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Abstract

Deception (the action of deliberately causing someone to believe something

that is not true) can have many different repercussions and it is inherent to our

daily life. However, detecting lies is inherently complex for humans despite our

continuous contact with them. Due to this, not only there is uncertainty on which

features could or should be used as cues for (automatic) deception detection,

but also labeled data is scarce. In this thesis, we explore features that can be

automatically extracted from videos for affective computing and study their per-

formance for the specific task of deception detection in videos. Additionally, we

present a study on different multimodal fusion methods meant to improve the

individual performance of the different feature sets extracted, including a novel

set of methods based on boosting. For this study, high-level features are ex-

tracted using open automatic tools on the visual, acoustical and textual modal-

ities, respectively. Experiments are conducted using a real-life trial dataset as

well as a novel Mexican deception detection dataset using Spanish as the spo-

ken language. Summarizing, in this thesis we study high-level features and

perform a multimodal complementarity analysis between them to support the

idea that multimodal fusion is a good approach for deception detection; with

such evidence, we present one of the first works focused on multimodal decep-

tion detection methods further than early concatenation of features, including

the first study (to the best of our knowledge) on automatic deception detection

in clips from Mexican subjects speaking Spanish.

ii





Resumen

El engaño (la acción de causar deliberadamente que alguien crea algo que no

es cierto) puede tener varias diferentes repercusiones y es parte inherente de

nuestra vida diaria. Sin embargo, detectar mentiras es inherentemente com-

plejo para los humanos a pesar de nuestro continuo contacto con ellas. Debido

a esto, no sólo hay incertidumbre en cuáles atributos podrían o deberían ser

usados como pistas para detección (automática) de engaño, sino que también

los datos etiquetados son escasos. En esta tesis, exploramos atributos que

pueden ser automáticamente extraídos de videos para cómputo afectivo y es-

tudiamos su desempeño para la tarea específica de detección de engaño en

videos. Además, presentamos un estudio de diferentes métodos de fusión mul-

timodal destinados a mejorar el desempeño individual de los diferentes conjun-

tos de atributos extraídos, incluyendo un nuevo conjunto de métodos basados

en boosting. Para este estudio, atributos de alto nivel son extraídos usando

herramientas automáticas de uso libre en las modalidades visual, acústica y

textual, respectivamente. Los experimentos se llevan a cabo usando una base

de datos de juicios de la vida real así como una nueva base de datos mexicana

para detección de engaño usando el español como la lengua hablada. Resum-

iendo, en esta tesis estudiamos atributos de alto nivel y realizamos un análisis

de complementariedad multimodal entre ellos para apoyar la idea de que la

fusión multimodal es un buen acercamiento para la detección de engaño; con

dicha evidencia, presentamos uno de los primeros trabajos enfocados en de-

tección de engaño multimodal más allá de una concatenación temprana de

atributos, incluyendo el primer estudio (hasta donde sabemos) en detección

automática de engaño en videoclips de sujetos mexicanos hablando español.
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Chapter One

INTRODUCTION

According to the Oxford dictionary, deception is the action of deceiving some-

one, that is, “deliberately cause (someone) to believe something that is not

true, especially for personal gain”. Deceptive behavior is part of our daily lives

and, while there are many motives behind it, consequences go from innocu-

ous cases to severe situations, specially when lies are told to escape unfavor-

able/undesirable situations (e.g. the statement of a witness in a judicial trial).

The underlying problem comes when we analyze the human ability to detect

lies; according to (Bond Jr and DePaulo, 2006), the average accuracy for this

task -without special aids- is 54%; that is, just slightly better than random guess-

ing.

1.1 Motivation

1.1.1 Non-automatic approaches for deception detection

To improve the natural human ability for deception detection, many strategies

have been used. One well-known method is the Polygraph, which can be de-

fined as a physiological method. However, it has many drawbacks; besides

being impractical due to the need of skin-contact and a human expert, many

counter-measures can be taken to fool those tests. Also in the category of phys-
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iological methods, we can find the Magnetic Resonance Imaging; however, the

cost of equipment for this method as well as its nature result in an impractical

option (Farah et al., 2014).

When it comes to methods that take advantage of physical reactions with-

out special equipment, another approach consists on the analysis of behavioral

cues under the hypothesis that there are inherent unconscious behaviors as-

sociated to deception. Under this scope, the most relevant foundational work

has been published by Paul Ekman. According to him (P. Ekman, 2009), facial

micro-expressions reveal emotional information that subjects might wish to un-

dercover. But then again, this approach has two major drawbacks: first at all,

those hints (micro-expressions) are difficult to detect by untrained persons; fur-

thermore, identifying the existence of such hidden emotions can be misleading

of deception as stated by Ekman too (P. Ekman, 2003), since trying to suppress

certain emotions is not necessarily due to a deceptive intention.

Despite those drawbacks, this approach gives evidence on the possibility

to predict deception through cues obtained with non-invasive methods. If such

cues could be obtained automatically, and expert human-knowledge about those

cues could be replaced by computational systems, it would be possible to de-

velop a framework for automatic deception detection.

1.1.2 Automatic approaches for deception detection

Aiming for such a framework, computer science has proposed alternative ma-

chine learning based approaches. A first idea that comes handy is to combine

human expertise with classifiers: while humans are in charge of manual fea-

ture extraction, the data obtained from such human experts is used to draw

a conclusion. Under this scheme, the most popular features to analyze are

micro-expressions; according to (Wu et al., 2018), state of art methods for this

task use these features.
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However, visual attributes are not the only ones used for deception detec-

tion. Deceptive behavior is not limited to “live” lies, and this is particularly true

nowadays because of the Internet and social media (this is basically a new con-

text for human interaction, where lying about one’s identity is easier because

of the lack of information). A closely related field of research is detection of

unfaithful information via text extracted from the web. Many approaches have

been used for this task; however, research have shown the effectiveness of

features derived from text analysis to identify deceptive content from speech

(Pérez-Rosas et al., 2015). Under this idea, a natural language processing

approach can be used for videos by extracting transcripts from them; in other

words, the underlying hypothesis is that deceptive speech can be identified with

the help of semantic analysis using automatic methods.

However, this leads to a new idea: analyzing the non-semantic part of

speech (e.g. extracting features that can’t be obtained from text like pauses,

rhythm, intonation, tone, etc. to give some examples). Those are useful for hu-

mans to identify the emotional state of a speaker, and some works have used

this as basis for automatic emotion recognition using acoustic features, like the

one of (Espinosa and García, 2009). Also, the non-semantic part of speech is

useful for humans to detect lies; in fact, some experiments by (Wu et al., 2018)

show how humans are better to identify untruthful testimonies by hearing them

rather than reading them. Furthermore, in their experiments, having access to

the video itself rather than just audio does not really improve the person’s ability

to detect false testimonies. When it comes to automatic deception detection,

they find MFCC (Mel-frequency Cepstral Coefficients) to be useful for the task;

MFCC have been used previously for many speech recognition tasks, including

emotion recognition (Vogt and André, 2005).

Summarizing, there is a wide range of approaches for deception detection

involving different sources of information, including methods meant for auto-

matic deception detection using machine learning techniques. However, de-
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spite the progress reached by these works, deception detection is still an open

problem of interest for many areas.

1.2 Justification

So far, we have discussed different approaches based on single modalities to

show the motivation behind automatic classification of deception. However, the

particular interest of the current thesis is exploring the multimodal fusion of in-

formation. When it comes to videos, we are dealing with inherent multimodal

data from which we can extract several feature sets. As we will explore in the

next chapter, multimodal analysis is the current trend for deception detection in

videos, where different types of features are combined to reach better results

than those obtained by using them separately. Intuitively, a more informed de-

cision is a better decision, so combining multiple information modalities should

improve automatic classification.

However, it is well known that different representations (extracted features)

of a single phenomenon can lead to better or worse results using the same type

of classifier; additionally, long feature vectors are unlikely to provide satisfac-

tory results when the number of training instances is small with respect to the

length of the feature vectors. Therefore, the way in which features are extracted

and how they are joined (fused) are two important research fields to take into

account for multimodal classification, specially when available datasets contain

few training instances (such as in the case of deception detection).

1.3 Problem Statement

Deception detection implies many problems and, as such, automatic detection

of lies does too. The particular interest of this thesis resides on detection of
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deceit without invasive methods, and that is why information extracted from

videos is attractive.

When it comes to videos, there are two main temporal approaches for anal-

ysis: real time and forensic. While the first one is more useful for “in the wild”

scenarios, the later one is better for controlled scenarios like criminal interro-

gation. Because of this and taking into account the related work, the focus for

this thesis is a forensic analysis of videos from potential liars while speaking.

Particularly, we aim to classify a video as deceptive if the speech as a whole in-

tends to convince someone of something that is not true as a whole (e.g. even

if the speaker is truthful during most of the video, the statement is deceptive if

there are some parts intended to mislead the listener).

In order to do this, we want to build a predictive model from existing databases.

Under this scheme, however, nowadays there are two great problems we need

to address:

• Research on deception suggests there are many different cues to detect

it on different domains and contexts

• Databases on this task are scarce and most of them were created under

simulated conditions

To deal with the first problem, multimodal analysis seems useful since infor-

mation is gotten from many perspectives: if different modalities provide different

cues on deception, there may be a wider range of contexts that can be treated

while using different combinations of multimodal features if they are chosen and

combined properly. Common approaches involve simply concatenating the dif-

ferent features into a single vector for classification or using the decisions from

each feature set as a new feature set for classification. However, these strate-

gies might not be meaningful since such feature sets can be statistical not in-

dependent or have different statistical properties in general; therefore, a proper

method of multimodal fusion goes beyond putting all data together.
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Furthermore, the aiming is to create a system as general as possible within

the limitations of available datasets. To do this, an important task is to learn

cues for deception detection that are subject-independent (e.g. even if different

persons lie differently, we should find cues that are shared among subjects),

dealing then with the problem of scarce data to some extent.

1.3.1 Research questions

Under the scope of the aforementioned context, this thesis aims to explore the

next questions:

• Is it possible to automatically extract high-level features that are useful for

automatic deception detection?

• Given the temporal dimension of speech, how such features should be

analyzed in order to deal with different length speeches?

• Given the multimodal nature of videos, is there complementarity between

the features that can be extracted within and across modalities?

• Under the assumption that such complementarity exists, what is a proper

fusion method to take advantage of the strengths of each feature set for

deception detection?

1.3.2 Hypothesis

Despite the differences that exist between persons when it comes to lying, a

multimodal computational system aimed to automatically detect deception in

videos performs better when based on a non-trivial fusion rather than relying

on single modalities or a simple early fusion of modalities.
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1.3.3 Aims and goals

To provide a solution involving the two above mentioned problems, our gen-

eral objective is to develop methods for multimodal information fusion, inspired

by current classifier ensemble methods, for automatic classification using high-

level features in the task of binary deception detection in video recorded sam-

ples.

Given the above mentioned aim, we need to complete some particular ob-

jectives:

• To define the possible modalities to extract from the available videos, as

well as the different feature representations that can be gotten from them

• To evaluate such modalities separately according to their different ex-

tracted feature sets

• To develop a method for combining effectively the evaluated modalities

• To compare the results obtained from the method for deception detection

with respect to other fusion strategies

1.4 Contribution of the thesis

In this thesis, we present the following contributions:

1. A study on high-level (interpretable by humans) feature sets that can be

automatically extracted from videos for deception detection

2. An analysis of the complementarity between such features to provide ev-

idence on the benefits that could be obtained from fusing them

3. A method based on LSTM networks and the k-means algorithm for multi-

modal encoding of variable length sequences into a fixed size vector
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4. A study on multimodal fusion techniques inspired by classifier ensembles

for deception detection in videos, including two novel methods based on

boosting for multimodal fusion

5. A comparison between both single feature sets and fusions on two datasets

6. A novel dataset for deception detection in videos with Mexican subjects

speaking Spanish (the first one of this kind to the best of our knowledge)

Additionally, based on the work done for this thesis, the following works were

published:

1. From Text to Speech: A Multimodal Cross-Domain Approach for Decep-

tion Detection, at MIPPSNA @ ICPR 2018 (Rill-García, Rodrigo et al.

(2018). “From Text to Speech: A Multimodal Cross-Domain Approach for

Deception Detection”. In: International Conference on Pattern Recogni-

tion. Springer, pp. 164–177.)

2. High-level Features for Multimodal Deception Detection in Videos, oral

presentation at LatinX in AI Workshop @ ICML 2019

3. High-Level Features for Multimodal Deception Detection in Videos, at

ChaLearn Looking at People series: Face Spoofing Attack Workshop and

Competition @ CVPR 2019 (Rill-Garcia, Rodrigo et al. (2019). “High-

Level Features for Multimodal Deception Detection in Videos”. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops, pp. –.)

1.5 General outline

The rest of this document is organized in the following way: Chapter 2 provides

a general framework of the theoretical knowledge required to understand the
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contents of this thesis; Chapter 3 provides an overview of the literature reviewed

on state of the art works about deception detection in videos and multimodal

information fusion in general; Chapter 4 aims to explain the different multimodal

features extracted from videos for analysis in this thesis (the databases used

for experiments are also described here); Chapter 5 presents an analysis of

the performance of features from single modalities when used with a Machine

Learning approach (as well as a study on the complementarity between this

feature sets); Chapter 6 shows the results obtained when fusing the different

modalities together using methods inspired by classifier ensembles, including

two novel methods based on boosting described in this chapter; finally, Chap-

ter 7 presents the conclusions derived from this work as well as its limitations

and suggestions for future work.
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Chapter Two

THEORETICAL FRAMEWORK

2.1 Deception

When it comes to research on deception, the figure of Paul Ekman stands out

as a pioneer in the area, particularly under the scope of facial expressions and

the psychology of emotion. Beyond the consequences of lying under deter-

mined circumstances, deception is an inherent component of human interac-

tion (or, at least, the possibility of it). As stated by Ekman, “examining how

and when people lie and tell the truth can help in understanding many human

relationships. [...] Lying is such a central characteristic of life that better under-

standing of it is relevant to almost all human affairs” (P. Ekman, 2009).

For Ekman, lying and deceit are interchangeably words, and a key compo-

nent is that a liar can choose not to lie. This is a key statement because it

implies that giving untrue information is not equivalent to lying (e.g. a person

can be untruthful without being a liar). To give a simple example, think on the

next scenario: a child who believes in Santa Claus will ensure you that he is

real; even if the information is false, the child is communicating you something

that is real for him.

Therefore, for deception to occur, the liar must intend to mislead the victim

(whatever it might be the motivation for such misleading). Furthermore, during

the lie, the liar must know all the time the difference between lying and be-
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ing truthful in the given case; additionally, the liar must know that lying is the

decision that (s)he is deliberately taking.

However, deception is a two-sided interaction: not only there is a liar (or

liars) but there is a victim (or victims). For deception to occur, the victim must

be unaware of the attempt of misleading. Therefore, even if an actor in a movie

tries to mislead you to make you believe he is the character in the story, as

there is an implicit agreement between the actor and the spectators this is not

an example of deception.

Deception, being a common phenomenon in humans, involves a set of

higher cognitive functions. Research on such phenomenon aims to understand

its underlying cognitive framework, but the ultimate ambition relies on the ability

to detect deceptive behavior. Therefore, identifying valid indicators of it is the

main focus on deception research (Gamer and Ambach, 2014).

2.1.1 Computational cognition and affective computing

Being a cognitive process, research on deception can be done under the scope

of computational cognition (also known as computational psychology). Accord-

ing to A Dictionary of Computing published by Oxford University Press, compu-

tational psychology is “A discipline lying on the border between artificial intelli-

gence and psychology. It is concerned with building computer models of human

cognitive processes and is based on an analogy between the human mind and

computer programs. The brain and computer are viewed as general-purpose

symbol-manipulation systems, capable of supporting software processes, but

no analogy is drawn at a hardware level”.

Therefore, in the field of deception detection it would be desirable to build a

computer model able to detect lies based on indicators of deceptive behavior.

The given model, if intended to work analogically to the human mind, should

use indicators understandable for humans. However, humans have a low per-
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formance on this task (just above random guessing as shown by the work of

(Bond Jr and DePaulo, 2006)).

Nevertheless, humans have the ability to understand involuntary behaviors,

such as for emotion recognition. This task has been explored under the scope

of computational psychology too, particularly by the field known as affective

computing. According to (Tao and Tan, 2005), “Affective computing is trying to

assign computers the human-like capabilities of observation, interpretation and

generation of affect features.”; therefore, it “concerns multidisciplinary knowl-

edge background such as psychology, cognitive, physiology and computer sci-

ences”.

As stated by (R. Ekman, 1997), facial micro-expressions are useful to un-

dercover emotional information from people even if they try to hide it. This kind

of information is useful because it can reveal the internal state of a person even

if they try to fake it (e.g. mislead people about how they feel). Scenarios like

this show the relation that can exist between sentiment analysis and deception

detection, and it is actually a topic of interest as seen by the 2017 Looking at

People ICCV Challenge - Fake vs. true facial emotion recognition (Wan et al.,

2017).

2.2 Machine learning

Challenges like the one mentioned above show the interest of detecting de-

ceptive behavior with models learned automatically (e.g. possible indicators or

features are used for detection without hard-coding explicit instructions). This is

a perfect example of Machine Learning (term coined by Arthur Samuel in 1959

(Samuel, 2000) and often referred simply as ML), a subarea of Artificial Intelli-

gence that studies algorithms and statistical models used by computer systems

to perform a specific task without explicit instructions. Machine learning algo-

rithms build mathematical models based on sample or training data in order
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to make predictions or decisions relying on patterns and inference instead of

being explicitly programmed (Bishop, 2006).

2.2.1 Supervised methods

For a machine learning task, data from real world must be codified into vec-

tors. Applications in which the training data comprises input vectors along with

their corresponding target vectors are known as supervised learning problems.

Cases such as deception detection, in which the aim is to assign each input

vector to one of two discrete categories (truthful or deceptive), are called classi-

fication problems (Bishop, 2006). Furthermore, cases like this one are referred

as binary classification problems since there are just two possible outcomes

from the classification task.

Support vector machines

Lets suppose a two-class classification problem using a linear model of the

form:

y(x) = wTφ(x) + b (2.1)

where φ(x) denotes a fixed feature-space transformation and b is a bias pa-

rameter. Supposing a training data set comprised by N input vectors x1, ..., xN ,

with corresponding target values y1, ..., yN where ynε{-1, 1}, a new data point

x is classified according to the sign of y(x). For this model to work, we shall

assume that the training data set is linearly separable in the feature space (e.g.

there exists at least one choice of the parameters w and b such that a function

of the form (2.1) satisfies y(x) > 0 for points having y=+1 and y(x) < 0 for

points having y=−1 for all xn). Therefore, we have a decision boundary where

y(x) = 0.

In Support Vector Machines (SVM) the decision boundary is chosen to be

the one for which a margin is maximized; such margin is chosen to be the
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smallest distance between the decision boundary and any of the samples (the

samples used to define margins are known as support vectors).

However, in problems where different class vectors overlap, a linear function

doesn’t work properly as a decision boundary. To deal with non-linear classi-

fication, SVM use a strategy called the kernel trick or kernel substitution. The

simplest example of a kernel function is the identity mapping for the feature

space so that φ(x) = x, in which case k(x, z) = xT z (which is known as the

linear kernel).

The general idea is that, if we have an algorithm formulated in such a way

that the input vector x enters only in the form of scalar products, then we

can replace that scalar product with some other choice of kernel, transforming

the input vector from a n-dimensional space to a representation in a higher-

dimensional one where all the training data can be linearly separable (without

explicitly computing the coordinates of the vector in the new feature space).

Think of the polynomial kernel K(x, z) = (xT z + c)n =< φ(x), φ(z) >, where

<a,b> is the inner product between vectors a and b. With the polynomial kernel,

we can evaluate the similarity of vectors a and b in the feature-space defined

by φ without actually calculating φ(a) and φ(b). This is important because, both

at training and evaluation, SVM evaluates the inner product between support

vectors and new instances to be classified.

For a better understanding of this section and SVM in general, the reader is

referred to Chapter 7 of (Bishop, 2006).

2.3 Multimodal analysis

Modality refers to the way in which something happens or is experienced (e.g.

we see objects, hear sounds, feel textures, smell odors, and taste flavors).

When a phenomenon is studied using multiple modalities, it is told to be a

multimodal research problem. Multimodal machine learning, therefore, aims to
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build models that can process and relate information from multiple modalities in-

stead of focusing on specific single modal applications (Baltrušaitis, Ahuja, and

Morency, 2019). As a multimedia message composed of synchronized single

streams (namely image and audio), a video is a perfect example of a multi-

modal phenomenon that can be used for multimodal machine learning tasks.

This is an increasing field that faces many challenges, namely: representation,

translation, alignment, fusion, and co-learning.

For this work we will focus on the fusion challenge, which consists on join-

ing information from two or more modalities to perform a prediction (e.g. for

audio-visual speech recognition, the visual description of the lip motion is fused

with the speech signal to predict spoken words). The interest in multimodal fu-

sion arises from three main benefits: 1) having access to multiple modalities

observing the same phenomenon may allow for more robust predictions; 2)

having access to multiple modalities might allow us to capture complementary

information (i.e. something that is not visible in individual modalities on their

own); 3) a multimodal system can still operate when one of the modalities is

missing (e.g. recognizing emotions from the visual signal when the person is

not speaking) (Baltrušaitis, Ahuja, and Morency, 2019).

Within this scope, there are three typical approaches with respect to the

fusion level: early, late and hybrid (or intermediate). From those, we will discuss

the first two as the last one is, actually, a hybrid between both.

2.3.1 Early fusion

The early fusion approach (also known as feature level) consists on combining

all the features extracted from input data and use this new representation as

a single input for a single analysis unit that performs the analysis task. Here,

features refer to some distinguishable properties from a media stream and may

be numerous among the same modality (Atrey et al., 2010).
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Typical methods for merging features into the above mentioned combined

input are: concatenation (vectors from each feature set are put together to form

a bigger vector), selection (a selection criterion is used to choose a subset

of features among all the available ones), and extraction (all the features are

projected to a new space) (Hu, 2008).

Some advantages of the feature level fusion are that it can utilize the cor-

relation between multiple features from different modalities at an early stage

which helps in better classification tasks; also, it requires only one learning

phase (on the combined feature vector). However, in this approach it is hard to

represent the time synchronization between the multimodal features because

coupled modalities could be extracted at different times. Moreover, the features

to be fused should be represented in the same format before fusion (Atrey et

al., 2010). Even so, many researchers have adopted the early fusion approach

for the multimedia analysis of deception as seen in Chapter 3.

2.3.2 Late fusion

The late fusion approach (also known as decision level) consists basically on

two steps: first, n feature sets are fed to n analysis units to provide n local

decisions; then, local decisions are combined using a decision fusion unit to

make a fused decision vector that is analyzed further to obtain the final decision.

Unlike feature level fusion, where the features from different modalities may

have different representations when fused into a single vector, the decisions

at semantic level (i.e. per feature set) usually have the same representation,

therefore simplifying the fusion of decisions. Moreover, the late fusion approach

allows us to use the most suitable methods for analyzing each single modality,

providing flexibility over early fusion. However, the late fusion approach fails

to utilize the feature level correlation among modalities. Moreover, the learning

process becomes expensive (on time complexity and resources management)

16



(Atrey et al., 2010). Not as popular as the feature level approach, decision level

fusion has been used too for multimedia deception detection as discussed in

the next chapter (Chapter 3), which is dedicated to explore the literature related

with deception detection in videos and multimodal information fusion.
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Chapter Three

STATE OF THE ART

Deception detection from videos is of particular interest as a non−invasive

method, and as such it has drawn attention from the machine learning commu-

nity. Typical sources of information extracted from video include RGB images,

thermal imaging, audio recordings and speech transcripts. In this revision of

the state of the art, we will focus first on research work that perform deception

detection using multimodal features extracted from videos, followed by research

work focused on multimodal fusion of data.

3.1 Multimodal deception detection in videos

(Abouelenien, Pérez-Rosas, Mihalcea, et al., 2017) presented a database for

deception detection consisting of both physiological features (heart rate, blood

volume pulse, respiration rate, skin conductance) and thermal videos, as well

as transcriptions from videos. Thermal images are analyzed by face regions,

while traditional linguistic features such as Part-Of-Speech (POS) tags, word

unigrams, Linguistic Inquiry and Word Count (LIWC) embeddings, etc. are ex-

tracted from transcriptions. They tested multiple different modal combinations

with an early fusion approach using decision trees, concluding that following

a multimodal approach outperformed relying solely on single modalities. Fur-

thermore, the fusion of features extracted from videos outperformed the results
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obtained by physiological features, supporting the idea that non-invasive meth-

ods are not outperformed by invasive ones.

With a similar approach, the group of (Abouelenien, Pérez-Rosas, Zhao, et

al., 2017) created a new database intended for multimodal deception detection

based on gender. Extracting a similar set of multimodal features (linguistic,

physiological and thermal), they found different gender-based patterns. Even

though there were specific feature sets that performed well for both genders,

they concluded that it is beneficial to consider gender differences in order to

improve performance on deception detection.

The databases for both works were constructed within three different sce-

narios. In two of them (“Abortion” and “Best Friend”), participants were asked

to speak freely on the given topic (first truthfully and then deceptively). For the

third one, they would be interviewed about a mock crime. However, the above

mentioned datasets were constructed by the cooperation of test subjects under

controlled circumstances (e.g. participants may not really be motivated to lie).

For studying deception in a more real context, Pérez-Rosas et al., 2015 pre-

sented a novel dataset of real court trial videos (a scenario where one could as-

sume speakers are really motivated to convince the listeners about their truth-

fulness even if they are actually lying). A multimodal approach is used again

consisting on linguistical (unigrams and bigrams from transcriptions) and visual

(manual annotation of facial displays and hand gestures) features. Results ob-

tained from individual features are compared to those from early fusions, reach-

ing the highest score when using all the modalities together. Experiments are

performed using Decision Trees (DT) and Random Forests (RF) with leave-one-

out cross validation; while DT achieve better results when it comes to linguistic

features, the best results using visual features are achieved using RF.

Furthermore, the behavior of both classifiers differs when fusing features.

While DT tend to improve results when joining features, RF show the opposite

tendency. By fusing all the multimodal features they obtain an accuracy of
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75.20% (which is greater than the best single feature set e.g. 70.24%) using

DT; by using RF, they reach a 50.41% accuracy (which is lower than the worst

single feature set e.g. 51.20%). This gives an insight: multimodal fusion can

certainly improve deception detection in real-life scenarios, but is also able to

worsen the performance. As far as the authors and we are concerned, that is

the first work on deception detection using both verbal and non-verbal features

from real trial recordings.

The dataset presented in that work is of particular interest for many reasons:

first at all, it is a database built with real-life cases, which ideally should allow

to detect deception cues when people is really motivated to lie; additionally, the

collected videos come from many different contexts: not only the trials are over

different crimes, but details as camera angle and distance, video quality, etc.

are different from video to video. This allows analysis under a “wild” (uncon-

strained) scenario, which can eventually lead to a real-time deception detection

system. That is why it has become a popular database for real-life deception

detection, particularly in recent works for multimodal deception detection.

One of such works is the one presented by (Wu et al., 2018), which trains an

automated deception detection system with the above mentioned dataset. The

approach is multimodal again, but adding a new non-verbal modality; therefore,

the system is trained using features extracted from transcriptions, audio stream

and images. Facial gestures (treated as micro-expressions) are used again, ex-

tracted by a trained classifier rather than human annotation; additionally, video

sequences are analyzed employing IDT (Improved Dense Trajectories). MFCC

(Mel-frequency Cepstral Coefficients) are extracted and encoded from the au-

dio modality. Finally, transcriptions are analyzed by using Glove (Global Vectors

for Word Representation) to acquire verbal features. Given the feature extrac-

tion approaches, the number of features obtained for each video is different; to

get a fixed-length vector, they use a Fisher Vector encoding.

As the aforementioned works, they performed experiments on single fea-
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tures as well as their combinations using a late fusion approach, reaching the

best results when combining all the modalities (among different classifiers such

as SVM, Naive Bayes, DT, RT and Logistic Regression). The evaluation metric

used in this case was AUC, reaching 0.8773 using a linear kernel SVM with all

the automatically extracted modalities. This result is particularly interesting be-

cause of the experimental setup, which performs 10-fold cross validation using

identities instead of videos (e.g. no person in the training set is contained in

the test set); to our consideration, subject cross validation is the fairest way of

evaluation in small databases since we are willing to detect deception indepen-

dently of the subject (even though works like the one of (Abouelenien, Pérez-

Rosas, Zhao, et al., 2017) suggest that subject-related features like gender can

be useful to improve overall detection).

As part of her Doctoral thesis, (Morales, 2018) evaluates a set of auto-

matically extracted multimodal high-level features using the same experimental

setup as (Pérez-Rosas et al., 2015) on the above mentioned dataset. For this

work, three modalities are used: video, audio and text (automatic transcriptions

from audio). Features are extracted at frame, time window, and sentence level,

respectively, using OpenMM (Morales, Scherer, and Levitan, 2017). To deal

with different length videos, each feature is encoded into a 11-length vector

consisting of statistical functionals. For this set of multimodal features, fusion

reaches an accuracy of 76.03% using RF, which matches the result obtained by

Pérez-Rosas et al; however, this result is slightly lower than the one of the best

single modality feature set (e.g. 76.86% obtained with the acoustical modality).

Even though the two previous works perform automated feature extraction,

this extraction is based on pre-trained models. Exploring an end-to-end frame-

work, (Karimi, Tang, and Li, 2018) used a Deep Learning (DL) approach for

automatic feature extraction from the video and audio channel, respectively.

Unlike previous works, these are low-level features; however, to provide in-

terpretability, an attention mechanism is used on the visual modality. To take
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advantage of the sequential nature of videos, features are extracted at frame

level and fed to Long-Short Term Memory (LSTM) networks to obtain a fixed-

length representation for each modality. However, DL is meant to use large

datasets for training; to deal with scarce data, the representations gotten from

the LSTMs are manipulated with a variation of the Large Margin Nearest Neigh-

bor (LMNN) method using triplets of videos to artificially increase the number of

training instances. The final classification is performed with a simple k-nearest

neighbors method.

As previous works, the analyzed modalities are used again individually and

early fused in the court trial dataset. Their results show a improved perfor-

mance using both modalities with respect to using them separately, reaching

an average accuracy of 84.16% on ten randomly chosen test sets of 10 truthful

and 10 deceptive videos. This work is of particular interest because it is able to

show the frames which are given the most relevance according to the network,

giving a step forward for spotting of deception in videos (which can eventually

lead to real-time deception detection).

Another hybrid approach combining Deep Learning with traditional classi-

fiers is presented by (Carissimi, Beyan, and Murino, 2018). According to them,

and to the best of our knowledge too, it is the first time a multi-view learning

(MVL) approach is used for deception detection instead of feature concatena-

tion. Features are extracted from the video channel and transcriptions of videos

from the court trial dataset, with special interest in faces. For face analysis,

pre-trained DL networks are used for automatic feature extraction; this features

are combined with automatic detection of facial Action Units, manual annota-

tion of facial displays and hand gestures, uni-grams and bi-grams. Their MVL

approach is compared with early concatenation fusion of features, showing a

better performance with the non-trivial fusion strategy (reaching an accuracy of

89% using leave-one-out cross-validation); however, this time fused results are

not compared with the performance of single views.
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This work shows the recent rising interest on using more sophisticated

fusion strategies for multimodal deception detection, with promising results.

Therefore, it seems appropriate to explore fusion methods used for other tasks

that could be further applied to deception detection.

3.2 Multimodal information fusion

Despite the variety of features extracted from different modalities in the afore-

mentioned works, most of them share a common characteristic: a simple early

fusion approach is used for final classification, that is, features are combined

into a single vector before training a classifier; even for the one using late fu-

sion, such fusion is done simply by combining the scores obtained from each

modality. As far as we are concerned, there are almost no works exploring

alternative multimodal fusion methods (either early or late approaches) for de-

ception detection in videos; therefore, the related work explored in this section

will focus on multimodal fusion for supervised classification independently from

the classification task.

When talking about generic techniques for late fusion, (Barbu, Peng, and

Seetharaman, 2010) present a multimodal fusion method inspired by classifier

ensembles, where base classifiers are built independently from each feature

set and combined with a boosting strategy. This is an iterative method, for

which at each iteration a weak learner is trained for each feature set or view;

at each step, the weak learner with the lower error rate is stored and given a

weight based on its training error. At the next step, training instances are given

a sampling weight according to if they were correctly or incorrectly classified

in previous iterations (missclassified instances are given greater weights); as

all the views share the same sampling distribution, this method was named

Boosting With Shared Sampling Distribution (BSSD).

BSSD was tested on two datasets (FERET for face, gender and glasses-
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presence classification, and CYGD for gene classification) and compared to

majority vote, stacking, and semidefinite programming (SDP) using different

kernels. For all the given tasks, fusion using BSSD showed an improvement

with respect to individual views; additionally, BSSD outperformed the other

methods tested.

However, BSSD is not able to deal naturally with the sequential nature of

videos. When it comes to predictions with respect to input sequences, Recur-

rent Neural Networks have achieved good results. In the line of multimodal

tasks using RNN to deal with temporal sequences, (Bouaziz et al., 2016) pro-

pose an architecture of parallel Long Short-Term Memory (LSTM) networks for

multi-stream classification. LSTM are a special type of RNN that contain an in-

ternal cell state which is updated through input steps in a sequential data feed,

allowing it to keep a memory of what the network has seen so far. Such memory

is used as an additional parameter when evaluating new steps, therefore the

network makes inferences including knowledge acquired from the past. Bidi-

rectional LSTM (BLSTM) extend this principle by analyzing the input sequence

backwards too (the very same sequence is analyzed independently from start

to end and from end to start).

BLSTM are used in this case separately for independent input streams in

the task of predicting the genre of the next TV show given a history of gen-

res so far. Each input stream corresponds to the programming of a TV chan-

nel (using the EPG dataset); feature vectors obtained from each BLSTM are

fed to independent fully connected layers and the outputs of this layers are

summed element-wise to obtain the final decision derived from the multiple in-

put streams, therefore using data from many streams (modalities) of sequential

nature in a prediction task.

Extending the concept of Parallel Long Short-Term Memory (PLSTM) pre-

sented above, (Sawada, Masumura, and Nishizaki, 2017) present a new ar-

chitecture with a hierarchical approach using attention mechanisms for multi-
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class classification of conversations (from a Japanese call center). For this

work, each speaker is considered as an input stream, following the next hier-

archy: conversational document → speaker → utterance (sentence) → word.

Sequences of words are analyzed at sentence level with a bidirectional RNN;

hiden representations from BRNN are fed to an attention mechanism with a

memory reader to obtain a representation of a sentence; sequences of sen-

tences are fed too to a BRNN and a posterior attention mechanism with mem-

ory reader to obtain a representation of the conversation from the perspective

of a single speaker; the final representation of a whole document for classifica-

tion is the sum of the representation of each speaker (showing an improvement

with respect to a single BRNN and parallel RNN).

This architecture is called a Parallel Hierarchical Attention Network (PHAN)

because data is analyzed through parallel RNN using a hierarchy. The atten-

tion mechanism refers to learning a parameter that is able to give a normalized

importance to each of the steps in a sequential input at output level (for ex-

ample, in a network that prioritizes nouns, the attention derived from the input

“A cat ran” could be the vector [0.2, 0.7, 0.1]); the final hidden representa-

tion of a sequence using a RNN and an attention mechanism is a weighted

sum of the output of the RNN at each step given the attention provided by the

mechanism (back at the previous example, supposing the outputs of the RNN

were [[-2],[1],[-2]], the final representation would be 0.2*[-2] + 0.7*[1] +0.1*[-2]

= [0.1]).

The memory reader is an additional trainable parameter used by the atten-

tion mechanism, and in the case of multistream text it is useful since it can be

shared across streams (since all the streams are of a common type of data).

This allows for parallel independent training of streams while still making em-

phasis on the common features between them. However, these works doesn’t

deal yet with a multimedia problem.

In the field of affective computing, (Gorbova et al., 2018) present a PLSTM
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architecture for personality analysis from videos. In this case, videos are split

into three modalities (audio signal, image sequence and transcription), features

are extracted from each modality using external tools, and features per modal-

ity are fed into parallel LSTM in a similar way to the work of (Bouaziz et al.,

2016). However, unlike the aforementioned architecture, the hidden represen-

tation obtained from the PLSTM is concatenated into a single vector.

This multimodal vector is then fed into a linear regressor, since the task to

solve is the prediction of 5 personality traits in a scale [0,1] from the database

collected for the 2017 ChaLearn LAP CVPR/IJCNN Competition. Although their

results are slightly below the ones from the winners of the challenge, this par-

ticular approach have two main advantages of interest for us: the architecture

is simple so easy to replicate, and more importantly, features extracted from

each modality are high-level thus helping to provide interpretability from the

constructed model.

This fusion, as well as the other ones mentioned in this section tend to the

late fusion approach, where data is processed by intermediate analysis units

and the representation gotten from those units is used together to take a final

decision. One work focused on early fusion is the one presented by (Morales,

2018), which combines features from different modalities at feature level using

temporal synchronization with “informed” methods. With this approach, one

feature set is “informed” by other through time, being the first set analyzed un-

der temporal circumstances defined by the second one. In the case of the

“syntax informed method”, there are N time periods defined by the N differ-

ent Part-Of-Speech (POS) tags present in the speech; each feature from the

acoustic modality is analyzed in N different periods of time. Supposing two

POS tags (Noun [N] and Verb [V]), and two acoustic features (Frequency 0 [F0]

and Mel Frequency Cepstral Coefficient 0 [MFCC0]), the syntax informed vec-

tor would look like this: N x F0, N x MFCC0, V x F0, V x MFCC0; where N x F0

is the mean of F0 through all the time lapses when a Noun is told, N x MFCC0
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is the mean of MFCC0 through all the time lapses when a Noun is told, and so

on.

This informed approach is used for binary detection of depression in in-

terviewed persons from videos using three modalities (audio, text and video).

As the informed approach makes use of two modalities simultaneously, this

method can just be evaluated by pairs of modalities; in that work, the combi-

nation of audio with text and audio with video were evaluated (being the audio

informed by the other modalities), showing a better performance than a con-

catenation approach.

From this revision of the state of the art, we can conclude that not only the

late fusion approach is barely explored when it comes to multimodal decep-

tion detection in videos (actually, there is no focus on fusion when it comes to

the task), but the decision level approach is actually a tendency in multimodal

analysis for many different tasks including video related ones.

For this thesis, we aim to pay special attention to the methods used for

multimodal fusion (instead of simply concatenating the features extracted from

each modality); as the tendency nowadays for multimodal information fusion is

the late approach, we focus on late fusion approaches for deception detection.

Additionally, unlike many of the works presented here, we split features not only

by modality but also by type in order to explore them more congruently as high-

level attributes (i.e. features that can be interpreted by humans as congruent

sets of information). The next chapter is aimed to discuss the feature extraction

strategy proposed in this thesis for the task of deception detection in videos.
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Chapter Four

Multimodal characterization of

variable-length videos

To analyze videos using a Machine Learning approach, the first step is to ex-

tract features from them. However, videos are an interesting type of raw data

since they are inherently composed by more than one channel, and the chan-

nels that compose a video have a sequential nature. Therefore, to extract fea-

tures from videos, we must define the different channels from which those fea-

tures can be extracted. When it comes to videos, there are two main channels:

images and audio. Additionally, from the audio channel we can extract text in

the form of transcriptions. These three channels will be the modalities used for

analysis in this work.

Once the different modalities have been determined, we need to separate

and encode the channels into a set of features. Since the objective of this

work involves the usage of high-level features, feature extraction is done using

open tools developed for automatic extraction of feature sets typically used in

affective computing. It is important to note that, from a single channel, different

feature sets can be extracted according to the scope or phenomenon of interest

(e.g. from a face picture, we can extract a set of features solely from the eyes

and another one analyzing solely the mouth); each from these different feature

sets that can be extracted from a modality will be called a view from the given
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modality.

However, this views are constrained by the length of the analyzed video;

furthermore, under a non-constrained context where videos are not expected

to have a determined length, the number of features extracted per video will

vary proportionally to its length. Unlike images, where input instances can be

easily resized to meet the size conditions of a system, changing the duration

of a video is not a trivial task. The next sections are aimed to describe the

features extracted from each of the aforementioned modalities (Fig. 4.1 shows

a summary of the different views extracted per modality), how they can or have

been used for deception detection (or similar tasks), how they were extracted,

and the strategies used in this work to deal with the variable length of videos

from a database for their multimodal characterization.

Figure 4.1 The different views extracted for each of the 3 proposed
modalities.
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4.1 Visual

The visual modality is composed by the features that can be extracted from

the image stream of a video. To get these feature sets, raw videos are fed

to OpenFace (Baltrusaitis et al., 2018) 2.1.0, a facial behavior analysis toolkit.

This toolkit analyses videos at frame level; from each image, a long vector is

extracted composed by different types of features: facial landmarks, head pose,

binary presence and estimated intensity of facial action units, eye landmarks

and gaze direction (see Fig. 4.2 for a visual representation of this features).

The given vector (composed of 465 features) is split according to the different

types described above in order to get 6 different views.

Figure 4.2 OpenFace working on a real-time video.

Facial analysis is of particular interest because of two main reasons: 1)

face is usually the most visible body part when talking with someone, and 2)

it reveals a vast amount of information about the internal state of speakers,

including behavior that can be distinguished between liars and truth tellers as

stated by (R. Ekman, 1997). Particularly, Action Units (AU) from the Facial
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Action Coding System1 (FACS) are useful to identify emotions that a person

would want to keep in secret; however, identifying the existence of such hid-

den emotions can be misleading of deception as stated by (P. Ekman, 2003).

Therefore, analyzing AU further than for emotion recognition can be useful for

the deception detection task.

Systems meant to recognize AU automatically use facial landmarks; addi-

tionally, these landmarks are useful to describe faces and facial behavior in a

more general way. Likewise, head pose estimation can be used as another de-

scriptor of body language, giving an insight of involuntary movements beyond

face.

When talking about pose, there is another feature of particular interest:

eyes. Eyes can be described both in terms of gaze direction and opening (of

eyelids and pupils). Gaze direction is a popular feature used to undercover the

cognitive process going in the mind of the observed person (such as if they are

reminding or inventing something); however, not only this prior knowledge can

be used by a liar too in an attempt to improve their lies but there is not a gen-

eral agreement about if there is a specific set of eye movements directly related

with deception. As with AU, identifying certain movements can be misleading

of detection; furthermore, there is evidence supporting than prior knowledge of

the popular gaze direction pattern proposed by the Neuro-Linguistic Program-

ming supporters does not make a significant difference when a person is trying

to detect lies (Wiseman et al., 2012). However, there is in fact an agreement

that there are involuntary eye movements associated with cognitive process;

as an involuntary behavior, there may be still a correlation that can be cap-

tured by machine learning systems for deception detection. Similarly, opening

of pupils is an involuntary behavior that could be exploited for deception de-

tection; actually, there are some preliminary results that seem to support such
1For further information about the FACS and what facial action units look like, the reader is

encouraged to visit https://www.noldus.com/facereader/facial-action-units

31

https://www.noldus.com/facereader/facial-action-units


idea (Mitre-Hernandez et al., 2019).

4.2 Acoustical

The acoustical modality is formed using features that can be extracted from

an audio stream. For each video, the open tool FFmpeg is used to extract a

WAV audio file. Each of these files (audio stream) is fed to a MATLAB script

from COVAREP (Degottex et al., 2014), an open-source repository of advanced

speech processing algorithms.

Unlike the visual modality, analysis is done among time-windows (rather

than frames). For this thesis, the windows size was chosen to match the frame

rate of the image stream (i.e. there are 29.7 windows in a second since typi-

cal cams record 29.7 frames per second). For each time-window, 74 features

are extracted to form a long vector; again, the given vector is split accord-

ing to feature types in order to create the different views from the acoustical

modality: glottal flow (NAQ, QOQ, H1-H2, HRF, PSP, MDQ, Peak Slope, Rd,

Rd confidence, Creky Voice), voice (F0, V/UV), MCEP (MCEP 0-24), HMPDM

(HMPDM 0-24) and HMPDD (HMPDD 0-12). For a deeper understanding of

this features, the reader is encouraged to read the related paper of COVAREP

(Degottex et al., 2014).

The glottis is the opening between the vocal folds; sound production that

involves moving the vocal folds close together is called glottal. Glottal flow has

an important contribution to the supra-segmental characteristics of speech and

is known to significantly vary with changes in phonation type, so its param-

eterisation can be useful in many areas of speech research (Degottex et al.,

2014).

Sounds generated by a human are also filtered by the shape of the vocal

tract (tongue, teeth, etc.). This shape determines what sound comes out, and

it manifests itself in the envelope of the short time power spectrum. The job
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of Mel-frequency cepstral coefficients (MFCC) is to accurately represent this

envelope. This is why MFCC have been widely used for different tasks such as

Automatic Speech Recognition (Ganchev, Fakotakis, and Kokkinakis, 2005);

however, COVAREP extracts an alternative set of MFCCs which are extracted

from the “True Envelope” spectral representation (MCEP), which showed use-

fulness for emotion recognition (Degottex et al., 2014).

Sound (and consequently voice) is a periodic waveform propagated usually

through air; the fundamental frequency (F0) is defined as the lowest frequency

of such waveform. F0 and detection of voiced and unvoiced (V/UV) segments

are used to study the pitch an rhythm of a person while lying or telling the truth.

Harmonic model and phase distortion mean (HMPDM) and deviations (HM-

PDD) have been used before for depression detection in videos (Pampouchi-

dou et al., 2016), showing its usefulness for an affective computing task hard

for humans.

4.3 Textual

From the audio stream, transcriptions can be obtained to get a text file; by

extracting different features from such text we get the textual modality. In or-

der to have a system able to perform automatic analysis, video transcriptions

are extracted automatically using Watson Speech to Text from IBM (using the

model for English); since this task is done by an Automatic Speech Recognition

(ASR) system, it lacks punctuation and does not identify the subject of interest

(i.e. even if it is able to distinguish between speakers, it is not able to recognize

who is the person being evaluated).

Based on the study presented by (Rill-García et al., 2018), the next views

were extracted at video level using the Natural Language Toolkit from Python:

bag of character n-grams (for n = 1, 2, 3, 4; where each value of n corresponds

to a different view), bag of Part-Of-Speech n-grams (again for n = 1, 2, 3, 4) and
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a LIWC dictionary encoding.

Other view is extracted using a typical Bag-Of-Words (BOW) representation

as suggested by (Pérez-Rosas et al., 2015). To create a BOW, a vocabulary is

obtained by extracting all the different words from a corpus of texts; afterwards,

each text is represented as a vector counting the number of times each different

word from the text is inside the text (the length of the vector is equal to the

size of the vocabulary; a graphical example of this can be seen in Fig. 4.3). As

transcription lengths can vary a lot from video to video, the resulting vector from

each text is normalized; to reduce the size of the vocabulary, this is constructed

using only words appearing in at least 10% of the texts. This representation is

used because it is a common strategy for Natural Language Processing (NLP).

Figure 4.3 Example of a Bag-Of-Words extracted from a corpus of
three sentences.

With respect to character n-grams, the term refers to sets of n consecutive

characters (e.g. all the available character 3-grams in the sentence “The cat”

are “The”, “he ”, “e c”, “ca” and “cat”). To get a bag of character n-grams, a new

corpus is obtained replacing each text with its corresponding set of ordered

available character n-grams; once this is done, the same logic from a BOW is

used, counting character n-grams instead of words (when something is used

instead of words, the representation gets the generic name of Bag-Of-Terms).

Character n-grams are often used to capture author style from texts, so they

could be useful to capture style from liars/truth tellers.

Part-Of-Speech (POS) tags are used to classify words according to their

grammatical properties. Although different POS tags exist for different lan-
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guages, there is a set of universal POS tags: ADJ (adjective), ADP (adpo-

sition), ADV (adverb), CONJ (conjunction), DET (determiner, article), NOUN

(noun), NUM (numeral), PRT (particle), PRON (pronoun), VERB (verb) and X

(other). For each transcription, a new text is obtained by replacing each word

with its corresponding POS using SyntaxNet. To get POS n-grams, we count

POS tags instead of characters; consequently, a bag of POS n-grams is ob-

tained by counting POS n-grams instead of words. As with character n-grams,

the reasoning behind analyzing POS tags is that they are useful for capturing

style.

The Linguistic Inquiry and Word Count (LIWC) dictionary defines one or

more word categories or subdictionaries for different words/word stems. For

example, the word “cried” is part of four word categories: sadness, negative

emotion, overall affect, and a past tense verb. Similarly to a BOW representa-

tion, a LIWC enconding consists on representing a text with a fixed-size vector

(the length of the vector is equal to the number of categories in the dictionary);

unlike a BOW, each word can increase the count of many attributes at the same

time (for example, with “cried”, the positions for sadness, negative emotion,

overall affect and past tense verb are increased by 1 at the same time). For this

work, the 2007 English version of the LIWC dictionary2 is used, normalizing

each resulting vector.

Finally, a simple syntax analysis as done by OpenMM (Morales, Scherer,

and Levitan, 2017) is used as another textual view; these “syntax features” are

extracted taking advantage of the parse tree generated by SyntaxNet when

POS tagging a text. These syntax features are considered because they have

been used previously for sentiment and deception detection (Morales, 2018).
2For further information on this dictionary, the reader is encouraged to visit https://www.

kovcomp.co.uk/wordstat/LIWC.html
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4.4 Dealing with variable length videos

Despite the different text sizes obtained by transcribing variable length videos,

the feature (views) extraction for the the textual modality results on fixed 1×Ni-

size vectors per video for each different view (with Ni equal to the number of

different features corresponding to the view i). However, for the visual and

acoustical modalities we extract a Mj × Ni matrix for each modality from each

video (with Mj equal to the number of frames/time windows contained in the

video j). As we expect videos with variable length, Mj will change from video

to video; however, classic machine learning models are not able to deal with

variable size inputs (not to say they typically expect a vector rather than a ma-

trix).

Therefore, in order to use the extracted feature matrices, we need a strategy

to code them into fixed-size vectors independent from the video length. The

next subsections are aimed to explain the two approaches used for this in the

present work.

4.4.1 Statistical functionals

A first intuition on how to solve this problem involves using mathematical func-

tions that somehow describe the behavior of each feature in the whole video

(that is, along all the frames). A typical approach to do this comes in the form

of descriptive statistics; as done by OpenMM (Morales, Scherer, and Levitan,

2017), an open-source multimodal feature extraction tool, the final represen-

tation from a variable-length sequence of features is computed as 11 statisti-

cal functionals for each feature (a graphical representation of this process is

shown in Fig. 4.4). The features extracted by OpenMM in the form of statistical

functionals were aimed primarily for depression detection in videos (which is a

similar task), but they were incidentally tested too for the deception detection
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task showing promising results.

Figure 4.4 Creation of a 1× (11 ∗N) vector from a M ×N matrix. The
matrix is obtained by extracting N attributes AI for I = 1, 2, ..., N from
a video with M frames.

This approach is attractive since it is able to summarize hundreds (or thou-

sands) of frames with an easy, low cost, implementation. However, it lacks

the ability of capturing the inherent sequential nature of such frames; as these

features are extracted from a video, the order of the frames is important to un-

derstand and analyze it. A strategy for coding variable-size matrices into fixed

size vectors taking into account the order of the frames is presented in the next

subsection.

4.4.2 Long-Short Term Memory

Long-Short Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997)

are a special type of Recurrent Neural Networks (RNNs) used in the field

of Deep Learning. RNNs are well-suited to process time series data, while

LSTMs are particularly useful to deal with long sequences in comparison with

traditional RNNs (which comes handy when dealing with videos since a single

second of recording involves ∼30 frames).

For this work, LSTMs are used as a feature extractor intended to encode a

37



sequence of high-level features into a fixed size vector. In order to do this, the

resulting vector from a LSTM is connected to a fully connected layer intended

to predict if a sequence of high-level features is associated with a truthful or

deceptive video. Once the network is trained, the output of the LSTM layer

when evaluating a input matrix is used as the fixed-size vector representing

such matrix (as seen in Fig. 4.5).

Figure 4.5 Creation of a 1 × 3 vector from a 6frames × 4attributes matrix.
The resulting vector is the output of the LSTM layer (which was used
to calculate the final decision in the training phase).

However, training a network with very long input sequences is expensive in

terms of time and memory. That is why training data fed to LSTM networks is

usually padded in order to reduce the length of the training sequences (typically

using a fixed length in terms of the average length of the training sequences).

In the case of this work, a different approach for sequence reduction is used

inspired by the work of (Gorbova et al., 2018) on automatic personality analysis

from short video clips: instead of selecting a set of K consecutive frames, all

the frames from a video are fed to a K-means algorithm; as this work aims to

detect cues for deception, selecting representative frames from each video is

an intuitive idea for focusing in the particular moments important for deception

detection. To take advantage of the multimodal nature of videos, as well as the

synchronized extraction of visual and acoustical views, all the multimodal views

are concatenated into a multimodal matrix for each video. From this matrix, K
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key frame numbers are selected as in Fig. 4.6; from this point, each view is

used to train separate LSTMs as in Fig. 4.5 using just the frames obtained from

the previous step.

Figure 4.6 Selection of K ordered key frames using a K-means algo-
rithm on the vectors resulting from concatenating the different views at
frame level.

From a grid search, K = 100 was chosen. In a similar way, a grid search

was performed for each view in order to find a proper size for the output of its

corresponding LSTM (as well as other training parameters such as number of

training epochs and batch size); however, as words are not synchronized with

frames, the textual modality was excluded in this case.

The LSTM approach used here is an intermediate point between preserving

full interpretability of the extracted features (which were meant to be high-level

from the beginning) and exploiting the automatic feature extraction ability of

Deep Learning models. More specifically, the high-level features extracted with

the aforementioned tools substitute the convolutional layers from a typical DL

architecture that are fed to a LSTM layer during training, thus creating a hybrid

approach. This approach then uses high-level features that we, as humans, can

understand; however the temporal encoding is learned automatically, making

interpretability harder. Under the scope of training, this approach helps to deal

with the small number of training instances, since typical DL models are trained

using great amounts of data: by providing pre-extracted features, the network

doesn’t need to learn them itself, thus (intuitively) simplifying the training.
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Once the strategy for feature extraction has been chosen, it is time to present

the databases used for testing and validation.

4.5 Datasets

As stated before, deception detection is a hard task for humans. As a con-

sequence, it is hard to compile videos correctly labeled as a either truthful

or deceptive. To deal with this problem, related works typically create artifi-

cial datasets by recording people who were explicitly asked to lie or tell the

truth under controlled circumstances (actually, one of the contributions of this

thesis is a database of this kind using Mexican subjects speaking Spanish);

however, this databases are not usually publicly released due to Institutional

Review Board restrictions. Furthermore, there is an underlying inconvenient,

since people recorded for these databases are volunteers: there is no real mo-

tivation to lie, as there are not relevant rewards or punishments related to being

trusted. Behavior is strongly influenced by context, and so is involuntary be-

havior too; therefore, by a context lacking of a real motivation to lie, the cues for

deception found in videos like these may be misleading with respect to real-life

scenarios.

Also, talking about behavior, it is known that it is conditioned by cultural

background. As a consequence, we could think that the act of deceiving is in-

fluenced by the cultural background of the liar. While looking for universal cues

of deception, it would be necessary to analyze people from different regions

and countries; however, deception detection video datasets are not only scarce

but they are usually composed from American people. Even in the cases where

such databases are recorded with volunteers from different countries, they use

English as the spoken language; these adds an additional factor to the prob-

lem, since speaking a foreign language already implies a different cognitive

process. Actually, research suggests that either lying or detecting deception is

40



heavily influenced by the language spoken, in terms of speaking a native or a

second language (Cheng and Broadhurst, 2005).

Concerning the points stated in this section, our experiments are performed

with data extracted from two different databases developed for the deception

detection task in videos, including a novel dataset composed of Mexicans speak-

ing Spanish (to the best of our knowledge, this is the first database with these

characteristics collected for the task). The next subsections are aimed to de-

scribe both datasets and how they were collected, as well as to discuss how

both datasets help to deal with the issues described above.

4.5.1 Real-life trial database

Expecting to “to build a multimodal collection of occurrences of real deception

during court trials, which will allow us to analyze both verbal and non-verbal

behaviors in relation to deception”, (Pérez-Rosas et al., 2015) introduce a novel

dataset consisting of videos collected from real-life public court trials.

To collect such videos, they started by identifying public multimedia sources

where trial hearing recordings were available; this is of particular interest since,

videos being already public, the collection could be made publicly available

without independent ethics committees restrictions. The second condition to

choose a video was that deceptive and truthful behavior could be fairly ob-

served and verified; this is highly relevant too, since it implies that there should

be a mechanism able to fairly label videos from real-life scenarios (thus having

a context where the subject is actually motivated to lie, i.e. a court trial).

Regarding data processing, some additional constrains were taken into ac-

count for video selection: the defendant or witness should be clearly identified

in the video; their face should be visible enough during most of the clip; vi-

sual quality should be clear enough to identify facial expressions; audio quality

should be clear enough to hear and understand what the person is saying.
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With respect to video labeling, three different trial outcomes were taken into

account to label a trial video clip as deceptive or truthful: guilty verdict, non-

guilty verdict, and exoneration. For guilty verdicts, deceptive clips were col-

lected from a defendant while truthful videos were collected from witnesses in

the same trial; in some cases, deceptive videos were collected from a sus-

pect denying a crime they committed while truthful ones were taken from the

same suspect when talking about facts verified by the police. With respect to

witnesses, testimonies verified by police investigations were labeled as truthful

whereas testimonies in favor of a guilty subject were labeled as deceptive. In

all cases, exoneration testimonies were labeled as truthful statements3.

One should notice, however, that labeling is still subject to noise; without

going farther, exonerees were first found guilty, so using a guilty verdict can be

misleading of a correct label. But even so, it is a trade-off for the advantage of

having a real-life scenario where labels can be assigned under certain factual

evidence.

The final available dataset consists of 121 videos, including 61 deceptive

and 60 truthful ones. The average length of the videos is 28.0 seconds (27.7

and 28.3 for deceptive and truthful clips, respectively). The dataset consists

of 56 unique speakers including 21 female and 35 male (according to the

authors of the set; the authors of this thesis counted out 58 different identi-

ties), from which each identity has an unbalanced set of deceptive and truthful

videos (a person’s videos are, usually, uniformly from a single class). As the

videos were collected from many sources, they vary highly in camera position,

movement, focus, scene change, background noise, volume, human editing, et

cetera (some frame examples from different videos are shown in Fig. 4.7).
3Clips containing exonerees testimonies were obtained from “The Innocence Project” web-

site (http://www.innocenceproject.org/)
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Figure 4.7 Sample frames from 4 different videos of the court trial
dataset.

4.5.2 Novel Mexican Spanish abortion/best friend database

As stated before, not only deception detection video datasets are scarce, but

they are usually collected from American people; even if not, the language in

those videos is English. Furthermore, most of them are not publicly available.

Motivated by this facts, and looking to not only have more data for experiments

but to study deception on not-American people speaking their native language,

we worked in the development of a novel dataset composed by Mexican people

speaking Spanish.

The above mentioned database was collected jointly with the Centro Tlax-

cala de Biología de la Conducta (CTBC) from the Universidad Autónoma de

Tlaxcala (UATx), by recording volunteer students from that institution. Similarly

to related works, the recordings were done under a controlled environment; for

this particular dataset, subjects were recorded facing the camera (they were

recorded so that their heads and shoulders were fully visible) in front of a white

wall in a silent room.

Regarding deception detection, subjects were asked to discuss two different

topics: abortion, a controversial topic; and their best friend, a personal topic.

This topics, as well as the protocol used for recording, was inspired by the ones

used by (Abouelenien, Pérez-Rosas, Mihalcea, et al., 2017).

In the case of abortion, participants were asked to give their genuine po-

sition towards abortion; once they were done, they were asked to give a fake

posture towards the same topic. For both cases, participants were instructed
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to talk 2-3 minutes continuously (both postures are recorded as independent

videos, and only their answers are recorded i.e. the interviewer’s instructions

are not recorded). When giving their genuine position, the video is labeled as

truthful; when giving a fake posture, the clip is labeled as deceptive.

With respect to the best friend topic, the subjects were asked to describe

their best friend; afterwards, they were instructed to think about a person they

couldn’t stand and describe them as if that person was their best friend. Simi-

larly to the abortion topic, participants were asked to talk 2-3 uninterrupted min-

utes for each case. When talking about their best friend, the video is labeled

as truthful; when describing the person they can’t stand, the clip is labeled as

deceptive.

Each participant was asked to give both postures about the two topics, but

there were videos discarded when the subject wasn’t able to fully follow the

given instructions (in some cases, there are short utterances of the interviewer

encouraging the subject to keep talking). The final collection of videos used for

experiments consisted of 42 videos, including 21 deceptive and 21 truthful. As

stated before, videos have a length between ∼2 and ∼3 minutes. The dataset

consists of 11 unique speakers, from which each identity has a balanced set of

deceptive and truthful videos. Unlike the court database, even if videos were

recorded on different days, clips are homogeneous in terms of camera position,

movement, focus, et cetera (some frame examples from different videos are

shown in Fig. 4.8).

Figure 4.8 Sample frames from 4 different videos of the Mexican Span-
ish dataset.
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Database Court Mexican Spanish

# Videos 121 42

Language English Spanish (Mexican)

Context Court-trial, real life Abortion/best friend,

voluntary participation

# Subjects 58 11

Balanced? (Per subject) No Yes

# Deceptive clips 61 21

# Truthful clips 60 21

Table 4.1 Summary of the analyzed databases.

With both databases (summarized in Table 4.1), we contemplate the cases

of both real-life and controlled lies, with both fixed and variable camera settings,

under different contexts, on people using two different languages (including

people from different ethnic origins). This diversity is useful to validate the

features and methods used in this work under different constraints, thus helping

in the objective of analyzing deception in a general context (i.e. independently

from the conditions on which we want to detect deception).

Once the feature extraction strategy and the databases have been selected,

it is time to evaluate the extracted features in the given datasets. A study of the

performance of these features using a Machine Learning approach is presented

in the next chapter.
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Chapter Five

SINGLE-MODAL DECEPTION

DETECTION

Before exploring multimodal fusion, we conducted preliminary experiments to

evaluate each modality independently. Experiments were performed using scikit-

learn 0.20.2 using SVC (a SVM classifier) as baseline (as it tended to show the

best results in preliminary experiments without parameter tuning); a minor hy-

perparameter tuning was performed using grid search looking to optimize the

average accuracy of all the views (i.e. all the views were trained separately

using the same hyperparameters).

For all the experiments from now on, a 10-fold cross validation is used for

evaluation. However, as we are exploring the multimodal analysis of deception

cues, we want to avoid the classifiers to degenerate into identity detectors (e.g.

it is not desirable to classify a person as a liar in the test set just because all

their training examples were deceptive); to work around this, our 10 folds are

identity based rather than instance based (i.e. no person in the test set was

used in the training set as suggested by (Wu et al., 2018)). Additionally, as the

labels per subject are unbalanced in the court dataset, AUC ROC is used as

the evaluation metric. In the case of the Mexican Spanish dataset, as labels

per subject are balanced, the AUC should be similar to accuracy, so AUC is

conserved for convenience.
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For each database, two experiments were performed: 1) using the features

encoded with statistical functionals and 2) using features encoded with a LSTM.

In both cases, modalities were evaluated as separate views; for statistical func-

tionals, views are used as a single modality too (i.e. all the different view vec-

tors from modality M were concatenated into a single long vector representing

modality M -early fusion-). This is because we want to evaluate each view

separately to gain insight of the performance of “intuitive” features separately,

and then evaluate how all these views work together (when concatenated as a

single feature set).

For the court database, the base classifier used a linear kernel; for the Mex-

ican Spanish database, a polynomial kenrel was used with C = 0.01. For both

cases, to ensure reproducibility, tolerance was set to 1e-7 and maximum num-

ber of iterations to 3000. The other hyperparameters were set to default.

5.1 Visual modality

For the visual modality, results are shown with blue bars in Figs. 5.1-5.4. The

first two graphs refer to the court database, while the last two refer to the Mexi-

can Spanish dataset; in both cases, the first graph shows results using statisti-

cal functionals while the second one using LSTM.

Focusing in the court dataset, we can see in both cases that gaze direction

stands out among the different visual views, being the best feature set when

using statistical functionals. Related with the eyes, Fig. 5.1 suggests that eye

landmarks are useful too to recognize deception when using statistical function-

als; in general, it seems that using statistical functionals outperforms the usage

of LSTM to encode the temporal information of the chosen high-level features.

This is particularly notorious too when analyzing the binary presence of action

units; both AU presence and eye landmarks have a relevant better performance

when using statistical functionals rather than LSTM. However, focusing on gaze
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direction and head pose (both features referring to position and orientation of

body parts), one should notice that LSTM seems to reach good results; actu-

ally, head pose achieves the best results from the LSTM encoding, reaching a

result as good as analyzing gaze direction with statistical functionals.

A similar tendency can be seen when analyzing the Mexican Spanish dataset:

overall, results using statistical functionals outperform the ones using LSTM.

And again, gaze direction, eye landmarks and presence of AU seem to do well

at detecting deception. However, we find that while using statistical functionals

the overall performance of each view tends to improve, using LSTM has the

opposite tendency. Particularly, we notice that the views that performed better

in the court dataset have a considerable decrement in the Mexican Spanish

database, while the intensity of action units saw a relevant improvement. Actu-

ally, the intensity of AU has a great improvement overall in the Mexican Spanish

clips with respect to the court ones, as well as facial landmarks. This behavior

could be explained by the camera distance/angle with respect to the speaker in

both datasets, as in the Mexican Spanish dataset not only the camera is close

to the person in all videos without changing position but there is no change

of scene in the clips (unlike the court dataset), therefore simplifying the facial

analysis.

To close this section, it is important to notice that concatenating all the visual

modalities into a single vector (rightest blue column in Figs. 5.1 and 5.3) does

not outperform the best view in the court dataset, but it does slightly improve

the best individual result in the Mexican Spanish database.

5.2 Acoustical modality

For the visual modality, results are shown now with orange bars in Figs. 5.1-5.4.

Again, the first two graphs refer to the court database, while the last two refer to

the Mexican Spanish dataset; in both cases, the first graph shows results using
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Figure 5.1 AUC achieved by the different views in the court-trial dataset
when using statistical functionals. Views from the visual modality are
in blue; the ones for the acoustical modality are in orange; green cor-
responds to the textual modality; for each case, the rightest column
represents the unimododal concatenation.

Figure 5.2 AUC achieved by the different views in the court-trial dataset
when using LSTM. Views from the visual modality are in blue; the ones
for the acoustical modality are in orange.

statistical functionals while the second one using LSTM.

In this case, for both cases in both datasets there is a view that outperforms

all others: MCEP. In the case of the court clips, this view shows a behavior

similar to gaze direction (visual modality); when analyzing the Mexican Span-

ish videos, using statistical functionals MCEP works much better than gaze
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direction, but using LSTM gaze outperforms MCEP.

However, the acoustical views tend to get much worse in general when us-

ing LSTM instead of statistical functionals in the Mexican Spanish database;

we observe the opposite phenomenon in the court dataset, where using LSTM

tends to improve performance with respect to statistical functionals. This be-

havior could be explained by the average length of the videos, since Mexican

Spanish ones are approximately five times longer than the clips from court;

thus, LSTMs are able to get the most from not-so-long videos in the court

dataset while lacking information because of the sequence padding in the Mex-

ican Spanish videos.

This is particular relevant for the voice view, since using a LSTM encod-

ing highly improves the performance of this view in the court dataset with

respect to using statistical functionals; the very opposite case occurs for the

Mexican Spanish clips, where using statistical functionals is much better than

using a LSTM encoding. However, it seems that properly analyzing the F0 and

pauses (voice) along time can be useful to detect deception in different scenar-

ios: either short participations with interruptions (like in the court database) or

long (2-3 minutes) speeches without interruptions (like in the Mexican Spanish

dataset).

We have another particular case with respect to glottal flow, that reach re-

sults & 0.60 in 3 out of 4 cases (being the only exception using LSTM on the

Mexican Spanish dataset, that was a case already discussed to have low per-

formance in general for the acoustical modality). This suggests that acoustical

cues for deception can be reached out at primitive levels of the phonetic pro-

cess.

To close this section, it is important to notice that concatenating all the

acoustical modalities into a single vector (rightest orange column in Figs. 5.1

and 5.3) severely hurts the score reached by the best performing view in both

datasets. This observation is of particular interest, because even if the acousti-
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cal modality has the best performing view, a trivial fusion of the acoustical views

has a performance below the worst scored visual view: one could be misled to

think that the acoustical modality is a bad source of information while, in reality,

it contains many views useful for the task.

Figure 5.3 AUC achieved by the different views in the Mexican Span-
ish dataset when using statistical functionals. Views from the visual
modality are in blue; the ones for the acoustical modality are in orange;
for each case, the rightest column represents the unimododal concate-
nation.

Figure 5.4 AUC achieved by the different views in the Mexican Spanish
dataset when using LSTM. Views from the visual modality are in blue;
the ones for the acoustical modality are in orange.
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5.3 Textual modality

As mentioned before, the textual modality was extracted from text generated

by an ASR system. However, Watson Speech to Text does not have a model

trained for Mexican Spanish and the performance of transcriptions made with

the model for Spain was undesirable. In consequence, transcriptions were only

extracted for the court database; additionally, as text was not paired with im-

ages/sound at frame level, the LSTM encoding was not used; as the represen-

tations used to extract features already deal with variable length texts, there

was no need of using statistical functionals.

Results for the textual modality are shown with green columns in Fig. 5.1.

In this case, the best views are variations of Bag-Of-Terms representations,

particularly using words and character n-grams as the terms; however, a LIWC

encoding and extracting syntax features achieve similar results. Character n-

grams and the LIWC encoding are congruent with the results presented by

(Rill-García et al., 2018), but this is not the case for bags of POS n-grams. We

find two possible explanations for the low performance of these views: 1) POS

tagging is done based on context (for example, in the sentence “There was an

orange in the orange bowl”, “orange” works both as a noun and an adjective);

the automatic transcription done by Watson comprise every utterance in the au-

dio stream, retrieving then a mixed text composed of sentences/words spoken

by all the people in an audio file. With that conditions, not only transcription is

harder (thus having a lower quality text) but the text itself is hard to understand

without hearing the original conversation (therefore making automatic POS tag-

ging harder). 2) They used a different tagger (provided by Stanford), which used

different POS tags (while we use universal tags, they use a more specialized

set of tags for English).

For this modality, concatenating all the views together (rightest green col-

umn in Fig. 5.1) improves the score reached by the best single view (LIWC
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encoding, that is below the best single view results from the visual and acous-

tical modalities).

5.4 Multimodal complementarity

Some of the results presented in the previous section suggest empirically that

it is useful to combine views to improve single-view performance. However,

we want to find out if it is potentially useful to combine modalities in order to

achieve better results. In order to do this, we analyze the predictions done at

instance level when using statistical functionals (as not only this approach tends

to achieve better results but it contemplates the three proposed modalities).

This analysis is performed to see how complementary the predictions are at

both views and modalities levels: even if each type of features (view or modality)

has many mistakes, we want them to be wrong at different instances (so that if

we combine them in a proper way we get better results).

To know the best possible result after fusion, we measure the Maximum

Possible Accuracy: at instance level, if any of the studied views/modalities clas-

sified the instance correctly, the instance is considered as correctly classified;

once this has been done for all the instances in the database, the accuracy is

calculated. This is then an optimistic measure that considers a perfect fusion.

Also, we want a numeric measure to evaluate how diverse are the errors

between the different views/modalities. For this purpose, we use the Coincident

Failure Diversity (CFD) metric (Escalante, Montes, and Sucar, 2010), which

ranges from 0 (in the case where all the studied views/modalities always make

the same label predictions) to 1 (when misclassifications are unique to one

view/modality).

As it can be seen in Figs. 5.5 (court) and 5.6 (Mexican Spanish), not only

the CFD is far from 0 both at views and modality levels (meaning the different

feature sets are far from mispredicting the same examples), but the MPA is
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Figure 5.5 CFD between views and modalities from the court dataset,
as well as their MPA. From left to right, these metrics are measured us-
ing: all the views from the visual modality independently, all the views
from the acoustical modality independently, all the views from the tex-
tual modality independently, all the views grouped as three modality
vectors, all the views independently.

greater at views level rather than at modalities level. This suggests there is,

in fact, complementarity both at views and modalities level; also, it seems like

there are complementarity reasons to split the different modalities into views

(as a perfect fusion of all the proposed views achieves better results than a

perfect fusion of three modality vectors).

At this point, we have evidence of the multimodal complementarity between

the extracted feature sets; furthermore, there is evidence too on the potential

improvement of performance that can be reached by performing multimodal

fusion. However, there are results showing that a trivial fusion (early concate-

nation) is not really useful to bring out this performance improvement (this ap-

proach, actually, can hurt the overall scores obtained by the different views).

Therefore, it is time to explore other multimodal approaches for deception de-

tection. This is done inspired by ensemble techniques, as detailed in the next
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Figure 5.6 CFD between views and modalities from the Mexican Span-
ish dataset, as well as their MPA. From left to right, these metrics are
measured using: all the views from the visual modality independently,
all the views from the acoustical modality independently, all the views
grouped as three modality vectors, all the views independently.

chapter.
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Chapter Six

MULTIMODAL DECEPTION

DETECTION

There is a maxim that says “two heads are better than one”. And, overall, this

can be further extended to more “heads”; for example, when making important

decisions, we often seek for a second, third or more opinions. As a human

process, we seek for individual opinions of experts, weight them, and combine

them to get a decision as informed as possible (presumably the best one).

In the terrain of machine learning, an ensemble consists of a set of individ-

ually trained classifiers whose predictions are combined whenever a new in-

stance needs to be classified. This process is analogous to consulting several

“experts” (classifiers) before making a final decision. In the case of multimodal

fusion, instead of consulting different “experts” from the same area (different

classifiers trained on the same modality) we consulte “experts” from different

areas (classifiers trained on different types of data).

On this chapter, we describe some of these fusion methods as well as two

methods proposed by us, and use them to fuse the multimodal features used

in Chapter 5.
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6.1 Traditional fusion methods

As aforementioned, we took an approach based on classifier ensembles; with

this paradigm, we ensemble views rather than classifiers. Based on the com-

plementarity study done in Chapter 5 and the work presented in (Rill-Garcia

et al., 2019), here we don’t present results of fusion done with modality vectors

(i.e. vectors built by concatenating all the views from a single modality); this

is because splitting data into views seems to be more effective than splitting it

just into modalities. As baseline methods, we use a set of traditional ensemble

techniques (Polikar, 2006).

Two of them are in the category of late fusion (fusion is done after indepen-

dent classifications): majority votes and stacking. With majority votes, the final

decision is the most frequent class predicted among all the classifiers. Stacking

consists on putting together the predictions done by each classifier for an in-

stance to form a new training vector; the vectors extracted from all the predicted

instances are then used as a new database for a late classifier and the predic-

tion from that classifier (which we call the “stacker”) is the final decision. For this

work, we used a SVC classifier with a linear kernel as the stacker (this decision

was made after some preliminary experiments, where different linear classifiers

were tested without hyperparameter tuning). A variation of both methods (ma-

jority votes and stacking) is tested too, where instead of using hard labels the

probabilities of both classes are used.

Also, for a more complete evaluation, an additional approach is used as

baseline too: early fusion. This consists simply on concatenating all the views

together into a single vector before using a classifier. As the simplest form of

fusion, this strategy works as the lower bound to surpass for the rest of fusion

methods. Two of them are the novel fusion methods introduced in this work and

described in the next section.
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6.2 A novel fusion strategy

Among the classifier ensemble techniques we can find boosting; particularly,

AdaBoost has been shown to improve the prediction accuracy of base learners

through an iterative weighting process (Freund and Schapire, 1997). (Barbu,

Peng, and Seetharaman, 2010) first presented a multiple view generalization of

AdaBoost called Boosting With Shared Sampling Distributions (BSSD), where

weak learners are built at “view" level at each iteration (our “view" definition was

actually inspired by them). The weak learner with the lower error rate is chosen

at each step, and its errors are used to calculate a new probability distribution of

the training instances for the next iteration, giving greater weights to the wrongly

classified instances. All views share the same sampling distribution, so each

weak learner at each iteration gives greater importance to those examples that

were “harder” to predict in the previous iterations (pseudocode for this can be

seen at Algorithm 1).

Our first approach was extending BSSD with a hierarchical strategy (hierar-

chical BSSD), by using BSSD with the views from each modality independently

and then using the label calculated for each modality as a new feature for late

fusion (a diagram of this method is shown in Fig. 6.1). For consistency, the

classifier used for late modality fusion is the same used as stacker in the stack-

ing method, since hierarchical BSSD is a way to extend classical BSSD with a

stacking approach at modality level.

Based on the previous idea, we could extend classical BSSD with a stack-

ing strategy at view level (stacking BSSD). Adaboost (and therefore BSSD)

classifies an instance with a linear function of the labels predicted for such in-

stance from each weak learner trained. The weights from this linear function

are learned by the boosting algorithm as a function of the error rate of each

weak learner; however, there might be a benefit from learning these weights

outside the boosting algorithm. Hatami and Ebrahimpour Hatami and Ebrahim-
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Algorithm 1 Boosting With Shared Sampling Distributions (BSSD) algorithm

as presented by (Barbu, Peng, and Seetharaman, 2010).

Input: zj0 = {x
j
i , yi}ni=1, j = 1, . . . ,M.

Initialization: W1 = {w1(i) =
1
n
}ni=1

1. for k = 1 to kmax do

2. Sample zjk from zj0 using the distribution Wk.

3. Compute hypothesis hjk from zjk for each view j.

4. Calculate error εjk : ε
j
k = Pi∼Wk

[hjk(x
j
i ) 6= yi]

5. If for each view: {εjk}Mj=1 ≤ 0.5, select h∗k corresponding to ε∗k = minj{εjk}.

6. Calculate α∗
k =

1
2
ln(

1−ε∗k
ε∗k

).

7. Update wk+1(i) =
wk(i)
Z∗
k
× e−h∗k(x∗i )yiα∗

k , where Z∗
k is a normalizing factor.

8. end for

9. Output: F (x) =
∑k

k=1 maxα
∗
kh

∗
k(x

∗).

10. Final hypothesis: H(x) = sign(F (x)).
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Figure 6.1 Block diagram of Hierarchical Boosting with Shared Sam-
pling Distribution.

Figure 6.2 Block diagram of Stacking Boosting with Shared Sampling
Distribution.

pour, 2007 try a similar approach, using the weak learners obtained by a boost-

ing algorithm as base classifiers for a stacking method, achieving better re-

sults than using boosting alone. We use the same approach, using the weak

learners generated by BSSD as base classifiers for stacking (a diagram of this

method can be seen in Fig. 6.2).

6.3 Fusion results

Four different experiments were performed for each database. First, all the

fusion strategies discussed in the previous sections were tested using all the
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available views using statistical functionals; then, the same fusion strategies

except for hierarchical BSSD are tested with all the available views using LSTM

(these experiments are shown in Figs. 6.3-6.6 for both datasets). The next

two experiments are basically the same, but using just the best two views per

modality according to the results shown in Chapter 3 (these experiments are

shown in Figs. 6.7-6.10 for both datasets).

First at all, when using all the available views, fusion methods using statisti-

cal functionals tend to work better than using LSTM (there was a similar case

when analyzing single views in Chapter 5). However these fusions don’t really

improve the results obtained by the best single modalities for each case (these

scores can bee seen in the captions of each graph). In the court dataset, the

best fused results are around the best single view but without surpassing it.

In the Mexican Spanish database, when using statistical functionals the best

fusion method is far from the best single view; however, when using LSTM the

best single view is outperformed by two fusion methods (stacking and major-

ity vote). However, we can see that except for the case where the best single

view greatly surpasses fusion methods a simple early fusion is outperformed

by more sophisticated fusion strategies.

As with any Machine Learning problem, training can be harmed by the pres-

ence of noisy input data. This can be extended to ensembles, where bad clas-

sifiers can hurt the overall performance of the whole ensemble. From Figs. 5.1-

5.4 we can notice many views with a performance < 0.5 (that is, potentially

worse than random guessing). Thus, it could be deduced that the performance

of the current ensembles is being decreased because of these “noisy” features.

It is to look further into this hypothesis that the next experiments were done

using the best views per modality (this is a process analogous to an empirical

feature selection, dealing with whole feature sets instead of single features).

For the court database, the results support the given hypothesis since the

best results using fusion methods are improved and get to outperform the best
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Figure 6.3 Fusion results ob-
tained by using all the views
from the court database us-
ing statistical functionals. The
best single view was gaze
(AUC=0.683).

Figure 6.4 Fusion results ob-
tained by using all the views
from the court database using
LSTM. The best single view
was MCEP (AUC=0.680).

Figure 6.5 Fusion results
obtained by using all the
views from the Mexican
Spanish database using
statistical functionals. The
best single view was MCEP
(AUC=0.856).

Figure 6.6 Fusion results ob-
tained by using all the views
from the Mexican Spanish
database using LSTM. The
best single view was AU inten-
sity (AUC=0.575).

single view score. Interesting enough, the fusion of features encoded with

LSTM improved to the point of surpassing the features encoded with statisti-

cal functionals (actually, 5 of the proposed fusion methods outperformed the

best single view with statistical functionals despite the lower performance of

LSTM encoding with respect to statistical functionals in single view tests).
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With the Mexican Spanish dataset, however, we have a different case. With

features using statistical functionals, the overall performance of the fusion meth-

ods tends to get worse; however, with LSTM encoded features the overall per-

formance of fusion improves with respect to not doing feature set selection

(nevertheless, the best fused score is lower than before i.e. using all the avail-

able views).

Figure 6.7 Fusion results ob-
tained by using the best views
from the court database us-
ing statistical functionals. The
best single view was gaze
(AUC=0.683).

Figure 6.8 Fusion results ob-
tained by using the best views
from the court database using
LSTM. The best single view
was MCEP (AUC=0.680).

6.4 Comparison of fusion methods

Evidence so far suggests that reducing the number of views by choosing the

ones with best individual performance can improve the overall performance of

ensembles (as one would have expected). However, with such reduction of the

number of available views, the performance of boosting based methods tends

to get worse even if the chosen views are the ones with the best independent

performance.

Boosting methods benefit themselves much from diversity unlike methods

like majority vote (that tended to show the best performance along experi-
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Figure 6.9 Fusion results
obtained by using the best
views from the Mexican
Spanish database using
statistical functionals. The
best single view was MCEP
(AUC=0.856).

Figure 6.10 Fusion results
obtained by using the best
views from the Mexican Span-
ish database using LSTM. The
best single view was AU inten-
sity (AUC=0.575).

ments): while majority vote can be severely hurt by having many “poor” voters,

boosting can use these poor voters when the best ones are not able to classify

properly a hard instance. However, unlike majority vote, boosting methods are

highly prone to overfitting; by looking at the algorithm of BSSD (Algorithm 1),

one can notice that the method can attach itself to a single view if this is able to

classify the training data with 100% accuracy (even if training accuracy is not

representative of the general performance of a classifier).

This problem, indeed, was the motivation behind hierarchical BSSD: even if

at modality level BSSD overfits to a single view, the method forces the system

to take into account at least one view from each modality, thus ensuring that

the final decision is in fact multimodal. This is something important to highlight

about the boosting methods managed in this thesis, since it deals with the

multimodal interpretability of the final decision made by the system.

Looking back at the motivation behind classifier ensembles (that is, search-

ing for the opinions of different experts to take a final decision), it would be

desirable to understand the weighting done by the system (i.e. understand-
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ing the way in which deception cues are managed to take a decision about a

sensible topic). Thanks to the linear nature of boosting, the final decision is a

weighted sum of the decision made by the best view at each iteration of the

BSSD algorithm: we can know perfectly which are the views taken into account

and the weight assigned to such views for the final prediction. Additionally, by

using a linear classifier (e.g. SVM) as the base learner, we can know the weight

associated to each single feature from each view separately. Therefore, we can

trace back the weights assigned to every single feature with a pipe-line of linear

functions.

Overall, the problem with fusion for this task is the great amount of informa-

tion sources available. Early fusion deals with the curse of dimensionality, since

we have a huge number of attributes for a small number of training instances

(due to the nature of the problem). Under this scope, distributing the data hi-

erarchically into different feature sets seems like a good strategy to deal with

the great amount of features obtained from each video; the results presented

in this chapter seem to support this idea, since the majority vote, stacking and

BSSD variant methods are based precisely on this principle of grouping data

and often surpass the performance of early fusion.

However, there are concerns for each of these methods that impact in the

final result of fusion. Taking back the idea of “experts”, a classifier trained with a

single view is an expert in that area. Majority vote, stacking and BSSD methods

take the decisions of these experts in different ways: democratically, by giving

each expert the same importance; with preferences, by giving some experts

more importance according to how useful they were for decision making during

training; and discriminatorily, by only taking into account the opinions of experts

who committed the lesser amount of errors during training.
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6.4.1 Pros and cons of the different fusion approaches

The democratic approach is useful whenever all the voters are good individu-

ally, since even if a few percentage of them is wrong for a certain instance, this

weakness is compensated by the rest of the experts; however, even if one of

the voters is flawless, the ensemble will have a poor performance if all the rest

of the experts have a bad performance (just as observed in our experiments).

The next intuition, then, is to give weights to each vote, trying to minimize

the opinion of voters with low performance. To learn this weights the stacking

strategy is utilized, using a late classifier to do this automatically; this method,

however, is more prone to overfitting. When dealing with many experts, the

stacking approach has the advantage of learning automatically which are the

bad voters; this is the most probable explanation on why, when using all the

available views, stacking surpasses majority vote. However, this happens only

when using statistical functionals; this could be explained because using the

LSTM encoding has an overall bad performance on single views, thus stacking

has the hard task to assign weights to naturally bad voters.

When reducing the number of views to the best ones, however, majority

vote tends to outperform stacking. This is probably explained by the different

natures of videos in both datasets; e.g. even if stacking decided that visual

views are the most important for detecting deception, this may be true just for

certain subjects (the ones in the training set); consequently, this weighting may

be ineffective for the general case, while the democratic approach of majority

vote can work more properly since all the experts are fairly good to discriminate

liars in general (confirmed by the cross-validation used to rank individual views).

In the case of the analyzed boosting methods, some voters are discrim-

inated automatically instead of being discarded manually. As with stacking,

these methods tend to perform better than majority vote when using all the

available views, because these methods discard automatically a great amount
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of bad voters. However this can be seen as a disadvantage too, since it can

reduce the amount of data considered for the final decision; this tendency is

shown when contrasted with stacking, as when using all the available views

the performance of stacking tends to be slightly better than the performance

of boosting methods. During training, glottal flow and MCEP tended to be the

best views chosen at each iteration of the BSSD algorithm, then limiting the final

decision to just these two views. However, when using just the best perform-

ing views, boosting methods tend to work slightly better than stacking; while

stacking deals with weighting this views, boosting just selects the best one and

complements it whenever it is necessary by taking the hypothesis from other

good expert. However, again, this is prone to overfitting to a single view, thus

having a final decision with less information than the one taken by majority vote.

Comparing BSSD with our proposed variants, we can note that stacking

BSSD tends to work as well as or better than traditional BSSD; this is more

notorious when using the LSTM encoding. Traditional BSSD assigns weights

to each weak learner based on the mistakes made in the training instances,

thus being prone to the same risks of validating a system by its results on

training data; by using a late classifier to learn this weights, we have the same

advantages of stacking allowing to ignore base learners that could have a high

weight just due to overfitting on the training set while having a bad general

performance.

By the other hand, hierarchical BSSD tends to work worse than the other

two boosting methods. This behavior can be most likely explained by the same

reason of the decreased performance of stacking when using just selected

views instead of all the views, as we are taking again a stacking approach

with a limited number of features (in this case, modality decisions instead of

selected views).

Further conclusions about this and the thesis as a whole are presented in

the next closing chapter.
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Chapter Seven

CONCLUSIONS

In this thesis we explored high-level features extracted automatically from videos

for the deception detection task. These features, analyzed hierarchically as

“views” from three different “modalities” (visual, acoustical and textual), were

studied with a machine learning approach.

We conducted preliminary experiments with these feature sets separately

to gain an insight of their effectiveness on deception detection. Additionally, a

study of complementarity between the different feature sets (at view and modal-

ity level) was performed to find evidence on the convenience of approaching the

deception detection in videos as a multimodal problem.

Afterwards, work was done on multimodal fusion of features to improve the

predictive power with respect to single views independently. This fusion was

performed with methods based on classifier ensemble techniques, including

two novel methods based on boosting first introduced in an article (Rill-Garcia

et al., 2019) derived from this thesis.

Experiments were performed on two different datasets (summarized in Ta-

ble 4.1). The first one is a real-life court trial database composed of public video

clips collected from the web. The second one is a database collected for this

thesis, composed by videos of Mexican people talking about a sensible and a

personal topic in Spanish (to the best of our knowledge, this is the first dataset

for deception detection in videos using Latin Spanish as native language).
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Validation was done using 10-fold cross-validation based on subjects rather

than instances (i.e. no person seen in the training set is part of the test set).

This scheme was used because we are interested in subject-independent de-

ception detection, so we want to avoid a classifier to label a video as deceptive

because it depicts a subject who was always deceptive in the training set.

With the above mentioned work, we obtained the following answers for the

research questions raised in Chapter 1:

There are high-level features that can be extracted automatically using open

tools that are useful under different experimental settings for deception detec-

tion. Particularly, despite the cultural, language, context and topic-related dif-

ferences, there were views that showed a tendency as good discriminators of

deception in both datasets, namely: gaze direction, eye landmarks, AU (visual

modality), MCEP, glottal flow and voice (acoustical modality).

In order to deal with variable length in videos, we found two approaches

that can be useful under certain conditions. When it comes to large videos (i.e.

videos with a high number of frames), statistical functionals are a good way to

summarize video frames into a fixed-size vector; however, the functionals are

not able to capture the sequential nature of videos. In order to take advantage

of this nature, LSTM networks can be used to encode frame sequences into

fixed-size vectors since this neural network architecture deals naturally with se-

quential data. However, large sequences are expensive in terms of memory

and training time; therefore, data extracted from videos (many frames per sec-

ond) needs to be padded somehow to deal with this problem. The method

proposed in this thesis consisted in selecting K ordered key frames with a K-

means algorithm based on multimodal vectors. This method is recommended

for videos with an average length of ∼30 seconds (where data loss due to

padding is not relevant); for longer videos, statistical functionals are recom-

mended.

Measures on Coincident Failure Diversity show a complementarity between
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the predictions done by different features sets, while the Maximum Possible

Accuracy metric suggests a possible improvement by fusing such predictions.

Particularly, the results suggest that different views can achieve a better result

separately rather than concatenated as multimodal vectors; even if we have

22 different views (compared to 3 different modalities), CFD still shows a good

complementarity between the errors committed by the different feature sets in

both databases.

When it comes to multimodal fusion, methods based on boosting (BSSD)

take advantage of the multimodal diversity of different features that can be ex-

tracted from videos; particularly, they have the advantage of allowing an easy

interpretation of the decisions made by the system thanks to the linear nature

of their predictions. However, the results achieved by other traditional ensemble

methods can outperform the ones reached with the proposed boosting meth-

ods; this is particularly true when doing feature set selection: in this case, fusion

methods are able to improve single-view results. Additionally, doing feature set

selection helps to highly improve the results obtained when using features en-

coded using LSTM networks (in single-view experiments, LSTM encoding was

outperformed by statistical functionals).

Overall, non-trivial fusion strategies can improve a simple early fusion ap-

proach, and multimodal fusion can improve the results obtained by single views.

However, deciding the best fusion strategy for the task is not trivial, and there

are still many areas of improvement. A brief discussion on future work for this

thesis is presented in the next section.

7.1 Future work

With respect to fusion methods, the first step would be hyperparameter tun-

ing for the classifiers trained with each view separately, in order to improve the

performance of the base learners. It would be also useful to perform hyperpa-
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rameter tuning for the classifiers used as stackers in the boosting methods.

With respect to feature selection, it would be convenient to perform analysis

beyond empirical results to select the best feature sets (views) from the features

extracted. Furthermore, it would be useful to perform feature selection at view

level in order to reduce the dimensionality of training data.

With respect to deep learning approaches, it would be interesting to train

LSTM networks using a greater number of frames (thus attempting to capture

more information keeping into account the sequential nature of frames). Fur-

thermore, the K-means algorithm for key multimodal frame selection could be

improved by performing a synchronization of text with the other modalities. Al-

though there are tools able to assign time stamps to text, the time used to

pronounce a single word implies more than a single frame; a first idea to deal

with this is using the statistical functions strategy, by using descriptive statistics

on the elapsed frames during the pronunciation of a word (a word embedding

would be needed for the textual modality).

Finally, with respect to the videos used for experiments, it is clear that more

data is needed to build more robust systems (this is particularly true when ex-

ploring deep learning approaches). Automatic deception detection has gained

much interest in recent years (not to say that deception detection in general

has always been a topic of interest); however, as expressed in this thesis,

databases available for the task are scarce and often not publicly available.

Therefore, one of the more important tasks left is to increase the amount of

data for training; with respect to us, we are still gathering more samples hoping

to be able to distribute our database publicly.
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