
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 

 
 
 

 

Automated Method 
to Assist Breast 

Cancer Diagnosis 
 
 
 
 

by 
 
 

Jonathan Hernández Capistrán 
 

 
 
 
 

Dissertation 

Submitted to the Department of Electronics 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Science 
 

 
 

Doctor of Science in Electronics  
 

 
 
 
 

at the 
 

 

National Institute for Astrophysics, Optics and Electronics 
December 2019 

Tonantzintla, Puebla, México 
 

 
 
 

Supervised by 
 

 
 

Jorge Francisco Martínez Carballido, Ph. D. 
 
 
 
 
 
 

©INAOE 2019 
All rights reserved 

The author hereby grants to INAOE permission to reproduce 

and to distribute copies of this thesis document in whole or in part 



i 

 

Breast cancer is the top cause of deaths by cancer in women worldwide. Methods for 

early detection of breast cancer are of great help to improve prognosis of patients, 

providing less aggressive treatment, and better time/cost performance. Stage 0 of can-

cer, also known as pre-cancer, is not palpable and is only detected by screening mam-

mogram examination. Therefore, the detection of cancer in this stage is desirable. This 

stage is characterized by lesions, known as micro-calcifications (MCs), the first clini-

cally observable lesions, indicating such disease. Their typical size is less or equal to 1 

mm, that is why it is difficult to be detected by an expert. In recent years, different 

methods, for micro-calcification detection on mammograms (X-ray images from the 

breast), have been proposed; however, the issue is still open to reach acceptable levels 

of detection rate and false alarm rate, preventing its use as a pre-diagnostic tool.  

This work analyzes and proposes a new and simple system for detection of MCs, 

based on the use of the two most used public mammogram data sets, MIAS and DDSM. 

We first, analyze how an expert detects MCs in an image and which are its distinctive 

characteristics; such as intensity values of the surrounding tissue and the prominent 

peak in a MC. Therefore, a classification according to their local surroundings: obvi-

ous, subtle and clusters. Additionally, a new MC detection method based on (1) mor-

phologic segmentation for detection of regions of interest (ROIs), (2) extraction of few 

and effective attributes from candidates to MCs, and (3) one classification stage with 

two different classifiers, k Nearest Neighbor (kNN) and Support Vector Machine 

(SVM). For dense mammograms in MIAS database with a sensitivity of 0.9752, false 

alarm rate of 0, accuracy of 0.9876, and 0.9951 for area under the ROC curve using 

SVM, for a classifier. The proposed MC detection method achieves sensitivity, false 

positive rate, accuracy and area under the ROC curve of 0.9664, 0.0224, 0.9683 and 

0.9934 for the MIAS data set; and 0.9386, 0.0526, 0.9664 and 0.9742 for the DDSM 

data set. The proposed method gives better results than those from state-of-the-art 
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literature, when the mammograms are classified in fatty, fatty-glandular, and dense. 

Methods, that report results for dense mammograms, have poor performance; however, 

the presented method shows the best performance for dense mammograms.  
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El cáncer de mama es la principal causa de muerte por cáncer en mujeres de todo el 

mundo. Los métodos para la detección temprana del cáncer de seno son de gran ayuda 

para mejorar el pronóstico de las pacientes, ya que proporcionan un tratamiento menos 

agresivo y un mejor desempeño en tiempo- costo. La etapa 0 del cáncer, también co-

nocida como pre-cáncer, no es palpable y solo se detecta mediante un examen de ma-

mografía. Por lo tanto, la detección de cáncer en esta etapa es deseable. Esta etapa se 

caracteriza por lesiones, conocidas como microcalcificaciones (MC), las primeras le-

siones clínicamente observables, que indican dicha enfermedad. Su tamaño típico es 

menor o igual a 1 mm, por eso es difícil que un experto lo detecte. En los últimos años, 

se han propuesto diferentes métodos para la detección de microcalcificaciones en ma-

mografías (imágenes de rayos X del seno); sin embargo, el problema aún está abierto 

para alcanzar niveles aceptables de tasa de detección y tasa de falsos positivos, evitando 

su uso como herramienta de diagnóstico previo. Este trabajo analiza y propone un sis-

tema nuevo y sencillo para la detección de MC, basado en el uso de los dos conjuntos 

de datos de mamografías públicas más utilizados, MIAS y DDSM. Primero, analiza-

mos cómo un experto detecta los MC en una imagen y cuáles son sus características 

distintivas; tales como los valores de intensidad del tejido circundante y el pico promi-

nente en un MC. Por lo tanto, una clasificación de acuerdo con su entorno local: obvio, 

sutil y agrupaciones. Además, un nuevo método de detección de MC basado en (1) 

segmentación morfológica para la detección de regiones de interés (ROI), (2) extrac-

ción de relevantes características de candidatos a MC, y (3) una etapa de clasificación 

con dos clasificadores kNN y SVM. Para mamografías densas en la base de datos 

MIAS con una sensibilidad de 0.9752, tasa de falsa alarma de 0, precisión de 0.9876 y 

0.9951 para el área bajo la curva ROC usando SVM, como clasificador. El método de 

detección de MC propuesto logra sensibilidad, tasa de falsos positivos, precisión y área 

bajo la curva ROC de 0.9664, 0.0224, 0.9683 y 0.9934 para el conjunto de datos MIAS; 

y 0.9386, 0.0526, 0.9664 y 0.9742 para el conjunto de datos DDSM. El método pro-

puesto ofrece mejores resultados que los de la literatura actual, cuando las mamografías 
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se clasifican en grasosas, glandulares grasosas y densas. Los métodos, que informan 

resultados de mamografías densas, tienen bajo rendimiento; sin embargo, el método 

presentado muestra el mejor rendimiento para mamografías densas. 

 

 

 

 

 

 

 

 

 



v 

 

Agradezco a Dios en primer lugar por ayudarme en todo y nunca fallarme. “Jehová 

es mi fortaleza y mi cántico, Y ha sido mi salvación. Este es mi Dios, y lo alabaré; Dios 

de mi padre, y lo enalteceré.” Éxodo 15:2 

Agradezco a mi esposa, por apoyarme en esta hermosa etapa de mi vida y superar 

las dificultades junto a nuestro Dios. 

Agradezco a mis padres por haberme enseñado todo, tanto científico, emocional y 

espiritual para cumplir esta meta. 

Agradezco a mi hermano por ayudarme y darme ánimos para seguir adelante. 

Un agradecimiento especial a mi director de tesis Jorge Martínez Carballido por ser 

mi mentor, guía y consejero. 

Agradezco también al CONACYT por la beca doctoral con cvu 414681. 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

 

 

 

 

 

 

 

Esta investigación fue realizada gracias al apoyo parcial del Consejo de Ciencia y 

Tecnología del Estado de Puebla. 

 



vii 

 

 

“Y a todo lo creado que está en el cielo, 

 y sobre la tierra, y debajo de la tierra, 

 y en el mar, y a todas las cosas que 

 en ellos hay, oí decir: Al que está 

 sentado en el trono, y al Cordero,  

sea la alabanza, la honra, la gloria y  

el poder, por los siglos de los siglos.”  

Apocalipsis 5:13 

 

 

 



viii 

 

Abstract  .......................................................................................................... i 

Resumen  ........................................................................................................ iii 

Agradecimientos ...................................................................................................... v 

Dedicatoria  ....................................................................................................... vii 

Contents  ...................................................................................................... viii 

List of Figure  ......................................................................................................... x 

List of Tables  ....................................................................................................... xii 

Introduction  ......................................................................................................... 1 

1.1 Background ................................................................................................. 1 

1.2 State of Art .................................................................................................. 5 

1.3 k Nearest Neighbor (kNN) classifier ........................................................ 10 

1.4 Support Vector Machine (SVM) classifier ............................................... 10 

1.5 Summary ................................................................................................... 10 

Methods  ....................................................................................................... 12 

2.1 Problem Statement .................................................................................... 12 

2.2 Dissertation Goals ..................................................................................... 17 

2.2.1 General Goal ...................................................................................... 17 

2.2.2 Specific Goals .................................................................................... 17 

2.2.3 Dissertation Contribution and Organization ...................................... 17 

2.3 Material and Methods ............................................................................... 17 

2.3.1 Mammogram data sets ....................................................................... 17 

2.4 Microcalcification Segmentation .............................................................. 23 



ix 

 

2.5 Microcalcification modelling and classification ....................................... 28 

2.6 Extraction of micro-calcifications candidates from abnormality clusters 29 

2.7 Summary ................................................................................................... 39 

Results  ....................................................................................................... 40 

3.1 Microcalcification segmentation results ................................................... 40 

3.2 Microcalcification model for detection..................................................... 40 

Conclusion and future work ................................................................................. 48 

4.1 Discussion ................................................................................................. 48 

4.2 Conclusion ................................................................................................ 49 

4.3 Future Work .............................................................................................. 51 

4.4 Contributions ............................................................................................ 51 

References  ....................................................................................................... 53 

Appendix A  ....................................................................................................... 66 

Appendix B  ....................................................................................................... 67 

  



x 

 

Figure 1. Common process in a mammography test, and delivery time per test type. . 1 

Figure 2. a) Craniocaudal and b) mediolateral oblique views. Under each view is 

shown how the images are taken [8]. ............................................................................ 2 

Figure 3. Breast Cancer Staging measures the spread of the disease upon diagnosis. 

[15] ................................................................................................................................ 4 

Figure 4. Most common breast cancer types.[18] ......................................................... 5 

Figure 5. Principal areas of breast cancer research. At the right of the figure shows the 

process that a specialized medic performs (Screening and Diagnosis). ....................... 6 

Figure 6. The two most common breast cancer screening programme....................... 14 

Figure 7. Human error in the analysis of a mammogram ........................................... 15 

Figure 8. Proposed and actual screening process. ....................................................... 16 

Figure 9. Principal regions from a mammography ..................................................... 20 

Figure 10.General pre-process for breast extraction ................................................... 21 

Figure 11.  Digital mammogram, from the MIAS data set, with one cluster of micro-

calcifications. .............................................................................................................. 22 

Figure 12.- Breast density variety [74] ....................................................................... 24 

Figure 13. Classification of MCs according to their surrounding tissues; a) Subtle, b) 

obvious and c) Cluster type. ........................................................................................ 24 

Figure 14. Examples for some Weber contrast values of a) subtle b) normal and c) 

obvious groups. ........................................................................................................... 26 

Figure 15. General process in the Microcalcifications segmentation ......................... 27 

Figure 16. Different stages for detection of micro-calcifications, segmentation, 

binarization, feature extraction, and classification ...................................................... 29 

Figure 17. Three-dimensional visualization of one micro-calcification on a digital 

mammogram. .............................................................................................................. 35 



xi 

 

Figure 18. Region of interest (left part) along with the corresponding mask of three 

surface levels (right part). Overlapping the ROI and the mask allows the extraction of 

information from different surface levels for sub-sequent feature extraction............. 36 

Figure 19. General process to detect and classify a MC ............................................. 38 

Figure 20.  ROC (TPR vs. FPR) obtained by testing the method with the SVM 

classifier on three different data sets, MIAS (red curve), DDSM (blue curve), and the 

combination of both data sets (orange curve). ............................................................ 43 

Figure 21.  ROC (TPR vs. FPR) obtained by testing the method with the kNN 

classifier on three different data sets, MIAS (red curve), DDSM (blue curve), and the 

combination of both data sets (orange curve). ............................................................ 43 

Figure 22. ROC (TPR vs. FPR) obtained by testing the method with the SVM 

classifier on the MIAS data set for each density group, fatty (purple curve), fatty-

glandular (blue curve), and dense (green curve). ........................................................ 44 

Figure 23. ROC (TPR vs. FPR) obtained by testing the method with the kNN 

classifier on the MIAS data set for each density group, fatty (red curve), fatty-

glandular (green curve), and dense (black curve). ...................................................... 44 



xii 

 

Table 1. Relevant papers and their principal characteristics ......................................... 9 

Table 2. Number of radiologist and mammography units in five different countries. 12 

Table 3. Description of MIAS data set in terms of breast density. ............................. 18 

Table 4. Description of DDSM data set in terms of abnormality. .............................. 19 

Table 5. General algorithm for extraction of ROIs from ground truth images. .......... 23 

Table 6. Range of values for weber contrast measures of different groups ................ 25 

Table 7. Random generation of a set of n micro-calcification candidates from the set 

of normal images without abnormality clusters identified by the radiologist. ............ 29 

Table 8. State of the art Comparison diversity ............................................................ 34 

Table 9. Total result accordance to category and techniques ...................................... 40 

Table 10. Performance of different methods for detection of micro-calcifications. ... 45 

Table 11. Comparison with our proposed method and the two-best result in literature

 ..................................................................................................................................... 49 

 

 

 

 

 

 

 



1 

 

1.1 Background 

 In 2018, there was 2,093,876 (11.6 % of the total of global new cancer cases) of new 

cases of breast cancer, causing 1,761,007 number of deaths [1].  

Numerous experiments have established that an early detection of breast cancer eases 

the treatment, reducing risks, as well as the mortality percentage in 25% [2]. For early 

detection, mammography is an imaging tool with high sensitivity and it is the most 

recommended by the guidelines of the World Health Organization  [3] [4]. 

There are two principal tests performed by a specialized radiologist, screening and 

diagnostic mammograms  [5]. Screening mammogram is used in women who have no 

symptoms; this has the purpose to be widespread for early diagnosis; meanwhile diag-

nostic mammograms is used when some breast lesion or a change is seen on a screening 

mammogram. In USA, a mammogram take per breast is completed in 15 minutes [6]; 

a screening type exam takes from one to two hours interpreting the mammogram by a 

technician and 5 to 7 days to get the final results by radiologist [7], Figure 1. This 

delivery time is mainly because radiologists specialized in the analysis of mammogra-

phy are fewer compared with the number of mammograms to analyze. 

Delivery time of results:
• USA: 5 to 7 days
• Mexico: 15 to 30 

days

Delivery time of results:
• USA: Up to 1 month
• Mexico: Up to 4 

months

 

Figure 1. Common process in a mammography test, and delivery time per test type. 
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Standard views are performed on screening mammograms and it consist of 4 views. 

The two views for each breast are shown in Figure 2: (a) craniocaudal and (b) medi-

olateral oblique; these projections are not orthogonal [8]. For screening purposes, the 

mediolateral oblique is used. Craniocaudal views are used to confirm when in doubt on 

some lesions detected for the screening process. 

  

  

Figure 2. a) Craniocaudal and b) mediolateral oblique views. Under each view is shown 

how the images are taken [8]. 

At the late 1980’s with the introduction of magnification views [9] the detection of 

microcalcification was possible even when the invention of mammography was in the 

late 1950s. It was until 1992 that the Breast Imaging Reporting and Data System was 

created. Therefore, the detection of microcalcification in a mammogram is a relatively 

new area. 

The public database most used is mini-MIAS [10], it was published on 1994 and by 

popular request, the original MIAS Database (digitized at 50 micron pixel edge) was 

reduced to 200 micron pixel edge and clipped/padded so that every image is 1024 × 

1024 pixels. The second most used database is DDSM [11] was published in 2001 using 

scanners with different resolution between 42 micron to 50 microns. Both of this data-

base are digitized, this type of database is known as Screen Film Mammography 
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(SFM). In 2000 the Food and Drug Administration approved the first digital mammog-

raphy (DM) know as full-field digital mammography. DM images are mostly used 

combined with computer-aided detection (CAD); which is a method that analyzes the 

mammographic images for suspicious areas and considered a second reader. The 

American College of Radiology (ACR) says that CAD systems, when used for screen-

ing, can be a valuable procedure in the early detection of breast cancer [12]. The major 

difference between these two types of database is that SFM are images that are acquired 

on x-ray film, and then digitized. Whereas, DM is a mammography system in which 

the X-ray film is replaced by solid-state detectors that convert X-rays into electrical 

signals, improving resolution and contrast making it easier to view small lesion on high 

density breast. An example of this type of database is the INbreast [13] with a solid-

state detector of amorphous selenium, pixel size of 70 (microns), and 14-bit contrast 

resolution. 

To diagnose how far the cancer has been spread there is a process called staging. The 

stage of a cancer describes how much cancer is in the body. It also helps to determine 

how aggressive the cancer is and how to treat it. Cancer stages are often using as a 

survival statistic. Stage-0, also known as pre-cancer, it means that not spread beyond 

where it started to other parts of the breast or other organs. This stage does not usually 

cause symptoms and is not palpable. Usually, its discovered while carrying out an im-

aging test as mammograms. As well, it is the earliest stage of breast cancer. Stage zero 

(stage 0) breast cancer is also known as carcinoma in situ. According to the American 

Cancer Society, people with a type of breast cancer that has not spread beyond the 

breast tissue have a 5-year survival rate of 99%. This survival rate means that 99% of 

women with stage 0 breast cancer live at least 5 years after diagnosis. [14], as is shown 

in Figure 3. 
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Figure 3. Breast Cancer Staging measures the spread of the disease upon diagnosis. [15] 

Breast cancer originates in the epithelial cells that lie at the lobules and ducts; and 

under normal conditions these epithelial cells are responsible for making milk [16]. 

When there is a malignant change in these cells, carcinoma or cancer happens. The 

types of breast cancer are defined based on the type of tissue and on where the cancer 

begins. Invasive Ductal Carcinoma (IDC) is the most common type of breast cancer 

detected where invasive means that the cancer has spread to the surrounding breast 

tissues and ductal means that the carcinoma began in the ducts. IDC. Is the most com-

mon cancer detected because most women get a mammogram at a late stage. At Stage-

0 the cancer cells are confined to a very limited area. This stage includes noninvasive 

breast cancer lobular carcinoma in situ (LCIS) and ductal carcinoma in situ (DCIS), 

this is usually found by mammography, as old cancer cells die, tiny specks of calcium, 

called micro-calcifications (MC), form within the broken-down cells. The mammo-

gram shows the cancer cells inside the ducts as individual or cluster of these micro-

calcifications (MCs), which appear either as white specks or as a shadow [17]. Even 

though Stage-0 breast cancer is considered “non-invasive,” it does require immediate 

treatment, typically surgery or radiation, or a combination of both. Chemotherapy is 

usually not part of the treatment regimen for earlier stages of cancer. The most common 

types of breast cancer and, the percentages of appearance are shown in the Figure 4. 
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Figure 4. Most common breast cancer types.[18] 

Breast microcalcification are lesions whose diameter is inferior to 1 mm. Also, ma-

lignant MCs are typically less than 0.5 mm and, according to [19], mammographs with 

resolution of 50 μm  or better can be used to detect MCs, without magnification, of size 

around 500 μm. 

1.2  State of Art 

In what follows a review of state of the art in relevant and related work to this proposal. 

Research about breast cancer based on mammography images has three stages; pre-

processing, segmenting and classifying. These areas are shown in Figure 5. In the pre-

processing stage, has four areas; breast segmentation, pectoral segmentation, density 

analysis and mammogram enhancement. The objective in breast and pectoral segmen-

tation is to eliminate, from SFM images, any object or artifact that is no part of the 

breast such as labels, markers, scratches and even adhesive tape [20]. State of the art 

research has proposed many algorithms such as: as Margin Setting Algorithm (MSA) 

[21], active contours [22], fuzzy logic [23], [24], thresholding algorithms [25]. texture 

analysis [26], morphological operations [27], line detection [28], [29], wavelet trans-

form [30], global an local threshold [31], [32].  
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Figure 5. Principal areas of breast cancer research. At the right of the figure shows the pro-

cess that a specialized medic performs (Screening and Diagnosis). 

For segmentation stage, there are two types of detections: microcalcifications and 

masses. Several algorithms to detect these lesions have been using methods such as: 

multilevel thresholding [33], deep learning [34], fuzzy logic [35], texture analysis [35], 

cellular neural network [36], [37], wavelet [38] Gabor [37] feature extraction [39] and 

others. However, in several reported research work, start with sub-images of the mam-

mogram and then use them to detect the lesions for the given region of the full image. 

It is not clear, but one could assume that the sub-images are manually segmented and 

with a specified method. 

Published work uses publicly available data sets along with ground truth (GT) to test 

their proposed methods for comparison purposes as MIAS and DDSM. Some research-

ers have used private data sets [40] [41], provided by a collaborating hospital.  

In 2014, one method is proposed [42] where segmentation is obtained by using a 

LoG filter, followed by a clustering method, based on Fuzzy C-means with Features 

(FCM-WF). It was tested on simulated clusters of micro-calcifications, implying that 

the location of the cluster, within the breast, and the exact number of micro-calcifica-

tions are known. This method uses the MIAS and a private data set. The method is 

tested in 20 images where all of them contain micro-calcifications. In the same year, a 

second method is presented [43]. It is divided in a three-step process beginning with 

Breast Segmentation
Pectoral 

Segmentation
Density Analysis

Microcalcifications Masses

Mammograms 
Registration

Classification of 
lesions

Pre-processing

Diagnosis

Screening

Enhancement

Segmenting

Classifying
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enhancement by Histogram equalization (HE) and Morphological Enhancement, fol-

lowed by segmentation, based on Otsu’s threshold, of the region of interest for identi-

fication of micro calcifications and mass lesions, and the last stage classifies between 

normal and micro-calcifications and then it discriminates between benign and malig-

nant micro calcifications. In the classification stage, three methods were used, the vot-

ing K-Nearest Neighbor classifier (K-NN), Support Vector Machine classifier (SVM) 

and Artificial Neural Network classifier (ANN). The method is tested with 181 images 

out of 322 images from the MIAS data set. A third method was proposed in the same 

year [44]. It divided into two main sections, detection of potential MCs region (PMR) 

and PMR classification to true and false positive regions using wavelet decomposition 

transform. Experiments were performed on 50 out of 322 MIAS images and 140 

DDSM images. 

In 2015, one proposed method [45] consists of three stages, where (1) pre-processing 

is applied for ROI detection and image improvement using Non-Subsampled Contour-

let Transform (NSCT) and Super Resolution (SR); (2) several image features are ex-

tracted, and skewness of each feature is calculated; and (3) an AdaBoost algorithm is 

used for classification and to determine the probability of benign and malign disease. 

This method uses 288 out of 322 MIAS images. In the same year, there is a method 

[46], where the topology/connectivity of individual micro-calcifications is analyzed 

within a cluster using multiscale morphology; a set of micro-calcification graphs is 

generated to represent the topological structure of micro-calcification clusters at differ-

ent scales; and graph theoretical features are extracted, which constitute the topological 

feature space for modeling and classifying micro-calcification clusters. The k nearest 

neighbor classifier is employed for classifying micro-calcification clusters. The method 

works with 20 micro-calcifications from the MIAS data set where 9 are classified as 

malignant and 11 as benign. It also works with 25 micro-calcifications from the DDSM 

data sets with 14 of them classified as malignant and 11 as benign. A third method is 

proposed in 2015 [47], where the micro-calcification segmentation method is based on 
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the geodesic active contours (GAC) technique associated with anisotropic texture fil-

tering. This method employs 158 out of 540 DDSM images. 

In 2016, a proposed method [41] removes label and pectoral muscle adopting the 

largest connected region marking and region growing method; then, it enhances MCs 

using a combination of double top-hat transform and grayscale-adjustment function; 

then, it removes noise and other interference information and retains significant infor-

mation by modifying the contourlet coefficients using nonlinear function; finally, it 

uses a non-linking simplified pulse-coupled neural network to detect MCs. The method 

analyzes 23 MIAS digital mammograms containing MCs (7 glandular, 10 dense, and 6 

fatty) and 50 mammograms without MCs (15 Glandular, 20 Dense, 15 Fatty). A second 

method [48] uses the location of micro-calcifications as well as topological information 

(connectivity) of these micro-calcifications and individual approaches (location or to-

pology). For the topology aspects, there is extraction of regions of interest which con-

tain micro-calcification clusters. Subsequently, morphology is used to grow detected 

micro-calcification and extract their connectivity over a number of scales, which gen-

erates a topology feature vector. Classification is based on a k nearest neighbor classi-

fier. For location aspects, full mammograms and the cluster locations are used to gen-

erate probabilistic maps where the feature space contains relative locations within these 

maps, which are fed into an appropriate learning machine. As a final step, features from 

both, topology and location information, are combined to form an overall feature vector 

which can be used as the basis for classification. This method is applied to 20 512 × 

512-pixel ROIs from MIAS data set and to 134 malignant MCs and 146 benign MCs 

from the DDSM data set. 

In one paper [48], from 2017, a hidden Markov tree model of dual-tree complex 

wavelet transform is applied for micro-calcification diagnosis. The correlation between 

different wavelet coefficient is captured. The system is applied to 26 MIAS ROIs with 

12 benign and 14 malignant and to 150 DDSM ROIs with 82 of them benign and 68 

malignant. In a second approach [49], from 2017, structured microcalcifications on an 

abnormal mammogram are detected, based on multiscale products of eigenvalues of 
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the Hessian matrix. The detected image contains calcifications along with background 

information. To eliminate the unnecessary background information, the response 

image, coming out from Hessian matrix approach, is passed to a thresholding technique 

such as a probability density function based Tsallis entropy, in which potential micro-

calcifications are segmented efficiently. The method is applied to 234 clusters (150 

normal and 84 abnormal), extracted from MIAS, USCF; and to clusters from the 

DDSM data set, with 27 abnormal and 18 normal. In Table 1 presents information from    

relevant papers. This table presents the database, number of images they use and which 

is the main pupose of the paper. Chaper 3 uses this table for comparision with the 

results of our proposed work. 

Table 1. Relevant papers and their principal characteristics 

 
Database Images Purpose 

[50] DDSM 158 out of 540 MC’s segmentation 

[45] MIAS 288 out of 322 
Masses and MC’s Segmented 

and classify 

[43] MIAS 181 out of 322 MC’s segmentation 

[42] MIAS and private 
20 out of 20 only 

MC’s images 
MC’s segmentation 

[44] DDSM, MIAS 

50 out of 322 

MIAS - 140 

DDSM 

MC’s segmentation 

[25] MIAS and private  MC’s segmentation 

[51] 
MIAS DDSM 

Combined 

50 out of 322 

MIAS - 197 

DDSM 

MC’s classification 

[52] MIAS  MC’s classification 
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1.3 k Nearest Neighbor (kNN) classifier 

 

The k nearest neighbor (kNN) is a non-linear classifier. To assign a class to an un-

known feature vector 𝒙 (extracted from a ROI), 𝑘 feature vectors, out of a set of 𝑁 

training feature vectors {𝒙𝑖;  𝑖 = 1, … , 𝑁}, are identified as the nearest neighbors to the 

unknown 𝒙. Each one of the k nearest neighbors, 𝒙𝑖, belongs to a corresponding class, 

𝒞𝑖, where the number of classes, for the application of detecting MCs, is two (normal 

and abnormal). Out of the 𝑘 nearest neighbors to 𝒙, the number of nearest neighbors, 

𝑘𝑖, that belong to class 𝒞𝑖 (𝑖 = 1, 2), are identified, where 𝑘 =  𝑘1 +  𝑘2. The class, 

assigned to 𝒙, is the one with the largest 𝑘𝑖. To avoid a tie between two classes, 𝑘 must 

be an odd number. For a deeper and broader treatment of  kNN the reader can consult 

[53].  

 

1.4 Support Vector Machine (SVM) classifier  

 

A support vector machine (SVM) is an optimal classifier which is geometrically rep-

resented by a separating hyperplane which is the furthest away from each class after 

training this classifier with labeled data (supervised learning). The SVM, used in this 

work, used a Gaussian Kernel function, with (1) one output node, which provides two 

possible outcomes, corresponding to two different classes (micro-calcification or ab-

normal region, normal region), and (2) four input nodes according to the size of the 

feature vector used. For a deeper and broader treatment of SVM the reader can consult 

[54].  

1.5 Summary 

This section mentioned the relevance of breast cancer worldwide. Typical processing 

time  for the mammography test and for an expert to carry out the screening process to 
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then proceed to the diagnosis. Also, the most important characteristics of mammograms 

and the main databases were presented. Then, the definition of a microcalcification and 

its main physical characteristics were briefly presented. Finally, the most relevant 

works related to the segmentation and/or detection for microcalcifications were men-

tioned. 

This dissertation is organized in four chapters: 1 introduction and previous relevant 

work about the topic; 2 problem statement, objectives, material and methods; 3 presents 

results and 4 presents conclusion, discussion and future work of this dissertation.  
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2.1 Problem Statement 

A 2014 OECD Mexico’s report mentions that there are 689 mammography units and 

that 6.1%, of those units, are mobile to reach locations where there are no hospitals or 

where its access is difficult [55]. This number of mammography units means that there 

are 11 mammography units per million women. Meanwhile, countries as Austria, USA, 

France and Italy have 100, 89, 87 and 86 mammography units per million women, 

respectively [56]. Furthermore, the number of radiologists is an important issue for 

detection of breast cancer. For example, Mexico has 124 radiologists with specialty in 

mammograms [57] and 18.28 million women between 40 to 69 years old, age recom-

mended to get a screening mammogram [58], [59]. Which means that there are close 

to seven radiologists, specialized in mammograms, per million women. The Table 2 

summary the data collected in five different countries. 

Table 2. Number of radiologist and mammography units in five different countries. 

 

 

Country 

Total num-

ber of mam-

mography 

units 

Mammography 

units per million 

women 

Total number 

of radiologists 

specialized in 

mammography 

Radiol-

ogist spe-

cialized in 

mammog-

raphy per 

million 

women 

Austria 420 100 150 36 

USA 13,552 89 NA NA 

France 2,700 87 NA NA 

Italy 2,560 86 1147 38 

Mexico 689 11 46 7 

 

In the U. S. A., a mammogram study is completed in 15 minutes [6], it takes from 

one to two hours to interpret the mammogram by a technician, and 5 to 7 days to get 

the final results by the radiologist [7] This delivery time is mainly because radiologists, 
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specialized in the analysis of mammography, are fewer compared with the number of 

mammograms to analyze.  

The problem to segments/locates microcalcifications has not yet been solved. This 

is mainly because of the size of microcalcification; and the fibro-glandular density of 

a given breast. Algorithms proposed in the state of art have not solved due to low res-

olution of the screen film mammography. Another problem is the variation of resolu-

tion causing to retrain and/or change significant parameters to detect MCs in different 

databases. Current approach has been to standardize resolution by decreasing size; thus, 

loosing resolution and possibly making impossible to detect the smallest MCs. From 

the state-of-the-art review there is no evidence that tests included enough MCs in a 

high-density breast since it is easily confused with the background, and in general do 

not specify if the test set included subtle MCs and how many.  

Micro-calcification lesions are difficult to detect by human vision because the size 

of micro-calcification and a trained human vision can distinguish 30 shades of gray 

with difficulty [60]. For this reason, the false positive rate of the radiologist is reported 

as 15% [45] and the false negative rate as 20 % [61].  

From medical point of view, when a CAD system is applied to detect lesions for 

screening is susceptible to errors, like false positive or false negative. In a review of 

CAD systems, their conclusion is that 50 out of 100,000 incremental cancer cases de-

tected from screened mammograms by CAD systems, but generate 970 per 100,000 

unnecessary biopsies this means an incremental recall of healthy women of 1190 per 

100,000 [62]. 

Computer-aided detection (CAD) for mammography is a helping tool that can accel-

erate reading and help increase diagnosis’ accuracy. 

There are various studies that revised the efficacy of CAD. CAD plus single reading 

usually shows an increase in sensitivity and/or cancer detection rate, meanwhile there 

is no significant difference when comparing with double reading by radiologists. Many 

studies also report an increase in recall rate when adding CAD [63]. 
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In a Breast Cancer screening programme there are two main possibilities. After the 

first reading use another blinded radiologist and the other possibility is use CAD for a 

second reading, as shown on Figure 6 

Also, in the acquisition of the image have been occupied different types of enhance-

ment algorithms. These algorithms are frequently included in the preprocessing stage.  

 

Figure 6. The two most common breast cancer screening programme 

Other challenges are the resolution of some screen films that are digitalized at 0.2 

mm per pixel. Hence, it is highly uncertain to say anything in areas of 2x2 or 3x3 pixels 

to detect microcalcification of size of 0.5 mm. Also, if the resolution changes, the train-

ing step must be performed again on works that use any kind of training.  

Until now it is estimated that 98%, of the reviewed state of art, test the CAD system 

with one or two public databases and 87% their test sets are sub-images manually ob-

tained by segmentation with no specified procedure. 

Given these, a proposed solution is to design an algorithm to screen mammograms 

with the following features: 

• Microcalcification segmentation/detection 
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• Directly uses resolution on and better or equal than 100 micron per pixel 

• Uses datasets of Digitized film screen, and Full field digital mammograms 

• Algorithm provides areas with high probability to have lesion and/or cluster 

of lesions 

The above characteristics should help reduce the 15% FPR [45] and the 18% FNR 

[64] by the radiologist, as well as their diagnostic time. As it is shown in the Figure 7. 

 

Figure 7. Human error in the analysis of a mammogram 

One possible way to solve this is imitating the process that a radiologist specialized 

in mammograms does. It means extracting the general features that he/she observes to 

identify a MC independently of the image source, resolution or mamma type.  

A  CAD algorithm will help the mammogram specialized radiologist to identify eas-

ier and faster these lesions, decreasing the workload per mammogram, and possibly 

improving his/her accuracy, by presenting only the regions of interest with possible 

MCs to be diagnosed by the radiologist, relieving them from the work to screen all the 

mammogram, and concentrated only on the areas that possibly contain MCs, as is show 

in Figure 8. 

Mammogram ROIs

Probably yes

MCs

Classification

Areas not 

detected

FNR 18%

False MCs

FPR

15%

Screening Diagnosis
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Figure 8. Proposed and actual screening process. 

For the aforementioned reasons the development of automatic systems for pre-diag-

nosis of breast cancer performs a quick assessment of a mammogram and to indicate if 

there is any type of micro-calcification that requires the intervention of a specialist. In 

addition, the algorithm of detection of micro-calcifications must be simple to facilitate 

its subsequent mass deployment. The simplification of early and preliminary diagnosis 

will be supported by algorithms with low computational resources. In addition, the 

number of radiologists, who are specialized in mammography, is much lower than the 

number of women with breast cancer. For these reasons, this work proposes an algo-

rithm, which detects micro-calcifications on digital/digitized mammograms based on 

morphologic processing, supervised learning and very small set of features. These ar-

guments encourage the implementation of devices for autonomous diagnostic that will 

help to reduce the number of women who attend a specialist without apparent breast 

cancer and, most importantly, to detect early risks of breast cancer by finding the pres-

ence of MCs on mammograms and encouraging patients to follow specialized treat-

ment that will give them best prognosis. 

 

 



17 

 

2.2 Dissertation Goals 

2.2.1  General Goal 

Design an algorithm that can detect isolated and clustered microcalcifications in di-

verse breast density, and different image resolution. The algorithm should be compet-

itive with state of art results. 

2.2.2 Specific Goals 

• Use natural characteristics of a microcalcification observed on a mammo-

gram image 

• Use at least two public databases of different resolution with ground-truth 

for testing 

• Flexible to breast density 

• Parameterized for mammograms with different resolution 

• Algorithm should consider cues given by mammography atlases 

2.2.3 Dissertation Contribution and Organization 

Expected contributions of this research work may be summarized in the following 

points: 

• Intensity model for microcalcifications 

• Application of a measure of contrast for MCs, by using Weber’s formula. 

• Results will be generalized for different: 

o Resolution 

o Breast density 

o Contrast values for obvious, regular, and subtle MCs. 

2.3 Material and Methods 

2.3.1 Mammogram data sets 

Two of the most popular public data sets in the scientific literature are used for this 

research, the Mammographic Image Analysis Society Digital Mammogram Database, 

also known as MIAS [17], and the Digital Database for Screening Mammography, 
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DDSM [18]. The first data set contains 322 medio–lateral (MLO) mammograms digit-

ized at a spatial resolution of 50 
𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
 and 8 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
. However, this database has been 

reduced 200 
𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
 and padded so that every image is 1024 X 1024 pixels, this reduced 

database is named mini-MIAS and is widely used. Images, from this data set, present 

two categories of abnormality, 207 normal images and 20 images with micro-calcifi-

cations. Images, with MCs, are characterized by defined areas on the Ground Truth 

(GT). There are three MIAS images with micro-calcifications, but without defined ar-

eas in the GT. Images with micro-calcifications are provided along with their corre-

sponding GT while normal images were not analyzed so that they do not have GTs. 

These two image categories are also sub-classified in terms of breast density type; fatty, 

fatty-glandular, and dense. The ground truth specifies information regarding Regions 

of Interest (ROIs) which are clusters with micro-calcifications. The set of 20 images, 

with specified ground truth, contains a total 25 regions of interest with micro-calcifi-

cation clusters or abnormality clusters. A ground truth cluster is identified by (1) a set 

of coordinates (𝑥, 𝑦) where each set of coordinates corresponds to the center of an 

abnormality cluster; and (2) a region radius (in pixels) which represents a circle en-

closing the abnormality. A complete description of the MIAS data set, based on breast 

density, is shown in Table 3.  

Table 3. Description of MIAS data set in terms of breast density. 

MIAS database 

 Fatty 
Fatty-glandu-

lar 
Dense 

To-

tal 

Number of images with clusters of microcal-

cification  
5 6 9 20 

Images with isolated microcalcifications 1 1 1 3 

Number of clusters in GT Images 5 6 14 25 

microcalcifications regions 50 97 121 268 

Images without microcalcification clusters 66 65 76 207 
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The DDSM data set was digitized by four different scanners, DBA M2100 Im-

ageClear (42 
𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
 and 16 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
), Howtek 960 (43.5 

𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
 and 12 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
), Lumisys 200 

Laser (50 
𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
and 12 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
), and Howtek MultiRad850 (43.5 

𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
and 12 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
). It is 

organized into cases and volumes. A case is a collection of images and information 

corresponding to one mammography exam for one patient. A volume is a collection of 

cases, collected for purposes of distribution ease. The data set has 2,620 cases available 

in 43 volumes from which there are 106 mammograms with micro-calcifications This 

database used the information related to this data set as shown Table 4. This Table does 

not contain the same type of detailed information as Table 3 because DDSM images in 

the database do not include breast density type. In this work we used the CBIS-DDSM 

(Curated Breast Imaging Subset of DDSM) is an updated and standardized version of 

the DDSM. The CBIS-DDSM collection includes a subset of the DDSM data selected 

and curated by a trained mammographer [65], [66]. The images have been decom-

pressed and converted to DICOM format. Updated ROI segmentation and bounding 

boxes, and pathologic diagnosis for training data are also included. For this case the 

GT is identified pixel level boundary of the lesion 

Table 4. Description of DDSM data set in terms of abnormality. 

DDSM 

 Abnormal Normal 

Images 29 20 

Microcalcifications 

regions 
114 114 
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Figure 9. Principal regions from a mammography 

A typical mammography has different parts, as shown in the Figure 9. As it can be 

observed in the figure it is necessary to remove the labels and the background in a 

preprocessing stage. It should be mentioned that there are two types of background, the 

background that is located next to the edge of the breast (on digitized mammograms 

regularly it is not completely black, there are exceptions like in database type FFDM) 

and the background that is located on the side of the pectoral muscle (the intensity value 

in this case is 0 ). Also, it can be observed that the background is blurred with the edge 

of the breast, making it difficult to define exactly the edge of the breast. This removal 

process is known as breast extraction. One of the regions that has taken relevance is 

the area of the pectoral muscle. This is because in a CAD, the existence of the pectoral 

muscle may mislead the diagnosis of cancer due to its high-level similarity to dense 

tissue breast. In addition, some other challenges due to manifestation of pectoral mus-

cle in the mammogram data include inaccurate estimation of the density level in the 

breast region. Regardless of improvement of imaging technology and algorithms, ac-

curate segmentation of the breast boundary and detection of the pectoral muscle are 

still challenging tasks. Obtaining its boundaries leads to useful information about the 
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position of the breast and its orientation as well as the general intensity of the gray 

levels in the image. These steps are shown in Figure 10 

Mammogram Breast Extraction

Removal of pectoral 
muscle 

 

Figure 10.General pre-process for breast extraction 

Extraction of abnormality clusters, from a GT image, is accomplished by a radiolo-

gist, who specifies (1) the image coordinates (𝑥, 𝑦) of the center of each abnormality 

cluster, and (2) an approximate radius, in pixels, of a circle enclosing an abnormality 

cluster, as it is shown in Figure 11. In the proposed approach, rather than enclosing an 

abnormality cluster by a circle (central part of Figure 11), a square is used (right part of 

Figure 11), given that the search for individual micro-calcifications is performed by a 

scanning process that takes place on a rectangular area.   
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Figure 11.  Digital mammogram, from the MIAS data set, with one cluster of micro-calcifica-

tions. 

 

The general algorithm, which is shown in Table 5, is applied to images from any data 

set, MIAS or DDSM, and from any density group, fatty, fatty-glandular, and dense. 

The input to the algorithm is a GT image, which contains squares, where each square 

encloses a micro-calcification cluster. Thus, the size of the enclosing square depends 

on the size of the enclosed micro-calcification cluster. Each enclosed cluster might 

consist of one or more micro-calcifications. The command, for extraction of an abnor-

mality cluster, is executed in the second line of the general algorithm, listed in Table 5. 

Each ROI or micro-calcification candidate, on the abnormality cluster, must be de-

tected and extracted individually (fourth line of the general algorithm, listed in Table 

5).  
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Table 5. General algorithm for extraction of ROIs from ground truth images. 

 

 

 

 

1 

2 

 

3 

4 

input : data set image with micro-calcification clusters 

output : set of image patches corresponding to micro-calci-

fication candidates 

 

Begin 

extraction of rectangular regions enclosing abnormality clus-

ters from ground truth image 

 for each cluster 

  extraction of image patch with a micro-calcification 

candidate 

 end 

End 

 

2.4 Microcalcification Segmentation 

In this work we focus on the detection of MCs as the means for early diagnosis. A 

simple method to segment an MC is the thresholding. This technique has been used by 

some works as, [67]–[72], at least on one stage of the process. However, all microcal-

cifications are not visually equal. This is due that the intensity of the tissue that sur-

rounds the MC could be from high to low compared with the intensity of MC. The 

breast tissue is categorized from mostly fatty tissue to extremely dense tissue with very 

little fat in Figure 12 shows samples for the 4 breast density types. In addition, for the 

first time in more than 20 years of regulating mammography facilities, the agency is 

proposing regulations that would help improve the quality of mammography. It is now 

a federal law develop breast density reporting language that must be included in patient 

letters and health provider reports [73] 
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Figure 12.- Breast density variety [74] 

Therefore, automatic segmentation of microcalcifications (MCs) can be a challeng-

ing task, mainly due to the high breast density (Extremely Dense and Scattered areas 

of fibro-glandular). A high-density breast area makes very challenging the observation 

of microcalcifications, given the low contrast of the MC area to the background. There-

fore, it is convenient to classify the type o microcalcification according to tissue that 

surrounds it. This research work first approached this by selecting a set of methods and 

comparing them in a set of cases that include different tissue densities. we identify 

three: subtle, obvious and cluster of MCs, as they are shown in Figure 13.  

 

a) 
 

b) 

 

c) 

Figure 13. Classification of MCs according to their surrounding tissues; a) Subtle, b) obvi-

ous and c) Cluster type. 

 

Extremely 
Dense
10%

Scattered 
areas of 

fibrogland
ular 

density
40%

Heterogen
eously 
dense
40%

fatty 
breast
10%
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To measure the different contrasts of obvious and subtle MC’s. There are several 

measures of contrast, one of the most common measure is the Weber contrast [75], that 

is defined as: 

𝐶𝑀 =
𝐼 − 𝐼𝑏

𝐼𝑏
 

Where 𝐼 is the intensity of the center pixel or the mean pixels of the foreground, and 

𝐼𝑏 the intensity of one pixel consider as the background or the mean of some pixels 

consider as the background. From the analysis of several microcalcifications the range 

of the values for subtle, normal and obvious groups was estimated. For the subtle-

group, the Weber contrast is under or equal to 0.1; normal MCs have an interval above 

0.1 but under or equal to 0.2 and for the obvious group values above 0.2. Table 6 sum-

marizes the contrast level range for this particular measure. 

 A sample of some microcalcifications for each group and the respective Weber con-

trast values, are shown in Figure 14. As can be seen in this image the MCs that are 

visible, have 𝐶𝑀 values above 0.1, that means MCs classify as normal or obvious. In 

the other hand, when the MC is not visible, as in Figure 14 a), the 𝐶𝑀 is under or equal 

to 0.1. 

Table 6. Range of values for weber contrast measures of different groups 

Type MC 𝐂𝐌 

Subtle ≤0.1 

Normal 0.1< CM ≤0.2 

Obvious >0.2 
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a) 

 

b) 

 

c) 

Figure 14. Examples for some Weber contrast values of a) subtle b) normal and c) obvious 

groups. 

 

From a literature review [76] [77] the most commonly used thresholding algorithms 

are proposed by [78], [79], [80], [81], these threshold methods are Intermodes, Kittler 

and Illingworth, Entropy and Otsu respectively.  

As part of the research work, a review was published on a paper in 13th International 

Conference on Electrical Engineering, Computing Science and Automatic Control 

(CCE), Mexico, City, 2016, Mexico named “Thresholding Methods Review for Micro-

calcifications Segmentation on Mammography Images in Obvious, Subtle, and Cluster 

Categories” [82]. This paper compares four commonly used thresholding techniques 

to segment mammography images sections divided in three groups: obvious, subtle and 

clusters; due to their microcalcification context. The purpose of this paper it is to show 

which technique has a better performance for mammography images.  
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Figure 15. General process in the Microcalcifications segmentation 

Figure 15 shows the general process used for the segmentation of MCs. That is, from 

an image patch, defined in detail in the corresponding paper, different threshold values 

are generated using the 4 methods. Also, Figure 15 shows the histograms of each image 

and their corresponding threshold points for each method. Then, a comparative analysis 

is performed to decide how many MCs were detected for each method. In a special 

case, here the Otsu method is compared because it is the most used in the literature, 

and the entropy method, that gives better results. The results from the reported paper 

shows that the Entropy method is better than twice as much the Otsu method in both 

obvious and subtle MCs. Table 9 of the results chapter each of the methods with their 

respective results is reported in detail. 
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2.5 Microcalcification modelling and classification 

A microcalcification region is 21 X 21 pixels (ROI), regions were extracted from 

both databases. The size of the ROIs is due that the resolution of the mini-MIAS data-

base is 200 microns and we want a MC to have enough tissue around it to be able to 

distinguish it, knowing that the maximum size of an MC is 1 mm. Also, this size helps 

in case of a cluster. This data set of ROIs with MCs candidates are known as true pos-

itives. In addition, it is necessary to have other data set of ROIs, known as true nega-

tives, which are regions that do not contain any type of MCs. The size of these regions 

should also be 21 X 21. 

Table 7 describes the general steps of an algorithm to generate this data set. A normal 

image, with a large breast region, is randomly selected at each loop of the for cycle. 

From each randomly selected normal image (command executed in the third line of the 

general algorithm listed in Table 7, a candidate is randomly extracted (command exe-

cuted in the fourth line of the algorithm listed in Table 7. Each normal image is tagged 

with an image number, and to generate a set of randomly selected normal images, 

𝑛 random image tag numbers are generated by means of a discrete uniform probability 

density function, 𝑓𝑥(𝑥) =
1

𝑚
; where 𝑥 ∈ {1,2, … , 𝑚} is an image tag number; and 𝑚 is 

the total number of images from each type of mammogram density. Parameters, (𝑛, 

𝑚), are (𝑛 = 121, 𝑚 = 76), (𝑛 = 97, 𝑚 = 65) and (𝑛 = 50, 𝑚 = 66) for dense, fatty-

glandular and fatty mammograms, respectively. The criteria to choose a value for 𝑛, is 

to have the number of candidates, which are MCs, equal to the number of candidates, 

which are not, for each mammogram density. According to Table 3, row for microcal-

cifications regions, there are 121 MCs in 9 dense mammograms, 97 MCs in 6 fatty-

glandular mammograms, and 50 MCs in 5 fatty mammograms. 

Similarly, one pair of random numbers, (𝑟, 𝑐), is generated for each randomly se-

lected image. Parameters 𝑟 and 𝑐 are used as the coordinates of the center of a randomly 

chosen ROI, of 21 X 21 pixels, on the corresponding randomly chosen normal mam-

mogram.  
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Table 7. Random generation of a set of n micro-calcification candidates from the set of nor-

mal images without abnormality clusters identified by the radiologist. 

 
 
 
 
 
1 
2 
 
3 
 
4 
 

input : data set of normal images without abnormality 
clusters identified  
output : data set of image patches of 21 × 21 pixels 
 

Begin 
for a given number n of ROIs required 
 random selection of a normal image along with a set of im-

age coordinates (𝑟, 𝑐) 
 extraction of an image patch with center at (𝑟, 𝑐) and size 

of 21 × 21 pixels 
end 

end 
 

2.6 Extraction of micro-calcifications candidates from abnor-

mality clusters 

Extraction of micro-calcifications, from an abnormality cluster, is separated into dif-

ferent stages, for segmentation (contour detection, noise suppression, sharpening), bi-

narization, feature extraction, and classification as it is depicted in Figure 16. 

 

Figure 16. Different stages for detection of micro-calcifications, segmentation, binarization, 

feature extraction, and classification  
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A mammogram (upper left corner in Figure 16) is a digital grayscale image which is 

denoted as a function 𝑓(𝑟, 𝑐) on the two-dimensional discrete space (𝑟, 𝑐) ∈  𝒁2, where 

𝑟 stands for row and 𝑐 stands for column.  

Morphological processing [83] of grayscale images is used for binarization of im-

ages of interest as well as detection of regions of interest. From the upper central part 

of Figure 16, which shows an abnormality cluster, it is observed that brighter ROIs (such 

as micro-calcifications) correspond to local maxima of the function, 𝑓𝑚𝑎𝑥. To achieve 

segmentation of micro-calcification candidates, bright regions, corresponding to local 

maxima of 𝑓(𝑟, 𝑐), are emphasized; while the background, corresponding to local min-

ima of 𝑓(𝑟, 𝑐), is removed.  

Because of the fact that dilation of gray-level images enhances bright regions and 

suppresses dark regions while eroding enhances dark regions and suppresses bright 

regions, where the area of the suppressed region is smaller than the area of the specified 

structuring element 𝑏(𝑟, 𝑐), both operations are combined, through the use of the high-

pass filter, Beucher Gradient [84], for extraction of local maxima (micro-calcification 

candidates) and removal of local minima (background). The erosion of a gray-level 

image 𝑓(𝑟, 𝑐) by a structuring element 𝑏(𝑟, 𝑐) at location (𝑟, 𝑐) is obtained by selecting 

the minimum value of 𝑓 − 𝑏 inside the region of intersection over which both functions 

𝑓 and 𝑏 are defined according to  

 

 [𝑓 ⊝ 𝑏](𝑟, 𝑐) =  min
(𝑥,𝑦)∈𝑏

{𝑓(𝑟 − 𝑥, 𝑐 − 𝑦) − 𝑏(𝑥, 𝑦)}. (1) 

 

The dilation of a gray-level image 𝑓(𝑟, 𝑐) by a structuring element 𝑏(𝑟, 𝑐) at location 

(𝑟, 𝑐) is defined by finding the maximum value of 𝑓 + 𝑏 inside the common region 

between both, function 𝑓 and structuring element 𝑏, according to  
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 [𝑓 ⊕ 𝑏](𝑟, 𝑐) =  max
(𝑥,𝑦)∈𝑏

{𝑓(𝑟 − 𝑥, 𝑐 − 𝑦) + 𝑏(𝑥, 𝑦)}. (2) 

 

By considering flat structuring elements with zero entries, eroding or dilating of a 

gray-level image with a structuring element consists in finding the minimum or maxi-

mum value of the image inside the region bounded by the intersection of the image and 

the structuring element.  

The morphological gradient, known as Beucher Gradient, is the arithmetic differ-

ence between the dilated and the eroded version of the gray level image of interest 

𝑓(𝑟, 𝑐), by a structuring element 𝑏(𝑟, 𝑐), 

 

 𝑔(𝑓(𝑟, 𝑐)) =  [𝑓 ⊕ 𝑏](𝑟, 𝑐) −  [𝑓 ⊝ 𝑏](𝑟, 𝑐) (3) 

 

where this morphological operation represents the maximum variation of gray level 

intensities within a pixel neighborhood. The result of applying Beucher Gradient on a 

mammogram is shown in the upper right part of Figure 16.  

To improve the quality of the filtered image, a 3×3 median filter is applied, a non-

linear filtering technique to remove noise while preserving edges. This filtering tech-

nique runs in a pixel-by-pixel fashion, replacing each pixel by the median of neighbor-

ing pixels inside a 3×3 window. To enhance edges, a process, called unsharp masking, 

is applied, where a smoothed version of the image (Gaussian low-pass image), 

𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝑟, 𝑐), is subtracted from the original image, subtracting away the low-fre-

quency components of the signal, and yielding the high-frequency content, 

 

 𝑓ℎ𝑖𝑔ℎ−𝑝𝑎𝑠𝑠(𝑟, 𝑐) =  𝑓(𝑟, 𝑐) − 𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝑟, 𝑐) (4) 
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where the standard deviation of the Gaussian low-pass filter, was set to 2, and the 

high-pass image component can be used for sharpening by adding it to the original 

image. Thus, the complete unsharp masking operator is given by 

 

 𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛(𝑟, 𝑐) =  𝑓(𝑟, 𝑐) + 𝑘 ×  𝑓ℎ𝑖𝑔ℎ−𝑝𝑎𝑠𝑠(𝑟, 𝑐) (5) 

 

 

where 𝑘 is a scaling constant, set to 0.7. The result of applying median filtering, 

followed by unsharp masking is shown in the lower right part of Figure 16.  

The segmentation stage (morphologic processing, median filtering, unsharp mask-

ing) is essential to the success of micro-calcification detection since this stage reduces 

background variations, noise, and enhances edges of ROIs or candidates. Then, thresh-

olding is applied to generate a binary image where ROIs are white, and the background 

is black, as it is depicted in the lower central part of Figure 16. By analyzing the histo-

gram of multiple 21 × 21-pixel image patches, with segmented micro-calcifications, 

the threshold value, for binarization, is established to the 90 % of the highest gray value 

of the enhanced GT region of interest. 

One impairment of binarization is that remaining noise might be misclassified as a 

candidate to micro-calcifications. To reduce the likelihood of the occurrence of these 

misclassifications, ROIs, with radii smaller than 0.1 mm, are eliminated using opening 

with a disk-like structural element of 0.2-mm diameter. The reason for choosing a 

structuring element of 0.2-mm diameter is based on the consideration that the diameter, 

of the smallest micro-calcification, is 0.2 mm (4 pixels for the MIAS). The opening of 

a binary image 𝑓(𝑟, 𝑐), by a structuring element 𝑏(𝑥, 𝑦), is given by 𝑓 ∘  𝑏 =

(𝑓 ⊝  𝑏)  ⊕  𝑏, and it eliminates objects smaller than the structuring element. Reso-

lution of digital mammograms, for both data sets, is 50 µm per pixel. Thus, the size of 

the structuring element, in pixels, is 
0.2 𝑚𝑚/𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

50 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙
= 4 

𝑝𝑖𝑥𝑒𝑙𝑠

𝑑𝑖𝑚𝑒𝑡𝑒𝑟
.  
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Another consideration is that the diameter, of the largest micro-calcification, is 1 

mm. Thus, the size of the circle, which encloses a candidate to micro-calcification, is 

1 𝑚𝑚/𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

50 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙
= 20 

𝑝𝑖𝑥𝑒𝑙𝑠

𝑑𝑖𝑚𝑒𝑡𝑒𝑟
, and the area of the corresponding square is chosen as 

21× 21 pixels. The extraction of the set of candidates to micro-calcification or ROIs 

(output of the general algorithm listed in Table 1), from an abnormality cluster, is 

shown in the lower left part of Figure 16. Each candidate is contained on a 21× 21 

image patch. The center of the patch is established at the position of the highest gray 

level value of the ROI. 

To recover the complete shape of candidates, at all locations of interest, an algorithm 

for extraction of connected components is used. Another motivation for extraction of 

connected components is to assign a label to each region of interest for sub-sequent 

automatic extraction of properties from each labeled ROI, mainly the position of the 

highest gray level value inside the region. Let 𝑓(𝑟, 𝑐) be a binary image containing one 

or more connected components, then another image segment 𝑓0(𝑟, 𝑐), of the same size 

as 𝑓, is initialized with all its elements being zero, corresponding to black background, 

except those elements at locations where it is known there are white connected compo-

nents in 𝑓0(𝑟, 𝑐), which is set to one. The goal is to start with the initial image 𝑓0(𝑟, 𝑐) 

and eventually to extract all the connected components by performing the following 

iterative process; 

 

 𝑓𝑘  =  (𝑓𝑘−1  ⊕ 𝑏)  ∩  𝑓 (6) 

 

Where, 𝑏(𝑟, 𝑐) is a suitable structuring element for extraction of connected compo-

nents. The iterative process is finished when 𝑓𝑘  =  𝑓𝑘−1 with 𝑓𝑘 containing all the la-

beled connected components. 
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To compare works that detect microcalcifications, it is essential to measure the effi-

ciency of the algorithms. To perform an evaluation is necessary to use measures of 

efficiency previously in other works. These are: the area found by the algorithm and 

intersection with the GT as true positive (TP), and the area found but does not intersect 

any GT area as false positive (FP). Additionally, the area that is not in GT and is not 

given by the algorithm as true negative (TN). Finally, the area that is in GT but was not 

found by the algorithm as false negative (FN). From the literature review, the way these 

measures are found varies, Table 8 points out some of the differences. 

Table 8. State of the art Comparison diversity 

Ref. Decision(s) to define TP, TN, FN and FP  

[85] Overlap larger than 50% by human observation 

[86] Area overlap measure (AOM) automated, ideal value equal to 1. 

[25] 

Draw a bounding circle to the detected MCs, 

More than 2/3 bounding circle of the MC clusters are overlapped with 

ground truth becomes a true-positive (TP). 

For clusters area, if we detect at least one it is as TP. 

For mammograms MC’s, if we cannot detect out any MC’s, we consider 

it as true negative (TN) 

[24] Completeness, CM, correctness, CR and quality, ACC 

[87] Confusion matrix 

 

From the above, it can be observed that one of the main problems is the comparison 

of results between different databases. For example, the GT in the MIAS database iden-

tifies lesions using a circle while DDSM does so by surrounding the pixel-to-pixel le-

sion, meaning that the contour can be irregular. Also, in the DDSM database, whether 

the MCs are very small then the GT points out them using only the coordinates of one 

pixel. In addition to this, the form of comparison between different algorithms varies 

as can be seen in the Table 8. 
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Knowing that the MC can be classified in the categories previously  mentioned; it is 

useful to visualize a micro-calcification in the three-dimensional space, as a gray level 

function of coordinates (𝑥, 𝑦), as it is observed in Figure 17. This three-dimensional 

reconstruction provides an approximation of the projection of an actual micro-calcifi-

cation into a set of intensity values on a digital mammogram through absorption of X-

ray radiation. The three-dimensional reconstruction of a micro-calcification consists of 

a prominent peak in relation to local surroundings on the mammogram. Thus, it is fea-

sible the modeling of a micro-calcification based on a set of surface levels.  

 

 

Figure 17. Three-dimensional visualization of one micro-calcification on a digital mammo-

gram. 

The results of this work were published in the Journal of Medical Systems titled 

“False Positive Reduction by an Annular Model as a Set of Few Features for Microcal-

cification Detection to Assist Early Diagnosis of Breast Cancer” [88]. The work re-

ported in this paper proposes to extract only four features from a candidate. To accom-

plish this, information is obtained from three different surface levels assigned to each 

ROI, by using a mask, which contains the distribution of these surface levels. The left 

part of Figure 18 shows a ROI of 21 X 21 pixels and with its center at the maximum 

intensity value. Information, for each surface level of the ROI, is extracted by overlap-

ping the ROI with a mask which shows the distribution of each of the three surface 
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levels. The right part of Figure 18 shows, the mask along with the distribution of each 

surface level. It can be seen that the surface level distribution consists of three concen-

tric annulus (ring-shaped object) with its respective radii 𝑅, 𝑅 + 2 and 𝑅 + 4. This 

work arrived to having 𝑅 = 3, by considering known sizes of micro-calcifications at 

50 microns per pixel and observing the corresponding method performance. Each an-

nular region, 𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠, provides information of interest regarding each surface level. 

Each annular region is labeled by an integer number in the set {1, 2, 3}. 

 

Figure 18. Region of interest (left part) along with the corresponding mask of three sur-

face levels (right part). Overlapping the ROI and the mask allows the extraction of infor-

mation from different surface levels for sub-sequent feature extraction. 

After overlapping the mask with one ROI, information from the three annular regions 

is used for extraction of a four-entry feature vector, 𝒇 =  [𝑓1, 𝑓2, 𝑓3, 𝑓4]𝑇, according to, 

 

 𝑓1 = 𝑚𝑎𝑥(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠1) − 𝑚𝑎𝑥(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠2) (7a) 

 

 𝑓2 = 𝑚𝑎𝑥(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠1) − 𝑚𝑎𝑥(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠3) (7b) 

 

 𝑓3 = 𝑚𝑒𝑎𝑛(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠1) − 𝑚𝑒𝑎𝑛(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠2) (7c) 
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 𝑓4 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠1) − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠2) (7d) 

 

where functions 𝑚𝑎𝑥(), 𝑚𝑒𝑎𝑛(), and 𝑒𝑛𝑡𝑟𝑜𝑝𝑦() are the maximum, mean and en-

tropy values, respectively, of the corresponding annular region intensity values. The 

entropy value is computed according to, 

 

 
𝐻 = |− ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑖

| 
(8) 

 

where 𝑖 ∈  [0, 255] is a gray level value, and 𝑝𝑖 is the probability associated with 

gray level value 𝑖, i. e., the probability density function of an annular region. 

The feature selection, in the proposed method, has the purpose of achieving low 

computational complexity and simplicity, and the additional purpose of being repre-

sentative of the process of that a radiologist follows. In an ideal micro-calcification, the 

maximum intensity value is at the center of the MC enclosing region. It can be mod-

elled as a Gaussian function. The first feature, 𝑓1, represents the difference between the 

peak intensity value, in the first annular region, and the peak, on the second annulus. 

Ideally, if a micro-calcification exists, this difference must be greater than or equal to 

1 pixel; otherwise, if a micro-calcification is not present, then the difference might be 

less than 1 pixel. This idea is similar for second feature, 𝑓2, but in this case the differ-

ence values increases proportionally with the size of the MC. For the third feature, 𝑓3, 

the mean value of each annulus is close to its maximum value. Then, the difference 

between first and second mean values must be greater than or equal to 1 pixel; other-

wise, this difference is less than 1 pixel, when MCs are not present. Another feature is 

the entropy value. For each annular region the entropy value should be ideally close to 

zero. Thus, the difference of entropy values between the first and second annular re-

gions should be close to zero. Meanwhile, when there are not MCs, the entropy value 
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should be greater than zero since background intensity values are characterized by con-

taining salt and pepper noise. 

Figure 19 shows in general the process for detecting and classifying MC. For the 

classification stage, two classifiers, KNN and SVM, were tested. The results of these 

classifiers are shown in the next chapter and for further details consult the published 

paper [88]. 

 

Figure 19. General process to detect and classify a MC 
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2.7 Summary 

This chapter stated the problem that motivated this research work. The high work-

load of specialized radiologists who are experts in the screening process. Likewise, the 

objectives and contributions of this dissertation are presented. 

Then, the most important characteristics of the main databases and their mammo-

grams are presented. The images that were used in each of these databases are men-

tioned. Finally, it presents the most important aspects that were performed for the seg-

mentation and detection of microcalcifications, such as the analysis of different thresh-

olding methods and the creation of a model based on annular regions. The results of 

the methods and analysis presented in this chapter are described on the next Chapter. 
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3.1 Microcalcification segmentation results 

This dissertation work introduces a new approach to the detection of MCs in mam-

mograms. The first stage of this work is to understand the importance of early detection 

and how MCs are relevant at this stage. Important aspects of MCs were defined as their 

relation of intensity to the surrounding tissue. Thus, this help us defining the subtle, 

obvious and cluster groups. Separating them into these groups, the detection of MCs 

improves using a technique as simple as thresholding. The results of this part of the 

research are presented in Table 9, showing the different methods of thresholding that 

were applied and the corresponding results.  

Table 9. Total result accordance to category and techniques 

 Intermodes Kittler Entropy Otsu Total GT 

Obvious 15 1 15 6 16 

Cluster 39 13 56 23 79 

Subtle 3 3 6 6 17 

Total (MCs) 57 17 77 34 112 

Total (%) 50.893 15.179 68.750 30.357  

 

3.2 Microcalcification model for detection 

To compare works that detect micro-calcifications, it is essential to compare effi-

ciency among different proposed methods. To evaluate the performance of the pro-

posed method, True Positive Rate (TPR) or sensitivity, False Positive Rate (FPR), spec-

ificity and accuracy are used as figures of merit. TPR, also known as sensitivity or 
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recall or detection alarm, is the probability that the outcome of a diagnosis is positive 

given that the patient presents breast cancer, and it is given as, 

 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

(9) 

 

where true positives (TP) are those micro-calcifications correctly identified and false 

negatives (FN) are those micro-calcifications incorrectly rejected. False Positive Rate 

(FPR), also known as false alarm, is defined as the probability that the outcome of a 

breast cancer diagnosis is positive given that the patient is healthy according to 

 

 
𝐹𝑃𝑅 =  

𝐹𝑃

𝑇𝑁 +  𝐹𝑃
 

(10) 

 

where true negatives (TN) are those cases correctly rejected and false positives (FP) 

are those artifacts incorrectly detected as micro-calcifications. Specificity is defined as 

the probability that the outcome of a breast cancer diagnosis is negative given that the 

patient is healthy according to 

 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 +  𝐹𝑃
= 1 − 𝐹𝑃𝑅 

(11) 

 

Accuracy is another parameter that becomes a useful tool to assist in the measuring 

of the performance of the detecting algorithm since it specifies the percentage of breast 

cancer diagnosis which are correct, 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

(12) 

The receiver operating characteristic (ROC) curve compares operating characteris-

tics, TPR vs. FPR by plotting them at different plotting settings. For the case of two 

classes, a feature vector 𝒙 is classified as Positive or Negative, where 𝒙 is described by 

a probability density function 𝑓1(𝒙) if it is Positive (above a threshold hyper-plane 𝒯); 

otherwise, 𝒙 is described by another probability density function 𝑓2(𝒙), if it is Negative 

(below a threshold hyper-plane 𝒯). Thus, the TPR is given by 𝑇𝑃𝑅(𝒯) = ∫ 𝑓1(𝒙) 𝑑𝒙 

and the FPR is given by 𝐹𝑃𝑅(𝒯) = ∫ 𝑓2(𝒙) 𝑑𝒙. The ROC plots 𝑇𝑃𝑅(𝒯) versus 

𝐹𝑃𝑅(𝒯) as hyper-plane 𝒯 is varied. The area under the curve (AUC), given by 𝐴𝑈𝐶 =

 ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑𝒯
∞

−∞
, is equal to the probability that a classifier ranks a randomly cho-

sen positive higher than a randomly chosen negative one. 

Efficiency is measured in terms of number of lesions and not on number of images. 

Out of 20 abnormal mammograms and 207 normal mammograms in the MIAS data 

set, all images were used with 268 micro-calcifications extracted from abnormal mam-

mograms and 268 ROIs, without MC, randomly extracted from normal mammograms. 

ROIs for MC detection are 21 X 21 pixels. By counting the number of MC candidates, 

labeled as TP, FP, TN, and FN, the proposed method for MC detection, on the MIAS 

data set,. The same set of efficiency measurements were carried out with 114 MCs and 

114 normal ROIs, extracted from the DDSM data set. ROIs for MC detection are 21 X 

21 pixels. The same set of experiments is also applied to MCs and normal candidates 

from both data sets, MIAS and DDSM. These results are shown in the last five rows of 

Table 10. 

ROC curves, generated by the proposed method, based on the SVM classifier and 

kNN, are shown in Figure 20 and Figure 21, respectively. Each Figure shows ROC 

curves, after applying the corresponding classifier to three different data sets, MIAS, 

DDSM, and a combination of both. The AUC parameter, for each ROC curve, is pro-

vided in previous paragraphs and in the first two rows within the last five rows in Table 

10.  
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Figure 20.  ROC (TPR vs. FPR) obtained by testing the method with the SVM classifier on 

three different data sets, MIAS (red curve), DDSM (blue curve), and the combination of both 

data sets (orange curve). 

 

 

Figure 21.  ROC (TPR vs. FPR) obtained by testing the method with the kNN classifier on three 

different data sets, MIAS (red curve), DDSM (blue curve), and the combination of both data 

sets (orange curve).  

ROC curves, based on the application of the SVM and kNN, are shown in Figure 22 

and Figure 23, respectively. Each Figure shows ROC curves, after applying the 
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corresponding classifier to MIAS mammograms for each breast density: fatty, fatty-

glandular, and dense.  

 

Figure 22. ROC (TPR vs. FPR) obtained by testing the method with the SVM classifier on the 

MIAS data set for each density group, fatty (purple curve), fatty-glandular (blue curve), and 

dense (green curve). 

 

 

Figure 23. ROC (TPR vs. FPR) obtained by testing the method with the kNN classifier on the 

MIAS data set for each density group, fatty (red curve), fatty-glandular (green curve), and 

dense (black curve). 



45 

 

Once a way to segment the MCs has been studied, a model for the detection of MCs 

was created, while reducing false positives. Table 10 shows the performance of differ-

ent methods, including the proposed one, in terms of TPR or sensitivity, FPR, accuracy 

and AUC where different public data sets are used. The purpose of Table 10 is to show 

the different data sets, and levels of TPR, FPR, accuracy and AUC, proposed by the 

scientific community, working on the problem of MC detection. The proposed ap-

proach is included among those approaches that use data sets, MIAS and/or DDSM. 

Some methods do not report some of the performance measures (TPR, FPR, accuracy, 

AUC). After observing the sixth column of Table 10, it is concluded that our method 

is the only one which uses all mammograms from each data set. Also, it is the only 

method which analyzes all the micro-calcifications, extracted from each data set. The 

method, proposed in [44] , is the second one with the highest TPR (0.9810), at the 

expense of very high FPR (0.6300), while accuracy and AUC values are not reported. 

This method is applied to some mammograms from the MIAS data set. Our approach 

achieves the highest values in terms of TPR, accuracy and AUC, and it also reaches the 

lowest FPR values. 

Table 10. Performance of different methods for detection of micro-calcifications. 

Ref. TPR FPR Accuracy AUC Data 

set 

Number of im-

ages 

[44] 
Both: 

0.9810 

Both: 

0.63 

per 

image 

  
DDSM 

MIAS 

50/322 MIAS im-

ages. 

140 DDSM im-

ages. 

[89] 

MIAS 

SVM:  

1 

DDSM 

No re-

port 

MIAS 

SVM 

0.19 

DDS

M 

No re-

port 

 

MIAS 

SVM: 

0.98 

ELM: 

0.9941 

DDSM 

SVM: 

0.90 

ELM 

0.9168 

DDSM 

MIAS 

26 MIAS ROIs 

(12 benign, 14 

out of 20 malig-

nant). 

150 DDSM ROIs 

(82 benign 68 

malignant). 

[46]   
kNN: 0.95 

MIAS 

kNN: 

0.96 

DDSM 

MIAS 

Cluster ROIs of 

352 X 301. 
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kNN: 0.86 

DDSM 

MIAS 

kNN: 

0.90 

DDSM 

10 fold 9 out of 20 MIAS 

ROIs malignant 

and 11 benign. 

14 DDSM ROIs 

malignant and 11 

benign. 

[49] 0.97 

0.45  

per 

image 

   

Cluster ROIs. 

234 ROIs (150 

abnormal – 84 

normal). 

MIAS, USCF and 

DDSM data sets. 

DDSM images 

(27 abnormal – 

18 normal). 

[48]   

kNN: 0.95  

MIAS 

kNN: 0.78  

DDSM 

0.95 

MIAS 

0.77 

DDSM 

MIAS 

Cluster ROIs of 

512 X 512. 

20/20 MIAS im-

ages. 

DDSM images 

with 134 malig-

nant – 146 be-

nign. 

[45] 0.8715  0.9143 0.9036 MIAS  

[41] 0.957  0.959 0.97 MIAS 

23 mammograms 

(7 Glandular, 10 

Dense, 6 Fatty) 

containing micro-

calcification clus-

ters.  

50 mammograms 

(15 Glandular, 20 

Dense, 15 Fatty) 

without micro-

calcifications. 

Proposed 

KNN 

0.9386 

0.9590 

0.9241 

0.0702 

0.0224 

0.0288 

0.9664 

0.9683 

0.9476 

0.9742 

0.9885 

0.9826 

DDSM 

MIAS 

Both 

20/20 MIAS ab-

normal images. 

. 

Proposed 

SVM 

0.9211 

0.9664 

0.9476 

0.0526 

0.0299 

0.0550 

0.9342 

0.9683 

0.9463 

0.9656 

0.9934 

0.9802 

DDSM 

MIAS 

Both 

207/207 MIAS 

normal images. 
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Proposed 

MIAS 

dense 

KNN: 

0.9835 

SVM: 

0.9752 

KNN: 

0.0165 

SVM: 

0 

KNN: 

0.9835 

SVM: 

0.9876 

KNN: 

0.9944 

SVM: 

0.9951 

 

ROIs of 21 X 21 

pixels. 

 

Proposed 

MIAS 

fatty 

KNN: 

0.9400 

SVM: 

0.9200 

KNN: 

0.04 

SVM: 

0 

KNN: 

0.95 

SVM: 

0.96 

KNN: 

0.9592 

SVM: 

0.9928 

 

268 normal can-

didates and 268 

micro-calcifica-

tions on MIAS 

data set. 

 

 

Proposed 

MIAS 

fatty-

glandular 

kNN: 

0.9897 

SVM: 

0.9691 

KNN: 

0.1031 

SVM: 

0.0309 

KNN: 

0.9433 

SVM: 

0.9691 

KNN: 

0.951 

SVM: 

0.9930 

 

114 normal can-

didates and 114 

micro-calcifica-

tions on DDSM 

data set 
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4.1 Discussion 

The results in Table 9 show that Entropy algorithm has better performance in the 

three categories, followed by Intermodes method. However, these algorithms did not 

get close to 100 percent, especially in subtle and cluster category. This was mainly due 

to the fact that in some images the MCs were 3x3 pixels in size, which could be con-

sidered as noise, making it difficult to segment them. It is also always important taking 

into consideration a fine adjustment for subtle MCs segmentation. Therefore, there is 

a trade-off between obvious and subtle segmentation when they are together. The Otsu 

method, despite being the most widely used, showed its clear dependence on bimodal 

histograms. For this type of images, the value of threshold was not always in the valley 

of bimodal peaks, as the Otsu method expects. The entropy method works best because 

it looks for areas where the pixels are similar, that is, less entropy. In most cases the 

background has a higher entropy level compared to the MCs. 

In the case of MCs detection, works of [45], [41], [44], [46], [48]- [49], in Table 10, 

do not provide enough detail on how it is decided to exclude some data set images from 

experiments, particularly regarding images with abnormal ROIs. Not including all 

mammograms from the data set, probably explains the generation of better results that 

those, obtained by using the whole available set of abnormal images. 

Results of the proposed method are better than those from other recent methods, in 

terms of sensitivity, false positive rate, accuracy, and area under the ROC curve; de-

spite the fact that most previous works do not use all the available abnormal images in 

data sets, and do not explain why some data set images were chosen, and others were 

not, for their experiments. 

This proposed method, that uses an annulus-based micro-calcification model, re-

flects physical conditions of mammogram into patient condition, which gives 
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generality. The generality of the model was tested with three different datasets, MIAS, 

DDSM, and combined. 

4.2 Conclusion 

Important aspects to the solution of this problem are the reduced number of features 

(just four features), low computational cost, the use of a micro-calcification model 

based on annular regions which reflects real physical conditions in mammograms from 

women with MCs, features which are independent of image resolution, outstanding 

performance results. The proposed method promises a good future because of its sim-

plicity for implementation and the advantage of using a reduced number of features 

and resources. 

After comparing the proposed approach with other recent methods, our approach 

achieves the best performance in terms of true positive rate (TPR) or sensitivity, false 

positive rate (FPR), accuracy, and area under the ROC curve; even though other meth-

ods did not include all available abnormal images, from a data set; and the fact that 

these other works do not specify image selection for experiments. Methods, for MC 

detection on dense mammograms, show very low performance; however, we give the 

best performance during MC detection on dense mammograms with 0.9752 for TPR, 

0 for FPR, 0.9876 for accuracy, and 0.9951 for AUC. 

Table 11, shows the comparison of the best results found in the literature review with 

the results obtained by the method proposed in this work. The table shows that the area 

under the curve of the proposed method is the best for both the MIAS database and the 

DDSM, with both SVM and KNN classifiers. Also, the proportion value of false posi-

tives is significantly lower than those reported in the literature. 

Table 11. Comparison with our proposed method and the two-best result in literature 

Ref. TPR FPR Accu-

racy 

AUC Data 

set 

Number of images 

[44] 
Both: 

0.9810 

Both: 

0.63 per 

image 

  
DDSM 

MIAS 

50/322 MIAS im-

ages. 
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140 DDSM im-

ages. 

[89] 

MIAS 

SVM:  

1 

DDSM 

No re-

port 

MIAS 

SVM 

0.19 

DDSM 

No re-

port 

 

MIAS 

SVM: 

0.98 

ELM: 

0.9941 

DDSM 

SVM: 

0.90 

ELM 

0.9168 

DDSM 

MIAS 

26 MIAS ROIs (12 

benign, 14 out of 

20 malignant). 

150 DDSM ROIs 

(82 benign 68 ma-

lignant). 

Pro-

posed 

KNN 

0.9386 

0.9590 

0.9241 

0.0702 

0.0224 

0.0288 

0.9664 

0.9683 

0.9476 

0.9742 

0.9885 

0.9826 

DDSM 

MIAS 

Both 

20/20 MIAS ab-

normal images. 

. 

Pro-

posed 

SVM 

0.9211 

0.9664 

0.9476 

0.0526 

0.0299 

0.0550 

0.9342 

0.9683 

0.9463 

0.9656 

0.9934 

0.9802 

DDSM 

MIAS 

Both 

207/207 MIAS 

normal images. 

 

 

Pro-

posed 

MIAS 

dense 

KNN: 

0.9835 

SVM: 

0.9752 

KNN: 

0.0165 

SVM: 0 

KNN: 

0.9835 

SVM: 

0.9876 

KNN: 

0.9944 

SVM: 

0.9951 

 

ROIs of 21 X 21 

pixels. 

 

 

As mentioned earlier, it is expected that in the coming years mammography will be 

completely digital. Therefore, the resolution of the images will increase. Therefore, it 

is an important factor to be taken into consideration, i.e. the algorithm should be image 

resolution independent. The algorithm proposed in this work has considered image res-

olution independence by just modifying the mask for the extraction of the annular re-

gions for a giving image resolution. 

With respect to the general goal of this work, it was possible to design an algorithm 

capable of segmenting, detecting and classifying microcalcifications in various types 

of density, especially for mammograms with dense density areas. Also, the algorithm 

can be easily adapted for any type of resolution, if the resolution allows the identifica-

tion of MCs (at least 200 microns per pixel). Also, this algorithm was tested in the two 

of the most used databases, MIAS, DDSM and a combined set of both, showing 
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independence of a given database. As demonstrated in the previous chapter, the work 

presented here is competitive with the most relevant previous works. 

 

4.3 Future Work 

This dissertation focused on the segmentation and detection of microcalcifications 

in mammography images. However, it is necessary to implement a preprocessing stage, 

in which the pectoral area is removed as this can generate false positives as well as 

prevent the detection of some MCs. This is because the level of intensity that the pec-

toral has is greater than or equal to the vast majority of MCs present in the mammo-

gram’s image. Once the algorithm can be implemented throughout the full image, the 

MCs could be marked so that the expert can decide on the possible treatment to follow, 

reliving the expert from having to scan the whole image, thus allowing him/her to an-

alyze many more mammograms in a given time. 

Another important aspect that can be done in future work is to use some other data-

bases, both public and private. Likewise, this algorithm can be implemented, as origi-

nally proposed, as the first reader in the screening stage. In such a way that the expert 

can be helped by pointing out the most likely areas to have MCs that she/he should 

analyze. All this to reduce the workload of the expert and increase his/her productivity.  

4.4 Contributions 

This dissertation contributed to the segmentation of MCs. For this, it was contributed 

in the definition of MCs according to their surrounding tissue; that is, at the intensity 

level. So, the MCs were defined as obvious, subtle and cluster. Also, in the segmenta-

tion stage it was found that the entropy thresholding method gave better results than 

the Otsu method, which is the most used. This could be observed by the fact that his-

tograms of MCs are mostly unimodal. 

Also, the design of a gray-scale structural model based on annulus was contributed. 

This model represents the nature of the MCs which makes it independent of breast 
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density. Also, this model can be easily scaled for any resolution. This was verified 

when testing this model with two databases with different resolutions. 
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