configurations of HP

were evaluated using: i) a set of 250 initial belief points, and ii) a horizon of 11. Both

configurations were simulated the same amount of times than those in experiment

3 (525 runs), and the results are shown in Table 5.1, along with the results of the

original configuration. At first, by comparing the results between the top and middle

row, it is clear that by increasing the amount of initial belief points does improve

5.8. DISCUSSION 133

Figure 5.25: Proportion of simulations terminated as failed ones as a consequence of HP
meeting cases of failure criteria 2 and 3, described in section 5.2.1.

134 CHAPTER 5. EXPERIMENTS AND RESULTS

Table 5.1: Comparison of the success ratio and average relative error, path relative cost
and planning time, after 525 simulations, obtained by HP in an environment made of 11
buildings using different configurations of horizon and amount of belief points in PBVI,
where the first row corresponds to the configuration used in experiment 3.

Amount of
Buildings

of Belief
Points in PBVI

Horizon
in PBVI

Success
Ratio

Relative
Error

Path Relative
Cost

Planning
Time (sec.)

11 75 10 0 0.97± 0.04 - - 0.35± 0.04
11 250 10 0 0.96± 0.03 - - 0.86± 0.16
11 75 11 1 0 1.15± 0.04 0.28± 0.05

the performance of HP, since it was not able to reach the goal cell not even once.

Thus, it is safe to discard a greater amount of belief points as a possible solution.

Nevertheless, with regards to the results in the bottom row HP obtained similar to

those in experiment 3 up to the scenario of 10 buildings. These results suggest that,

in fact, HP required of a larger horizon in order to successfully traverse from one

end of the environment to the other. However, given that HP consumes an amount

of time significantly smaller than FP and TLP, one could still afford to increase the

horizon in the PBVI algorithm if necessary.

In experiment 4, HP significantly outperforms TLP in all four evaluation metrics,

as it reported success ratio scores of 1, 1, 1 and 0.99. Moreover, considering the fact

that the state space of the fourth configuration (1458 cells) is larger than the last

configuration in experiment 3 (1280 cells) gives insight on how large state spaces

with a high degree of connectivity among its states are still manageable, if the

information about those connections is available, which is the main idea behind

the proposed architecture in this document: to take advantage of knowledge about

domestic environments a designer might have, to enable a service robot to perform

its tasks in an efficient and reliable way.

From experiments 1 and 2, the proposed architecture showed to be more suscepti-

ble to fail reaching the goal state than FP and TLP, as the uncertainty in the agent’s

state increased, however, as results from experiment 5 indicate, in a real setting a

robot can behave reliably if the space is discretized into a grid of cells separated by

at least 0.25 meters, which seems to be a feasible condition for most service robotics

applications. With regards to experiment 3, HP was exposed to be sensitive to the

horizon employed to solve its policies. Whereas experiment 4 exhibited the capacity

5.9. CHAPTER SUMMARY 135

of HP to exploit known structures of the domain and perform near optimal in such

environments. Although the proposed architecture has turned out to be a feasible

task planning method for large environments, whose structure is known and show a

low degree of state uncertainty, it still suffers from several shortages.

The proposed architecture could benefit from using larger horizons and sets of be-

lief points to compute its policies, as the planning time reported in these experiments

are still way lower than both baselines. However, the main reason HP assumes the

initial state is known with certainty, and why it performed so bad in experiments 1

and 2, is due to its inability to recover from scenarios with a considerable amount

of uncertainty, unlike a standard POMDP. Therefore, by extending the algorithms

that build and execute hierarchical policies (Algorithms 2 and 3, respectively) to

handle uncertainty at abstract levels better than it currently does, the proposed ar-

chitecture would benefit the most, as it already manages well large spaces with low

state uncertainty.

5.9 Chapter Summary

In this chapter, a set of four experiments designed to evaluate the shortcomings,

as well as the strengths of the proposed architecture in a navigation domain, were

presented. Results suggest that the proposed architecture is significantly more sen-

sitive and prone to fail than the two baseline methods, as the state uncertainty of

the environment increases. However, the architecture also showed to be consistently

more effective and efficient than the baseline methods in large environments with

low uncertainty. From the results obtained, insight has been gained on which aspects

of the architecture need to be improved in order to overcome its greatest challenge,

state uncertainty.

Chapter 6

Conclusions and future work

The manufacturing of platforms for service robotic applications has been in a growing

streak in sales1. Thus, it is expected for service robots to be involved in the day

to day activities of all type of indoor environments, e.g. households, offices and

hospitals. However, for a service robot to be able to assist in domestic activities,

autonomy is a key feature expected from it. The research area of task planning

involves problems related to autonomously solving tasks through the execution of a

sequence of actions, what is more, uncertainty, partial observability and large spaces

are the main challenges service robots face in task planning problems. Probabilistic

models are widely used for task planning problems, due to their ability to deal with

state uncertainty and partial observability (e.g. POMDP), however, they lack the

capacity to bear with large state spaces. In this document, the presented architecture

addresses all three drawbacks by integrating a knowledge base (to represent domain

specific information) with a method that uses information from the knowledge base

to build a hierarchy of actions that can be used to solve tasks in large environments.

6.1 Conclusions

The presented architecture for task planning in service robotics applications, enables

a robot to automatically plan and execute a series of actions to solve tasks. Based

on domain specific knowledge encoded in its knowledge base, and a hierarchy of

1http://ifr.org/news/why-service-robots-are-booming-worldwide

137

http://ifr.org/news/why-service-robots-are-booming-worldwide

138 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

POMDPs that model a structure of sub-tasks that can be reused over several tasks,

the architecture decomposes a task into set of smaller ones that are relatively easier

to solve. By exploiting the information encoded in the knowledge base, the proposed

architecture is able to segment the state space into a multi-resolution representation

and build abstract actions that enable the robot to plan with actions that operate at

different levels of granularity. In this way, the architecture makes possible to start

planning at the most coarse resolution and increase the detail in planning as the

robot gets closer to its goal state.

From the results obtained in the presented set of experiments, the proposed ar-

chitecture showed to be more prone at failing than the baseline methods as the

uncertainty of the agent’s state increased. However, as the size of the environment

increased where the uncertainty was relatively low, our architecture outperformed

both baselines in terms of efficiency and effectiveness, showing a significant lower

planning time and a consistent path relative cost across different environment sizes.

The proposed architecture offers a hierarchical task planning solution for robotics

that, despite it generates recursively optimal policies, by means of a recursive formu-

lation it builds abstract actions starting from a concrete model of the environment

and a hierarchical structure for one of the state variables. As the proposed archi-

tecture clearly has its shortcomings (to endure uncertainty), it is an important step

towards task planning systems that fulfill the low response times and high reliability

required in service robotics domains.

6.2 Contributions

The main contributions of the work presented in this research are:

1. A general framework for hierarchical task planning, capable of integrating new

skills into a planning problem, without having to modify the description of

those skills that already are part of the system.

2. A method that automatically builds an arbitrarily deep hierarchy of POMDPs

from a hierarchical representation of the state space and a POMDP that models

the bottom level of such representation.

6.3. FUTURE WORK 139

3. A methodology to generate and execute plans in a sub-region of the origi-

nal state space, employing its hierarchical representation and a hierarchy of

POMDPs.

6.3 Future Work

In this document, a task planning architecture that combines a logic symbolic rep-

resentation of the domain with a method to build hierarchies of POMDPs has been

presented. However, so far it has been evaluated in a single domain. Thus, there

are several aspects of the architecture that remain to be improved and could be

considered as future work, which are listed below:

• Evaluate on multi-domain scenarios. Since most domestic domains en-

compass a large diversity of tasks, the first aspect to work on the current

research is to evaluate how reliable the architecture behaves as the amount

of domains involved in a task increases. Also, a potential alternative to deal

with multi-domain problems could be to employ a factorized representation of

the individual domains’ state spaces and develop a mechanism that interleaves

actions from different domains to solve a task.

• An adjustable hierarchy of POMDPs. One of the most restricting aspects

of our architecture is that, since the hierarchy is built once at the initialization

phase, it does not have the capability to adjust to changes in the environment.

Thus, we believe that by updating the knowledge base with observations to

modify the structure of the probabilistic planner (as done by [Zhang et al.,

2017]), which in this case is the hierarchy of POMDPs, the architecture could

become more robust to facts that were not originally included in the database.

• Start with uncertainty. In all the experiments the initial state was provided

so that the hierarchical policy could be built. Thus, we would like to relax

this assumption so that the architecture could plan even if it does not know

its initial state. One way to overcome this drawback would be to develop a

method, that would be executed every time before the planning phase, that

performs a sequence of actions with the purpose of sampling observations,

hypothesize on what its state is, and stop until the agent’s state uncertainty

reaches a given threshold.

140 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Integrate reactive behavior. Among the limitations of this research, the

restriction that task requests shall only be issued to the robot if it is currently

solving a task, is unrealistic in the context of real scenarios. In real domestic

environments, the robot is expected to be able to be aware of its surround-

ings and, more importantly, of the needs of human users. Thus, the current

architecture could benefit by integrating a layer of reactive control, maybe

by assigning priority to reactive events and tasks that are deliberately solved,

so that the robot can effectively redirect its attention to the most important

activity at any moment.

Bibliography

[Attenborough, 2003] Attenborough, M. P. (2003). Mathematics for electrical engi-

neering and computing. Elsevier.

[Balai et al., 2013a] Balai, E., Gelfond, M., and Zhang, Y. (2013a). Sparc-sorted

asp with consistency restoring rules. arXiv preprint arXiv:1301.1386.

[Balai et al., 2013b] Balai, E., Gelfond, M., and Zhang, Y. (2013b). Towards answer

set programming with sorts. In International Conference on Logic Programming

and Nonmonotonic Reasoning, pages 135–147. Springer.

[Balduccini and Gelfond, 2003] Balduccini, M. and Gelfond, M. (2003). Logic pro-

grams with consistency-restoring rules. In International Symposium on Logical

Formalization of Commonsense Reasoning, AAAI 2003 Spring Symposium Se-

ries, volume 102.

[Bellman, 1957] Bellman, R. E. (1957). Dynamic programming.

[Braziunas, 2003] Braziunas, D. (2003). Pomdp solution methods. University of

Toronto.

[Chen et al., 2016] Chen, K., Yang, F., and Chen, X. (2016). Planning with task-

oriented knowledge acquisition for a service robot. In IJCAI, pages 812–818.

[Chen et al., 2010] Chen, X., Ji, J., Jiang, J., Jin, G., and Wang, Feng an2d Xie, J.

(2010). Developing high-level cognitive functions for service robots. In Proceed-

ings of the 9th International Conference on Autonomous Agents and Multiagent

Systems: volume 1-Volume 1, pages 989–996. International Foundation for Au-

tonomous Agents and Multiagent Systems.

141

142 BIBLIOGRAPHY

[Corona-Xelhuantzi et al., 2009] Corona-Xelhuantzi, E., Morales, E. F., and Sucar,

E. (2009). Executing concurrent actions with multiple markov decision pro-

cesses. In Adaptive Dynamic Programming and Reinforcement Learning, 2009.

ADPRL’09. IEEE Symposium on, pages 82–89. IEEE.

[Dean and Givan, 1997] Dean, T. and Givan, R. (1997). Model minimization in

markov decision processes. In AAAI/IAAI, pages 106–111.

[Dietterich, 2000] Dietterich, T. G. (2000). Hierarchical reinforcement learning with

the maxq value function decomposition. Journal of Artificial Intelligence Research,

13:227–303.

[Fine et al., 1998] Fine, S., Singer, Y., and Tishby, N. (1998). The hierarchical

hidden markov model: Analysis and applications. Machine learning, 32(1):41–62.

[Foka and Trahanias, 2007] Foka, A. and Trahanias, P. (2007). Real-time hierarchi-

cal pomdps for autonomous robot navigation. Robotics and Autonomous Systems,

55(7):561–571.

[Galindo et al., 2008] Galindo, C., Fernández-Madrigal, J.-A., González, J., and Saf-

fiotti, A. (2008). Robot task planning using semantic maps. Robotics and au-

tonomous systems, 56(11):955–966.

[Gelfond and Kahl, 2014] Gelfond, M. and Kahl, Y. (2014). Knowledge representa-

tion, reasoning, and the design of intelligent agents: The answer-set programming

approach. Cambridge University Press.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The stable model

semantics for logic programming. In ICLP/SLP, volume 88, pages 1070–1080.

[Hanheide et al., 2017] Hanheide, M., Göbelbecker, M., Horn, G. S., Pronobis, A.,

Sjöö, K., Aydemir, A., Jensfelt, P., Gretton, C., Dearden, R., Janicek, M., et al.

(2017). Robot task planning and explanation in open and uncertain worlds. Ar-

tificial Intelligence, 247:119–150.

[Hanheide et al., 2011] Hanheide, M., Gretton, C., Dearden, R. W., Hawes, N. A.,

Wyatt, J. L., Pronobis, A., Aydemir, A., Göbelbecker, M., and Zender, H. (2011).

Exploiting probabilistic knowledge under uncertain sensing for efficient robot be-

haviour. In Twenty-Second International Joint Conference on Artificial Intelli-

gence.

BIBLIOGRAPHY 143

[Hauskrecht et al., 1998] Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T.,

and Boutilier, C. (1998). Hierarchical solution of markov decision processes using

macro-actions. In Proceedings of the Fourteenth conference on Uncertainty in

artificial intelligence, pages 220–229. Morgan Kaufmann Publishers Inc.

[Hengst, 2004] Hengst, B. (2004). Model approximation for hexq hierarchical rein-

forcement learning. In European Conference on Machine Learning, pages 144–155.

Springer.

[Hengst, 2012] Hengst, B. (2012). Hierarchical approaches. In Reinforcement learn-

ing, pages 293–323. Springer.

[Ingrand and Ghallab, 2017] Ingrand, F. and Ghallab, M. (2017). Deliberation for

autonomous robots: A survey. Artificial Intelligence, 247:10–44.

[Kaelbling et al., 1998] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R.

(1998). Planning and acting in partially observable stochastic domains. Arti-

ficial intelligence, 101(1-2):99–134.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).

Reinforcement learning: A survey. Journal of artificial intelligence research,

4:237–285.

[Kaelbling and Lozano-Pérez, 2011] Kaelbling, L. P. and Lozano-Pérez, T. (2011).

Hierarchical task and motion planning in the now. in 2011 ieee icra.

[Keller et al., 2012] Keller, T., Eyerich, P., and Nebel, B. (2012). Task planning for

an autonomous service robot. In Towards Service Robots for Everyday Environ-

ments, pages 117–124. Springer.

[Kim et al., 2018] Kim, J. W., Choi, G. B., and Lee, J. M. (2018). A pomdp frame-

work for integrated scheduling of infrastructure maintenance and inspection. Com-

puters & Chemical Engineering, 112:239–252.

[Köckemann et al., 2018] Köckemann, U., Khaliq, A. A., Pecora, F., and Saffiotti, A.

(2018). Domain reasoning for robot task planning-a position paper. In Proceedings

of the Planning and Robotics Workshop at ICAPS 2018 (PlanRob).

[Kurniawati et al., 2008] Kurniawati, H., Hsu, D., and Lee, W. S. (2008). Sarsop:

Efficient point-based pomdp planning by approximating optimally reachable belief

spaces. In Robotics: Science and systems, volume 2008. Zurich, Switzerland.

144 BIBLIOGRAPHY

[Latombe, 2012] Latombe, J.-C. (2012). Robot motion planning, volume 124.

Springer Science & Business Media.

[Lifschitz, 2008] Lifschitz, V. (2008). What is answer set programming?. In AAAI,

volume 8, pages 1594–1597.

[Lima et al., 2018] Lima, O., Ventura, R., and Awaad, I. (2018). Integrating classical

planning and real robots in industrial and service robotics domains.

[Lu et al., 2017] Lu, D., Zhou, Y., Wu, F., Zhang, Z., and Chen, X. (2017). Integrat-

ing answer set programming with semantic dictionaries for robot task planning.

In IJCAI, pages 4361–4367.

[Papadimitriou and Tsitsiklis, 1987] Papadimitriou, C. H. and Tsitsiklis, J. N.

(1987). The complexity of markov decision processes. Mathematics of operations

research, 12(3):441–450.

[Pineau et al., 2003] Pineau, J., Gordon, G., Thrun, S., et al. (2003). Point-based

value iteration: An anytime algorithm for pomdps. In IJCAI, volume 3, pages

1025–1032.

[Pineau et al., 2001] Pineau, J., Roy, N., and Thrun, S. (2001). A hierarchical ap-

proach to pomdp planning and execution. In Workshop on hierarchy and memory

in reinforcement learning (ICML), volume 65, page 51.

[Pineau and Thrun, 2002] Pineau, J. and Thrun, S. (2002). An integrated approach

to hierarchy and abstraction for pomdps.

[Pineda et al., 2017] Pineda, L. A., Rodŕıguez, A., Fuentes, G., Rascón, C., and

Meza, I. (2017). A light non-monotonic knowledge-base for service robots. Intel-

ligent Service Robotics, 10(3):159–171.

[Polya, 1945] Polya, G. (1945). How to solve it; a new aspect of mathematical

method.

[Pusse and Klusch, 2019] Pusse, F. and Klusch, M. (2019). Hybrid online pomdp

planning and deep reinforcement learning for safer self-driving cars. In 2019 IEEE

Intelligent Vehicles Symposium (IV), pages 1013–1020. IEEE.

[Puterman, 1990] Puterman, M. L. (1990). Markov decision processes. Handbooks

in operations research and management science, 2:331–434.

BIBLIOGRAPHY 145

[Puterman, 2014] Puterman, M. L. (2014). Markov Decision Processes.: Discrete

Stochastic Dynamic Programming. John Wiley & Sons.

[Seib et al., 2016] Seib, V., Memmesheimer, R., and Paulus, D. (2016). A ros-based

system for an autonomous service robot. In Robot Operating System (ROS), pages

215–252. Springer.

[Spaan and Vlassis, 2005] Spaan, M. T. and Vlassis, N. (2005). Perseus: Random-

ized point-based value iteration for pomdps. Journal of artificial intelligence re-

search, 24:195–220.

[Sridharan, 2016] Sridharan, M. (2016). Towards an architecture for representation,

reasoning and learning in human-robot collaboration. In 2016 AAAI Spring Sym-

posium Series.

[Sridharan et al., 2018] Sridharan, M., Gelfond, M., Zhang, S., and Wyatt, J.

(2018). Reba: A refinement-based architecture for knowledge representation and

reasoning in robotics.

[Sucar, 2015] Sucar, L. E. (2015). Probabilistic graphical models. Advances in Com-

puter Vision and Pattern Recognition. London: Springer London. doi, 10:978–1.

[Theocharous and Mahadevan, 2002] Theocharous, G. and Mahadevan, S. (2002).

Approximate planning with hierarchical partially observable markov decision pro-

cess models for robot navigation. In Proceedings 2002 IEEE International Con-

ference on Robotics and Automation (Cat. No. 02CH37292), volume 2, pages

1347–1352. IEEE.

[Theocharous et al., 2001] Theocharous, G., Rohanimanesh, K., and Maharlevan,

S. (2001). Learning hierarchical observable markov decision process models for

robot navigation. In Proceedings 2001 ICRA. IEEE International Conference on

Robotics and Automation (Cat. No. 01CH37164), volume 1, pages 511–516. IEEE.

[Thomaz et al., 2016] Thomaz, A., Hoffman, G., Cakmak, M., et al. (2016). Com-

putational human-robot interaction. Foundations and Trends R© in Robotics, 4(2-

3):105–223.

[Weser et al., 2010] Weser, M., Off, D., and Zhang, J. (2010). Htn robot planning

in partially observable dynamic environments. In 2010 IEEE International Con-

ference on Robotics and Automation, pages 1505–1510. IEEE.

146 BIBLIOGRAPHY

[Zhang et al., 2017] Zhang, S., Khandelwal, P., and Stone, P. (2017). Dynamically

constructed (po) mdps for adaptive robot planning. In Thirty-First AAAI Con-

ference on Artificial Intelligence.

[Zhang et al., 2012] Zhang, S., Sridharan, M., and Bao, F. S. (2012). Asp+

pomdp: Integrating non-monotonic logic programming and probabilistic planning

on robots. In 2012 IEEE International Conference on Development and Learning

and Epigenetic Robotics (ICDL), pages 1–7. IEEE.

[Zhang et al., 2014] Zhang, S., Sridharan, M., Gelfond, M., and Wyatt, J. (2014).

Integrating probabilistic graphical models and declarative programming for knowl-

edge representation and reasoning in robotics. In Planning and Robotics (PlanRob)

Workshop at ICAPS, Portsmouth, USA.

[Zhang et al., 2013] Zhang, S., Sridharan, M., and Washington, C. (2013). Active

visual planning for mobile robot teams using hierarchical pomdps. IEEE Trans-

actions on Robotics, 29(4):975–985.

[Zhang et al., 2015] Zhang, S., Sridharan, M., and Wyatt, J. L. (2015). Mixed log-

ical inference and probabilistic planning for robots in unreliable worlds. IEEE

Transactions on Robotics, 31(3):699–713.

	Agradecimientos
	Abstract
	Resumen
	Introduction
	Motivation
	Problem description
	Research Questions
	Hypothesis
	Objectives
	Scope and limitations
	Description of the proposed method
	Contributions
	Document organization

	Theoretical framework
	ASP: Answer Set Programming
	SPARC
	Directives and sort definitions
	Predicate Declarations
	Program rules
	Answer sets

	Action Language for transition diagrams
	Action Language in SPARC

	Markov Decision Processes
	Policies
	Partially Observable Markov Decision Processes

	Hierarchical Reinforcement Learning
	Abstract actions
	State abstraction
	Optimality

	Chapter Summary

	Related work
	Architectures applied towards service robotics
	Hierarchical approaches for solving MDPs and POMDPs
	Discussion
	Chapter Summary

	Proposed method
	General overview
	Knowledge base construction
	General knowledge
	Basic modules
	Domain dynamics
	Hierarchical function

	Specific knowledge

	Architecture initialization
	Construction of bottom POMDP
	Hierarchy of actions
	State space tree
	Concrete and abstract components
	Modeling abstract actions

	Architecture operation
	Planning
	Relevant sub-space
	Hierarchical policy

	Plan execution
	Hierarchical policy execution
	Local policy execution

	Chapter Summary

	Experiments and results
	Navigation domain as study case
	Experiment parameters
	Baseline methods and failure criteria
	Control parameters
	Independent variables
	Dependent variables
	Statistical parameters

	Experiment 1
	Objective
	Hypothesis
	Results

	Experiment 2
	Objective
	Hypothesis
	Results

	Experiment 3
	Objective
	Hypothesis
	Results

	Experiment 4
	Objective
	Hypothesis
	Results

	Experiment 5
	Objective
	Description
	Results

	Discussion
	Chapter Summary

	Conclusions and future work
	Conclusions
	Contributions
	Future Work

