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Abstract

The most widely used energy sources rely on oil and therefore are not going to

supply energy to industrial processes and people’s lives forever. Most of the electric

energy produced nowadays comes from thermoelectrical plants, which are industrial

complexes with a furnace at its heart burning oil to generate steam. The large

amounts of electrical energy is then transmitted over the electrical grid to factories,

offices and houses. This centralized scheme has several disadvantages. The first one

is its oil dependency, because the oil’s price increases constantly. The second one is

the transmission grid by itself. Furthermore, this grid is very old, and because of

its nature, a localized problem has the potential to start a snowball effect massive

blackout. An alternative to address both the dependency on oil of current energy

generation and its centralized nature is a technology called smartgrid. Smartgrid

enables an electrical network with communications, sensing, self-healing and digital

capabilities. These features transform the old, centralized energy network into a

distributed network, which can integrate small producers and consumers (or hybrids

that can be both, consumers and producers) on almost any point of the network

at any time. With this scheme, large power suppliers will have its place on the

network, but also an increasing amount of small green-energy producers, which by

aggregation, will supply large amounts of power to consumers, creating a liberalized

energy market. The idea of this market is for it to be driven by brokers, which are

entities that can buy energy from producers and sell it to consumers, by means of

contracts called tariffs, which are regulated by constraints set by a regulator entity.
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These constraints have the purpose of ensuring the health of the electric grid, while

providing the energetic needs to the population being served.

This thesis work proposes an autonomous learning agent that is capable of

perceiving the market needs and constraints in order to create tariffs to be offered

to consuming customers (energy producers and/or consumers). This agent is the

tariff expert part of a complete broker called COLD broker, which works on specific

aspects of the smart grid (see section 3.1 for details on this). From now on, when

the term COLD broker is used it will refer to the tariff expert part of the agent,

unless explicitly stated otherwise.

One of the contributions of this thesis is a market representation, which is

independent to the number of brokers and the number of tariffs available, and a

set of market-bounded actions. The number of market states will not grow as the

number of brokers or tariffs increases, making it a very scalable representation. The

market representation and the set of actions are used by COLD broker to create an

MDP and learn a policy that will provide it with the best possible profit on the long

run (see section 4), by choosing an appropriate pricing scheme for consumption and

production tariffs. This profit depends on the prices and the amount of the energy

bought and sold, and on the tariffs the competing agents offer. In order to analyze

the market and to have a testing framework, Power TAC was used. Power TAC is

a complex smartgrid simulator, which accounts for fairly real aspects of what might

be an actual liberalized energy market.

COLD broker was tested against fixed-strategy brokers and against a learning

broker proposed by recent investigation works. Average and standard deviations

were measured on each experiment to determine which broker’s behaviour was con-

sistently better. On average, COLD broker’s utility roughly doubled its closest

competitor’s utility.



Resumen

Las fuentes de enerǵıa más usadas se basan principalmente en el uso de petróleo, y

por esta razón, no podrán satisfacer las necesidades de los procesos industriales y

de las vidas de las personas para siempre. La mayor parte de la enerǵıa eléctrica

producida hoy en d́ıa proviene de plantas termoeléctricas, que son complejos indus-

triales con un proceso de combustión que quema petróleo, o alguno de sus derivados,

para generar vapor. La enerǵıa generada por estos procesos es entonces transmitida

a través de la red eléctrica hasta las fábricas, oficinas y casas que la requieren. Este

esquema centralizado tiene varias desventajas. La primera es su dependencia del

petróleo, debido a que su precio aumenta constantemente. El segundo es la red de

transmisión por si misma, debido a que por su naturaleza, un problema localizado

tiene el potencial de comenzar un fallo generalizado a manera de avalancha. Una

alternativa para mitigar la dependencia al petróleo y la naturaleza centralizada de

la red de distribución de enerǵıa eléctrica actual es una tecnoloǵıa llamada smart-

grid. Smartgrid puede proveer a la red eléctrica de habilidades de comunicación,

sensado y auto-reparación. Estas habilidades transformaŕıan la red de transmisión

centralizada en una red distribuida, capaz de integrar pequeos productores y con-

sumidores (o modelos h́ıbridos que pueden ser tanto consumidores como productores)

en cualquier punto de la red y en cualquier momento. Con este esquema, las grandes

centrales productoras de enerǵıa tendŕıan su lugar en la red, pero también lo tendŕıan

un creciente número de pequeos productores quienes, en su conjunto, podŕıan proveer

de enormes cantidades de enerǵıa eléctrica a los consumidores a través de un mer-
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cado abierto. Este mercado seŕıa manejado por brokers, que son entidades capaces

de comprar enerǵıa de los productores para venderla a los consumidores, a través de

contratos llamados tarifas. Las caracteŕısticas de estas tarifas estaŕıan reguladas por

un organismo central, con el objetivo de asegurar la estabilidad de la red eléctrica.

Esta tesis propone un agente autónomo con capacidades de aprendizaje, que

tiene la habilidad de percibir las necesidades del mercado con el objetivo de crear

tarifas para los clientes (productores o consumidores de enerǵıa). Este agente es

el experto en tarifas de un agente más complejo llamado COLD broker, capaz de

desenvolverse en otros aspectos de un mercado de enerǵıa abierto (ver sección 3.1

para encontrar más detalles sobre este tema. De ahora en adelante, el término COLD

broker se referirá al experto en tarifas del agente completo, a no ser que se especifique

cualquier otra cosa.

Unas de las contribuciones de esta tesis es una representación de un mercado

de enerǵıa, que es independiente del número de brokers y del número de tarifas

disponibles; aśı como un conjunto de acciones acotadas a los precios del mercado. En

la representación propuesta, el número de estados no va a aumentar cuando lo hagan

el número de brokers o de tarifas, lo que la vuelve muy escalable. La representación

del mercado y el conjunto de acciones son usados por COLD broker para crear un

MDP y aprender una poĺıtica capaz de proporcionarle la mejor utilidad posible en el

largo plazo (ver sección 4). Esto lo logra escogiendo esquemas de precios adecuados

para crear tarifas de consumo y producción. Con el objetivo de analizar el mercado

se usó PowerTAC como plataforma de pruebas, que es un simulador muy completo

de mercados de enerǵıa abiertos.
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Chapter 1

Introduction

Traditional energy sources that have satisfied human energy requirements during the

last century are going to be depleted in the near future. This cannot happen before

finding sustainable, robust and manageable alternative energy sources; otherwise

severe problems will emerge damaging almost every aspect of human life. So far

there are many alternatives to outline, such as wind or solar energy. Some other

technologies are being explored that might produce energy from rivers or even the

tides [Ben Elghali et al., 2007]. However, all these eco-friendly energy sources have

a major drawback: they are not predictable and thus, it is not possible to fully rely

only on them to satisfy vital energy-consuming processes. There has to be some

regulating entity or entities that are capable of matching energy consumption and

production to provide a robust system that will minimize blackouts or energy supply

issues.

This is where smartgrid technologies are becoming more and more useful. The

smartgrid relies on the power supply network that interconnects each and every en-

ergy producer and consumer. This technology uses the power wires to broadcast

and receive information to act upon it, with the objective of improving the effi-

ciency, reliability, economics and sustainability of the production, consumption and

distribution of electrical energy [Ipakchi and Albuyeh, 2009].

Smartgrid technologies enable producers to sell energy to consumers by using
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CHAPTER 1. INTRODUCTION 2

a broker as an intermediary. This scenario allows a model where hundred, or even

millions, of small producers can match the energy production capacity of large cen-

tralized energy plants such as thermoelectrical plants, hydroelectical dams or even

nuclear plants. However, this freedom introduces new obstacles, which if not han-

dled properly, can lead to blackouts and other severe problems. Such issues might

be related to brokers executing bad trading practices. To handle these obstacles,

a set of rules and regulations are to be followed by all participants, producers and

consumers, to guarantee a robust flow of energy which satisfies a variable demand.

The work to be done now is to design and improve the game rules so as to

have an efficient market, but before that, a comprehensive study has to take place in

order to understand the dynamics of a descentralized energy market, where complex

components such as the weather and the human behaviour, affect this dynamics.

To work on this problem platforms such as Power TAC [Ketter and Collins, 2013]

have been developed. Power TAC simulates an entire energy market with producers,

consumers and brokers buying and supplying energy. Power TAC allows us to study

energy markets in a way that has not been done before. Power TAC is a complex

simulation environment that consists of several components. In this thesis we focus

on designing an expert broker on tariff markets.

On the design of a tariff expert several aspects are to be considered. First

we have to realize that there are many types of customers with their own set of

preferences. We also need a way to assess how successful or unsuccessful a tariff is to

be able to improve it. We must as well consider other brokers tariffs characteristics.

There is also a need to obtain profit with the offered tariffs, otherwise the broker

model will not be sustainable. All these aspects were taken into account to design our

tariff expert broker. All the latter issues are closely related, because the customers

choose among the available tariffs the one that yields them the lower cost in terms of

their preferences. If a broker publishes tariffs which fit customer’s preferences, then

it will obtain a utility. The utility function stated on Sec. 4.2 fully considers the
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income obtained and the expenses incurred, addressing the profit issue. This utility

function considers the income of selling energy. It also considers both the expenses of

buying this energy and the costs of generating an imbalance. On the other hand, the

market representation explained on Sec. 4 accounts for the other brokers actions.

This representation is an important contribution of this thesis work, because its

complexity does not increase neither with the number of competing brokers nor

with the number of published tariffs, making it very scalable. Lastly, the COLD

broker implementaion carefully tracks the performance of each published tariff, in

order to provide enough information to feed the MDP.

1.1 Objectives

General Objective: design and test a broker that uses reinforcement learning to

generate electric energy tariffs, accounting for other brokers tariff, with the purpose

of maximizing its own utility in the long term.

Specific Objectives:

1. Design a state representation to facilitate the learning and decision making

processes.

2. Design and test a set of market actions and strategies which allow the broker

to react appropriately to other broker’s actions.

3. Learn using reinforcement learning (RL) the environment dynamics so as to

maximize profit.
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1.2 Contributions

This thesis work developed a tariff expert broker capable of learning how to attract

customers and maximize profits in the long run. Our market representation and

set of actions (strategies) are novel and, as will be shown in Sec. 4.2.2, they allow

the learning broker to adapt to fast changing and non-stationary environments.

We designed a representation of the tariff energy market whose size, as mentioned

before, remains constant with the number of competitors (i.e. scales gracefully);

and that compactly encodes the required information for decision making. Also, the

set of actions allows the broker to transition easily (and fast) across states, which

translates into attractive price-based tariffs to customers. The specific contributions

of this work are the following ones:

• Proposed an adaptable, broker-independent market representation.

• Designed an offline learning method capable of transfering the learned knowl-

edge.

• Developed a learning broker designed to create tariffs for consumption and

production consumers.

1.3 Thesis Outline

Chapter 1 states the main and specific objectives of this thesis work and also lists

its contributions. Chapter 3 describes the related work on smart grid, energy tar-

iffs and automatic tariff generation. Chapter 2 provides an insight on the theory

required to understand the broker develpment and test procedure, including MDP

and reinforcement learning. On this chapter a section is dedicated to Q-Learning,

because this was the selected method to learn the required policy which maximizes
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profit for the broker. This chapter includes as well a comprehensive explanation

of the deregulated energy market simulator Power TAC. The explanation describes

the general structure of the platform and also the customer models, and how they

evaluate a tariff belonging to any given broker. Chapter 4 describes the broker’s

design process by clearly stating its objective, actions and market representation.

The broker’s MDP is described as well on this section. Chapter 5 describes the

experimental setup which tested the broker against various scenarios. This section

also describes each experiment and provides a discussion for each of them. Finally,

the last two chapters include the conclusions derived from this thesis work and the

future work that could improve the results obtained. A glossary is included as well

at the end of the document.



Chapter 2

Background

This section describes the main theory concepts required to develop the tariff expert

broker. The broker models the environment as a Markov decision process (MDP) and

uses concepts of machine learning to learn a policy directly from interaction with the

environment provided by the simulator. Therefore this section includes backgrounds

on types and classification of tariffs (Sec. 2.1), MDPs (Sec. 2.2) machine learning

(Sec. 2.3) and the simulator environment (Sec. 2.4).

2.1 Tariffs in the SmartGrid

In the literature several types of tariffs for energy market exist. In general most tariff

have two main cost components: the electricity commodity and a risk premium paid

to protect customers against price variations [Ilie et al., 2007]. The way on which

these two costs components are structured depends on the the type of tariffs. On

this section we discuss the most common tariff schemes.

2.1.1 Time Independent Tariffs

As their name imply, these tariffs have rates that do not depend on the time of

usage.

6
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Flat tariffs

A flat tariff is the most simple tariff. In a flat tariff, customers pay a fixed price

per KWh, with no dependency at all on the time the energy is consumed. A flat

tariff has high risk premiums and it provides a large benefit to customers that have

a high consumption during peak hours [Faruqui, 2010], because these customers will

not have to pay an extra fee during these hours with energy scarcity, which means

that brokers have to buy their energy at high spot prices at the wholesale market.

Block tariffs

Another time-independent tariff is the increasing block tariff. In this tariff scheme,

customers pay a fixed price until a certain consumption threshold is reached after

which the customers have to pay a higher rate [Borenstein, 2009]. There might

be multiple thresholds in the tariff, this means that the consumption rates might

increase several times. The risk premium of this tariff is directly associated with the

amount of energy consumed by customers, which means that as consumers increase

their consumption, they have to pay larger amounts of money at the risk of having

higher prices. The broker’s risk also grows as consumers require more energy.

2.1.2 Time Dependent Tariffs

Time dependent tariff schemes charge customers according to a function that con-

siders the volume of energy consumed and the time of the consumption. A common

reference for this time of consumption are the peak hours.

Time-of-use tariffs

On this scheme the customer pays a higher rate during the peak hours of a day and

lower prices during off-peak hours; thus consumers have an incentive to use high
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energy demanding devices during off-peak hours, which reduce the consumption

during peak hours. Consumers that have a higher demand during off-peak hours

or consumers that can easily switch their consumption to other times can benefit

widely from using time-of-use tariffs [Kirschen, 2003].

Critical-peak pricing

Critical-peak pricing is actually a combination of flat tariffs and time-of-use tariffs. A

critical-peak pricing scheme charges customers an extremely high price under certain

predetermined conditions, considered critical. An example of a critical condition

might be extremely high or low temperatures, where high energy-demanding devices

might be used to control indoor temperatures. The risk of price changes during this

unusual events is thus fully transferred to the customers by using this tariff scheme

[Borenstein et al., 2002].

Real-time pricing

A Real-time pricing tariff is a tariff in which customers are charged with a rate, on a

hourly basis, that may vary each day. The rates for each day can be determined 24

hours in advance or earlier [Barbose et al., 2004]. Consumers then will be charged

by a rate that adapts to the actual energy’s market prices. By doing this, consumers

will pay more money when the overall consumption is high to incentivize using

less energy. Expert economists state that real-time pricing tariffs are considered to

be the most efficient approach in reducing peak demands by using price incentives

[Borenstein et al., 2002]. On this tariff scheme, many risks are transferred to the

customer, since price changes on the wholesale market can be predicted easier, on

a short term, and therefore the prices in real-time pricing tariffs are closer to the

prices on the wholesale market.
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Green tariffs

The energy traded via green tariffs is produced in an enviromentally friendly way.

Green energy usually is more expensive to produce, compared to energy produced

using oil, so customers have to pay an extra premium. However, green tariffs might

be attractive to certain type of customers that perceive benefits from using green

energy [Haas et al., 2011].

2.2 Markov Decision Process (MDP)

A Markov decision process, or MDP, provides a mathematical framework for decision

making in environments where outcomes are partly random and partly under the

control of a decision maker or broker[Puterman, 2005]. More precisely, a MPD is a

discrete time stochastic control process which can be defined as a tuple:

M = 〈S,A, P,R〉 , (2.1)

where:

• S is a finite set of states,

• A is a finite set of actions

• P is the probability that action a ∈ A in state s ∈ S at time t will lead to

state s′ at time t+ 1,

• R is the immediate reward received after transition to state s′ from state s.

The tuple represents the MDP at any given time and it is evaluated and up-

dated by the decision maker at time steps. At each time step, the process is in some
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state s ∈ S, and the decision maker may choose any action a ∈ A that is available

in state s. The process responds at the next time step by randomly moving into a

new state s′ ∈ S, and giving the decision maker a corresponding reward R.

The probability that the process moves into its new state s’ is influenced by

the chosen action. Specifically, it is given by the state transition function pt(s
′|s, a).

Thus, the next state s’ depends on the current state s and the broker’s action a.

But given s and a, the transition is conditionally independent of all previous states

and actions; in other words, the state transitions of an MDP possess the Markov

property. A stochastic process has the Markov property if the conditional probability

distribution of future states of the process depends only upon the present state, and

not on the sequence of events that preceded it.

MDP’s are widely used on several fields in order to determine which decision is

the best at any given time over a certain environment state. Making the correct deci-

sion has both immediate and long term consequences, so this decisions are not meant

to be taken into isolation. An MDP provides a sequential decision model that as-

signs a numeric value to the consequences of picking any of the available actions, and

it is sufficiently broad to allow modeling most realistic sequential decision-making

problems. An agent can use an MDP with the ultimate goal of choosing a sequence

of actions at every decision step, which causes the system to perform optimally with

respect to some predetermined performance criterion [Puterman, 2005]. The current

section briefly describes an MDP states and actions, and how these two elements

relate to each other by transision probabilities and rewards.

2.2.1 Rewards and Transition Probabilities

As a result of choosing action a ∈ A in state s at decision step t, the agent will receive

a reward Rt(s, a) and the system state s′ at the next decision step is determined by

the probability distribution Pt(s
′|s, a).
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The reward Rt might be:

• a lump sum received at a fixed or random time prior to the next decision step,

• accrued continuously throughout the current decision step and the next one,

• a random quantity that depends on the system state at the subsequent decision

step,

• or a combination of any of these options.

The reward received by the learning broker developed on this thesis is accu-

mulated after each decision step and before the next one in the form of earnings

received by trading electric energy.

2.2.2 Policies

Given a state, the agent has to decide which action is to be executed, so a policy

prescribes a procedure for action selection in each state at a specified decision step.

Policies range in generality from deterministic markovian to randomized history

dependent, depending on how they incorporate past information and how they select

actions. This thesis develops a deterministic markovian policy. These type of rules

are functions dt : S → As, which specify the action choice when the system occupies

state s at decision point t. For each s ∈ S, dt(s) ∈ A. This policy is said to be

Markovian because it depends on previous system states and actions only through

the current state of the system, and deterministic because it chooses an action with

certainty. A policy is said to be stationary if P (s) = a for all t ∈ T and all s ∈ S.

As an example, the formal description of the MDP on Fig. 2.1 is as follows:

• Decision steps: T = {1, 2, ..., N}, N ≤ ∞
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• States: S = {s1, s2}

• Actions: As1 = {a1,1, a1,2}, As2 = {a2,1}

• Rewards: Rt(s1, a1,1) = 5, Rt(s2, a2,1) = −1, Rt(s2, a2,1) = −1

• Transition probabilities:

Pt(s1|s1, a1,1) = 0.5 Pt(s2|s1, a1,1) = 0.5

Pt(s1|s1, a1,2) = 0 Pt(s2|s1, a1,2) = 1

Pt(s1|s2, a2,1) = 0 Pt(s2|s2, a2,1) = 1

Figure 2.1: An MDP example

2.3 Reinforcement Learning

According to [Barto, 1998], reinforcement learning (RL) is the process of learning

how to map situations to actions, so a numeric reward signal is maximized. The

learner is not told which actions to take, as in most forms of machine learning, but

instead must discover which actions yield the most reward by experimenting with

them. In the most interesting and challenging cases, actions may affect not only

the immediate reward but also the next situation and, through that, all subsequent

rewards. These two characteristics, trial-and-error search and delayed reward, are

the two most important distinguishing features of RL.
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Supervised learning is different from reinforcement learning because the first

one requires examples provided by a knowledgeable supervisor while the latter learns

from interaction with its environment. Facing this interaction, one of the challenges

that arise is the trade-off between exploration and exploitation. A trained learner

might know what action to execute given any state to obtain a large reward, however,

to learn that, the learner had to try all the possible actions available on that specific

state; and some of those actions may yield low rewards, even negative ones. To

maximize its utility the agent must try a variety of actions and progressively favor

those that appear to be best. On a stochastic task, each action must be tried many

times to gain a reliable estimate of its expected reward.

2.3.1 Reinforcement Learning Elements

Besides the agent and the environment, four elements can be identified on a RL

system: a policy, a reward function, a value function, and, optionally, a model of

the environment.

• Policy: a policy maps a given perceived state of the environment to an action

that has to be taken. In some cases the policy may be a simple function or

lookup table, whereas in others it may involve extensive computation. The

policy is the core of a reinforcement learning agent in the sense that it alone

is sufficient to determine behavior. In general, policies may be stochastic.

• Reward function: this element defines the goal in a RL problem. A reward

function asigns a state-action pair of the environment to a single number called

reward. This reward determines how much desired a state is. A RL agent’s

main objective is to maximize the total reward it receives. The reward function

must necessarily be unalterable by the agent, however it may serve as a basis

for altering the policy. For example, if an action selected by the policy is

followed by low reward, then the policy may be changed to select some other
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action in that situation in the future. In general, reward functions may be

stochastic.

• Value function: this element defines what is considered good in the long run.

The value of a state is the total amount of reward an agent can expect to

accumulate over the future, starting from that state. In an opposite way,

rewards determine the immediate, intrinsic desirability of environmental states,

but then the value indicate the long-term desirability of states after taking into

account the states that are likely to follow, and the rewards available in those

states.

• Model: a model mimics the behavior of the agent’s environment. A model

helps the agent to plan ahead, since given a state and an action, the model

might predict the resultant next state and next reward, this helping the agent

to decid on a course of action by considering possible future situations before

they are actually experienced. Not all the RL methods require a model.

2.3.2 Temporal Difference Learning

As stated on the previous section, a value function is a state-action pair function

which estimates how good a particular action will be in a given state. This can be

expressed as:

• V π(s): the value of a state s under policy π, which is the expected return when

starting in s and following π thereafter.

• Qπ(s, a) : the value of taking action a in state s under a policy π, which is the

expected return when starting s, taking the action a and thereafter following

the policy π.
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The problem at this point is how to estimate these value functions for a par-

ticular policy. The reason we want to estimate these value functions is so that they

can be used to accurately choose an action that will provide the best possible total

reward, after being in that given state. Temporal difference (TD) learning methods

can be used to estimate these value functions. If the value functions were to be cal-

culated without estimation, the agent would need to wait until the final reward was

received before any state-action pair values can be updated. Once the final reward

was received, the path taken to reach the final state would need to be traced back

and each value updated accordingly. This can be expressed formally as:

V (St)← V (st) + α(Rt − V (st)) (2.2)

Where St is the state visited at time t, Rt is the reward after time t and α is

the learning rate.

On the other hand, with TD methods, an estimate of the final reward is cal-

culated at each state and the state-action value updated for every step of the way.

Expressed formally:

V (St)← V (st) + α(rt+1 + γV (st+1)− V (st)) (2.3)

Where rt+1 is the observed reward at time t+1. Temporal difference learning

was used on this thesis work to estimate the partial contribution on each decision

step to the overall profit.

2.3.3 On-policy and Off-policy Learning

On-policy temporal difference methods learn the value of the policy that is used to

make decisions. The value functions are updated using results from executing actions
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determined by some policy. These policies are usually soft and non-deterministic.

In this thesis, the meaning of soft is that it ensures there is always an element of

exploration to the policy. The policy is not so strict that it always chooses the action

that gives the most reward. Three common policies are used, ε-soft, ε-greedy and

softmax.

Off-policy methods can learn different policies for behaviour and estimation.

Again, the behaviour policy is usually soft so there is sufficient exploration going on.

Off-policy algorithms can update the estimated value functions using hypothetical

actions, those which have not actually been tried. This is in contrast to on-policy

methods which update value functions based strictly on experience. What this

means is off-policy algorithms can separate exploration from control, and on-policy

algorithms cannot. In other words, an agent trained using an off-policy method may

end up learning tactics that it did not necessarily exhibit during the learning phase.

Action Selection Policies

As mentioned above, there are three common policies used for action selection. The

aim of these policies is to balance the trade-off between exploitation and exploration,

by not always exploiting what has been learnt so far. These common strategies are:

• ε-greedy: most of the time the action with the highest estimated reward is cho-

sen, called the greediest action. Every once in a while, with a small probability

ε, an action is selected at random. The action is selected uniformly, indepen-

dant of the action-value estimates. This method ensures that if enough trials

are done, each action will be tried an infinite number of times, thus ensuring

optimal actions are discovered.

• Softmax: one drawback of ε-greedy is that it selects random actions uniformly.

The worst possible action is just as likely to be selected as the second best.
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Softmax remedies this by assigning a rank or weight to each of the actions,

according to their action-value estimate. A random action is selected with

regards to the weight associated with each action, meaning the worst actions

are unlikely to be chosen. This is a good approach to take where the worst

actions are very unfavourable.

2.3.4 Q-Learning

Q-Learning, the RL technique used on this thesis work, is an Off-policy algorithm

for temporal difference learning. It can be proven that given sufficient training under

any -soft policy, the algorithm converges with probability 1 to a close approximation

of the action-value function for an arbitrary target policy [Barto, 1998]. Q-Learning

learns the optimal policy even when actions are selected according to a more ex-

ploratory or even random policy. The procedural form of the algorithm is:

The parameters used in the Q-value update process are:

• Learning rate α, set between 0 and 1. Setting it to 0 means that the Q-values

are never updated, hence nothing is learned. Setting a high value such as 0.9

means that learning can occur quickly.

• Discount factor γ, also set between 0 and 1. This models the fact that future

rewards are worth less than immediate rewards. Mathematically, the discount

factor needs to be set less than 0 for the algorithm to converge.

• Maximum reward that is attainable in the state following the current one. i.e

the reward for taking the optimal action thereafter.
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2.4 Power TAC: a Multiagent, Multimarket

Simulator

Power TAC is a competitive simulation that models a liberalized retail electrical

energy market, where competing business entities or brokers offer energy services to

customers through tariff contracts, and must then serve those customers by trading

in a wholesale market. Brokers are challenged to maximize their profits by buying

and selling energy in the wholesale and retail markets, subject to fixed costs and

constraints. Costs include fees for publication and withdrawal of tariffs, and dis-

tribution fees for transporting energy to their contracted customers. Costs are also

incurred whenever there is an imbalance between a brokers total contracted energy

supply and demand within a given time slot. The simulation environment mod-

els a wholesale market, a regulated distribution utility, and a population of energy

customers.

Many countries, mainly on the European Union, have issued directives aiming

to gradually open the electricity market for all member states [Farahmand et al., 2012].

Such actions made significant contributions towards the creation of internal electric-

ity markets, which propose an alternative to the monopoly model that most coun-

tries around the world use to distribute electric energy to its citizens. An open

electricity market offers many benefits to both governments and energy consumers,

namely high energy distribution efficiency, price reductions, higher service stan-

dards and enhanced competitiviness. On the other hand, more than a dozen states

in the United States have introduced retail electricity competition; however there

is not enough research done in order to fully understand the impact of a competi-

tion on an open energy market in terms of supply, demand, pricing and metering

[Joskow and Tirole, 2006].

Across energy markets, small producers will emerge as key players as they
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compete to allocate their produced energy into the market. These producers will

introduce, by aggregation, large amounts of electricity produced by means of solar

panels, wind generators, and some other more classic sources [Lund et al., 2012].

However, a common denominator among renewable sources is a high uncertainty

related to the amount of energy that will be produced, and hence, committed. On

the other hand, and regardless of the production means, energy consumers require

to power up their homes, offices and industries, generating stress over the energy

production. And yet, smartgrid metering technologies will allow consumers to shift

their energy consumption to a more convenient time of the day in order to achieve a

better cost efficiency. All these aspects of an open energy market may cause serious

energy imbalance issues on the market, that might lead to a lack of energy on certain

places of the network or an overproduction on others, or, on the worst-case scenario,

a total failure of the energy network due to greedy strategies or to a lack of proper

rules and regulations.

Even if the benefits of a well implemented competition-driven open energy

market are bold, the consequences of an incorrect handling of this market may

cause serious problems, such as massive blackouts, with the potential to impact a

country‘s economy and harm governments, citizens and industries. Therefore, a safe

regulation entity is required to issue the set of rules that promote competitiviness

among brokers, discouraging unbalance-generating strategies, without compromising

the energy requirements of consumers. This regulation entity may be able even

to intervene with contention measures, which may include a penalization to the

originating brokers, to prevent that a small imbalance issue grows enough to cause

a major problem.

The Power TAC platform was developed to study all the latter issues. This

platform is a complex simulator that creates an open energy market where consumers

require energy, which is provided by energy producers through brokers, regulated by

an entity that grants a smooth flow of the transactions on a wholesale market and
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Figure 2.2: General Power TAC view

on a tariff market.

2.4.1 Brokers

The brokers are the main actors of the simulator. Fig. 2.7 provides an overview

of which tasks brokers need to accomplish within each timeslot. Typically, this is

a three step process: trading in the wholesale market, portfolio development and

balancing of energy supply and demand [Babić, 2012] . At the end of each timeslot,

or at the end of a given amount of timeslots, the broker can asess its decisions to

determine future actions. It is important to mention that the specific order of some

activities may not be as rigid as shown in Fig. 2.7.

2.4.2 Tariff Characteristics

A tariff is a contract that allows a business entity or broker to offer energy services

to customers [Ketter et al., 2013]. On this scope, customers can be either energy

producers or consumers. Having a variety of tariffs contrats offered by many brokers,

customers will evalualuate them to decide which one is the most convenient. This

convenience is related to the tariff’s characteristics. The main aspect of a tariff is
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price, an amount paid, by/to the broker, when a MWh 1 of energy is consumed

or produced. Other tariff characteristics evaluated by the customers are expiration

dates, signup payment, early withdraw payment and even energy origin; a customer

might assign a higher profit to a tariff whose origin is the wind or the sun. In the

same fashion, customers might feel more attracted to a tariff if it offers them a signup

bonus, or feel less attracted for a tariff which requires them a withdraw payment.

All the aspects of tariffs available on the PowerTAC simulator are shown on Fig.2.3.

Figure 2.3: Tariff Structure

2.4.3 Tariff Evaluation and Customer Models

In order for potential customers to make comparisons between tariffs and make an

informed decision they need some means to evaluate them. For a tariff to be the

best choice for any given customer it must provide a utility on some future horizon,

where the length of the horizon depends on the customer’s preferences. This section

describes the process to decide when to consider new tariffs and which tariff to choose

given the customer’s preference and the tariff’s utility.

1MWh is the standard energy unit on the wholesale market on Power TAC. However, the standard unit

for the tariff market is Kwh. This thesis will use MWh consistently across the whole document.
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Customer’s utility perception

The utility perception ui of a tariff is the parameter that provides a common unit for

a customer to determine if a tariff is good or bad. The utility is a function of per-kWh

payments pv,i, periodic payments pp,i, a one time signup payment psignup,i, a potential

withdrawal payment pwithdraw,i, which applies in case a customer decides to withdraw

its subscription before the tariff’s minimum duration, and an inconvenience factor

xi, which accounts for the inconvenience of switching subscriptions:

ui = f(pv,i, pp,i, psignup,i, pwithdraw,i, xi) (2.4)

Customers are characterized by their preferences, and therefore by how they

evaluate function f , but in general it is the normalized difference between the cost of

using the default tariff and the cost of the evaluated tariff, minus the inconvenience

factor, as shown on equation 2.9. The default tariff refers to the tariff published

by a default broker, which can be thought as the central power company, which

sets the market minimum and maximium tariff prices by publishing default tariffs

available to all the customers. Therefore, even on a scenario when a single broker

publishes one consumption and one production tariff, there are at least four tariffs,

two belonging to the default broker and two belonging to the single broker.

The normalized cost difference nCc,i for consumption tariffs is then the difference

between the cost of the default tariff and the proposed or current tariff, normalized

by the cost of the default tariff, just as stated on equation2.5:

nCc,i =
costdefault − costi

costdefault
, (2.5)

where nCc,i represents the normalized cost (c) for the consumption (C) tariff (i)

being evaluated.
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Since energy consumption is represented by a positive value from the customer‘s

point of view, and payments from the customer to the broker are negative values,

the cost values for equation 2.5 are negative.

On the other hand, while evaluating a production tariff, it is better to choose

a tariff with a larger payout, so the sign of the cost difference is reversed.

nPc,i =
costi − costdefault

costdefault
(2.6)

On both equations 2.5 and 2.6, the term costi is defined as follows:

costi =
de∑
t=0

(Ce,t,i · pv,i,t + pp,i) + (psignup,i + Fd · pwithdraw,i + pwithdraw,0), (2.7)

where:

• psignup,i is a one-time signup payment to tariff i,

• pwithdraw,i a potential one-time withdrawal payment from tariff i in case the

customer withdraws its subscription before the tariffs minimum duration. If

the customer decides to withdraw its suscription after the minimum duration

was achieved, then this parameter is zero,

• pwithdraw,0 is the immediate cost of withdrawing the current tariff 0 to suscribe

to tariff i,

• pv,i,t is the per MWh payment at time t. The variable t appears on this term

in equation 2.7 but not in equation 2.4 because the latter is not considering a

specific time, while the first one does,

• pp,i represents the periodic payments customer have to pay to keep their sub-

scription to tariff i,
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• de is the expected time that the evaluating customer will require to be suscribed

to tariff i,

• Ce,t,i is an energy estimate usage over the expected duration t = [0, ..., de],

• Fd = min(1.0, di/de) is a discount factor that adds a premium to shorter

commitments intervals di.

Equation 2.7 sums up several parameters to account for the customer’s cost

to suscribe to the new tariff i. The first term considers the expected energy usage

Ce,t,i, multiplying it by the payment per unit of energy consumed pv,i,t, and adding

the periodic payment pp,i that the customer has to pay at time t. The higher any

of these paremeters is, the higher will be the cost that the customer will perceive.

The second term considers the cost to suscribe psignup,i to the new tariff i, as well as

the possible cost pwithdraw,0 incurred by withdrawing a previous tariff to suscribe to

tariff i. If the minimum subscription time of tariff zero is already completed, then

this term will become zero as well. The remaining term Fd · pwithdraw,i considers the

cost when the customer decides to withdraw tariff i in the future. If the minimum

commitment period di = 0, which means that the customer is not required to keep

its subscription to tariff i for any minimum period, then Fd becomes zero as well.

If di > de (meaning that the minimum commitment period required by the tariff is

larger that the time the customer is expecting to keep its subscription to tariff i)

then Fd = 1, and the full value of pwithdraw,i will be discounted. For any value for di

between 0 and de, it will hold that Fd < 1; thus dampening the value of pwithdraw,i,

and reducing the tariff cost perception for the customer.

Now we will finish to revise equation 2.6. The variable costdefault is defined by

equation 2.7, but this time replacing with a zero its second term, because default

tariffs only include a per-KWh payment and a periodic payment. Equation 2.8 shows

this change:
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costdefault =
de∑
t=0

(Ce,t,default · pv,default,t + pp,default) (2.8)

Where

• pv,default,t is the per MWh payment at time t required by the default tariff,

• Ce,t,default is an energy estimate usage over the expected duration t = [0, ..., de]

and

• pp,default represents the periodic payments customer have to pay to keep their

subscription to the default tariff.

Since the tariffs created on this thesis work are priced-based only, the latter

equation is used as well by the customers to evaluate the offered tariffs.

Finally, utility is the normalized cost difference less the inconvenience factor:

ui = ni − wx ·Xi, (2.9)

where:

• wx ∈ [0, 1] is a static atribute of individual customers, selected from a uniform

distribution,

• ni represents the normalized consumption or production cost difference as

stated by equations 2.5 and 2.6, and

• Xi ∈ [0, 1] is a linear combination of factors that penalize tariff features such

as variable pricing and tiered rates. However, it is important to mention that

none of these features was used during this thesis work, so for all purposes the

latter value can be considered as one.
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Inertia

Customers do not always consider withdrawing to an old tariff and suscribing to a

new one, even if the new one provides a better utility. This behaviour is real and is

related to the undesired work required to evaluate a new tariff, and is modeled in

Power TAC by an inertia factor which determines the probability that a customer

will not evaluate tariffs during a tariff-publication event. Inertia is defined as:

Ia = (1− 2−n) · I, (2.10)

where:

• Ia is the portion of the population that will not evaluate a new tariff and

possibly suscribe to it,

• n is a count of the tariff publication cycles starting at 0 and

• I ∈ [0, 1] is an inertia constant.

At the first tariff-publication cycle Ia has its maximum value, thus customers will

evaluate all tariff offerings, however, as n increases, their interest will be reduced,

and they will be less likely to evaluate new tariffs.

Rationality

Customers are not entirely rational, which means that they will not always choose

the best tariff. Therefore a smoother decision rule is used by Power TAC, which is

based on the multinomial logit choice selection model, which allocates the selection

choice proportionally over multiple similar tariffs. The logit choice model assigns

probabilities to each tariff, ti, from the set of evaluated tariffs T as follows:
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Pi =
eλui∑
t∈T e

λut
(2.11)

where:

• Pi is the probability of choosing the best tariff i,

• λ is represents the rationality of the customer,

• ui the utility of the evaluated best tariff i and

• ut the utility for tariff t

When λ = 0, the customer is not rational at all, and thus, chooses any of

the evaluated tariffs randomly. If λ = ∞ the customer will always choose the

tariff with the highest utility, therefore making more rational choices. The customer

models, which will be described on the next section, include groups of members

with 3 different values of λ. This feature creates a more realistic simulation, where

customers not always choose the best option for any reason. The rationality of the

customers depends as well on the amount of tariffs that are published and, most

of all, on the utility differences of these tariffs; an example can illustrate this good

enough.

Suppose we have two flat consumption tariffs and one customer X which has

not yet selected a tariff. This customer can choose between a tariff A and a tariff B,

where tariff A has a price of 0.50 units and tariff B one of 0.40 units. The probability

of picking the best tariff per λ is shown in Fig.2.4.

Now lets suppose that we have the same customer X, but now the customer

can choose between 20 flat tariffs. Tariff A has the highest utility with a price of

0.40, while the remaining 19 have a price of 0.50 units, thus earning to the customer

a lower utility. The probability of picking the best tariff as a function of λ for this

case is depicted on Fig.2.5 .
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Figure 2.4: Probability of choosing the best tariff per λ when 2 tariffs are available.

Figure 2.5: Probability of choosing the best tariff per λ when 20 tariffs are available.

It is clear than for 20 tariffs a higher λ is needed to have the same probability

of choosing the best tariff, in this case tariff A.

To show that the differences among the customer’s computed utility for several

tariffs has a heavy impact on the probability of choosing the best tariff, lets consider

a third example based on the previous example. Now the price of tariff A is 0.25,

so, the difference between tariff A and the remaining is larger than in the previous

example. The probability of choosing tariff A for this example is shown in Fig. 2.6.

It is clear that a bigger difference between the tariff’s prices results in higher

probabilities of picking the best tariff.
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Figure 2.6: Probability of choosing the best tariff per λ when 20 tariffs are available and

there is a large differente in tariff prices.

Customer Models

There are a wide variety of customers that require electric energy, and they have

different profiles and consumption patterns. These two attributes determine which

characteristics might result desirable for them. Customers in PowerTAC are aggre-

gated on Customer Models, and there are three types:

• Household (or Residential) consumers: the most common type of consumer.

Every family or person occupying a house is substantially an active house-

hold consumer. Even though as single customers have low consumption, when

aggregated in big groups their load can be as much as one factory complex.

Household customers may as well produce energy for self consumption by using

photovoltaic panels, and this energy can be sold as well.

• Business consumers: this consumer category contains all the small or medium

businesses, small industries and office complexes. The business consumers

demand a greater power supply than residential consumers but not as much

as big enterprises and factory complexes.

• Industry consumers: the most energy-consuming customers. Industries use

high-voltage power lines and include large manufacturing plants and factories

such as chemical plants, computer chip manufacturers or car industries.
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2.5 COLD broker: a scalable broker scheme

Trading energy is a complex process, for this reason Power TAC splits it on smaller

consecutive processes; this processes are shown on Fig. 2.7. Each process occurs on

a timeslot, each timeslot represents one hour of simulated real-time.

• Trading process: where the broker trades on the wholesalemarket to acquire

or sell energy with commitments due on a period ranging from 1 to 24 hours.

This market was not investigated during this thesis.

• Portfolio development process: this is the most important process for this

thesis project, because on this process is precisely where the broker publishes

its tariffs and where the customers decide if they evaluate and suscribe to a

new tariff or not, as described on Sec. 2.4.3.

• Balancing process: managed by the distribution utility (DU), which represents

a regulating corporation. The DU makes the broker accountable for the use of

the distribution network depending on the amount of energy traded, this re-

flects the fact that, on a real market, the broker does not own the distribution

network and therefore, has to pay a fee for using it. The DU does as well the

job of keeping a healthy balance across the whole network, by charging unbal-

anced brokers a fee proportional to their inbalance. This mechanism creates

an incentive for brokers to keep a balance between produced and consumed

energy.

• Accounting service process: is where the broker receives its balance and market

position after clearing every single transaction on the current timeslot.

An analog approach to design a broker capable of handling all these processes

is to split it as well, and introduce modules, or experts, which handle each process
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Figure 2.7: Energy trading process on PowerTAC

efficiently. For this reason COLD broker was developed. COLD broker is a scalable

scheme which uses experts as bottom-up building blocks to conform an energy broker,

where each expert focuses on a single task. The COLD broker scheme is shown on

Fig. 2.8. The two main building blocks of the broker are the the market expert

and the tariff expert, being the latter the one developed on this thesis project and

the one grayed on the figure. The three boxes outside COLD broker represent those

models with which COLD broker interacts, and the lines associate a model to an
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expert within COLD broker. The wholesale market model interacts with the market

expert, the distribution utility model will interact with the balance expert, and the

customer models interact with both the market and the tariff expert.

The wholesale market, distribution utility and customer market models are

simulated by Power TAC and react to the decisions made by COLD broker, or any

other broker in the competition. Each expert is designed using an object-oriented

structure, which allows us to develop and test various versions of each broker easily.

This structure was used as well to create those brokers against the broker developed

on this thesis was tested against. It is important to mention that this structure will

serve as a solid base for any related future work.

Figure 2.8: Energy trading process on PowerTAC



Chapter 3

Related Work

This chapter is divided into three sections. The first section is an introduction to

smart grid to explain its main characteristics but, most of all, why it is important

and how it is related to energy markets. The second section reviews the most

relevant approaches taken to represent energy markets in order to create tariffs.

The last section describes the most common tariff schemes available. Table 3.1

briefly describes the most relevant related work, while table 3.2 shows a point by

point comparison with the work proposed by Reddy.

33
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Reference Brief Description

[NIST, 2012] States a general description about smartgrid and

defines how it fits into a liberalized energy market.

[Farhangi, 2010] Describes the main differences between smartgrid,

as a bidirectional distributed network against,

and the current energy network.

[Gordijn and Akkermans, 2007] Documents evidence on countries where energy markets

are liberalized that shows the positive impact

that these type of markets generate for producers

and consumers.

[North et al., 2002] Describes a free energy market simulator which

focuses on the wholesalemarket.

[Keppo and Räsänen, 1999] Proposed a pricing tariff scheme which increases

a tariff’s cost as the forecasted consumption

uncertainty for a given customer increases.

[Reddy and Veloso, 2011] Proposes an energy market model which this thesis

work used as the reference to propose a new model.

This paper also defines the utility function that

this thesis work utilized to measure broker’s

behavior.

Table 3.1: Most relevant related work.

3.1 Smartgrid and Deregulated Markets

A comprehensive definition proposed by the National Institute of Standards and

Technology (NIST) states that a smartgrid is a modernized grid that enables bidi-

rectional flows of energy and uses two-way communication and control capabilities
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Feature Reddy COLD broker

Simulation Environment Custom made Power TAC

Energy Consumption Fixed
Determined by customer

needs

Actions Non Market-bounded Market- bounded

Number of states 5 4

Number of actions 6 8

Tariff Price Range
From 0.01 to 0.20 with

0.01 increments.

From 0.015 to 0.5 without a

fixed increment

Market Model MDP MDP

Learning Technique Q-Learning Q-Learning

Learned Attribute Tariff Price Tariff Price

Table 3.2: Comparison with Reddy’s work

that will lead to an array of new functionalities and applications. Unlike today’s

grid, which primarily delivers electricity in a one-way flow from generator to out-

let, the smart grid will permit the two-way flow of both electricity and information

[NIST, 2012]. Table 3.3 shows a comparison between the features of the existing

grid and those of a smartgrid.
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Existing Grid Smartgrid

Electromechanical Digital

One way communication Two-Way Communication

Centralized Generation Distributed Generation

Hierarchical Network

Few sensors Sensors throughout

Blind Self-Monitoring

Manual restoration Self-Healing

Failures and blackouts Adaptive and Islanding

Manual Check/Test Remote Check/Test

Limited Control Pervasive Control

Few customer choices Many customer choices

Table 3.3: The smartgrid compared with the existing grid

The characteristics of a smartgrid are very different from those on today’s

energy infrastructure. The existing grid is unidirectional in nature, and due to the

hierachical topology of its assets, it suffers from domino-effect failures, that can

lead to massive blackouts. It can’t prevent in no way service malfunction issues and

neither do anything to fix them. On the other hand, the smartgrid will provide to the

energy companies a full visibility and pervasive control over their assets and services,

it will be able as well to self-heal and make the grid resilient to system anomalies. All

these features have the potential to drastically reduce the chances of massive failures.

Finally, it will provide the means to empower consumers, producers and energy

companies to define and realize new ways of engaging with each other to perform

energy transactions across the system, causing it to be sustainable [Farhangi, 2010].

Because of all these reasons, the adoption of green energy sources provided

by small producers is being supported by several governments including Portugal,
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Netherlands and Germany. [Ringel, 2006] proposed a first model to guarantee that

electricity generated with the use of renewable energies can be completely feeded

into the power network. On this model, the lawmaker obliges regional or national

transmission system operators (TSO) to feed-in the full production of green elec-

tricity at politically fixed prices differing according to the various generation sources

(wind, hydro, etc.). These tariffs cover the cost disadvanatage of the renewable

energy sources and are calculated so as to grant an investment bonus to the green

power producers.

There is documented evidence that a smartgrid infrastructure, along with the

efforts to promote investment on green energy sources by using convenient tariff

schemes, could provide good results in terms of flexibility for customers and con-

tamination reduction [Gordijn and Akkermans, 2007]. Along this line Gordijn ana-

lyzed several case studies in european markets, and one of them was Spain, where

the electricity market is fully liberalized since 2003, smartgrid‘s load shifting feature

could reduce the electricity bill of a final customer by 15%.

Norway is another interesting case. This country, as many others around the

world, is experiencing a steady energy consumption growth. The energy generation

on this country depends mainly on hydropower; even though this has historically

contributed to low electricity prices, this makes the country very vulnerable to dry

years, which are becoming increasingly common due to climate disorders. On the

other hand, there is limited space to build new large-scaled hydropower plants, there-

fore alternative options are required. The study made by Gordijn proposes a total

deregulated market environment where customers own generating facilities and pro-

duce electricity for their own consumption, while the surplus electricity production

output is sold on the power market. The central actors in this model are the local

producers, who generate electricity that is sold to the electricity supplier, using dis-

tribution and metering services provided by the local distribution system operator.

The producers receive payment from the supplier for the electricity output, accord-
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ing to the metered data. The producers pay a network tariff for feeding electricity

into the distribution system and also for distribution and metering services. This

scheme is different from the model used on this thesis, where it is the broker who is

accountable for such payments.

3.2 Energy Markets and Tariff Generation

Some research has been done regarding energy markets and tariff generation, most

of it has taken the form of simulation platforms. North et al. created an agent-based

simulation of an electric power system including the consumers and the producers

[North et al., 2002]. The agents’ objectives were characterized by a utility function

and a specific complex adaptive system approach was used to represent the agent’s

learning capabilities. The electronic market was focused on the wholesale market

and the bilateral contracts between energy suppliers and energy consumers and not

on the tariff market. The study proved that agent-based simulations, where each

agent has its own objectives and decision rules, make it possible to represent power

markets more accurately than those simulators which rely on an implicit decision

maker.

Maenhoudt further analyzed the importance of studying electric power mar-

kets, but moreover, the benefits to model the problem as a multi-agent problem

[Maenhoudt and Deconinck, 2010]. This study concluded that agent-based simula-

tions are a favourable tool for decision makers in the electric power market, because

it comprises not only the economic, but also the social and environmental factors

operating in the system.

Keppo and Rasanen created a model to price tariffs in competitive electricity

supply markets [Keppo and Räsänen, 1999]. This model uses the value of the cus-

tomer’s electricity consumption pattern. A customer might, for instance, be very

consistent on its consumption, so it will have a static consumption pattern. On the
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other hand, another customer might have a very variable electricity consumption.

Considering this, Keppo’s model is based on the future price of the value of this

pattern, and showed that customers with a high uncertainty in their consumption

pattern should be charged more than less uncertain customers. Their analysis also

indicated that deterministic load profiles cannot be applied in a competitive market,

because they do not include the consumption risks. Keppo’s paper was focused on

creating a specific pricing model for a customer’s consumption pattern; in contrast,

this thesis work focused on creating a strategy that can alter tariff prices to attract

customers that are subscribed to competitors; also, this thesis results use experi-

mental evidence via a simulator, while the work presented by Keppo presents results

via a mathematical model.

3.2.1 Adaptive Tariff Generation on Competitive

Markets

[Reddy and Veloso, 2011] used a simulation approach to investigate a heavily simpli-

fied competitive tariff market, where the amount of energy consumed and produced

by customers was discretized on blocks, and the daily consumption was a fixed pa-

rameter that remained the same through the entire simulation. The paper used

agents with 5 different strategies, each of them using different actions to alter tariff

prices. The learning strategy learned a Markov Decision Process policy by using Q-

learning. The states of the Q-learning algorithm consisted of two heuristic elements.

One of them captured the broker’s energy balance, determining if more energy was

bought than sold or it was the other way around. The second element captured the

state of the market by comparing the minimum consumption price and the maximum

production price. The paper demonstrated that agents that used the learning strat-

egy overperformed those that used a fixed strategy in terms of overall profit. The

author showed this results on several figures plotting utility values. However, statis-

tical parameters were not used to confirm this. This thesis has similarities with this
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paper, however, a major difference is that customers in this thesis are more complex

and consumption and production patterns are more realistic, since these parameters

were not manipulated at all. Also, our broker has more meaningful actions and an

enhanced market representation that allows it to react to other brokers actions.

Given that the purpose of this thesis was to develop tariff pricing strategies,

the actions only performed changes over tariff rates, however, the model can be

used to generate complex tariffs, such as those with bonus signup payments or time-

independentt tariffs. Even as these tariff characteristics were not used, they are

briefly explained on Sec. 2.4.2



Chapter 4

Tariff-Broker Design

4.1 Tariff-Broker’s Problem Statement

The objective of the broker developed on this thesis is to learn a policy which chooses

an action at each decision step that supplies a good long term utility, i.e. take good

actions at every decision step, so as to maximize the sum of immediate utilities

gathered over every time step. It is important to mention that the learned policy

may not be the optimal, because the simulation environment is not stationary 1, but

it will yield COLD broker with a larger utility, compared to that obtained by the

competitors. It is important to mention again that COLD broker and its competitors

only offer fixed-priced tariffs.

To matematically describe the broker’s objective it is necessary to define the

following.

On any given competition α there are T = {1, 2, ..., N} decision steps and

B = {B1, B2, ..., Bk, ..., BM} brokers. At the end of α the utility of Bk is defined as:

1The simulation environment is not stationary because the same action on the same state will not always

yield the same reward. This occurs because of factors such as rationality and inertia, but also because there

are customer behaviours modeled with random parameters.
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UBk
=
∑
t∈T

(uBk
t ), (4.1)

where uBk
t is the per-timeslot utility for Bk as defined in equation 4.2

So the problem every broker faces is to develop a policy πmaxk that maximizes its

utility as defined by equation 4.1 to earn a larger profit compared to other brokers.

On a competition, the profit obtained by any broker depends on the customers

and on the competing brokers, because the first tend to choose the best possible

tariff which accomodates their preferences and the latter try to match customers

preferences. These aspects create a complex moving target for every broker.

For this reason, the first task to be done in this thesis is to design a broker

capable to extract the main market features that give quality information for decision

making while accounting for the non-stationarity induced by the competing brokers.

The next section explains how the tariff expert broker represents the market and

which are the available actions at any given decission step.

4.2 Environment Representation

At the end of each evaluation period any broker, including the learning broker,

broker Bk publishes a consumption and a production tariff with prices PBk
t,C and PBk

t,P

respectively, where customers can suscribe to. At the end the evaluation period, Ψt,C

and Ψt,P represent the amount of energy sold or acquired by the broker respectively.

For each evaluation period, the utility function is the one shown on equa-

tion 4.2. The first term represents the income total proceedings due to electric

energy sale, the second terms corresponds to the amount paid to producers, and the

third term represents an inbalance fee.
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uBk
t = PBk

t,CΨt,C − PBk
t,P Ψt,P − θt|Ψt,C −Ψt,P | (4.2)

Each term in equation 4.2 represents either a monetary income or outcome.

So the whole utility represents money, and its currency is dollars. All three terms

multiply a price per energy unit by an energy amount, yielding a monetary unit. If

the difference Ψt,C −Ψt,P equals zero, then the broker sold exactly the same amount

of energy it bought, so the energy inbalance is zero; and for this reason the inbalance

fee is zero as well, disregarding the value of θt. The variable θt is the amount the

broker has to pay to the DU per each unit of energy inbalance it generated on the

evaluation period.

The broker has full control of two parameters of equation 4.2: PBk
t,C and PBk

t,P .

These are the consumption and production prices respectively. The rest of the terms

are either determined by the distribution utility or depend on customers subscription

decisions. To set the consumption and production prices, the first step was to

determine some key elements belonging to the tariffs published by other brokers;

namely: maximium and minimum consumption prices, and maximum and minimum

production prices. These are:

Minimum consumption price:

Pmin
t,C = minBk∈B\{BL}P

Bk
t,C (4.3)

Maximum consumption price:

Pmax
t,C = maxBk∈B\{BL}P

Bk
t,C (4.4)

Minimum production price:

Pmin
t,P = minBk∈B\{BL}P

Bk
t,P , (4.5)
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Maximum production price:

Pmax
t,P = maxBk∈B\{BL}P

Bk
t,P , (4.6)

Equations 4.3, 4.4, 4.5 and 4.6, BL are valid for any given broker Bk, but to

specifically refer to the values observed by the learning broker, Bk will be replaced

by BL. In this way, the minimum and maximum prices include the list conformed

by the prices of all the other brokers but not the prices of the learning broker BL.

Now we can formulate the proposed MDP which use the equations just defined.

As stated before BL is the learning broker for which we develop an action policy

using the an MDP based framework and reinforcement learning. The MDP for BL

is defined as:

MBL = 〈S,A, P,R〉 (4.7)

where:

• S = {si : i = 1, ..., I} is a set of states,

• A = {aj : j = 1, ..., J} is a set of actions,

• P (s, a)→ s′ is a transition function and

• R(s, a) equals uBk=L
t and represents a reward function.

Then π : S → A defines an MDP action policy.

4.2.1 States

The proposed state space S is the set defined by the following tuple:
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S = 〈PRSt, PSt, CPSt, PPSt〉 (4.8)

where:

• PRSt = {rational, inverted} is the Price Range Status at time t,

• PSt = {shortsupply, balanced, oversupply} is the Portfolio Status at time t,

• CPSt = {out, near, far, veryfar} is the Consumers Price Status and

• PPSt = {out, near, far, veryfar} is the Producers Price Status,

Description of tuple parameters PRSt and PSt

The values PRSt and PSt capture the relationship between the maximum produc-

tion price and the minimum consumption price, and the balance of the broker BL;

respectively, and are defined as follows:

PRSt =

 rational if Pmin
t,C > Pmax

t,P

inverted if Pmin
t,C ≤ Pmax

t,P

(4.9)

PSt =


balanced if Ψt,C = Ψt,P

shortsupply if Ψt,C > Ψt,P

oversupply if Ψt,C < Ψt,P

(4.10)

One should remember that the maximum production price and the minimum

consumption price, from BL point of view, are defined considering the list of all the

available production and consumption prices, respectively, of all the other brokers,

excluding the prices offered by BL.
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Description of tuple parameters CPSt and PPSt

These two elements of S encode the price actions of the broker related to the ac-

tions of the other brokers. Both CPSt and PPSt can take any of these values:

out,close,far,very far and are defined as follows.

Function definition for CPSt:

CPSt =



out if Topref ≤ PBL
t−1,C

near if Thresref < PBL
t−1,C ≤ Topref

far if Middleref < PBL
t−1,C ≤ Thresref

veryfar if PBL
t−1,C ≤Middleref

(4.11)

where:

• Topref = Pmin
t,C ,

• Middleref =
Pmin
t,C + Pmin

t,P

2

• Thresref =
Topref + Thresref

2

The purpose to define reference variables Topref , Middleref and Thresref was

to discretize the continuous consumption price values available in the range [0.015,

0.5]. One should remember that this is the price range where brokers can set their

prices. Now lets define PPSt.

Function definition for PPSt:

PPSt =



out if Bottomref ≥ PBL
t−1,P

near if Thresref ≥ PBL
t−1,P > Bottomref

far if Middleref ≥ PBL
t−1,P > Thresref

veryfar if PBL
t−1,P ≥Middleref

(4.12)
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where:

• Bottomref = Pmin
t,P ,

• Middleref =
Pmin
t,C + Pmin

t,P

2

• Thresref =
Bottomref + Thresref

2

Similarly as described for CPSt, the references Bottomref , Middleref and

Thresref discretize the values that the production prices can take.

4.2.2 Actions

The set of actions is defined as:

A = {maintain, lower, raise, inline, revert,minmax,wide, bottom} (4.13)

where each of these actions define how the learning agent BL determines the

prices PBL
t+1,C and PBL

t+1,P for the next timeslot t+1. These are the specific details of

each action:

• maintain publishes the same price as in timeslot t-1 aiming to keep the current

MDP state.

• lower decreases both consumer and producer prices by a fixed amount ε with

the purpose of gaining new consumption customers and eliminating some pro-

duction customers.

• raise increases both the consumer and producer prices by a fixed amount ε.

Has the opposite effect that lower.
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• inline sets the consumption and production prices as PBL
t+1,C =

⌈
mp + µ

2

⌉
and

PBL
t+1,P =

⌊
mp − µ

2

⌋
. The Inline action is market-bounded. Similar to bottom

but more aggressive, because it sets a very cheap price to buy energy from

producers and also a very attractive low price for consumers.

• revert moves the consumption and production prices towards the midpoint

mp =
⌊
1
2
(Pmin

t,C + Pmin
t,P )

⌋
. This is an emergency action which has the objective

to quickly gaining consumption and production customers.

• minmax sets the consumption and production prices as PBL
t+1,C = DcoeffP

max
t,C

and PBL
t+1,P = Pmin

t,P , where Dcoeff is a number on the interval [0.70,1.00] which

damps the effect of the minmax action over the consumption price.

• wide increases the comsumption price by a fixed amount ε and decreases the

production price by a fixed amount ε.

• bottom sets the consumption price as PBL
t+1,C = Pmin

t,C Ṁargin, where Margin =

0.90; and the production price PBL
t+1,P = Pmin

t,P . The Bottom action is market-

bounded. Similar to inline but less aggressive. Its purpose is to set a con-

sumption price just below the minimum consumption price offered by any

other broker.

4.2.3 State/Action Flow Example

To illustrate an action’s effect over the consumption and production prices, Fig. 4.1

shows a simple simulated flow on a series of actions. The actions appear above

the graph. On this hand-made simple scenario COLD broker competes against two

brokers, who publish a consumption and production tariff each. The horizontal axis

represents the time measured in decision steps, the vertical axis corresponds to the

energy price. The dashed lines are fixed references, while the continuous lines are

the published prices as described below:
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• maxCons: corresponds to Pmax
t,C and is equal to 0.5. It can be assumed that

competing broker A published a consumption tariff with this price.

• minCons: corresponds to Pmin
t,C and is equal to 0.4. It can be assumed that

competing broker B published a consumption tariff with this price.

• minProd: corresponds to Pmin
t,P and Pmax

t,P ; which means that the maximum

and minimum production prices are the same and is equal to 0.015. It can be

assumed that both brokers A and B published a production tariff with this

price.

• Cons: corresponds to the consumption price published by COLD broker.

• Prod: corresponds to the production price published by COLD broker.

COLD broker will bound the price range of its tariffs in the range [Pmax
t,P ,Pmin

t,C ].

For this reason, none of the actions will lead to a price position outside this range.

Figure 4.1: A graphical representation of Coldbroker’s actions and states.
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The continuous lines on Fig. 4.1 are the consumption and production prices

published by COLD broker at the given decision step. There are as well some colored

blocks at the left side of the graph. The green blocks represent the price region for

which CPSt take a certain value. The red blocks represent the price region for which

PPSt take its own values. Any value outside the boundaries defined by the green and

red colored blocks, including the outer edges, is considered as out. It is important to

mention that this is just an illustrative example, with the only purpose of showing

what is the effect of each action on the consumption and production prices, and also

to show how these actions change the broker’s state.

So, at decision step (DS) 1 COLD broker takes action bottom, lowering both

consumption and production prices. The effect of the action taken in DS 1 is reflected

on DS 2. So, at DS 2 the consumption price is between a price of 0.4 and 0.3;

this means that the corresponding values for CPSt and PPSt are near and out

respectively. It is important to remember that the action Bottom sets the production

price to Pmin
t,C , which, by definition, corresponds to a value of out for PPSt. At DS

2 COLD broker maintains both prices. At DS 3 the action is increase, and both

prices are raised. The opposite occurs on DS 4. On DS 5 and DS 6 the actions

revert and wide are taken. These are opposite actions. While revert moves the

prices towards the center, wide moves them away. Revert sets CPSt value to far.

At DS 7 the action inline is executed. This is a more aggresive action compared

to bottom, because it sets the consumption price far away from the competitions

lowest consumption price; and the production price at the minimum available. It

is important to mention that this sequence of actions was hand-made with the only

purpose of illustrating the effects of the executed actions.

This simple scenario assumes that the competing brokers are not changing the

market state because they do not publish new tariffs. However, when they do they

might alter Pmin
t,C or Pmin

t,P . This would lead COLD broker to recalculate its market

range and therefore publish new tariff prices accordingly, which is what actually
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happens.

4.3 Learning Strategy

The learning algorithm used was the Watkins-Dayan [[Watkins and Dayan, 1992]]

Q-Learning update rule:

Q̂t(s, a)← (1− αt)Q̂t−1(s, a) + αt

[
rt + γQ̂t−1

max a’

(s′, a′)

]
, (4.14)

As it will be described later, COLD broker was trained offline in order to obtain

an initial Q-Table prior to running the experiments.

4.4 Implementation Challenges

Before stating the specific challenges faced to develop a tariff expert, it is important

to mention that this thesis was developed as a component of a more complex and

scalable broker, called COLD broker. This broker comprises two main components

so far: the market expert and the tariff expert. The experiments executed on this

thesis work were done in isolation, using only the tariff expert in order to compre-

hensively understand the effects of the proposed actions and strategies without any

other influence. However, the design and programming was done so that this tariff

expert could fit easily on the COLD broker scheme. The COLD broker was tested

as whole including the tariff and market experts during the 2014 Power TAC tour-

nament. This stated some additional challenges that had to be worked out. The

most important challenge might be the communication between these two experts.

To address this issue, the broker’s architecture allowed both experts to keep track

of and/or update the customer, tariff, price and transaction records online. This

modular architecture allows to develop and test the broker easily, so that updates
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and improvements in the future does not compromise the whole broker. Now, the

specific challenges related to developing a tariff expert are related to several facts.

First of all, to represent the state of an energy market at any given moment requires

to create or select some features that provide enough relevant information. This task

requires a discretization process of several variables, whereas the consumption and

production prices are the most important. Tariff prices are not easy to represent

because in a real energy market they are continuous over all the real domain. If we

were to make a gross discretization, for instance, of 0.05 units over the available price

range of 0.015 to 0.5, we would have around 9 different possible values. If we con-

sidered 5 brokers, which is far off a real world situation, there would be 95 possible

states. This is not a viable input for an MDP. The first challenge was therefore to

determine which market attributes were appropriate to represent it’s dynamics for a

good decision. The market state variable PRSt proposed by Reddy provided a good

approach, and this thesis work enhanced this market representation by introducing

the variables CPSt and PPSt; which provided the broker with a better insight to

make decisions. These two market state variables required a full book keeping of

others brokers actions, specifically their price attribute.

Several other challenges are directly related to the realistic energy market rep-

resentation provided by Power TAC. As described on Sec. 2.4.3, the customer

models simulated are fairly complex, and include aggregated customers that create

populations. Each of these customer models may have a different set of preferences,

that include change resillience (inertia parameter I) and the desire of individual

customers to choose cheaper or more expesive tariffs (λ parameter). The learning

process had to deal with the different preferences among customers, to create prices

for tariffs that fit best to all of them.

Another challenge was to analyze the logs and the information generated by

the simulation process. Each simulation generates large logs information on almost

every aspect of the game, including tariff related events, such as:



CHAPTER 4. TARIFF-BROKER DESIGN 53

• Publication of a new tariff.

• Revocation of a new tariff.

• Customer subscription to a tariff.

• Customer transaction over a given tariff: buy or sell energy.

Each of these aspects may include a monetary value and a traded energy

amount, along with an associated customer, an associated tariff and an associated

timeslot. The broker accounts for all this information while running on a Power

TAC simulation, but it was required to develop tools related to big data analysis

to select all relevant information online and process it into tables and plots which

supplied enough information for a comprehensive analysis to take place.

The proposed broker’s scheme represented a challenge as well. The structure

was designed to be scalable and reused, and therefore it required time to be developed

and tested for the first time.

The complexity of the simulation platform represented another challenge, mainly

because the MDP required a discrete set of attributes. This discretization process

was not easy, because there are more than two brokers and there are several variables

with continuous values. In this environment a naive discretization might lead to a

model which grows exponentially. For instance, if we tried to discretize the con-

tinuous values of consumption prices using a non-coarse discretization, the MDP’s

number of states might grow exponentially as the number of tariffs or brokers in-

creased. Let us remember that states are represented as rows in a Q-Table, while

actions are represented as columns. Having this in mind, and considering that when

the broker chooses an action a new set of consumption and production prices is

proposed, one could tell that if the actions where to choose fixed price values; the

number of actions could as well grow exponentially, since prices are continuous val-

ues. However the discretization proposed in this thesis to represent the market keeps
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its size constant, regardless the number of competing brokers or published tariffs.

Finally, simulation time by itself was another challenge. In order to test the

effects of any assumption or algorithm, several simulations had to be done to run

statistics. A short simulation required at least one hour, while the longest ones

required more than five hours. For this reason, the simulation process was very

time-consuming.



Chapter 5

Experimental Results

This section will describe the results obtained by using the market representation

and the actions described in Chapter 4. More than 500 experiments were tested only

during the experimental phase on this MSc work and this section provides the final

and most relevant results. On each experiment a different set of brokers participated.

The different brokers are described in Table 5.1.

Broker Name Description

COLD broker The learning broker developed on this thesis work.

ReddyLearning The learning broker proposed by Reddy.

Fixed Publishes initial tariffs and never updates them again.

Balanced A fixed-strategy broker which uses the Balanced strategy.

Greedy A fixed-strategy broker which uses the Greedy strategy.

Random A broker that uses the same market representation and chooses.

random actions over the set available for COLD broker.

Table 5.1: Competing brokers general description

The final experiments included a test where COLD broker competed against

the rest of the brokers described on Table 5.1, a test where COLD broker competed

against ReddyLearning and another one where COLD broker competed against an-

other version of itself.
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Before describing the experiments and their results, the next brief section will

describe a series of experiments that were executed to analyze the impact of changing

the customer’s rationality parameter λ while keeping fixed a pair of consumption

and production prices. Even though this analysis was beyond the stated reach of

this thesis, it was considered relevant to analyze because it would help to better

understand the MDP learning process.

5.1 Analysis on the Rationality of Customers

(Lambda Parameter)

As mentioned in Section 2.4.3, the customer’s rationality has an impact over the

broker’s ability to obtain higher utilities. Even as if this is out of this thesis scope,

some experiments where done to test the impact of changing the λ lambda parameter.

These experiments details are shown on Appendix A . The experiments showed that

as the rationality of a customer increases, the tariffs with a slight difference from

the reference1 will be perceived as with high value. Therefore, when a high value

of lambda exists, the broker is able to maximize its profit by publishing prices very

close to the reference values, i.e very expensive consumption prices and very cheap

production prices. As the rationality decreases, a larger difference will be required

between any given broker’s price and the reference price for the customers to perceive

it with a high value, or low cost, hence reducing the maximum profit that any broker

could obtain.

5.2 Experimental Setup

Now the details of each experiment will be described, starting with the setup and

then following with some useful conventions. Besides including or excluding one or

1Customers always evaluate tariffs comparing them against another reference tariff
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more competing brokers, each experiment’s settings was kept the same. Prior to the

experiments, both COLD broker and ReddyLearning were trained so as to test them

with the best actions that these brokers could learn. Then they were tested against

the other brokers.

Training Sessions

COLD broker and ReddyLearning were trained against a Fixed broker for 2,000

timeslots and against the Random broker for 8,000 timeslots. During the training

sessions the brokers were adjusted to explore at every decision step, updating their

Q table with the obtained reward. The learned Q table for each of the trained

brokers was stored and then transfered to the learning brokers to be used on the test

sessions.

Test Sessions

The trained Q table was stored and transferred to the brokers to be used on the

experiments. The experimental general setup is described below:

• Game length: 3000 timeslots, corresponding to 125 simulated days and 75

decision steps. The first timeslots does not appear on simulations because the

simulations start around timeslot 500.

• Tariff publication interval: all brokers publish new tariffs every 50 ± 5 times-

lots.

• Tariff types: every tariff publication event, brokers publish one consumption

and one production tariff.

• Explore ratio: since the learning process already took place, the brokers fol-

lowed their learned policy, thus they did not explore during the Test Sessions.
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• Tariff price range: tariffs prices are within the interval [0.015,0.5].

Since the target of any broker was to publish attractive tariffs by changing

their prices, these were the only attributes that were changed by the brokers during

the simulations. The other parameters just mentioned remained constant.

5.3 Conventions

In order to keep easy-readable and reduced tables, some abbreviations were used to

designate the names of the values each state can take. The abbreviation consisted on

using the first two letters of the value’s name, as stated on Table B.1. So, for instance,

state representation RaShFaOu stands for state S = 〈rational, shortsupply, far, out〉.

The capital letters were used just to differentiate each state’s name easily.

State Attribute Possible Values (abbreviation)

PRSt rational(Ra), inverted(In)

PSt shortsupply(Sh), balanced(Ba), oversupply(Ov),

CPSt very far(Ve), far(Fa), near(Ne), out(Ou)

PPSt very far (Ve), far(Fa), near(ne), out(ou)

Table 5.2: States values and abbreviations

5.4 Book Keeping

In order to analyze the broker’s behavior, each one of them generates a detailed

log which contains information about the market state, performed actions, tariff

prices and yielded utility for each decision step. This information is stored in a file

called States. This file stores the data on various columns. Each register includes

information about the timeslot, the published consumption and production prices,
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the action performed, the MDP state and the reward obtained. The detail on how

this information is stored can be found on Appendix B.

5.5 Experiments Description

On this section each of the experiments will be shown. For each experiment a

description and an analysis will be provided. The experiments were designed to

test COLD broker against specific sets of the competing brokers and itself. The

experiments that will be explained are as follows:

• COLD broker vs. All: our learning broker vs. Random, Balanced, Greedy and

the learning broker proposed by Reddy, named as ReddyLearning.

• COLD broker vs. ReddyLearning: our learning broker vs. the learning broker

proposed by Reddy.

• COLD broker vs. COLD broker: our learning broker vs. another instance of

itself.

5.5.1 COLD broker vs. All

This series of experiments included all the brokers. Table 5.3 shows on the first

column2 the market state, as described on section 4.2.1. The next columns show

the average utility and its corresponding standard deviation for each of the brokers.

The last row shows the overall average and standard deviation for each broker.

Fig. 5.1 plots this last row of data. Fig. 5.2 shows the utility for each broker at each

timeslot.

2This column shows the first two letters of each atribute’s name.
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State Average Std. Dev Average Std. Dev Average Std. Dev Average Std. Dev Average Std. Dev
RashFaOu 174,153       11,625         102,456       73,811         
RashVeOu 173,011       18,419         130,540       
RashFaNe 170,911       20,262         72,790         114,024       
RashNeOu 155,069       24,060         99,016         88,380         
RashOuFa 261               148,156       16,380         7,513 -           - 147,667       6,428 -           4,495            
RashNeNe 132,635       9,086            
RashOuOu 129,775       46,235         7,960 -           125               24,379         48,751         
RashOuVe 6,313 -           2,311            126,248       23,663         37,111         10,078         62,824         
InshNeNe 122,193       46,484         82,709         41,243         
InshOuFa 5,511 -           4,473            111,042       21,857         7,786 -           308               30,420         48,639         
InshOuVe 11,875 -        7,083            99,340         40,064         7,728 -           343               1,141            15,419         43,969         45,035         
InshNeOu 98,531         41,451         79,228         45,536         
InshFaNe 95,388         27,956         92,427         26,106         
InshVeNe 91,703         - 106,631       7,481            
InshOuNe 5,172 -           2,305            89,993         3,679            7,797 -           288               23,464         41,034         
InshFaOu 86,998         53,118         90,494         39,285         
InshVeOu 86,447         45,530         112,301       49,444         
InshOuOu 4,757 -           3,428            56,708         28,661         7,809 -           258               19,789         35,326         
RashFaVe 58,018         52,400         44,510         51,925         80,048         
RaovOuVe 15,966 -        18,831         6,454            17,590         
InovOuOu 2,213 -           8,171            
InshNeVe 145,151       
InovOuVe 8,364 -           4,235            1,762            15,281         
InovOuFa 4,015 -           4,253            
RashNeVe 161,590       53,707         
InshNeFa 56,759         56,130         
RashOuNe 2,636            22,328         
Summary 7,008 -          8,317           107,238       54,109         7,552 -          3,491           11,459         34,963         49,507         55,078         

Balanced Cold Greedy ReddyLearning Random

Table 5.3: Average and standard deviation per state for each broker

Balanced Coldbroker Greedy ReddyLearning Random

Broker Name
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Figure 5.1: Overall average and standard deviation for each broker
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Figure 5.2: Utility for all brokers

Experiment Analysis

Several observations can be done from this experiment’s results. First of all Fig. 5.2

and Fig. 5.1 clearly show that COLD broker has the highest utility compared to

the rest of the competing brokers. The second position is for the Random broker and

the third one for ReddyLearning. The latter broker has a different set of actions and

a different representation of the market, compared to COLD broker and Random.

On the other hand, Random shares the same set of actions and the same market

representation with COLD broker, for this reason Random gets a better utility that

COLD broker sometimes, when it reacts after COLD broker has published its tariffs.

This fact highlights the importance of the proposed representation.

It is important to mention that COLD broker’s actions are market-bounded,

which means that the resulting prices will be competitive, thus customers have a

higher probability of deciding to suscribe to them. This means that if the com-

peting brokers are publishing consumption prices around the 0.01 - 0.2 $/MWh

zone, COLD broker will not publish something that might result unattractive such

as a consumption price of 0.35 $/MWh. ReddyLearning’s actions are not market-

bounded, this means that all of its actions can lead to a price position that is not
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attractive at all for the customers; i.e. a consumption price near the maximum con-

sumption price. For this reason, the Random broker obtains a better profit compared

to ReddyLearning.

Table 5.3 provides more insight on the brokers’ behavior. First of all we can

notice that, for COLD broker, even if the overall standard deviation is high com-

pared to the overall average, there are states with higher averages and lower standard

deviations. The states with larger average rewards are those when PSt equals to

rational and when CPSt equals far or veryfar. This two values for CPSt are asso-

ciated with the inline and bottom actions, which safely place the consumption price

away from the competitors, making the published tariff attractive to the customers.

These states have as well some of the lowest standard deviations, which tells us that

this is a consistent desirable state.

The lowest profits are obtained when PRSt is inverted, because this is by itself

a bad state, because the consumption prices are below the production prices. COLD

broker learned that the actions that yielded the highest profit on most states were

inline and bottom, and these were the two most used actions, followed by wide.

5.5.2 COLD broker vs. ReddyLearning

This section describes the results of a second set of experiments, where COLD broker

was tested against its direct competitor ReddyLearning alone. Table 5.4 is similar

to Table 5.3, but only for COLD broker and ReddyLearning. Fig. 5.3 shows a plot

with the average utility and standard deviation for this experiment.

Experiment Analysis

By looking at table 5.4 it is evident that COLD broker achieves better results than

ReddyLearning with a small standard deviation. The average utility on this experi-
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Table 5.4: Utility for COLD broker and ReddyLearning

Coldbroker ReddyLearning
Broker Name
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Figure 5.3: Overall average and standard deviation for COLD broker and ReddyLearning

ment compared to Fig. 5.1 is higher, because there are less brokers and for this reason

more customers for each one. The fact that the Random broker is not participating

has noticeable effects on this experiment:

• The standard deviation is reduced because both learning brokers choose the

action that they believe is the one that will yield the highest profit consistently,

reducing randomness.

• There are less states because the market state depends on the decisions and
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Figure 5.4: Utility obtained when testing COLD broker against ReddyLearning

prices of every broker. When the space of actions is reduced, either because the

learning brokers consistently choose the same action or because fixed-strategy

brokers choose among one or two actions at most; the list of the different

states that the market will achieve is short. However, when the Random

broker participates, it chooses among all the available actions with the same

probability, creating a wider range of action combinations, and thus, widening

the list of different market states.

Table 5.4 offers as well interesting information. The standard deviation columns

show that this value is smaller for COLD broker compared to ReddyLearning at ev-

ery state. COLD broker’s values on the Average column are larger for every state

compared to those on ReddyLearning; this shows that the COLD broker obtained

the largest utility on every decision step consistently. Table 5.4 has as well some

similarities with table 5.3; namely the states with the highest average values, as

shown on table 5.5.

State RashFaOu appears on first place on both experiments, while state RashVeOu

appears on second and third place. These states include either the value far or

veryfar for CPSt, which correspond to an expensive consumption price. However,
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Position COLD broker vs. All COLD broker vs ReddyLearning

1 RashFaOu RashFaOu

2 RashVeOu RashFaNe

3 RashFaNe RashNeOu

Table 5.5: Top 3 states with the highest average profit.

since COLD broker’s actions are market-bounded, its most expensive tariff price

is still slightly cheaper than the most expensive tariff offered to consumers by any

other competing broker. Since the values far and veryfar yield the highest profit

for COLD broker, it always executes actions that lead to this value.

The opposite occurs with PPSt; values out and near are the lowest production

prices that COLD broker can offer, however, these prices are slightly higher that the

competitors production prices, making the corresponding tariffs attractive for energy

producers.

The value Ra for PRSt indicates that the market is rational, this is, the con-

sumption prices are above the production prices. If the market was inverted, then

none of the brokers would obtain a profit, since on this situation, production prices

would be more expensive than consumption prices. For this reason, both learning

brokers learned to avoid this state. On this experiment the most used actions were

inline and bottom, followed by maintain.

5.5.3 COLD broker vs. COLD broker

The last experiment tested an instance of COLD broker against another instance of

itself. The results are very different from those shown in previous experiments. In

this ocassion none of the instances is able to obtain a profit, as explained on the

next section.
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Experiment Analysis

Fig. 5.5 shows the utility for each instance of COLD broker. Both instances have a

peak at the beginning and then decline to reach a minimum, where they stay until the

end of the simulation. This occurs because both brokers engage on a price war (also

known as arms race in economics) which none of them is capable to win; they respond

with the same actions at the same time. As stated before, COLD broker’s actions

are market-bounded, which means that it will try always to keep its prices between

Pmin
t,C and Pmin

t,P . However, at each decision step both instances of COLD broker

set new values for these two parameters, which tend to be lower that the previous

ones. At the end, the market prices move to a point where they are very low and

thus, no profit can be obtained by neither of them. This price war can be observed

on Table 5.6, which shows on the first column the timeslot where the decision step

took place, and on the second and third columns the published consumption tariff

price for the first and second instance of COLD broker respectively. The price starts

at 0.1333 dollars per MWh and then, with each decision step it is lowered by both

brokers, until a bottom limit price of 0.0295 is reached and maintained for the rest of

the simulation. On this experiments the most used actions were inline and bottom,

followed by maintain.

5.6 General Discusion

In general terms COLD broker achieved a higher utility compared to the other bro-

kers, both against Reddy’s learning broker and fixed-strategy brokers. As mentioned

before, the Random broker obtained the second largest profit, even higher than that

obtained by ReddyLearning. This is a relevant issue and comes from the fact that

Random broker uses COLD broker’s market representation and set of actions. The

reason of why COLD broker outperforms Random is that COLD broker’s decissions
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Figure 5.5: Utility obtained when testing COLD broker against itself.

comes from a learning process trained to maximize utility. However, the fact that

Random can do a better job achieving utility than ReddyLearning is only related to

the proposed set of actions and market representation. If a learning process can’t

yield a higher utility than a random strategy could only mean that the actions avail-

able for the random strategy yield better utilities by themselves than those available

for the learning strategy. If we then replace the random strategy by a learning strat-

egy, capable of picking the best action given the market situation, then we achieve

the results shown in this section.
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Timeslot COLD broker 1 Consumption Price COLD broker 2 Consumption Price

399 0.1333 0.1333

440 0.1066 0.1333

479 0.0853 0.1066

519 0.0552 0.0853

559 0.0386 0.0552

599 0.0295 0.0386

640 0.0295 0.0295

679 0.0295 0.0295

Table 5.6: Published consumption prices for the first decision steps for COLD broker 1

and COLD broker 2



Chapter 6

Conclusions

The non-renewable characteristic of oil is driving without a doubt to seek efficient and

sustainable alternatives to satisfy the world’s energy demand. Centralized energy

monopolies like the ones existing on most world’s countries will reach a limit as the

energy demand keeps increasing and as the oil production declines. An alternative to

this scenario is the distributed and self-sustained smartgrid, where buildings, houses

and even communities are able to produce, by renewable means such as solar panels

and wind turbines, the electricity they require; and sell to any other instance the

energy they will not use. This smartgrid will provide, on the long term a cheap and

almost limitless amount of energy, and the means to efficiently distribute the energy

where it is required.

However, the smartgrid faces hard challenges, and beyond those related to the

technology to physically integrate the encoders, receivers and transmitters, which

will allow the smartgrid to work as a communications channel; there exists challenges

related to the algorithms and software that will handle and process the received

signals. These signals will be used by a regulatory entity to ensure that the system

will remain balanced, and will be used by the trading brokers to determine which

features a tariff requires to satisfy customers demands. There is still a lot of work

to be done to fully understand the behavior of a smartgrid, and how a broker’s

decisions can impact the energy flow, or the whole smartgrid stability. For this

reason simulating platforms such as Power TAC are useful; it allows scientists to
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propose and safely test energy trading algorithms and rules, and, as described before

on this thesis work, one of the main energy trading scenarios is the tariff market.

A tariff may have several attributes, but one of the most important is the

price. It is not an easy task to determine the proper pricing for a tariff at a given

time, because the utility the broker might expect for choosing any action, and thus

determining a tariff’s price, depends on the market state; and the market state

depends on the actions of all the brokers. For this reason, the most important step

that can be taken, is to provide a market model which captures its main attributes,

to be used as the input to the decision algorhitm. This thesis proposed a market

model different to the one proposed on previous publications. Also, if the broker has

a good market representation, but lacks of a set of good actions to respond to the

market, its performance will be poor in terms of utility. For this reason, this thesis

also proposed a set of actions which adapts its price output to the changing market

states.

The experiments showed that COLD broker, with its proposed set of actions

and its market representation was able to obtain the highest profits on 70% of

the evaluated timeslots, when tested against all the competing brokers, including

ReddyLearning. When tested only against the latter, COLD broker was able to

obtain the highest profit 100% of the evaluated timeslots. This proved that both

the market representation and the proposed actions achieved a better average utility

compared to that delivered by the algorithms found on related previous works, and

used by the other competing brokers.

It is important to mention as well that the market representation size is not

bounded to the number of competing brokers; the number of possible value combi-

nations of state space S will remain the same if there are 1, 2 or more competing

brokers. This is very useful because it makes easier the learning process. On the

other hand, the proposed market-bounded actions were the most used by COLD
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broker, and these actions conducted it to lead the utility rank most of the time on

the experiments executed. Even as there were some non-market-bounded actions

available, such as Minmax for instance, COLD broker learned that those actions did

not yield good results, and for this reason decided not to use them.

There are interesting works that can be done to further improve the research

done on this thesis. The future work can be related to any of these aspects.

• Tariff characteristics: this thesis experimented only with various price config-

urations for a consumption and production tariff. However a tariff has plenty

of other attributes that customers consider while evaluating a tariff’s utility.

Attributes such as signup payments, early withdraw payments or complex rate

tariffs such as block or time-of-use tariffs might be explored and included on

a learning algorithm to further improve the broker’s utility.

• Number of tariffs selection: the experiments conducted in this thesis included

only one consumption and one production tariff at any given timeslot; so this

is an area that might be further explored to determine how many tariffs must

be available for customers to suscribe.

• Tariff publication and revocation timing: the broker we developed publishes its

tariffs at a fixed interval. However, developing a strategy to determine when a

tariff is to be published or revoked could lead to a creating a strong customer

base for the broker.

• Tariff to revoke selection: another related issue is to select which tariff has to

be revoked. A naive strategy might be to revoke, among the broker’s tariffs

portfolio, the tariff with the lowest profit. However other strategies might lead

to keep tariffs that may not yield large profits short after being published, but

would pay out on the long term.
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• Learning procedure: this thesis used Q-Learning as the RL method to de-

termine the action to be executed at each evaluation period. A drawback of

this method is that it requires several iterations, to acquire enough knowledge

about the environment, before it can actually be profitable for the learning

broker. This can lead to enormous losses if the learning process occurs on-

line. An alternative to this is to learn offline and then applied the acquired

knowledge against real competitors. By doing this, a trade is done between

learning and adaptability. If the learning process is done offline with a given

set of competitors, and then tested online; this testing process has to include

the same set of competitors to be effective. If the competitor set is different,

the acquired learning may not be very effective. This scenario is not far away

from reality, where the algorithms to generate tariffs or the brokers generating

the competitors tariffs are not known during the training process, but until a

competition is set. For this reason, it might be useful to experiment with other

learning algorithms which can learn faster at a lower cost.



Appendix A

Details of the Analysis on

Rationality Parameter Lambda

As stated on Sec.2.4.3 the parameter λ determines the customer’s rationality. Cus-

tomers evaluate a tariff’s Ta utility by comparing it with the utility of a reference

tariff Tr. Assuming flat tariffs, as the price of Ta moves away from that of Tr, the

utility of the evaluated tariff increases. However, the rationality parameter has the

power to influence on this perception. If the rationality is high, even a small differ-

ence between the price of Ta and Tr will consistently yield a high utility (let us call it

Ua) for Ta. If the rationality decreases, then a larger difference D between the prices

will be required to achieve the same value of Ta. If the price difference is less than D,

customers will not be able to tell any difference between such tariffs and therefore

will choose randomly between them. This is important because it means that on

highly rational markets, it is possible to obtain greater utilities by charging higher

prices, as long as these prices are slightly below the reference price for consumption

tariffs, and slightly above the reference price for production tariffs. On markets with

a low or average rationality (as the one modeled by Power TAC) the most attractive

tariff prices will not be as close to that of Tr, making it harder to determine the

correct ones.

In order to explore the rationality parameter λ some experiments were con-
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ducted. The experiments included a series of simulations where a consumption and

a production tariff were published at the beginning, and then left unchanged un-

til the simulation ended. The accumulated utility was observed at fixed intervals

within each simulation, then it was recorded and reseted. At the end of each sim-

ulation the average, and its corresponding standard deviation, was calculated from

the observation recordings.

Several pairs of prices were published in the same way: publishing them at

the beginning and keeping them unchanged, measuring the average and standard

deviation of the recorded accumulated utilities, until another pair was tested. The

first set of experiments were conducted with λ = 5. Then, a second set of experiments

was conducted with identical production/consumption pairs, but now with λ = 1000.

According to Sec. 2.4.3 we expected to obtain consistently a greater profit on the

experiments with the larger λ, compared with those tested with the lower λ. The

recorded standard deviation allowed us to measure how consistent this lower or

higher profits were. Figures A.1 and A.2 show the results of this series of experiments.

The specific settings of the experiment are described as follows.

Two brokers were instantiated to compete over 34 different simulations, each

with a length of 3,000 timeslots. From this set, 26 of experiments were tested

with a low value for λ and 8 of them were tested with a high value for λ. The

brokers published a pair of initial tariffs, one consumption tariff and one production

tariff. After publishing these two fixed-rate tariffs, they were not changed until the

simulation ended, following the process described in the previous paragraphs. One

of the brokers published the reference consumption and production tariffs with a

value of 0.5 and 0.015 respectively, while the other broker published the different

combinations of production and consumption tariffs, as described by Table A.1. The

accumulated utility was measured at the end of 40 timeslot intervals.

In Table A.1 the consumption prices are the columns and the production prices
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are rows. At each row-column interception there is either an x, which indicates that

an experiment was conducted with that combination of production and consump-

tion prices, or a blank space. Blank spaces indicate that there was no experiment

conducted with that combination.

P/C 0.500 0.425 0.350 0.275 0.240 0.165 0.090 0.015

0.240 x x x x x

0.165 x x x x x x

0.090 x x x x x x x

0.015 x x x x x x x x

Table A.1: Consumption and production prices combinations.

The plots on figures A.1 and A.2 show the results obtained with these experi-

ments. Figure A.1 shows the average of the accumulated utilities as observed at the

end of each 40-timeslot evaluation periods. The horizontal axis shows the consump-

tion prices, and the series on the box show the production prices. The corresponding

standard deviation for each of the experiments is plotted on figure A.2. The exper-

iments with the λ = 5 (low rationality) are plotted with the continuous lines, and

the experiments with λ = 1000 (high rationality) are plotted with the dotted line.

Lambda Experiments Analysis

The experiments showed that, with λ = 5 (continuous plots), the highest utilities are

reached when the consumption price is around 0.275, regardless of the production

price. As the consumption price increases towards 0.5, the average utility is reduced

and the standard deviation peaks. The high standard deviation values near the

reference consumption price at 0.5 indicate that customers do not always assign a

high utility to tariffs around this area, regardless of the associated production price.

When the rationality is high (dotted plots), the utility reaches a peak when the
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Figure A.1: Customer’s rationality effect on broker’s utility

Figure A.2: Standard deviation values for each of the conducted experiments.

consumption price is around 0.450, while the standard deviation reaches a maximum

around 0.275 and then keeps constant towards 0.500. This effect matches what was

expected at the beginning of this section: on a highly rational market, a broker

will have higher utilities by publishing expensive consumption tariffs and cheap

production tariffs.



Appendix B

Example of Data Book Keeping

COLD broker’s maintains a file with log containing relevant information. This infor-

mation is stored in a file called States. This file stores the data on various columns.

Each register includes information about the timeslot, the published consumption

and production prices, the action performed, the MDP state and the reward ob-

tained.

Table B.1 shows an example of the previously mentioned log. The first column

indicates the timeslot when the decision was taken, columns 2 to 5 show the price

top and bottom values, columns 6 to 9 show the values that determine the market

state, column 7 shows the action performed and column 8 shows the utility achieved.

So, for instance at timeslot 479 in Table B.1, an action bottom was executed, which

generated an utility of 135,251 and set the market state to RaShNeOu on timeslot

519.

77
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t Pmax
t,C Pmin

t,C Pmax
t,P Pmin

t,P PRSt PSt CPSt PPSt Action Utility

399 0.5000 0.1311 0.0508 0.0150 Ra Sh Fa Ve ma 153,027

439 0.5000 0.1020 0.0798 0.0150 Ra Sh Ou Fa ma 164,785

479 0.5000 0.1020 0.0798 0.0150 Ra Sh Ou Fa bo 135,251

519 0.5000 0.1020 0.0798 0.0150 Ra Sh Ne Ou bo 203,226

559 0.5000 0.1020 0.0798 0.0150 Ra Sh Ne Ou in 174,601

599 0.5000 0.1020 0.0798 0.0150 Ra Sh Fa Ou in 176,479

639 0.5000 0.1020 0.0798 0.0150 Ra Sh Fa Ou bo 220,555

679 0.5000 0.1020 0.0798 0.0150 Ra Sh Ne Ou bo 192,274

719 0.5000 0.1020 0.0798 0.0150 Ra Sh Ne Ou bo 180,977

760 0.5000 0.1020 0.0798 0.0150 Ra Sh Ne Ou bo 180,551

Table B.1: An example on how COLD broker keeps a record of its published prices and

utilities.
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Glossary

broker a trading agent who offers electic tariffs to either consumers or producers,

with the purpose of obtaining a profit. 2

customer a market entity who is suscribed to one or more broker’r tariffs and either

consumes or produces energy. 4

decission step is the instant where the broker evaluates the available information

about the market state and chooses an action. 43

electricity commodity is a marketable item produced to satisfy wants or needs. Elec-

tricity has the particular characteristic that it is usually uneconomical to store;

hence, electricity must be consumed as soon as it is produced. 6

evaluation period see decission step. 43

imbalance the difference between the energy sold and acquired by a broker. 18

Power TAC is an open source smartgrid simulation platform developed on Java. 19

regulated distribution utility a centralized entity which owns the distribution lines

and is in charge of regulating and applying charges to brokers incurring on

inbalance. 18
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retail markets the market where the tariff contracts are traded. The main char-

acteristic of this market is that there is a large volume of transactions, each

trading small amounts of energy. 18

risk premium the return in excess of the risk-free rate of return that an investment

is expected to yield . 6

smartgrid is a modernized grid that enables bidirectional flows of energy and uses

two-way communication and control capabilities that will lead to an array of

new functionalities and applications. 1

tariff is an agreemen which grant customers, either producers or consumers, the

right to trade with a broker certain amount of energy under . 20

tariff contracts see tariff. 18

wholesale market the market where brokers can sell and acquire energy in large

volumes. The main characteristic of this market is that there is a low volume

of transactions, each with trading large amounts of energy. 18
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