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Resumen

Los sistemas optomecánicos son poderosos dispositivos tanto para responder preguntas fun-
damentales en la f́ısica cuántica o como para aplicaciones tecnológicas. Con éstos podŕıamos
llegar a observar la transición entre la f́ısica clásica y la cuántica, o fenómenos puramente
cuánticos con objetos a escala mesoscópica. Por el lado de fundamentos, ha sido posible
obtener comportamientos cuánticos en objetos mesoscópicos, como el estado base cuántico
del oscilador mecánico. Sobre aplicaciones tecnológicas, los sistemas optomecánicos pueden
ser incorporados en chip para diferentes usos, como circuladores o aisladores que no necesitan
campos magnéticos para funcionar. En los últimos ejemplos, la fase del láser es usada como
parámetro de control para producir el efecto deseado en arreglos optomecánicos. Entonces, es
relevante estudiar los sistemas optomecánios y la forma de controlarlos para obtener muchos
más comportamientos interesantes y aplicaciones.

En esta tesis se trabaja con sistemas optomecánicos bombeados. Éstos dispositivos con-
sisten de un oscilador mecánico acoplado a un campo electromagnético por medio de fuerzas
causadas por presión de radiación. Los resultados presentan dos técnicas para controlar
la dinámica abierta del sistema optomecánico. La primera técnica produce robustez en la
transferencia de estados cuánticos entre el modo mecánico y el electromagnético. La se-
gunda se centra en reǵımenes optomecánicos efectivos de la simetŕıa PT . Ambas técnicas
emplean las caracteŕısticas del láser. La primera se basa en modular de la fase del láser y
la segunda en valores de la potencia. Los enfoques para estudiar la dinámica abierta del
sistema emplean ecuaciones cuánticas de Langevin y la ecuación maestra de Lindblad. Dada
la naturaleza abierta del sistema, parte del análisis es anaĺıtico mientras que otros resultados
fueron obtenidos con simulaciones numéricas.

Esquema de la tesis

El Caṕıtulo 1 introduce la interacción optomecánica y sus realizaciones experimentales.
También se da una descripción del modelo cuántico de los sistemas optomecánicos y sus
reǵımenes linealizados. Adicionalmente, una tabla presenta parámetros optomecánicos rele-
vantes que han sido publicados en revistas internacionales. Este caṕıtulo se ocupa de intro-
ducir el conocimiento básico sobre los sistemas optomecánicos.

El Caṕıtulo 2 presenta el marco teórico usado en el estudio de las técnicas de control.
Tres son los temas descritos: el primero es sobre los dos enfoques usados para el estudio
de sistemas cuánticos abiertos, y los otros dos están directamente relacionados con las dos
técnicas propuestas para el control de sistemas optomecánicos abiertos.

Finalmente, los Caṕıtulos 3 y 4 muestran los resultados anaĺıticos y numéricos obtenidos
para las técnicas de control propuestas en el sistema optomecánico bombeado con un láser.
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Abstract

Optomechanical systems are powerful devices both as experiments to answer fundamental
questions related with quantum physics as for technological applications. They will enable
us to observe the transition between classical and quantum physics, or purely quantum
phenomena with objects at mesoscopic scale. As an example on the fundamental side, it is
possible to obtain quantum behaviours of mesoscopic objects, like the quantum ground state
of the mechanical oscillator. Regarding technological applications, optomechanical systems
can be incorporated on-chip for different uses, like magnetic-free circulators or isolators. In
the latter example, the laser’s phase is used as control parameter to produce a desired effect
on optomechanical arrangements. Then, it is relevant to study optomechanical systems and
the way those can be controlled in order to obtain many other interesting behaviours and
applications.

This thesis deals with driven optomechanical systems. These devices consist of one me-
chanical oscillator coupled to an electromagnetic field by radiation pressure forces. The results
present two techniques to control the optomechanical open dynamics. The first technique
produces robust quantum-state transfer between the mechanical and electromagnetic fields.
The second is focused in effective optomechanical PT -symmetry regimes. Both techniques
use characteristics of the laser. The first one relies on phase modulation of the laser while
the second on its power value. The approaches to study the optomechanical open dynamics
are based on quantum Langevin equations and master equation in Lindblad form. Because
the system is open, part of the analysis is analytical while other results were obtained with
numerical simulations.

Thesis outline

Chapter 1 introduces the optomechanical interaction and its experimental realization. It also
describes the quantum model of optomechanical systems and its linearized regimes. These
are used throughout the thesis. Additionally, a table summarizes relevant optomechanical
parameters reported in international publications. This chapter serves as introduction to the
basic knowledge about optomechanical systems.

Chapter 2 presents the theoretical framework used to study the control techniques pro-
posed for interesting quantum behaviour of the optomechanical systems. The topics covered
are three: the first is related with two approaches to study open quantum systems, and the
last two topics are directly concerned with the two control techniques proposed for the open
optomechanical system.

Finally, Chapters 3 and 4 show the analytical and numerical results obtained for the two
techniques proposed to control the optomechanical systems driven by a laser.
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Chapter 1

The Optomechanical Interaction

This chapter presents a review of optomechanical systems. We go from the first experimental
observations of mechanical vibrations in a cavity due to an electromagnetic (EM) field, to
many other effects in a large variety of devices. All of these effects are caused by the non-linear
coupling between the EM field and the mechanical vibration [1]. Classical EM theory can
explain some effects, while for some others it is necessary to introduce quantum fluctuations.
With the latter, we obtain a linear interaction in which two main behaviours are well-known:
the blue- and red- sidebands. In the end, optomechanical systems are a promising candidate
to observe quantum signatures of macroscopic objects.

1.1 Introduction

The optomechanical interaction relies on the coupling between mechanical oscillations and
an EM field [2]. This phenomena is originated by the light’s momentum which gives rise
to radiation pressure forces [3]. Maxwell predicted this effect [4] and it was confirmed few
decades ahead [5–8]. The radiation pressure depends on the EM field’s intensity and at the
quantum level it depends on the number of photons. We can separate them in two categories:
gradient forces and scattering forces. The first category, also known as dipole force, forms the
basis of optical tweezers set-ups [9] and it is caused by nonzero space variations in the EM field
[10–12]. The second category, scattering forces, are consequence of the momentum transfer
from the EM field to an object. This is the mechanism through which the optomechanical
interaction was obtained. Although, it is also possible to obtain optomechanical coupling with
gradient forces [13, 14]. Interestingly, the optomechanical interaction couples two oscillatory
systems which have very different characteristic frequencies, Table 1.1.

The first works related to optomechanical phenomena date back to interferometric studies
on gravitational waves [15–19]. These studies considered radiation pressure effects on large-
scale Fabry-Pérot cavities. Their analysis revealed limits on the interferometer’s sensitivity
due to quantum nature of light and the possibility of cooling or heating the mechanical vibra-
tions. In later experiments, optical bistability was observed in optomechanical cavities [20,21]
and explained with classical EM theory [22,23]. Those optomechanical cavities consisted of an
optical or microwave cavity that contains a mechanical element, one lightweight mirror free to
oscillate, with an incident EM field which can be tuned in power and frequency. They showed
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Chapter 1. The Optomechanical Interaction

Figure 1.1: Four examples of the mechanical element in optomechanical systems. From left
to right: a patterned silicon nanobeam from Ref. [69], a high-reflectivity mirror pad of a
Fabry-Pérot cavity from Ref. [75], a spoke-anchored toroidal resonator from Ref. [86], and a
mechanically compliant vacuum-gap capacitor from Ref. [79].

hysteresis effects characteristic of bistable response on the output power measured. This is
consequence of the radiation pressure exerted on the mechanical element. A more recent
work studied the range of frequency and amplitude values of the driving where the bistabil-
ity behaviour can be observed even at the level of quantum fluctuations [24]. Theoretical
proposals of quantum optics due to optomechanical interactions have been originated since
then: generation of squeezed light [25,26], quantum non-demolition measurements [27,28], op-
tomechanical cooling [29], entanglement [30–32], quantum-state transfer [33], non-reciprocal
response [34], photon blockade [35], topologically protected phonon transport [36], and some
others [37–44].

1.1.1 Experimental realizations

Advances in material science and nanofabrication techniques enable the exploration of op-
tomechanical interactions in a variety of devices, like microtoroid resonators [45–47], mi-
cromirrors [48, 49], membranes [50, 51], microdisks [52, 53], microspheres [54–56], photonic
crystals [57, 58], nanobeams [59, 60], superconducting circuits [61], and levitated nanoparti-
cles [62]. Generically, we refer to these as optomechanical systems. Another experimental
set-ups like atomic clouds [63, 64] and fluids [65–68] can work as optomechanical systems.
This wide variety of devices has made possible the experimental realization for some of the
previously mentioned proposals. One example is the cooling of the mechanical element to
its quantum ground state [69–71]. Other experiments showed optomechanically induced
transparency [72–74], optomechanical normal-mode splitting [70, 75], entanglement [76–78],
observation of the mechanical quantum vacuum fluctuations [79], mechanical squeezing [80],
non-reciprocal behaviour [81, 82], non-classical mechanical states [83, 84], and Bell test for
the quantum behaviour of the mechanical element [85].

1.2 Quantum model

Some decades ago, theoretical works about the effects of the radiation pressure in the inter-
ferometers to detect gravitational waves gave as results the quantum model for the optome-
chanical interaction. The model describes a Fabry-Pérot cavity with resonance frequency ωc.
This cavity posses one mirror which partially reflects light and the other is totally reflecting.

2



1.2. Quantum model

The latter oscillates at frequency ωm due to the pressure exerted by the light circulating
inside the cavity. The non-linear optomechanical interaction for this system is described by
the Hamiltonian [87,88], with ~ = 1,

ĤOM = ωc â
†â+ ωm b̂

†b̂+ g0 â
†â
(
b̂† + b̂

)
, (1.1)

where the cavity (mechanical) mode has an annihilation operator â (b̂) and the optomechan-
ical coupling strength is g0. Even though this Hamiltonian was derived for optomechanical
cavities, the devices mentioned in Sec. 1.1.1 also fit in this quantum model. Interestingly,
the coupling g0 depends on the geometry of every device, for a Fabry-Pérot cavity of length
L, g0 is proportional to L−1 , while for a microtorioid of radio R, g0 is proportional to R2 [2].
Additionally, in some devices it is possible to couple the EM field with the square of the me-

chanical displacement, â†â
(
b̂† + b̂

)2

[50, 89,90]. Such quadratic coupling has been proposed

as candidate to observe individual quantum jumps of the phonons [91]. More generally, due
to the oscillations of the mechanical element, the frequency of the cavity is modulated in a
way that ωc (x) = ωc + (∂xωc)x+ (∂ 2

xωc)x
2 + . . .. From this, we can appreciate the standard

coupling showed in Eq. (1.1) and the quadratic one, ∝ x2.

1.2.1 Linearized approach

Here we review the linearization of the optomechanical interaction. This approach is based on
Ref. [23,25–27]. Those authors considered a classical component plus a quantum fluctuation
for the cavity and mechanical operators,

â→ α + ĉ, (1.2a)

b̂→ β + d̂. (1.2b)

This linearization is also obtained using a displacement operator D̂ẑ (ς) = exp
(
ςẑ† + ς∗ẑ

)
,

which acts as D̂†ẑ (ς) ẑ D̂ẑ (ς) = ẑ+ ς. The classical component is seen as a semiclassical field

amplitude, i. e., we have α =
〈
â
〉

and β =
〈
b̂
〉
. In consequence the mean number of photons

injected by the laser is |α|2 = np.
In experiments the optomechanical system is driven by a strong laser with frequency ωp.

Then, we can write the Hamiltonian with the pumping like, with ~ = 1,

Ĥ = ĤOM + i ε cos (ωp t+ φ)
(
â† − â

)
, (1.3)

where φ is a constant phase and ε is the strength of the laser. We move to the frame rotating
at the laser frequency, so we can write the Hamiltonian (1.3) as,

Ĥ0 = (ωc − ωp) â†â+ ωm b̂
†b̂+ g0 â

†â
(
b̂† + b̂

)
+ i

ε

2

(
ei φâ† − e−i φâ

)
. (1.4)

In this Hamiltonian we used the rotating wave approximation (RWA), i. e., we neglect those
terms rotating at high frequency [92] in the part correspondent to the driving. Now, we use
Eq.(1.2) in this last Hamiltonian. As result we obtain four contributions: one which just

3



Chapter 1. The Optomechanical Interaction

contains scalars and it is omitted, the second is only proportional to the quantum fluctuation
operators and from which we found the expressions for α and β, the third is a non-linear

term, ∝ ĉ†ĉ
(
b̂† + b̂

)
, and the fourth is the linearized Hamiltonian,

Ĥlin = −∆ ĉ†ĉ+ ωm d̂
†d̂+ g

(
ei φ

′

ĉ† + e−i φ
′

ĉ
)(

d̂† + d̂
)
, (1.5)

where we define a detuning ∆ = ωp−ωc− 2 g0 Re(β), the enhanced optomechanical coupling
g = g0|α| = g0

√
np and the phase φ

′
= arg(α). Here, we see a shift in the detuning caused by

optomechanical coupling and the semiclassical field amplitude of the mechanical oscillations.
The expressions obtained for the mean field amplitudes are,

α = − i e
−i φ ε

2 ∆
, (1.6a)

β = − g0 |α|2
ωm

. (1.6b)

Up to this point, we have not taken into account any loss of the system, in Sec. 2.1.2
will do it. From these expressions, we already can see the bistable behaviour of the output
EM field [20, 21]. This is caused by the dependence of semiclassical EM field amplitude,
α, on the number of photons injected by the laser, |α|2 = np. Interestingly, the enhanced
optomechanical coupling gets stronger as the the laser strength increases. From this property
we can neglect the non-linear term which results in the process to linearise the Hamiltonian
Ĥ0. Its contribution is smaller compared with the one of Ĥlin.

From the linearized Hamiltonian, Eq. (1.5), we move to the frame rotating with the
Hamiltonian −∆ ĉ†ĉ+ ωm d̂

†d̂ to obtain the interaction terms,

ei φ
′
+i(ωm−∆)t ĉ†d̂ † + e−i φ

′−i(ωm−∆)t ĉ d̂+ ei φ
′−i(ωm+∆)t ĉ†d̂+ e−i φ

′
+i(ωm+∆)t ĉ d̂ †. (1.7)

This form allows us to apply a RWA depending on the value of the detuning ∆. We have
the so-called red- and blue- detuning regimes for ∆ = −ωm and ∆ = +ωm, respectively.
Even though this analysis is semiclassical, similar sidebands are found in the purely quantum
[35,93,94] or classical regimes [95].

We focus on the two regimes mentioned before because the interaction can be reduced
with the RWA into a two well-know quantum cases:

Red-detuned regime where ∆ = −ωm. With the RWA, we just consider the interaction
terms,

ei φ
′

ĉ†d̂+ e−i φ
′

ĉ d̂†, (1.8)

which corresponds to a beam-splitter-like interaction [96]. This interaction allow the
quantum-state transfer between the EM and mechanical fields. Alternatively, we can
use it to cool the mechanical motion [1, 79].

Blue-detuned regime where ∆ = +ωm. With the RWA, we just consider the interaction
terms,

ei φ
′

ĉ†d̂ † + e−i φ
′

ĉ d̂, (1.9)

4



1.2. Quantum model

Ref. Structure ωc/2π [Hz] κ/2π [Hz] ωm/2π [Hz] γ/2π [Hz] g0/2π [Hz] T [K]
[75] FP 1.77 P 215 k 947 k 140 2.7 < 300 m
[90] NR 7.5 G 600 k 6.3 M ≈ 6.3 84 k 100 m
[70] VGC 7.54 G 200 k 10.56 M 32 200.9 25 m
[86] TMC 30.78 T 6.04 M 78.226 M 2.2 M 3.4 k 650 m
[76] VGC 7.72 G 660 k 10.34 M 35 200 < 20 m
[79] VGC 10.188 G 163 k 15.9 M 150 300 25 m
[97] PNB 30.78 T 817 M 5.6 G 3 M 645 k rT
[98] FP 1.77 P [75] 1.3 M 914 k 4.25 k 40 k rT
[99] NB 47.714 P 550 M 4.5 M 15 50 k rT
[84] PNB 30.69 T 846 M 5.25 G 13.82 k 869 M 35 m
[67] SF 194.5 T 46.1 M 317.5 M γ (T ) 3.3 k < 0.5
[61] SCC 5.4 G 1.2 M 583.5 G 300 k 15 k 1.8

Table 1.1: Optomechanical parameters obtained from published experimental realizations.
Here, the photons (phonons) frequency is ωc (ωm) with decay rate κ (γ), the optomechanical
coupling strength is g0 and the temperature of the bath is T . The mechanical element is de-
signed with the letters: FP for a micromirror of a Fabry-Pérot cavity, NR for nanomechanical
resonator, VGC for vacuum-gap capacitor, TMC for toroidal microcavity, PNB for patterned
silicon nanobeam, NB for nanomechanical beam, SF for superfluid Helium, SCC for super-
conducting circuit. Additionally, we use the symbols for the prefixes of the International
System of Units and rT = 293K stands for room temperature.

which corresponds to a non-degenerate parametric amplifier [92]. This interaction is
used for the generation of pairs photon-phonon or the exponential growth of energy of
the EM field an the mechanical motion [1, 79].

Some experiments play with these two regimes in order to obtain different quantum be-
haviours, like read out of entangled states [76, 77], measurement of the mechanical vacuum
fluctuations [79], and non-classical correlations [83,84].
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Chapter 2

Theoretical framework

This chapter introduces the tools we used to analyse the lossy dynamics of optomechanical
systems. First, we discuss two approaches to study time evolution for the system of interest:
the quantum Langevin equations (QLEs) and the master equation in Lindblad form. Both
approaches are useful to study quantum open systems, the QLEs work with the system’s
operators and the master equation uses the system’s density operator. Second, we review how
phase-driving produces robustness in the population transfer of a qubit without considering
losses [100–103]. This technique was implemented successfully to overcome the systematic
errors of some parameters related to the coherent driving, like the field amplitude, pulse
duration or detuning [104]. Finally, we briefly review the PT -symmetry topic with an specific
emphasis on a photonic gain-loss system.

2.1 Quantum Langevin equations

In experiments, is impossible to completely isolate our system of interest from the environ-
ment, which is considered as a set of secondary degrees of freedom. That coupling between
our system and the environment leads to a dynamics which is usually quite hard to solve
exactly. We derive effective equations for the dynamics of the open system. This allows us
to study its time evolution in a more tractable way, while taking into account the effects due
to the environment [105,106].

To intuitively derive the QLEs, we proceed to obtain those for an unspecified system
interacting with the environment which is modeled as a continuum of harmonic oscillators.
The Hamiltonian for our purpose is composed of three parts, the system of interest, ĤS; the
environment, ĤB; and the interaction between both, ĤI . Our system has a characteristic
frequency ω0 which is the largest of the parameters and justifies a RWA that we use to write
the interaction part ĤI . The Hamiltonians for the environment, also called bath, ĤB, and
for the interaction, ĤI , with ~ = 1,

ĤB =

∫
ω b̂† (ω) b̂ (ω) dω, (2.1a)

ĤI = i

∫
λ (ω)

[
b̂† (ω) ĉ− ĉ† b̂ (ω)

]
dω. (2.1b)

7



Chapter 2. Theoretical framework

Here, the bath has a bosonic operator b̂ (ω) obeying
[
b̂ (ω) , b̂† (ω̃)

]
= δ (ω − ω̃) and ĉS is the

system’s operator which describes how it couples to the bath.
The Heisenberg equations of motion for an arbitrary system operator, ÔS, are obtained

using the complete Hamiltonian Ĥ = ĤS + ĤB + ĤI . Then,

d ÔS

dt
= i
[
Ĥ, ÔS

]
(2.2a)

= i
[
ĤS, ÔS

]
−
∫
λ (ω)

{
b̂† (ω)

[
ĉS, ÔS

]
−
[
ĉ†S, ÔS

]
b̂ (ω)

}
dω. (2.2b)

The bath operators obey the Heisenberg equation,

d b̂ (ω)

dt
= i
[
Ĥ, b̂ (ω)

]
, (2.3a)

= −i ω b̂ (ω)−
∫
λ (ω′)

[
b̂† (ω′) , b̂ (ω)

]
ĉS dω

′, (2.3b)

= −i ω b̂ (ω) + λ (ω) ĉS. (2.3c)

By integrating Eq. (2.3), we obtain,

b̂ (ω, t) = e−i ω t b̂ (ω, 0) + λ (ω)

∫ t

ĉS (s) e−i ω(t−s) ds. (2.4)

We substitute this result in Heisenberg’s equation, Eq. (2.2), which yields,

d ÔS

dt
= i

[
ĤS, ÔS

]
−
∫
dωλ (ω)

{
ei ω t b̂† (ω, 0)

[
ĉS, ÔS

]
−
[
ĉ†S, ÔS

]
e−i ω t b̂ (ω, 0)

}
−
∫
dω λ2 (ω)

∫ t

ds
{
ei ω(t−s) ĉ†S (s)

[
ĉS, ÔS

]
−
[
ĉ†S, ÔS

]
e−i ω(t−s) ĉS (s)

}
.

(2.5)

2.1.1 Markov Approximation

We use the next assumption: the coupling is valid within a bandwidth 2∆B � ω0 around
ω0, i. e., in the interval Ω = (ω0 −∆B, ω0 + ∆B). In that frequency range, the coupling
strength may be approximated by a constant value, λ. This assumption allows us to simplify
Eq. (2.5). Taking into account the assumption for the coupling strength, we define the input
field of the bath as,

b̂in (t) :=
1√
2 π

∫
Ω

e−i ω t b̂ (ω, 0) dω. (2.6)

Using this, and the commutation relation
[
b̂ (ω) , b̂† (ω̃)

]
= δ (ω − ω̃), we obtain,[

b̂in (t) , b̂†in (s)
]

=
1

2π

∫
Ω×Ω

dω dω̃ e−i(ωt−ω̃s)
[
b̂in (ω) , b̂†in (ω̃)

]
, (2.7a)

=
1

2π

∫
Ω

dω e−i ω(t−s), (2.7b)

≈ e−i ω0(t−s) δ (t− s) , (2.7c)

8



2.1. Quantum Langevin equations

where to get the Dirac delta function we make use of the large bandwidth or short correlation
time of the bath, ∆−1

B = τc ≈ 0.

From the definition of the input field, we can simplify the first integral of Eq. (2.5),∫
Ω

{
ei ω t b̂† (ω, 0)

[
ĉS, ÔS

]
−
[
ĉ†S, ÔS

]
e−i ω t b̂ (ω, 0)

}
dω =

√
2 π b̂†in (t)

[
ĉS, ÔS

]
−
√

2π
[
ĉ†S, ÔS

]
b̂in (t) .

(2.8)

In the second integral of Eq. (2.5) the operator ĉS (s) just contributes for short times
|t− s| ≤ τc. Using this, we approximate its time evolution by,

ĉS (s) ≈ e−i ω0(t−s) ĉS (t) . (2.9)

So, ∫
Ω

dω

∫ t

ds e−i ω(t−s) ĉS (s) ≈ ĉS (t)

∫
Ω

dω

∫ t

ds e−i(ω−ω0)(t−s), (2.10a)

≈ 2π ĉS (t)

∫ t

δ (t− s) ds, (2.10b)

= π ĉS (t) , (2.10c)∫
Ω

dω

∫ t

ds ei ω(t−s) ĉ†S (s) ≈ π ĉ†S (t) . (2.10d)

Using those expressions we can write,∫
Ω

dω

∫ t

ds
{
ei ω(t−s) ĉ†S (s)

[
ĉS, ÔS

]
−
[
ĉ†S, ÔS

]
e−i ω(t−s) ĉS (s)

}
= π ĉ†S (t)

[
ĉS, ÔS

]
−π
[
ĉ†S, ÔS

]
ĉS (t) .

(2.11)

Now, we define the damping coefficient as,

ΓS := 2π λ2, (2.12)

which is also called the decay rate. Then, Eq. (2.5) under the Markov approximation is,

d ÔS

dt
= i

[
ĤS, ÔS

]
−
[
ÔS, ĉ

†
S

](ΓS
2
ĉS +

√
ΓS b̂in

)
−
(

ΓS
2
ĉ†S +

√
ΓS b̂

†
in

)[
ĉS, ÔS

]
,

(2.13)

which is the general form of the QLE for an arbitrary system operator ÔS.
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Chapter 2. Theoretical framework

2.1.2 Linearized optomechanical system

We derive the QLEs for an optomechanical system under a linearized approach given in Sec.
1.2.1. For the notation of Eq. (2.13), we split the operators of the system into its semiclassical
field amplitude plus a quantum fluctuation,

ÔS →
〈
ÔS

〉
+ δ ÔS, (2.14a)

ĉS →
〈
ĉS
〉

+ δ ĉS. (2.14b)

We assumed that both contributions are time-dependent. With this expressions, we also
affect the Hamiltonian of the system. As a result, we obtain contributions that are linear
combination of individual operators, pair of multiplied operators and so on. Also, we separate
the obtained differential equation in two: one for the semiclassical field amplitude which
contains scalar functions and the other for the quantum fluctuations which contains operators,

d

dt

〈
ÔS

〉
= i
[
Ĥ

(1)
S , δ ÔS

]
− γ

2

〈
ĉS
〉 [
δ ÔS, δ ĉ

†
S

]
− γ

2

〈
ĉ†S
〉 [
δ ÔS, δ ĉS

]
, (2.15a)

d

dt
δ ÔS = i

[
Ĥ

(2)
S + · · · , δ ÔS

]
−
[
δ ÔS, δ ĉ

†
S

] (γ
2
δ ĉS +

√
γ b̂in

)
−
(γ

2
δ ĉ†S +

√
γ b̂†in

) [
δ ÔS, δ ĉS

]
. (2.15b)

We define Hamiltonians for the contributions mentioned before: for the one proportional to
individual operators is Ĥ

(1)
S , while Ĥ

(2)
S is proportional to pairs of multiplied operators, and

so on. There is also a contribution which is conformed by scalar functions, Ĥ
(0)
S , and because

of that, it does not play any roll in the differential equations.
For the optomechanical system described by the Hamiltonian (1.4), the operators ÔS and

ĉS can be any of â, â†, b̂, b̂†. For the purpose of the next chapter, we use a slightly changed
version of Eqs. (1.2),

â→ α ei φ + ĉ, (2.16a)

b̂→ β + d̂. (2.16b)

The justification for this change comes from Eq. (1.6a). There, we see the explicit dependence
of the EM semiclassical field amplitude on the driving-laser phase. Also, we assume that
the semiclassical field amplitudes, quantum fluctuations and driving-laser phase are time-
dependent, i. e., φ = φ (t). Then, the Hamiltonian (1.4) becomes the sum of:

Ĥ
(0)
S = −∆ |α|2 + ωm |β|2 + i

ε

2
(α∗ − α) , (2.17a)

Ĥ
(1)
S = (i ε/2−∆) ei φ ĉ† +

(
ωm β + g0|α|2

)
d̂† +H.C., (2.17b)

Ĥ
(2)
S = −∆ ĉ†ĉ+ ωm d̂

†d̂+ g
(
ei ϕĉ† + e−i ϕĉ

) (
d̂† + d̂

)
, (2.17c)

Ĥ
(3)
S = g0 ĉ

†ĉ
(
d̂† + d̂

)
, (2.17d)

where we define the auxiliary phase function ϕ = ϕ (t) = φ + arg (α) which inherits the
time-dependence from the driving laser phase, φ. Also, we use the definition for the detuning
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2.1. Quantum Langevin equations

in Sec. 1.2.1, ∆ = ωp − ωc − 2 g0 Re (β). We see that Ĥ
(2)
S is the linearized optomechanical

Hamiltonian Ĥlin, Eq. (1.5). Under the assumption of strong laser driving, we omit the

contribution due to Ĥ
(3)
S .

The equations obtained, following the Eqs. (2.15), for the linearized optomechanical
system are,

d

dt
α̃ = −

(κ
2
− i∆

)
α̃ +

ε

2
, (2.18a)

d

dt
β = −

(γ
2

+ i ωm

)
β − i g0|α|2, (2.18b)

d

dt
ĉ = −

(κ
2
− i∆

)
ĉ− i ei ϕ g

(
d̂† + d̂

)
−√κ ĉin, (2.18c)

d

dt
d̂ = −

(γ
2

+ i ωm

)
d̂− i g

(
ei ϕĉ† + e−i ϕĉ

)
−√γ d̂in, (2.18d)

where α̃ = ei φ α and the cavity (mechanical) decay rate is κ (γ). The hermitian conjugated
of this equations give us the differential equations for α∗, β∗, ĉ† and d̂†.

Like in Sec. 1.2.1, we apply the RWA for the detuning sidebands, ∆ = ±ωm. We arrange
the resulting coupled QLEs for the quantum fluctuations in matrix form,

Red-detunning (∆ = −ωm),

d

dt

(
ĉ

d̂

)
= −

(
κ/2 + i ωm i g ei ϕ

i g e−i ϕ γ/2 + i ωm

)(
ĉ

d̂

)
−
( √

κ ĉin√
γ d̂in

)
, (2.19)

Blue-detunning (∆ = +ωm),

d

dt

(
ĉ

d̂ †

)
= −

(
κ/2− i ωm i g ei ϕ

−i g e−i ϕ γ/2− i ωm

)(
ĉ

d̂ †

)
−
( √

κ ĉin√
γ d̂ †in

)
. (2.20)

The RWA in this sidebands helps us to reduce from four to just two QLEs coupled. Then, it
is easier to calculate analytically the time-evolution of the quantum fluctuations.

The time-evolution of the semiclassical field amplitudes is given by Eqs. (2.18a) and
(2.18b). These equations will be used in the Sec. 3.3 for the time evolution under a smooth
driving-laser phase. Additionally, we obtain the semiclassical steady-state values for the EM
and mechanical fields, i. e., values when ∂t (αss, βss) = (0, 0),

αss =
e−i φss ε

κ− i 2 ∆
, (2.21a)

βss =
i g0|α|2

γ/2 + i ωm
, (2.21b)

where φss is the steady value of the driving-laser phase. This expressions are similar to those
found in Sec. 1.2.1, but here the decay rates of both fields were taken into account.

The bistability phenomena is observed just for negative values of the laser detuning [24],
ωp − ωc =: ∆0 < 0. Additionally, we approximate the detunning as ∆ ≈ ∆0 under the
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Chapter 2. Theoretical framework

assumptions: positive laser detuning, ∆0 > 0 and small values of the mechanical decay rate,
γ/ωm � 1, and the enhanced optomechanical coupling, g/ωm � 1. Then, the approximated
semiclassical steady-state for the EM field amplitude is,

αss ≈
e−i φss ε

κ+ i 2 (ωc − ωp)
, (2.22)

which corresponds to a cavity driven by a laser.

2.2 Master Equation

Another approach to describe the time evolution of the quantum system coupled to a bath is
through the density operator, ρ̂. We derive the master equation for the degrees of freedom of
our system of interest, i. e., the equation for ρ̂S = TrB {ρ̂}. We start with the von Neumann
equation,

d ρ̂ (t)

dt
= −i

[
ĤS + ĤB + ĤI , ρ̂ (t)

]
, (2.23)

where the notation for the Hamiltonians is the same as in the previous section. Here, we
consider a more general form of the interaction Hamiltonian,

ĤI =
∑
η

Ŝη ⊗ B̂η, (2.24)

where the operators Ŝη (B̂η) stands for the system (bath).

We move to the interaction picture with respect to Ĥ0 = ĤS + ĤB, i. e., ρ̃ (t) =

ei Ĥ0 t ρ̂ e−i Ĥ0 t. Then, we get,

d ρ̃ (t)

dt
= −i

[
ei Ĥ0 t ĤI e

−i Ĥ0 t, ρ̃ (t)
]
, (2.25a)

= −i
[
Ĥ
′

I (t) , ρ̃ (t)
]
. (2.25b)

This equation can be formally integrated to obtain,

ρ̃ (t) = ρ̃ (0)− i
∫ t

0

[
Ĥ
′

I (t′) , ρ̃ (t′)
]
dt′, (2.26a)

= ρ̃ (0)− i
∫ t

0

[
Ĥ
′

I (t′) , ρ̃ (0)
]
dt′,−

∫ t

0

dt′
∫ t′

0

dt′′
[
Ĥ
′

I (t′) ,
[
Ĥ
′

I (t′′) , ρ̃ (t′′)
]]
. (2.26b)

In order to obtain the equation for our system of interest we trace over the bath degrees of
freedom,

ρ̃S (t) = ρ̃S (0)− i
∫ t

0

dt′ TrB

{[
Ĥ
′

I (t′) , ρ̃ (0)
]}

−
∫ t

0

dt′
∫ t′

0

dt′′ TrB

{[
Ĥ
′

I (t′) ,
[
Ĥ
′

I (t′′) , ρ̃ (t′′)
]]}

, (2.27)

which is, to this point, an exact result.

12



2.2. Master Equation

2.2.1 Born and Markov approximations

To simplify Eq. (2.27), we assume a sufficiently weak interaction between the system of inter-
est and the bath, and because of the large number of degrees of freedom of the environment,
it is weakly perturbed by the system. Therefore, we can write approximatively,

ρ̃ (t) ≈ ρ̃S (t)⊗ ρ̃B (0) , (2.28)

where ρ̃B (0) represents the stationary state of the bath. The latter is the so-called Born
approximation and using it we can evaluate the trace in the first integral of Eq. (2.27),

TrB

{[
Ĥ
′

I (t′) , ρ̃ (0)
]}

= TrB

{[
Ĥ
′

I (t′) , ρ̃S (0)⊗ ρ̃B (0)
]}

, (2.29a)

= TrB

{[∑
η

S̃η (t′)⊗ B̃η (t′) , ρ̃S (0)⊗ ρ̃B (0)

]}
, (2.29b)

=
∑
η

TrB

{
B̃η (t′) ρ̃B (0)

} [
S̃η (t′) , ρ̃S (0)

]
, (2.29c)

=
∑
η

〈
B̃η (t′)

〉 [
S̃η (t′) , ρ̃S (0)

]
. (2.29d)

Here, we require the value
〈
B̃η (t′)

〉
which for many situations it is equal to zero, in conse-

quence the first integral in Eq. (2.27) is zero under the Born approximation. If we found〈
B̃η (t′)

〉
6= 0, we can absorb the finite value by making the replacements,

ĤS → ĤS +
∑
η

Ŝη

〈
B̂η

〉
, (2.30a)

ĤI →
∑
η

Ŝη

(
B̂η −

〈
B̂η

〉)
, (2.30b)

in Eq. (2.23), i. e., we just add and subtract the same quantity to the original Hamiltonian.
Then, we should get in Eq. (2.29d):

〈
B̃η (t′)

〉
→
〈
B̃η (t′)−

〈
B̃η (t′)

〉〉
= 0. So, without loss

of generality we can assume
〈
B̃η (t′)

〉
= 0.

Taking the time derivative of Eq. (2.27) under the Born approximation, we end up with,

d ρ̃S (t)

dt
= −

∫ t

0

dt′TrB

{[
Ĥ
′

I (t) ,
[
Ĥ
′

I (t′) , ρ̃S (t′)⊗ ρ̃B (0)
]]}

, (2.31)

which is know as the Nakajima-Zwanzig equation. We observe that it is non-local in time,
i. e., the derivative of ρ̃S (t) at time t depends on earlier times, ρ̃S (t′) with 0 < t′ < t.

We invoke the short correlation time, ∆−1
B = τc ≈ 0, to approximatively set ρ̃S (t′) ≈

ρ̃S (t). Then,

− d ρ̃S (t)

dt
≈
∫ t

−∞
dt′TrB

{[
Ĥ
′

I (t) ,
[
Ĥ
′

I (t′) , ρ̃S (t)⊗ ρ̃B (0)
]]}

, (2.32a)

=

∫ ∞
0

dτ TrB

{[
Ĥ
′

I (t) ,
[
Ĥ
′

I (t− τ) , ρ̃S (t)⊗ ρ̃B (0)
]]}

, (2.32b)
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where we made the change t′ = t− τ . Expanding the commutator and using Eq. (2.24), we
can write,

− d ρ̃S (t)

dt
≈

∫ ∞
0

dτ
〈
B̃µ (t) B̃η (t− τ)

〉{
S̃µ (t) S̃η (t− τ) ρ̃S (t)− S̃η (t− τ) ρ̃S (t) S̃µ (t)

}
+

∫ ∞
0

dτ
〈
B̃η (t− τ) B̃µ (t)

〉{
ρ̃S (t) S̃η (t− τ) S̃µ (t)− S̃µ (t) ρ̃S (t) S̃η (t− τ)

}
,

(2.33)

where we omitted the sum sign
∑

µ,η. In the case when the bath is a vacuum or thermal

state, the correlations
〈
B̃µ (t− τ) B̃µ (t)

〉
= 0, i. e., we just consider those terms of the sum

where µ 6= η.
We proceed considering an interaction Hamiltonian of the form, with ~ = 1,

Ĥ
′

I (t) =
√
γ
[
e−i ω0 t ĉ B̂† (t) + ei ω0 t ĉ† B̂ (t)

]
, (2.34)

from which we set the operators S̃1 (t) = e−i ω0 t ĉ, B̃1 (t) =
√
γ B̂† (t), S̃2 (t) = ei ω0 t ĉ† and

B̃2 (t) =
√
γ B̂ (t). The equation for ρ̃S (t) contains eight integrals which are related with the

expressions,〈
B̂† (t) B̂ (t− τ)

〉
=
〈
B̂† (τ) B̂ (0)

〉
=
〈
B̂† (0) B̂ (τ)

〉∗
=
〈
B̂† (t− τ) B̂ (t)

〉
, (2.35a)〈

B̂ (t) B̂† (t− τ)
〉

=
〈
B̂ (τ) B̂† (0)

〉
=
〈
B̂ (0) B̂† (τ)

〉∗
=
〈
B̂ (t− τ) B̂† (t)

〉
, (2.35b)

where we used the properties of the thermal density matrix for the bath, ρ̂B (0) = ρ̂th (Nth),
with Nth the equilibrium thermal occupancy number. We define the functions,

I+ (ω) = 2 γ

∫ ∞
0

dτ e−i ω τ
〈
B̂† (τ) B̂ (0)

〉
, (2.36a)

I− (ω) = 2 γ

∫ ∞
0

dτ ei ω τ
〈
B̂ (τ) B̂† (0)

〉
. (2.36b)

Then, we can write Eq. (2.33) like,

− d ρ̃S
dt

=
i

2

[
Im {I+ (ω0)} ĉ ĉ† + Im {I− (ω0)} ĉ†ĉ, ρ̃S

]
− Re {I+ (ω0)}

2

(
2 ĉ†ρ̃S ĉ− ĉ ĉ†ρ̃S − ρ̃S ĉ ĉ†

)
− Re {I− (ω0)}

2

(
2 ĉ ρ̃S ĉ

† − ĉ†ĉ ρ̃S − ρ̃S ĉ†ĉ
)
.

(2.37a)

In the Schrödinger picture, this equation is,

d ρ̂S
dt

= −i
[
ĤS + Ĥxtr, ρ̂S

]
+

Re {I+ (ω0)}
2

(
2 ĉ†ρ̃S ĉ− ĉ ĉ†ρ̃S − ρ̃S ĉ ĉ†

)
+

Re {I− (ω0)}
2

(
2 ĉ ρ̃S ĉ

† − ĉ†ĉ ρ̃S − ρ̃S ĉ†ĉ
)
, (2.38)
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with Ĥxtr = Im {I+ (ω0)} ĉ ĉ† + Im {I− (ω0)} ĉ †ĉ.
Now, due to the thermal state of the bath, we have,〈

B̂† (τ) B̂ (0)
〉
≈ Nth e

i ω0 τ δ (τ) , (2.39a)〈
B̂ (τ) B̂† (0)

〉
≈ (Nth + 1) e−i ω0 τ δ (τ) . (2.39b)

This implies that I+ (ω0) = γ Nth and I− (ω0) = γ (Nth + 1), i. e., Im {I± (ω0)} = 0. Finally,
we obtain the master equation:

d ρ̂S
dt

= −i
[
ĤS, ρ̂S

]
+
γ Nth

2

(
2 ĉ†ρ̃S ĉ− ĉ ĉ†ρ̃S − ρ̃S ĉ ĉ†

)
+
γ (Nth + 1)

2

(
2 ĉ ρ̃S ĉ

† − ĉ†ĉ ρ̃S − ρ̃S ĉ†ĉ
)
, (2.40)

which is also named as the master equation in Lindblad form or Lindblad master equation.
This can be written like ∂t ρ̂S = L ρ̂S, where L is a superoperator called Liouvillian, and its
formal solution is ρ̂S (t) = eL tρ̂S (0). In the case when the number of the operators for the
system is larger than one, the Lindblad master equation takes the form,

d ρ̂S
dt

= −i
[
ĤS, ρ̂S

]
+
∑

k

{
γkNk

2
L̂
[
c†k

]
ρ̂S +

γk (Nk + 1)

2
L̂ [ck] ρ̂S

}
, (2.41)

where we define the superoperator L̂ [Ok] ρ̂S = 2 Ôk ρ̂S Ô
†
k −
(
Ô†kÔk ρ̂S + ρ̂S Ô

†
kÔk

)
. Also, for

every operator Ok corresponds a decay rate γk and a equilibrium thermal occupancy number
Nk .

2.3 Composite pulse sequence for a qubit

To achieve population inversion in a qubit, we apply a π-pulse with a coherent field on
resonance with constant phase. The technique fails if the pulse area, the frequencies or the
phase conditions do not hold for the whole process, i. e., this technique is very sensitive to
systematic errors on those parameters. One option to have a more accurate control of the
inversion is the use of a sequence of π-pulses with appropriately chosen phases [100,107]. In
the Bloch sphere representation [108], the action of those phases can be seen as composed
rotations which reduce the sensitivity to the systematic errors.

Here we review the formalism given in Ref. [100–103] for the so-called broadband (BB)
composite sequence, i. e., when the population inversion occurs with a π-pulse. The longer
the BB sequence, the flatter the inversion profile around the area π. The time-evolution of the
qubit can be visualized using the Bloch sphere representation, where the qubit’s quantum-
state is mapped to a point on the surface of the sphere and its evolution produces a path.

We consider a qubit with transition frequency ωa driven by a laser with frequency ωl.
The Hamiltonian in the interaction picture is, with ~ = 1,

Ĥ (t) =
Ω (t) e−iD(t)

2
σ̂+ +

Ω∗ (t) eiD(t)

2
σ̂−, (2.42)
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with D (t) =
∫ t
ti

∆ (t′) dt′, where ∆ = ωa − ωl is the detuning between the laser and qubit
frequencies. We used the standard definition for the Pauli matrices. The Rabi frequency
Ω (t) parametrizes the coupling between the laser field and the qubit. The time evolution of
the qubit’s quantum state, |c (t)〉, follows the Schrödinger equation,

i
d

dt
|c (t)〉 = Ĥ (t) |c (t)〉 . (2.43)

From this equation, we obtain the evolution operator Û , i. e., |c (t)〉 = Û (t) |c (ti)〉 and its
matrix form is,

Û =

(
a b
−b∗ a∗

)
, (2.44)

with |a|2 + |b|2 = 1. In the case of exact resonance, ∆ = 0, there is an analytic expression
for the matrix elements,

a = cos (A/2) , (2.45a)

b = −i sin (A/2) , (2.45b)

where we defined the pulse area A =
∫ t
ti

Ω (t′) dt′ and we assumed Ω (t) is a real function.

The transition probability is given by p = |b|2 = sin2 (A/2). Complete population inversion
occurs for A = π, for the so-called π-pulse, alternatively for odd-integer multiples of π. The
inversion is sensitive for small deviation, ε < 1, in the value π, i. e., A = π (1 + ε). It causes
an error in the inversion of order O (ε2), then p = 1− (π ε/2)2 +O (ε4).

The sensitivity to errors can be reduced by replacing the single π-pulse by a composite
pulse sequence. A constant phase shift to the Rabi frequency, Ω (t) −→ Ω (t) ei φ, causes a
phase shift in the evolution operator,

Ûφ (A) =

(
a b e−i φ

−b∗ ei φ a∗

)
. (2.46)

The phase shift added can be seen as a rotation in the Bloch sphere around the z-axis. We
must not confuse the phase shift φ with the driving-laser phase of the optomechanical system.

The evolution operator for a sequence of N pulses, each one with are Ak and phase φk,
can be written by the product of the correspondent for every pulse,

Û (N) = ÛφN (AN) ÛφN−1
(AN−1) · · · Ûφ2 (A2) Ûφ1 (A1) . (2.47)

We consider an odd number of pulses for the BB composite sequence because it is neces-
sary and odd multiple of π to produce complete population inversion. For the composite
pulse sequence, we assume every pulse area is the same, A, and the phases are our free pa-
rameters. Also, we require a reversal symmetry property for the phases, i. e., they obey
φk = φN+1−k. Because it is only relevant the relative phase of the pulses, we can set
φ1 = φN = 0, which implies that we have just (N − 1) /2 free values of the phases. The
set {±φk | k = 2, . . . , (N + 1) /2} is the solution for the control problem
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2.4. PT -symmetry

N Phases (units of π/N)
3 0 2 0
5 0 4 2 4 0
7 0 6 4 8 4 6 0
9 0 8 6 12 8 12 6 8 0
11 0 10 8 16 12 18 12 16 8 10 0
13 0 12 10 20 16 24 18 24 16 20 10 12 0
15 0 14 12 24 20 30 24 32 24 30 20 24 12 14 0
17 0 16 14 28 24 36 30 40 32 40 30 36 24 28 14 16 0

Table 2.1: Value of the phases for the first eight BB composite sequences at resonance.

In order to obtain the set {±φk} which creates the desire flat profile for the population

inversion around the area π, it is necessary to nullify the matrix element U
(N)
11 , alternatively,

maximize U
(N)
12 . Then, we must have the conditions:

U
(N)
11 (A = π) = 0, (2.48a)

∂ S U
(N)
11

∂ A

∣∣∣∣∣
A=π

= 0, (2.48b)

for S = 1, . . . , (N − 1) /2,. As alternative, we have ∂ SA U
(N)
12 |A=π = 0 and U

(N)
12 (A = π) = 1.

Solving the set of those equations, we found the values for the phases with analytic form,

φk =

[
N + 1− 2 Floor

(
k + 1

2

)]
Floor

(
k

2

)
π

N
, (2.49)

where Floor (x) is the function which returns the integer part of x. In Table 2.1 we show
the value of the phases for the first eight sequences. With that phase sequence, an error ε
in every pulse area produces a transition probability p = 1 − (π ε/2)2N + O

(
ε2N+2

)
, then

p −→ 1 for N −→∞.
In the process to develop the BB composite sequence we assumed a time dependency of

the Rabi frequency and a constant laser detuning. This sequence is also suitable when we
have the conditions [101]:

Ω (t) = Ω (−t) , (2.50a)

∆ (t) = −∆ (−t) . (2.50b)

Even though we considered just in deviations of the pulse area, a BB composite sequence
can be derived in order to reduce sensitivity of the inversion due to errors of the detuning.
We don’t reproduce that process here because it is not our target to use it.

2.4 PT -symmetry

One postulate of quantum mechanics stipulates that for every measurable quantity corre-
sponds a linear Hermitian operator [109]. The eigenvalues of those operators are real num-
bers, the measurable quantities. The Hamiltonian, Ĥ, in the Schrödinger equation gives the
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Chapter 2. Theoretical framework

total energy for time-dependent systems and its time-evolution. This implies that Ĥ must
be Hermitian, Ĥ = Ĥ†. But some years ago, it was found that certain class of non-Hermitian
operators have real eigenvalues [110, 111]. This operators are invariant under space-time
reflection, PT -symmetry. The operator P stands for the space reflection and T for the time-
reflection. If x̂ and p̂ represents the coordinate and momentum operators respectively, the
effects of P and T are,

P x̂P = −x̂, P p̂P = −p̂, (2.51a)

T x̂ T = +x̂, T p̂ T = −p̂. (2.51b)

The time-reflection changes the sign in the complex number, i→ −i. From those expressions,
we know that P is a linear operator and T is antilinear. Also, the relations P2 = T 2 = 1 are
obtained and more interesting, [

Ĥ, PT
]

= 0. (2.52)

It can also be written like Ĥ = PT Ĥ PT = ĤPT . This expressions are the core of research
in PT -symmetric Hamiltonians. Then, the mathematical condition Ĥ = Ĥ† can be replaced
by Ĥ = ĤPT . With this, non-Hermitian descriptions of quantum systems can be accepted if
its respective Hamiltonian posses PT -symmetry.

As an example, the family of PT -symmetric Hamiltonians Ĥ = p̂2 + x̂2 (i x̂)ε, with ε ∈ R.
This Hamiltonian possesses eigenvalues that are real and positive for ε ≥ 0, but when ε < 0
the eigenvalues are complex [111]. This characteristic defines the so-called unbroken and
broken regions of the PT -symmetry, i. e., the real eigenvalues are found in the unbroken
region while the complex eigenvalues corresponds to the broken region.

2.4.1 Gain-loss system

The classical simulation of non-Hermitian quantum mechanics is possible in photonics. This
is based on the equivalence between the Schrödinger and Hemlholtz equations [112, 113].
The PT -symmetric quantum potential V̂ (x̂) = V̂ † (−x̂) corresponds to a complex refractive
index n (x) = n∗ (−x). The latter implies that amount of losses must be equal to the gain.
Particularly, a two-waveguide coupler is described by two coupled differential equations which
can be written like [114],

−i d
dζ

(
E1

E2

)
=

(
i Γ̃ 1

1 −i Γ̃

)(
E1

E2

)
, (2.53)

where is defined an scaled propagation distance ζ = g̃ z with g̃ ∈ R as the waveguide coupling
constant and z ≥ 0 the propagation distance. The effective complex amplitude at each
waveguide is Ej and an effective refractive index Γ̃ ∈ R. With this model, the propagation of
the amplitudes exhibits different behaviours depending on whether the two eigenvalues,

m± = ±
√

1− Γ̃2, (2.54)

are real or imaginary. This leads to the following regimes [115]:
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2.4. PT -symmetry

Unbroken PT -symmetry when |Γ̃| < 1. An oscillatory behaviour is expected. The eigen-

values, m±, are real numbers and its correspondent eigenvectors are |±〉 =
(
1, ±e∓i θ

)>
,

with sin θ = Γ̃. These eigenvectors are linearly independent and orthogonal, 〈+| −〉 = 0.

Exceptional point when |Γ̃| = 1. Here occurs the transition between the unbroken and
broken regimes. Both eigenvalues and their corresponding eigenvalues coalesce [116],
i. e., m± = 0 and |±〉 = (1, i)>. Then, a behaviour with a power law is expected.

Broken PT -symmetry when |Γ̃| > 1. An exponential behaviour is expected. The eigenval-

ues, m±, are imaginary numbers and its correspondent eigenvector are |±〉 =
(
1, i e±θ

)>
with cosh θ = Γ̃. This vectors are linearly independent but the orthogonality do not
longer holds, 〈+| −〉 6= 0.

In all these regimes, the total intensity is not conserved along propagation, a feature of
nonunitary evolution [117].
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Chapter 3

Robust quantum-state transfer

This chapter demonstrates the possibility of a robust quantum-state transfer in an optome-
chanical system using a composite phase sequence [100–102], while taking into account the
losses of the system. First, we review quantum-state exchange using the formalism of quan-
tum Langevin equations for the linearized optomechanical effective model, Sec. 2.1.2. These
equations are similar to those describing a qubit driven by an external coherent electromag-
netic field. This similarity allows quantum-state transfer in the optomechanical system. Such
transfer is sensitive to systematic errors like inaccuracies in the field magnitude, laser fre-
quency, driving duration, coupling strength and others. Composite pulse sequences in a qubit
can overcome such systematic errors and produce a robust population transfer [104]. A sim-
ilar effect yields quantum-state transfer in an optomechanical system due to the connection
in its QLEs. Finally, we consider the effects on the optomechanical steady-state amplitudes
due to smoothness of the driving phase-sequence.

3.1 Quantum excitation exchange

We consider an optomechanical system with strong laser driving in order to use the red-
detuned regime where the effective Hamiltonian leads to a beam-splitter-like interaction,
ei ϕĉ † d̂+ e−i ϕĉ d̂ †, see Sec. 1.2.1. Also, we use the QLEs for quantum fluctuations operators
in order to study its lossy dynamics. In a matrix form, those equations are, Sec. 2.1.2,

d

dt

(
ĉ

d̂

)
= −

(
κ/2 + i ωm i g ei ϕ

i g e−i ϕ γ/2 + i ωm

)(
ĉ

d̂

)
−
( √

κ ξ̂c√
γ ξ̂m

)
. (3.1)

Here, we consider the cavity (mechanical) input field as Gaussian quantum noise described

by the operator ξ̂c

(
ξ̂m

)
with correlation functions,〈
ξ̂†(c,m) (t) ξ̂(c,m) (s)

〉
= n

(c,m)
th δ (t− s) , (3.2a)〈

ξ̂(c,m) (t) ξ̂†(c,m) (s)
〉

=
(
n

(c,m)
th + 1

)
δ (t− s) , (3.2b)

where n
(c,m)
th is the average thermal occupation number of the baths.
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Chapter 3. Robust quantum-state transfer

To arrange the coupled QLEs, we define the constants Γ = (κ − γ)/(4g), µ = (κ + γ)/4

and the vectors ~r (t) = e(µ+i ωm)t
(
ĉ, d̂
)>

, ~rin (t) = e(µ+i ωm)t
(√

κ ξ̂c,
√
γ ξ̂m

)>
, to write,

− d

dt
~r (t) = i g Ĥ~r (t) + ~rin (t) , (3.3)

where Ĥ is a 2× 2 non-Hermitian matrix,

Ĥ =
(
ei ϕ σ̂+ + e−i ϕ σ̂−

)
− iΓ σ̂z, (3.4)

and we used the standard definition for the Pauli matrices. Up to this point, we considered
the driving-laser phase, ϕ, as a constant value. Then, the solution for the vector ~r (t) is,

~r (t) = Ûϕ (t− t0) ~r (t0)−
∫ t

t0

Ûϕ (t− y) ~rin (y) dy, (3.5)

where t0 < t is an initial time and Ûϕ is the constant-phase evolution operator with matrix
form given by,

Ûϕ (τ) = e−i g Ĥ τ = cos (Ω g τ) 12 −
i

Ω
sin (Ω g τ) Ĥ. (3.6)

Here, we used the notation 12 for the 2× 2 identity matrix and introduced an effective Rabi
frequency Ω =

√
1− Γ2 which is a real number when the decay rates are small compared with

the enhanced optomechanical coupling, (κ−γ)� g. From the arguments of the trigonometric
functions of the constant-phase evolution operator, we define the time scale τ0 = π/(2gΩ)
and the interaction area A (τ) = Ω g τ . In consequence, τ0 corresponds to A (τ0) = π/2 which,
in the lossless case, produces complete quantum-state exchange.

Using the evolution of vector ~r (t), we calculate the mean photon and phonon numbers
for a constant phase driving,〈

ĉ† ĉ
〉

(τ) =
(
n0 |U11 (τ) |2 +m0 |U12 (τ) |2

)
e−2µ τ + κn

(c)
th S11 (τ) + γ n

(m)
th S12 (τ) , (3.7a)〈

d̂† d̂
〉

(τ) =
(
n0 |U21 (τ) |2 +m0 |U22 (τ) |2

)
e−2µ τ + κn

(c)
th S21 (τ) + γ n

(m)
th S22 (τ) , (3.7b)

where the initial photon and phonon occupation numbers are n0 and m0, respectively. We use

the short-hand notation for the matrix elements of the evolution operator Ujk (τ) =
[
Ûϕ (τ)

]
jk

and we define the functions Sjk (τ) =
∫ τ

0
|Ujk (x) |2 e−2µx dx which arise from the quantum

noise correlations.
Because Ujk (τ) are trigonometric functions of time τ , we expect an oscillatory behaviour

of the mean photon and phonon numbers. Figure 3.1(a) shows the oscillatory quantum
excitation exchange between the cavity and mechanical modes under continuous power and
phase driving. Figure 3.1(b) shows a density plot of the mean phonon number as function of
the time and deviations from ideal interaction area A = A (τ0) + δA required for a quantum
excitation exchange. We used experimental values for the parameters from Ref. [79]: g0/ωm =
18.87 × 10−6, κ/ωm = 10.15 × 10−3, γ/ωm = 9.434 × 10−6, np = 180 × 103, n0 = 0.02 and

m0 = 23.25. The bath temperature is T = 25 mK which is equivalent to n
(m)
th ≈ 23.25

thermal phonons and a negligible number of thermal photons. However, the strong laser
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Figure 3.1: Time evolution of (a) the expectation values for the quantum photon (solid blue)
and phonon (dashed red) numbers and (b) quantum expectation value for the phonon number
considering deviations from the ideal accumulated interaction area, A(τ0) = π/2 (gray dashed
line).

driving causes the cavity mode to reach a thermal equilibrium at a higher occupancy number
n

(c)
th ≈ 0.305. In this work, we assume that deviations in the interaction area arise due to

variations on the laser-power. Such deviations alter the semiclassical photon number, np,
and in consequence, the enhanced optomechanical coupling, g, changes. Also, from Figure
3.1(b), we see how the deviation from the ideal area causes a shorter or larger oscillation
period when δA > 0 and δA < 0, respectively. This reveals the sensitivity to a small change
due to systematic errors like laser-power.

3.2 Phase-sequence for a robust quantum excitation

exchange

There is a similarity between the QLEs for the linearized optomechanical system, Eq. (3.4),
and the equations that describe the complex amplitudes probabilities of a qubit driven by
an external coherent electromagnetic field, Eq. (2.42). In consequence, the optomechanical
system displays Rabi-like oscillations between cavity and mechanical excitations. There, some
quantum control techniques can be applied to the optomechanical system. As mentioned in
the previous paragraph, that characteristic leads to an inaccurate state preparation due to
the sensitivity to systematic errors like laser-power, frequency, pulse duration, and others.
For a qubit, a common option to produce population transfer is to use a pulse with smooth
shape and defined time duration [96]. In order to improve the efficiency and robustness of the
population transfer, the single pulse is replaced with a sequence of identical pulses, but the
relative phase between each pulse is chosen in a way that the target state is optimized. Then,
the phases of the single pulses in the sequence are the control parameter. Such technique
has been well studied for a lossless qubit, Sec. 2.3, and demonstrated experimentally [104].
Here, we use the same idea to achieve a robust quantum-state transfer between the cavity
and mechanical modes of the optomechanical system with losses.

We assume a phase-tailored composite pulse sequence with constant driving amplitude.
Each constituent pulse in the sequence has a constant phase and a time duration correspond-
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Chapter 3. Robust quantum-state transfer

ing to an interaction area of π/2. The technique also requires an odd number of pulses such
that the phases of initial and final pulse are the same. The shortest possible sequence has
three pulses with total interaction area of 3 π/2 , in consequence, the only free parameter for
the control is the phase of the middle pulse. We denoted it with the Greek letter ϕ. Under
those conditions, the final state of the system at 3 τ0 is given by the vector,

~r (3 τ0) = Û (3) (τ0) ~r (0)−
∫ τ0

0

Û (3) (τ0) Û0 (−z) ~rin (z) dz

−
∫ 2τ0

τ0

Û0 (τ0) Ûϕ (2τ0 − z) ~rin (z) dz −
∫ 3τ0

2τ0

Ûϕ (3τ0 − z) ~rin (z) dz, (3.8)

where the evolution operator Û (3) = Û0 (τ0) Ûϕ (τ0) Û0 (τ0) is for the three-interaction com-

posite sequence. Each operator Û describes the evolution of the optomechanical system
under different driving phases. The product gives as result that each Û

(3)
jk contains the phase,

ϕ, which will produce interference. We exploit this effect to obtain robust quantum-state
transfer.

We calculate the mean photon and phonon numbers with the vector ~r (3 τ0). Both quan-
tities can be split in two contributions, one is the damped oscillatory part and the other is
due to the thermal noise, 〈

ĉ† ĉ
〉

(3 τ0) = n(c)
osc (3 τ0) + n

(c)
noise (3 τ0) , (3.9a)〈

d̂† d̂
〉

(3 τ0) = n(m)
osc (3 τ0) + n

(m)
noise (3 τ0) . (3.9b)

The oscillatory part is analogous to the Rabi oscillations of a qubit. It is responsible for the
excitation exchange between the cavity and the mechanical mode. As we discuss below, to
optimize the exchange, it is enough if we work with the oscillatory part of the phonons,

n(m)
osc (3 τ0) =

[
n0

∣∣∣U (3)
21 (τ0)

∣∣∣2 +m0

∣∣∣U (3)
22 (τ0)

∣∣∣2] e−6µ τ0 , (3.10)

where the matrix elements of Û (3) (τ0) are,

U
(3)

11 (τ0) = [U11 (τ0)]3 + U12 (τ0)U21 (τ0) [U22 (τ0) + 2U11 (τ0) cos (ϕ)] , (3.11a)

U
(3)

12 (τ0) = U12 (τ0)
{

[U11 (τ0)]2 + [U22 (τ0)]2 + e−i ϕU12 (τ0)U21 (τ0) + ei ϕU11 (τ0)U22 (τ0)
}
,

(3.11b)

U
(3)

21 (τ0) = U21 (τ0)
{

[U11 (τ0)]2 + [U22 (τ0)]2 + ei ϕU12 (τ0)U21 (τ0) + e−i ϕU11 (τ0)U22 (τ0)
}
,

(3.11c)

U
(3)

22 (τ0) = [U22 (τ0)]3 + U12 (τ0)U21 (τ0) [U11 (τ0) + 2U22 (τ0) cos (ϕ)] . (3.11d)

Here, we used the matrix elements of Û0 (τ0). The part due to quantum noise has a more
complicated expression and is not relevant in this analysis. This is because, in our case, we
are considering a high semiclassical photon number, np, enough to have many oscillations
before the thermal contribution becomes important.
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Figure 3.2: (a) Oscillatory and (b) thermal noise contributions to the phonon number as
a function of deviations in the interaction area and the phase value at time tf = 3τ0 for
parameter values: g0/ωm = 1.51 × 10−4, κ/ωm = 145.9 × 10−3, γ/ωm = 5.36 × 10−4, np =

90× 103, (n0, m0) = (0.02, 23.25) and n
(c,m)
th = (0.21, 32), taken from Ref. [97].
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Figure 3.3: (a) Phonon number,
〈
n̂m
〉
, after the composite sequence for driving phases ϕ = 0

(black), ϕ = ±2π/3 (blue). (b) Time evolution of the mean phonon number as a function
of the deviation from ideal parameters with a driving phase ϕ = 2π/3. The optimal phases
ϕopt = ±2π/3 are signaled by vertical dashed lines. Parameter values are equal to those in
Fig. 3.2.

To achieve optimal excitation exchange, we need to minimize the component |U (3)
22 (τ0) |2

around the single-interaction area π/2, or, alternatively, maximize |U (3)
21 (τ0) |2. By minimiz-

ing the derivative of |U (3)
22 (τ0) |2 with respect to the interaction area, we obtain the condition

for the optimal phase,

cos (ϕopt) =
3 Γ2 − 1

2
, (3.12)

which for the lossless system yields ϕopt = ±2π/3. This is consistent with the result reported
in Tab. 2.1 for a coherently-driven qubit on resonance and without losses.

In Fig. 3.2 we show density plots of the oscillatory and thermal noise contributions
considering deviations in the interaction area and the phase value −π < ϕ < π to illustrate
the interference-like effect obtained with the phase sequence. With experimental values
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(a) (b) (c)

Figure 3.4: Angular momentum representation of optomechanical quantum-state transfer.
(a) Displays a three-interaction evolution with a −10% deviation and constant driving phase.
(b) Displays the same evolution under a composite driving sequence that maximizes robust-
ness. (c) Displays the same evolution as (b), but where additional time-dependent white-noise
fluctuations are added on the parameters g, ωm, ∆, κ, and γ.

from Ref. [97], the optimal phase is almost identical to the lossless one, ϕ ≈ ±2 π/3, within
10−3 %. The vertical dashed lines indicate the phase value where the optimal robust excitation
exchange is produced. In Fig. 3.3(a) we plotted the mean phonon number at tf = 3 τ0 with
and without the phase sequence. There, we observe the robustness obtained around the total
interaction area of δA = 0. In Fig. 3.3(b), like Fig. 3.1(b), we show the full time evolution
for the mean phonon number under the optimal composite sequence considering deviations in
the interaction area. We notice how the interference-like effect changes the behaviour of the
mean phonon number when there are deviations in the interaction area, producing a region
with robust quantum-state transfer near the intersection of the dashed lines.

3.2.1 Angular momentum representation and statistical analysis

In order to have visual cues, physical insight, and show that the derived optimal phase
sequence produces robust quantum-state transfer, we numerically calculate the evolution
using the red-detuned linearized optomechanical system under Lindblad’s approach, Sec. 2.2.
We display the results using the Bloch sphere for the Schwinger’s two-boson representation
of angular momentum [118],

Ĵx =
1

2

(
ĉ† d̂+ d̂† ĉ

)
, (3.13a)

Ĵy =
−i
2

(
ĉ† d̂− d̂† ĉ

)
, (3.13b)

Ĵz =
1

2

(
ĉ† ĉ− d̂† d̂

)
. (3.13c)

In Fig. 3.4 we present three cases for the time evolution of the optomechanical quantum-
state transfer for a three-interaction sequence. Initially, the cavity is at the vacuum state and
the mechanical oscillator has a single quanta; also, each single-pulse has a −10% deviation
from the ideal value of π/2. The first case, Fig. 3.4(a), the evolution is under constant
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Figure 3.5: Mean value (dots) and standard deviation (bars) of samples of phonon number
expectation value samples after three interactions, n̄m. Again, each of the physical parame-
ters, g, κ, γ, is generated using a normal distribution with standard deviation determined as
a percentage of the central value of the corresponding parameter. Red points and bars cor-
respond to constant-phase evolution and blue points and bars correspond to evolution under
composite phase driving. Here, the experimental values are the same as those in Fig. 3.1 and
Lecocq et al. [79]. We used a sample consisting of 5000 instances for each point.

phase-driving. In the second case, Fig. 3.4(b), the phase-driving has a piecewise structure
with the optimal phase value given by Eq. (3.12). The third case, Fig. 3.4(c), besides to the
piecewise phase-driving, some parameters of the system have time-dependent white noise as
an additional source of errors. In all the cases, the initial point in the Bloch sphere is labelled
by (0), the successive (1), (2) and (3) points the end of each part of the three-interaction
sequence. The position of final point, (3), is different for each case. In the first, we observe
an incomplete quantum-state transfer due to the deviation in the single-pulse area. For the
second and third cases, with the piecewise phase-diving, the quantum-state transfer is much
better even in the presence of losses and, in the last case, even in presence of white noise, as
mentioned before. For the last case, we generate a sequence of 50 random numbers in the
range of 0.95 to 1.05 for each of the parameters. Then, that sequence is used to generate
a smooth interpolated function that multiplies the baseline value of each parameter. As we
can see, even in the presence of the area deviation, time-dependent random noise in the
parameters of the system and time evolution under Lindblad master equation, a robust state
transfer can be achieved using the composite phase sequence. The baseline values of the
parameters are g/ωm = 5 × 10−2, κ/ωm = 4 × 10−3, γ/ωm = 8 × 10−3, n

(c,m)
th = 0 and

∆ = −ωm.

In addition, we perform a central-limit statistical analysis to validate whether or not
our composite phase driving proposal produces robust optomechanical state transfer under
random variations in its physical parameters. In the following, the mean values and standard
deviations are calculated from the resulting quantum mean phonon value samples and do
not correspond to the quantum average mean phonon number and its uncertainty. For our
analysis, we calculate a large sample of simultaneous random variations on the physical
parameters g, κ, γ, each of them under a normal distribution with fixed mean and standard
deviation. Next, we calculate the phonon number expectation value after three interactions,〈
n̂m (3 τ0)

〉
, for each of these sets. We use two scenarios: evolution under the standard

red-sideband state transfer and our composite phase driving proposal. While the parameters
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Cohen et al. [97] Lecocq et al. [79] Gröblacher et al. [75]
Constant Composite Constant Composite Constant Composite

central values (no random variation)
〈n̂m〉 0.871 0.870 0.337 0.627 0.0454 0.0456

1% σ in random variations in g, κ, γ
n̄m 0.917 0.870 0.340 0.627 0.0950 0.0456
σ 0.0665 0.00845 0.0305 0.0128 0.0705 0.000323

2% σ in random variations in g, κ, γ
n̄m 1.06 0.870 0.346 0.629 0.247 0.0456
σ 0.274 0.0173 0.0614 0.0263 0.289 0.000653

5% σ in random variations in g, κ, γ
n̄m 2.06 0.871 0.385 0.638 1.20 0.0456
σ 1.592 0.0420 0.1474 0.0718 1.481 0.00164

Table 3.1: Mean value, n̄m, and standard deviation, σ, of phonon number expectation value
samples resulting from randomly-variated parameters g, κ, and γ. We use three sets of central
values, Cohen et al. [97], with g/ωm = 4.62×10−2, κ/ωm = 145.9×10−3, γ/ωm = 5.36×10−4;
Lecocq et al. [79], with g/ωm = 8.01× 10−3, κ/ωm = 10.15× 10−3, γ/ωm = 9.43× 10−6; and
Gröblacher et al. [75], with g/ωm = 0.434, κ/ωm = 227× 10−3, γ/ωm = 1.48× 10−4; We set

the following initial values n0 = 0.01, m0 = 23.25, n
(c)
th = 0.21, n

(m)
th = 32.0 and use 3000

instances in each sample.

g, κ, γ have random variations, the driving sequence is determined by the central values
that characterize the system and, therefore, it is constant and does not suffer from random
variations. Table 3.1 collects the mean value of the phonon number and its standard deviation
for samples calculated with experimental parameters reported in the literature. We find that
composite driving produces samples that are more robust against Gaussian deviations in
their physical parameters, i. e., the standard deviation of the sample of phonon numbers is
much smaller under our custom phase sequence than under constant-phase driving. Also, the
mean phonon number is centered around a minimum, which means that random variations
are more likely to produce an increase in the average phonon number than a decrease. Table
3.1 and Fig. 3.5 show that, as the standard deviation for the random variation of the physical
parameters g, κ, γ increases, the average phonon number increases and this increment is more
dramatic under constant-phase driving.

3.2.2 Longer composite sequences

The composite sequence technique described above can be extended to longer number of
parts with more than three interactions. Like in Sec. 2.3, we focus on sequences with an odd
number of interactions, N , and were there the sequence has reversal symmetry, i. e., the
k-th phase obey φk = φN+1−k. Without loss of generality, we set φ1 = φN = 0, because the
quantum-state transfer is sensitive to phase changes with respect to a baseline value. Then
we have (N − 1) /2 free phase parameters for control. Like in the three-interaction case,
the evolution under that sequence can be calculated by composing the evolution vector, Eq.
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Figure 3.6: Phonon number expectation value after N = 1, 3, 5, 7 interactions as a function
of the deviation from the ideal interaction area. Solid curves show the phonon number when
the driving phase is kept constant throughout the evolution. Dashed curves show the phonon
number with a nontrivial phase sequence that minimizes the effect of deviations. In this low-
loss scenario we use the driving phases from the lossless case. Physical parameters have the
same values as in Fig. 3.2.

(3.5), N -times to obtain, at tf = N τ0,

~r (tf ) = Û (N) (tf ) ~r0 − ~Rin (tf ) , (3.14)

where ~Rin involves integrals with the quantum noise operators, useless for our analysis. The
composed evolution operator is given by,

Û (N) (N τ0) = Ûφ1 (τ0) Ûφ2 (τ0) · · · Ûφ2 (τ0) Ûφ1 (τ0) . (3.15)

Like in the three-interaction case, the photon and phonon numbers can be written as
the sum of two contributions, the damped oscillatory part and the thermal noise part. To
obtain a robust excitation transfer, we nullify the first (N − 1) /2 derivatives of |U (N)

22 |2 with
respect to the single-pulse interaction area of π/2. From that procedure we obtain a system
of (N − 1) /2 coupled non-linear equations for the (N − 1) /2 optimal phases which can be
solved numerically. In the lossless case, the analytical phase values are given by Eq. (2.49).
In the case when Γ ≈ 0, the optimal phases are quite similar to those of the lossless case.
This produces a more robust optomechanical excitation exchange by increasing the region of
parameters where he phonon number is stable against deviations, see Fig. 3.6. A trade-off
of long composite sequences is that decoherence plays a more important role. Therefore, in
high-loss scenarios, long driving sequences should be avoided.

3.3 Smooth phase-sequence

In the previous section we considered the phase-driving as a piecewise function which takes
constant values in each interval of time tk−tk−1 = τ0 and discontinuous at the times k τ0, with
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Figure 3.7: (a) Three- and (b) seven-interaction smooth phase-sequences, φ(t) (red dashed
curve), and normalized semiclassical field intensity, |α(t)|2 /np (blue solid curve). For both
(a) and (b), the scale on the left vertical axis corresponds to the phase sequence and the scale
on the right vertical axis corresponds to the normalized intensity.

k = 1, . . . , N − 1. That jump in the phase value causes abrupt changes in the steady-state
amplitude values of the optomechanical system, α and β. To make such effect less significant,
we consider the phase-driving like a smooth function of time which resembles the piecewise
version. Then, α and β change smoothly over time and return to their steady-state values.
Also, changes in the detuning ∆ and the single-interaction area can be negligible.

To exemplify this assertion, we numerically solved the time evolution of α and β when the
phase-driving is a smooth function for the three-interaction case. The differential equations
and the explicit form of the phase are,

dα

dt
= −

(κ
4

+ i ωm

)
α +

i e−i φ ε

2
, (3.16a)

d β

dt
= −

(γ
4

+ i ωm

)
β − i g0 |α|2, (3.16b)

φ (t) = ϕopt f θs [t− (1.2) τ0, σ] θs [(1.8) τ0 − t, σ] , (3.16c)

where the smooth phase is based on the error function, θs (x, σ) = [erf (x/σ) + 1] /2. We in-
troduced two parameters, σ = τ0/25 and f . The former controls the smoothness of the pulse
and the latter is a dimensionless value that keeps the average of the phase at its optimal value,
ϕopt = 2 π/3. In this case, the average phase value in the interval [τ0, 2τ0] is approximately
−1.89 rad; we used the negative value for he simulations. Then, the semiclassical ampli-
tudes α and β smoothly change a percentage from its steady-state value. The semiclassical
EM field amplitude changes within 8%. This leads to less than a 0.2% of difference in the
three-interaction area and keeps the detuning, ∆, within 0.005% of its value. In Fig. 3.7(a)
we display the smooth phase function with the time evolution of the semiclassical number of
photons in the cavity, |α (t) |2/np, for the three-interaction sequence. We notice the changes of
α (t) around the times τ0 and 2τ0 where the phase-driving increases or decreases smoothly. In
Fig. 3.7(b), we numerically calculated the effect of a seven-interaction sequence with a simi-
lar procedure like before, using the phase values {0, −6π/7,−4π/7,−8π/7,−4π/7,−6π/7, 0}
given for the lossless case which are almost identical for the experimental parameters con-
sidered. Under this sequence, the semiclassical number of photons remains within 10% of
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its steady-state value and keeps the total interaction area within 0.1% of the ideal value of
7 π/2. Also, after each phase-driving sequence, the semiclassical amplitude α (t) returns to
its steady-state value as can be observed in both examples. This seems natural because the
phase value of α returns to its constant initial value after the complete interaction.

3.4 Conclusions

We reviewed the quantum-state swap in optomechanical systems under the red-detuned
regime and constant laser-power. We observed that such process is very sensitive to sys-
tematic errors, specially those inherit by the lase-power errors, Fig. 3.1(b). Then, the
implementation of phase-driving through the laser produces robustness against systematic
errors. This is analogous to the BB composite sequence developed for a lossless qubit, Sec.
2.3. We present analytical results for a three-part sequence in the optomechanical system,
Fig. 3.3. The lossy dynamics considered in this work produces a slightly different opti-
mal phase value for robust quantum excitation exchange, Eq. (3.12). Considering a larger
enhanced optomechanical coupling compared with the damping rates, allows us to use the
phase-driving values showed in Table 2.1. Then, we perform purely numerical simulations
for the three-part sequence using Lindblad master equation. We observed the robustness in
quantum-state transfer even in the presence of white noise in some of the optomechanical
parameters, Fig. 3.4. After that, we showed how the increasing number of parts in the
phase-driving produces a more robust quantum excitation exchange, Fig. 3.6. Finally, we
studied numerically the effects on the semiclassical amplitudes due to smooth phase-driving,
Fig. 3.7. The changes on the interaction area and detuning due to the smooth shape of
the phase-driving are negligible. In consequence, the smooth approximation to the piece-
wise phase-sequence produces a similar robust quantum-state transfer. All this results are
published in Ref. [119], see Appendix A.
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Chapter 4

Non-Hermitian optomechanics

This chapter deals with lossy optomechanical system with red-detuning. Here, we link its
strong and weak coupling regimes with an effective non-Hermitian dynamics that can be
selected using the laser’ power. First we briefly review the optomechanical coupling regimes
which are based on the nature of the red-detuned eigenfrequencies. Next, we relate those
regimes to the ones of a two-waveguide coupler with PT -symmetry, Sec. 2.4.1. That relation
came out from the QLEs of the quantum fluctuations operators in Sec. 1.2.1. Then, we
numerically compare the time evolution given by non-Hermitian Schrödinger equation with
the one produced with Lindblad master equation, both at zero temperature. These two
approaches show differences and similarities depending on the initial quantum-states. Finally,
we used analytical expressions obtained with the QLEs for an initial mechanical thermal state
at finite temperature and negligible photons in the EM field. The achievement of this last
result is the clear observation of PT -symmetry regimens at finite temperature.

4.1 Optomechanical eigenfrequencies

We consider an optomechanical system with strong laser driving in order to use the red-
detuned regime where the effective Hamiltonian leads to a beam-splitter-like interaction,
ei ϕĉ † d̂ + e−i ϕĉ d̂ †, see Sec. 1.2.1. We use the QLEs for quantum fluctuations operators in
order to study its lossy dynamics, Eq. (3.1), which can be written like,

− d

dt
~v = M~v + ~vin, (4.1)

where ~v =
(
ĉ, d̂
)>

, ~vin =
(√

κ ξ̂c,
√
γ ξ̂m

)>
and the drift matrix M is,

M =

(
κ/2 + i ωm i g

i g γ/2 + i ωm

)
. (4.2)

Here, we omitted the laser-phase value because it remains constant throughout this analysis.
Like in Chapter 3, we are not interested in the dynamics due to the quantum noise operators.
The matrix M determines the optomechanical dynamics. Therefore it is important to look
at its eigenfrequencies,

λ± = µ+ i ωm ± i |g|Ω, (4.3)

33
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where we used the definitions of µ = (κ+ γ)/4, Γ = (κ− γ)/(4g) and Ω =
√

1− Γ2 given in
Sec. 3.1. Because the matrix M is not time-dependent, we can write the time evolution for
the optomechanical operators in the form,

~v (t) = e−(µ+i ωm)tQ−1 diag
(
e−iΩ |g| t, e iΩ |g| t

)
Q~v (0) + ~Vin (t) , (4.4a)

= e−(µ+i ωm)t Û (t) ~v (0) + ~Vin (t) , (4.4b)

where Q is a 2× 2 matrix whose first and second columns are the eigenvectors of m+ = |g|Ω
and m− = −|g|Ω, respectively, see Sec. 2.4.1. This eigendecomposition is valid for m+ 6= m−.

Also, the vector ~Vin (t) contains all the terms due to the quantum noise operators. The
compact form in Eq. (4.4b) introduces the evolution operator Û .

The time evolution given by the QLEs, Eq. (4.4b), can present oscillatory behaviour,
like the one derived throughout Chapter 3, power law or exponential dynamics. It is directly
related to the values of real and imaginary parts of Ω = Ω (Γ). For a simplified insight we
assume γ � κ, see Table 1.1. Then, those three regimes are [1, 75,120,121],

Strong coupling regime : for g � κ we have Re {Ω} 6= 0 and Im {Ω} = 0. A normal
mode-splitting occurs, i. e., the EM and mechanical modes hybridized. This indicates
an oscillatory behaviour which allows quantum-state transfer, see the correspondent
analysis in Sec. 3.1. Then, the eigenfrequencies are λ± = µ+ i (ωm ± |g|Ω).

Transition point between the strong and weak coupling regimes is determined by the
threshold value κ = 4 g for which λ+ = λ−. This transition is observed by the ho-
modyne detection scheme of the phase spectral density in the transmitted light [121].

Weak coupling regime : for g � κ we have Re {Ω} = 0 and Im {Ω} 6= 0. The exponential
behaviour arises and there is not hybridization mode. The approximate eigenfrequencies
are,

λ+ ≈
κ

2
+ i ωm, (4.5a)

λ− ≈
γ

2
+

2 g2

κ
+ i ωm. (4.5b)

The eigenfrequency λ+ corresponds to the EM mode with damping rate κ/2. The
eigenfrequency λ− corresponds to the mechanical mode with a modified damping rate
γ/2 + γopt. The additional quantity γopt = 2 g2/κ is known as optical damping rate
which is a direct consequence of the radiation pressure exerted by the driving-laser.

4.1.1 PT -symmetry approach

The three optomechanical regimes described before can be seen as the well-know regimes for a
two-waveguide coupler with PT -symmetry, Sec. 2.4.1, with its correspondent characteristics.
For more general view, in the following we consider the parameter Γ as indicator for this
regimes:

Unbroken PT -symmetry when |Γ| < 1. This is the optomechanical strong coupling regime.
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Transition point for the threshold value |Γ| = 1. This exceptional point marks the passage
between the strong and weak optomechanical coupling regimes. Then, a power law
behaviour is expected in the time evolution.

Broken PT -symmetry when |Γ| > 1. This is the optomechanical weak coupling regime.

The enhanced optomechanical coupling, g = g0
√
np, is the only parameter that is able

to vary. This is possible through the laser’s power which is directly related with np = |αss|2,
see Eq. (2.22). Therefore, the parameter to tune between the PT -symmetry regimes is
the laser’s power. From the threshold value |Γ| = 1, one can obtain the critical number of
photons injected by the laser ncri = (κ− γ)2 / (4 g0)2, above (below) this value the obtained
behaviour is the unbroken (broken) regime.

The evolution operator Û (t) takes different form depending on the value of |Γ|, assuming
without loss of generality g > 0,

Ûosc (t) = cos (Ω g t) 12 −
i

Ω
sin (Ω g t) Ĥ, for |Γ| < 1, (4.6a)

ÛEP (t) = 12 − i g t Ĥ, for |Γ| = 1, (4.6b)

Ûexp (t) = cosh (|Ω| g t) 12 −
i

|Ω| sinh (|Ω| g t) Ĥ, for |Γ| > 1, (4.6c)

where Ĥ = σ̂x − iΓ σ̂z. In these expressions it is clear the well-known behaviours of the
PT -symmetry regimes described in Sec. 2.4.1. Also, we have Ûosc → ÛEP ←− Ûexp in the
limit when |Γ| → 1.

4.2 Differences in the evolutions

From the QLEs for ĉ and d̂, we obtain the non-Hermitian Hamiltonian,

ĤnH = Ĥred −
i

2

(
κ ĉ†ĉ+ γ d̂ †d̂

)
, (4.7)

where Ĥred = ωm

(
ĉ†ĉ+ d̂ †d̂

)
+g
(
ĉ†d̂+ d̂ †ĉ

)
is the linearized Hamiltonian with red-detuning

for the optomechanical fluctuations. With this non-Hermitian Hamiltonian, it is possible to
recover the QLEs, i. e., the part −∂t ~v = M~v in Eq. (4.1) is produced with the equa-

tion ∂t ÔS = i
[
ĤnH , ÔS

]
for ÔS = ĉ, d̂. This is equivalent to analyse the system at zero

temperature. From it, we follow a non-Hermitian Schrödinger equation (NHSE),

i
d

dt
|ψ〉 = ĤnH |ψ〉 . (4.8)

The Hamiltonian in this equation can written like,

ĤnH = Ĥenv + g
[
ĉ†d̂+ d̂ †ĉ− iΓ

(
ĉ†ĉ− d̂ †d̂

)]
. (4.9)

We define the envelope Hamiltonian Ĥenv = (ωm − i µ)
(
ĉ†ĉ+ d̂ †d̂

)
. So, the NHSE can be

turn into the PT -symmetric model for a photonic lattice showed in Ref. [117] using the
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Schwinger’s two-boson representation of angular momentum in Sec. 3.2.1. The nonunitary
transformation for that purpose is V̂ (t) = e−i Ĥenv t. Using Eq. (4.8), the PT -symmetric
Hamiltonian is,

ĤPT = V̂ −1 (t)
[
ĤnH − Ĥenv

]
V̂ (t) , (4.10a)

= g
[
ĉ†d̂+ d̂ †ĉ− iΓ

(
ĉ†ĉ− d̂ †d̂

)]
. (4.10b)

Here we used |ψ〉 = V̂ (t) |ψPT 〉 which leads to i ∂t |ψPT 〉 = ĤPT |ψPT 〉. Again, we obtain
the parameter Γ which is used as indicator of the unbroken/broken PT -symmetry.

The nonunitary transformation, V̂ (t), resembles the exponential e−(µ+i ωm)t which appears
in the time evolution given by the QLEs, Eq. (4.4b). Interestingly, V̂ depends directly on the
total number of excitations in the optomechanical system, N̂ = ĉ†ĉ+ d̂ †d̂. This feature makes
the difference between time evolution of

〈
ĉ†ĉ
〉

and
〈
d̂ †d̂
〉

using the NHSE or the Lindblad
master equation (2.41),

d

dt
ρ̂ = −i

[
Ĥred, ρ̂

]
+
κn

(c)
th

2
L̂
[
ĉ†
]
ρ̂+

κ
(
n

(c)
th + 1

)
2

L̂ [ĉ] ρ̂

+
γ n

(m)
th

2
L̂
[
d̂ †
]
ρ̂+

γ
(
n

(m)
th + 1

)
2

L̂
[
d̂
]
ρ̂, (4.11)

where the average thermal excitation number is n
(x)
th =

(
e~ωx/(kB Tx) − 1

)−1
and we use the

definition L̂ [ô] ρ̂ = 2 ô ρ̂ ô† −
(
ô†ô ρ̂+ ρ̂ ô†ô

)
.

It is straightforward to obtain the equations of motion for mean excitations numbers
at zero temperature, n

(c,m)
th = 0. In a general way, those equations follows ∂t

〈
ÔS

〉
=

Tr
{
ÔS ∂tρ̂

}
. We take two different approaches for the time evolution of the density ma-

trix, one is using the Lindblad master equation (4.11) or the NHSE (4.8). In the latter, ρ̂
evolves following,

∂t ρ̂ = i
(
ρ̂ Ĥ†nH − ĤnH ρ̂

)
. (4.12)

Then, with the Lindblad master equation at T = 0,

d

dt

〈
ĉ†ĉ
〉
H

= 2 g Im
〈
ĉ†d̂
〉
H
− κ

〈
ĉ†ĉ
〉
H
, (4.13a)

d

dt

〈
d̂†d̂
〉
H

= −2 g Im
〈
ĉ†d̂
〉
H
− γ

〈
d̂†d̂
〉
H
, (4.13b)

and with the NHSE,

d

dt

〈
ĉ†ĉ
〉
nH

= 2 g Im
〈
ĉ†d̂
〉
nH
− κ

〈
ĉ†ĉ ĉ†ĉ

〉
nH
− γ

〈
ĉ†ĉ d̂†d̂

〉
nH
, (4.14a)

d

dt

〈
d̂†d̂
〉
nH

= −2 g Im
〈
ĉ†d̂
〉
nH
− γ

〈
d̂†d̂ d̂†d̂

〉
nH
− κ

〈
ĉ†ĉ d̂†d̂

〉
nH
. (4.14b)
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Figure 4.1: Time evolution of the instantaneously renormalized photons (blue) and phonons
(red) for an initial (a-c) separable and (d-f) correlated state in the single excitation case.
The solid and dashed lines corresponds to the Lindblad and NHSE evolutions, respectively.
The columns show the unbroken, transition point and broken regimes, from left to right.

4.2.1 Numerical simulations

The Eqs. (4.13a), (4.13b), (4.14a), (4.14b) reveal the differences between the time evolutions
produced by Lindblad master equation or NHSE. For visual cues, we numerically simulate the
time evolution of the mean excitation numbers for separable and correlated initial states of
the optomechanical system, |ψ (0)〉 = |ψ0〉. We are assuming n

(c,m)
th = 0 with the parameters

ωc = 1.02 × 1010 Hz, ωm = 1.59 × 107 Hz, κ = 3.26 × 105 Hz and γ = 300 Hz. To exploit
the PT -symmetry regimes, we choose the critical value for the enhanced optomechanical
coupling gcri/ωm = 5.121 × 10−3. Then, for g = 1.33 × ωm × 10−2 > gcri we obtain the
unbroken regime and for g = 1.33 × ωm × 10−3 < gcri the broken regime. To present the
results, we find useful to define the instantaneously renormalized numbers,

nc (t) =

〈
ĉ†ĉ
〉〈

N̂
〉 , (4.15a)

nm (t) =

〈
d̂ †d̂

〉〈
N̂
〉 , (4.15b)

where we are using the operator for the total number of excitations in the optomechanical
system N̂ = ĉ†ĉ+ d̂ †d̂. The initial states are given in terms of the Fock basis where the first
(second) entry is for the EM (mechanical) state, i. e., |kc〉 ⊗ |km〉 = |kc, km〉 with kc (km)
photons (phonons). Also, the correlated states are N00N are (|N, 0〉+ |0, N〉) /

√
2 with N

an integer number.

First, we discuss the single-excitation case,
〈
N̂ (t = 0)

〉
= 1. For this example, the time
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Figure 4.2: Time evolution of the instantaneously renormalized photons (blue) and phonons
(red) for an initial separable state of the form (a-c) |N, 0〉 and (d-f) |N −m, m〉, with N = 5
and m = 2. The solid and dashed lines corresponds to the Lindblad and NHSE evolutions,
respectively. The columns show the unbroken, transition point and broken regimes, from left
to right.

evolutions are identical,

d

dt

〈
ĉ†ĉ
〉
H

=
d

dt

〈
ĉ†ĉ
〉
nH

= −2 g Im
〈
ĉ†d̂
〉
− κ

〈
ĉ†ĉ
〉
, (4.16a)

d

dt

〈
d̂ †d̂
〉
H

=
d

dt

〈
d̂ †d̂
〉
nH

= −2 g Im
〈
ĉ†d̂
〉
− γ

〈
d̂†d̂
〉
. (4.16b)

This result is obtained because the total number of excitations is conserved,
[
N̂ , Ĥred

]
= 0,

and when the system is open at zero temperature, the number of total excitations decays.
Then, the density matrix just conserves the terms which corresponds to equal o less than one
excitation. In consequence, the quadratic expectation values follows

〈
ô†ô ô†ô

〉
=
〈
ô†ô
〉

for the
single-excitation case. In Fig. 4.1 we show the numerical simulation for the instantaneous
normalized photon and phonon numbers considering an initial separable state |ψ0〉 = |1, 0〉
and the correlated state |ψ0〉 = (|1, 0〉+ |0, 1〉) /

√
2. There are not differences in the three

PT -symmetry regimes with both time evolution approaches, as it was expected from Eqs.
(4.16).

An interesting results arises for separable states of the form |N −m, m〉 with the integer
number 0 ≤ m ≤ N − 1. When m = 0, the results produced with Lindblad master equation
and NHSE are identical, see Fig. 4.2(a-c). Differences in the numerical time evolutions
appear for m > 0, see Fig. 4.2(d-f). In the latter case, the evolutions with the NHSE show
interferences, which is expected. This is because the NHSE-evolution keeps coherence and
provides dissipation without preserving the state norm, while the Lindblad master equation
preserves the norm of the state and provides dissipation and decoherence. Still, we observe
the well defined three PT -symmetry regimes. The anharmonic oscillations in the unbroken
regime have a slightly different period. While in the transition point and broken regime, both
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Figure 4.3: Time evolution of the instantaneously renormalized photons (blue) and phonons
(red) for an initial correlated N00N state with (a-c) N = 2 and (d-f) N = 5. The solid and
dashed lines corresponds to the Lindblad and NHSE evolutions, respectively. The columns
show the unbroken, transition point and broken regimes, from left to right.

results converge asymptotically.

In Fig. 4.3, we considered a correlated initial state N00N , |ψ0〉 = (|N, 0〉+ |0, N〉) /
√

2.
Like in the previous example, the unbroken regime shows interference for the NHSE-evolution
but now the anharmonic oscillations period seems the same compared with the Lindblad’s
evolution. Again, in the exceptional point and broken regime, the results converge asymp-
totically.

For the last example, we considered the EM and mechanical states in thermal equilibrium.
This assumption relies on reported experiments at finite temperature T = 293 K, like in
Ref. [97]. For this case, we use the analytical time evolution provided by the QLEs, Eq.
(4.4b), with its correspondent evolution operator, Eqs. (4.6), for each PT -symmetry regime.
The finite temperature produces a high thermal occupation numbers which strongly impacts
in the behaviours of the photons and phonons at long times, i. e., the number of the thermal
excitations produced by the quantum noise increases rapidly as can be seen in Fig. 4.4(a),
where the oscillations with smaller amplitude are thermal.

4.3 Conclusions

We linked the strong and weak coupling regimes of the optomechanical red-detuned system
with the unbroken and broken regimes of a PT -symmetric Hamiltonian, Sec. 4.1.1. In
the strong and weak coupling regimes, the enhanced optomechanical parameter g serves as
indicator of each regime. It is possible to exert control over optomechanical dynamics through
g which is directly connected with the laser’s power. Then, we numerically evolve the density
matrix according a Lindblad or non-Hermitian approaches, Sec. 4.2. We choose certain values
of g larger or smaller than a critical value gcri to obtain the PT -symmetry regime desired.
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Figure 4.4: Time evolution of the instantaneously renormalized photons (blue) and phonons
(red) for an initial thermal state at room temperature which is equivalent to 3, 759.68 and
2.4122× 106 thermal photons and phonons, respectively.

Even though both approaches show some differences in the evolutions, Sec. 4.2.1, every
result produced numerically shows the essential characteristics of the three regimes described
in Sec. 4.1.1 and it does not matter if the initial state is or not correlated. Even more, we
analytically studied the case when both modes are in thermal equilibrium, i. e., both initial
states are thermal and the simulations were done at room temperature. This analysis was
obtained with evolution operators, Eqs. (4.6), provided by the QLEs, Eq. (4.1). In this case,
we observe the influence of thermal excitations in the three regimes, Fig. 4.4.

Additionally, we showed that both approaches produces identical time evolutions at zero
temperature in the single-excitation case, Fig. 4.1, and for initial separable states where one
of the modes is the vacuum and the other a Fock number, Fig. 4.2(a-c). While for separable
initial Fock states distinct of the vacuum, the dynamics are different, Fig. 4.2(d-f). Similar
characteristics are observed for initial correlated states N00N , Fig. 4.3. The behaviour of
the anharmonic oscillations is different using Lindblad or NHSE approaches, while in the
exceptional and broken regimes both evolutions converge asymptotically. This is because the
NHSE-evolution keeps coherence and provides dissipation without preserving the state norm,
while the Lindblad master equation preserves the norm of the state and provides dissipation
and decoherence.
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Chapter 5

Conclusions

In this thesis we studied the open dynamics of an optomechanical system and two ways in
which it is possible to exert control over it using the laser’s phase or power, Chapter 3 and
Chapter 4 respectively. The toy model we used for the results produced in the mentioned
chapters is the linearized optomechanical system with red-detuning, Sec. 1.2.1. In order to
analyse the open dynamics, we use quantum Langevin equations, Sec. 2.1, and Lindblad
master equation, Sec. 2.2. We mainly obtain analytical results with the Langevin approach,
while the Lindblad master equation was used for many numerical simulations. The optome-
chanical parameters used to show the benefits of our proposed techniques are within the state
of art in optomechanical realizations. This makes us think that our proposed techniques for
optomechanical control can be performed in current experimental realizations.

In Chapter 3 we proposed a phase-tailored sequence as control technique for robust
quantum-state transfer in optomechanical systems. This technique uses the laser’s phase
to exert the control over the quantum excitation exchange. As realistic scenario, we consid-
ered the optomechanical system in contact with a thermal bath at finite temperature, like in
Ref. [79]. The results produced show the benefits of our technique compared with the case
when the sequence is not used. We started the analysis with the shortest possible sequence
composed by three parts. In that case, the thermal excitation due to the finite temperature
bath are negligible. Using a Bloch sphere we could visualize the quantum-state transfer with
and without the phase-tailored sequence. We appreciated the favourable performance of the
technique even when we added time-dependent white noise fluctuations to other parameters
of the system, Fig. 3.4. Later, we extend the analysis to larger sequences where the effect of
the thermal bath becomes observable. In that case, the technique still shows good results,
Sec. 3.2.2, proving that our phase tailored sequence produces robustness in quantum-state
exchange. Finally, in Sec. 3.3 we analyse a smooth version of the phase sequence. From it, we
concluded that smooth versions produce similar robustness for the quantum-state exchange.

In Chapter 4 we studied the dynamics for strong and weak coupling regimes of the optome-
chanical system. We showed that those regimes can be seen as the well-known PT -symmetric
regimes, Sec. 4.1.1. It is remarkable to say that such type of phenomenon is possible be-
cause the optomechanical system has losses, without them the only possible behaviour is the
quantum-state swap. Then, we proposed the laser’s power as control parameter to reveal
the characteristic behaviours corresponding to each PT -symmetric regime. We used two ap-
proaches for the analysis, a non-Hermitian Hamiltonian derived from the quantum Langevin
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equations and the Lindblad master equation, Sec. 4.2. To present the numerical evolutions,
we found useful to introduce the instantaneous renormalized numbers. Even though the
resultant evolutions show differences, these quantities exhibit the expected behaviours cor-
responding to each PT -symmetric regime, Sec. 4.2.1. The reason of such differences relies
on the nature of the non-Hermitian and Lindblad approaches. The first keeps coherence and
provides dissipation without preserving the state norm, while the second preserves the norm
of the state and provides dissipation and decoherence. Finally, using analytical expressions
derived with the quantum Langevin equations, we studied the time evolution of the system
at thermal equilibrium and finite temperature. This is a more realistic scenario for the op-
tomechanical initial quantum states, and the result obtained clearly shows the PT -symmetric
regimes, Fig. 4.4. Probably, this is the most important result because it makes us think that
those regimes can be observed and measured in laboratory in an accessible way.

In conclusion, all the results showed in this thesis support our proposed techniques for
control in optomechanical systems using just the phase or power of the laser as control
parameter. Currently optomechanical experiments could be able to observe and measure
the benefits and phenomena reported in Chapters 3 and 4. Additionally, we just developed
analysis for the red-detuned case, but it seems possible to translate these techniques to the
blue-detuned case. Further and more detailed analysis must be done because it is there where
the optomechanical bistability occurs, Sec. 2.1.2.
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Robust optomechanical state 
transfer under composite phase 
driving
C. Ventura-Velázquez1, Benjamín Jaramillo Ávila2, elica Kyoseva3,4 & B. M. Rodríguez-Lara1,5

We propose a technique for robust optomechanical state transfer using phase-tailored composite 
pulse driving with constant amplitude. our proposal is inspired by coherent control techniques in 
lossless driven qubits. We demonstrate that there exist optimal phases for maximally robust excitation 
exchange in lossy strongly-driven optomechanical state transfer. In addition, our proposed composite 
phase driving also protects against random variations in the parameters of the system. However, this 
driving can take the system out of its steady state. For this reason, we use the ideal optimal phases to 
produce smooth sequences that both maintain the system close to its steady state and optimize the 
robustness of optomechanical state transfer.

The essence of optomechanical systems (OMS) is the coupling between light and mechanical motion. Advances 
in micro and nano fabrication techniques have led to optical cavities coupled to micro and nano mechanical 
oscillators, where the coupling is provided by the radiation pressure of photons in the optical cavity acting over 
the mechanical elements. These optical cavities are typically pumped by a laser, which serves as a tool to control 
the system. Cavity optomechanical systems evolved from the Fabry-Pérot cavity to a plethora of devices like 
microtoroids and microresonators1, photonic crystals2, superconducting microwave circuits3,4, ultracold atoms5, 
among many others6–8.

Optomechanical systems display a range of physical effects that make them a powerful platform for high-precision  
metrology and quantum-state control. They show bistable behavior9, which is equivalent to that of a Kerr medium10,  
and display selective transfer over narrow wavelength windows, known as optomechanically-induced transpar-
ency11,12. The latter is equivalent to electromagnetically induced transparency in atoms13–15 and its plasmonic 
and metamaterial analogs16–18. In cavity optomechanical systems, the motion of the mechanical oscillator can be 
cooled by tuning the laser that pumps the cavity19–22, leading to experiments where a nano-oscillator is cooled to 
its quantum-mechanical ground state23–25. Previous works propose diverse techniques to enhance optomechani-
cal cooling, for example, by dynamically modifying the damping26, using squeezed light27–30, feedback-controlled 
light31,32, or considering the effects of non-Markovian evolution33. These developments show that optomechanical 
effects allow control over quantum optical and mechanical states leading to exciting proposals to use these sys-
tems as transducers34–39.

In the following, we review the formalism that describes quantum excitation exchange in strongly-driven 
optomechanical systems. The result is a well-known linearized lossy model. Next, we draw from lossless coherent 
control techniques in qubits40,41 and extend them to this linearized effective model of optomechanical systems. 
Our proposal relies on constant-amplitude composite phase-dependent pumping to achieve robust optomechan-
ical state transfer. This phase-dependent driving produces interference in the evolution of cavity and mechanical 
quantum states. We engineer this interference to minimize the effect of deviations in the parameters that charac-
terize the system, i.e. to produce robust optomechanical state transfer. For the sake of completeness, we produce 
a central-limit analysis allowing for random variations in the physical parameters that characterize the optome-
chanical system and compare results from the standard constant-phase sideband state transfer and our method. 
Next, we discuss the effects of composite phase sequences on the semiclassical steady-state of an optomechanical 
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Abstract

The optomechanical state transfer protocol provides effective, lossy, quantum beam-splitter-like

dynamics where the strength of the coupling between the electromagnetic and mechanical modes

is controlled by the optical steady-state amplitude. By restricting to a subspace with no losses, we

argue that the transition from mode-hybridization in the strong coupling regime to the damped-

dynamics in the weak coupling regime, is a signature of the passive parity-time (PT ) symmetry

breaking transition in the underlying non-Hermitian quantum dimer. We compare the dynamics

generated by the quantum open system (Langevin or Lindblad) approach to that of the PT -

symmetric Hamiltonian, to characterize the cases where the two are identical. Additionally, we

numerically explore the evolution of separable and correlated number states at zero temperature

as well as thermal initial state evolution at room temperature. Our results provide a pathway for

realizing non-Hermitian Hamiltonians in optomechanical systems at a quantum level.
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tomechanical state transfer under composite phase driving,” Sci. Rep., vol. 9, no. 4382,
2019.

[120] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-
assisted sideband cooling of mechanical motion,” Phys. Rev. Lett., vol. 99, p. 093902,
2007.

[121] J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode split-
ting in cavity optomechanics,” Phys. Rev. Lett., vol. 101, p. 263602, 2008.

55


	The Optomechanical Interaction
	Introduction
	Experimental realizations

	Quantum model
	Linearized approach


	Theoretical framework
	Quantum Langevin equations
	Markov Approximation
	Linearized optomechanical system

	Master Equation
	Born and Markov approximations

	Composite pulse sequence for a qubit
	PT-symmetry
	Gain-loss system


	Robust quantum-state transfer
	Quantum excitation exchange
	Phase-sequence for a robust quantum excitation exchange
	Angular momentum representation and statistical analysis
	Longer composite sequences

	Smooth phase-sequence
	Conclusions

	Non-Hermitian optomechanics
	Optomechanical eigenfrequencies
	PT-symmetry approach

	Differences in the evolutions
	Numerical simulations

	Conclusions

	Conclusions
	Publications derived from the research presented in this thesis

