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Abstract

This thesis presents a theoretical discussion of the full evolution of Supernova Rem-

nants (SNRs), that includes the thermalization of the SN ejecta, the Sedov-Taylor

and Snowplough stages of the SNR evolution. Our aim is to study how such evolution

proceeds for different values of the ambient gas density. A fast numerical method

based on the Thin-Shell approximation is developed.

The ejecta density and velocity configurations are included in order to study

the ejecta-dominated (ED) or thermalization phase, and the transition to the

Sedov-Taylor (ST) stage. The numerical scheme also includes radiative cooling. The

calculations show that for low-density models, the remnants follow the classical

evolutionary tracks with a negligible amount of energy radiated from the shocked

ejecta gas and are in excellent agreement with the literature.

For high-density models, strong radiative cooling, both from the shocked ejecta and

shocked ambient gas, leads the SNRs to evolve without reaching the ST stage. A crit-

ical ambient gas density is obtained. For densities higher than this critical value, the

evolution differs significantly from the standard theory. In such cases, the remnants

become radiative when the thermalization of the ejecta mass has not been con-

cluded. Thus, the ambient density is an essential parameter on the evolution of SNRs.
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Chapter 1

Introduction

The explosions of massive stars at the end of their evolution (Supernova Explosions)

are powerful sources of mass and energy. They shape the interstellar medium (ISM)

of their host galaxies, determine the ISM chemical composition, compress the

interstellar gas into fast moving shells and are sources of cosmic rays and of radio

and X-ray emission (e.g McKee & Ostriker 1977, Terlevich et al. 1992, Tenorio-Tagle

et al. 2015, Elmegreen 2017, Conroy & Spergel 2011, Silich & Tenorio-Tagle 2017,

Krause et al. 2013). The SNRs are also dust producers in the Universe. The dust

grains are assumed to form within the cold ejecta, such that the low temperatures

and chemical composition of this gas permits the formation of dust grains (e.g

Morgan et al. 2003, Nozawa et al. 2010, Todini & Ferrara 2001, Micelotta et al. 2016,

Bianchi & Schneider 2007a).

The Supernova Remnants (SNRs), which formed when gas ejected by massive stars

begins to interact with the ambient medium, undergo several stages (Chevalier,

1977).

The first stage, known as the ejecta-dominated (ED) or thermalization phase,

begins when the high velocity expanding ejecta forms a leading shock in the ambient

medium. The large thermal pressure behind this shock leads to the formation of

another, reverse shock, which decelerates and thermalizes the ejected matter. At this

stage, the velocity and density structure of the ejecta determines the dynamics of the

SNRs (e.g Tang & Chevalier 2017, Draine & McKee 1993, McKee & Truelove 1995).

Cassiopeia A (Cas A) is an example of a SNR at this stage. It is a young (∼ 400

[1]



2 1. Introduction

yr old) SNR whose reverse shock still does not reach the center of the explosion.

This implies that the thermalization of the ejected matter is still not completed in

this case (e.g Micelotta et al. 2016, Laming & Hwang 2003,Laming & Hwang 2003,

Orlando et al. 2016, Hwang & Laming 2012). Fig. 1.1 presents an image of CasA

obtained with data from the Chandra X-ray Observatory.

Figure 1.1: Image of the Cas A SNR obtained by the Chandra Space Observatory.
Image Credits: Nasa.

After the thermalization process is terminated (i.e. when the reverse shock reaches

the center of the explosion), the adiabatic Sedov-Taylor (ST) solution begins (e.g

Sedov 1946, Bisnovatyi-Kogan & Silich 1995, Ostriker & McKee 1988). This stage is

described by a self-similar hydrodynamic solution. This allows one to use the ST stage

as a perfect test to verify new analytic and numerical methods designed to follow the

evolution of SNRs. Indeed, during the ST stage, the shock radius and velocity are

given by power-law functions of time (R ∝ t2/5, V ∝ t−3/5 ) and the kinetic and ther-

mal energies are conserved (Ek ≈ 0.3E0 and Eth ≈ 0.7E0, where E0 is the explosion

energy, see Sedov 1946).

As the leading shock slows down with time, the post-shock temperature decreases

(T ∝ V 2) and reaches values which are close to the maximum in the cooling function

Astrophysics Department Instituto Nacional de Astrof́ısica, Óptica y Electrónica



1.1 The aim of this Thesis 3

(e.g Raymond et al. 1976, Wiersma et al. 2009, Schure et al. 2009). Therefore, at late

times radiative cooling becomes important. When this occurs, the remnant enters the

snowplough (SP) phase (e.g Draine & McKee 1993, Cioffi et al. 1988a, Blondin

et al. 1998, Mihalas & Mihalas 2013). At this stage, a very thin, cold and dense shell

is formed at the outer boundary of the SNR. The density increases in response to the

sudden fall of post-shock temperature, due to radiative cooling, to preserve pressure.

Throughout the course of the SP stage, a SNR loses most of its thermal energy.

The remnant then moves for a while in the momentum conserving conservation

stage (MCS) and finally merges with the ambient gas when the expansion velocity

drops to the sound speed in the ambient ISM .

The evolutionary tracks described above were successfully applied to many SNRs

(e.g Orlando et al. 2016, McKee & Ostriker 1977, Borkowski et al. 2001, Slane et al.

2000). However, they do not explain the evolution of all the SNRs. The major factors

which the standard theory does not consider are the non-homogeneity of the ambient

medium and the radiative loses of energy at the early ED-phase in cases when the

SN explosion occurs in a high density ambient medium. For example, Terlevich et al.

(1992) found that when the ambient gas density is n0 = 107 cm−3, strong radiative

cooling speeds up the evolution and the SNR does not reach the ST stage.

Thus, the ambient density is an important parameter that must be considered in

order to understand the evolution of SNRs and their feedback on their host galaxies.

However, the numerical simulation of SN explosions at such high densities are com-

putationally expensive, as small time steps are required in order to take into account

the radiation terms properly (LeVeque et al., 2006).

The aim of this Thesis

The evolution of SNRs dramatically differs when the explosion occurs in low and

high density media. However, given the difficulty of numerical simulations for large

ambient densities n0, the evolution of SNRs in these cases is not well understood.

This problem is addressed in this thesis. Our aim is to develop a numerical code

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants



4 1. Introduction

that allows one to follow the evolution of SNRs from the ejecta-dominated phase to

the Snowplough stage for any ambient gas density. In order to achieve this aim, we

included all necessary terms in the Thin-Shell approximation equations to take into

account the ejecta density and velocity structure and the effects of radiative cooling

at all possible ambient densities.

Structure of the Thesis

• The basic Thin-Shell approximation (TSA) and its implementation as a 3D

numerical code is discussed in chapter 2. The method is tested by reproducing

the Sedov-Taylor results. Additionally, a test of a SNR evolving into a non-

homogeneous ambient medium is shown.

• The TSA is extended to cover the thermalization of the ejecta mass in chapter

3. To achieve this, the ejecta density and free expansion velocity are introduced.

The reverse shock dynamics is also included. The method relies on the energy

conservation equation in order to follow this evolutionary phase. Our results

for the dynamics of both the leading and the reverse shocks are discussed and

compared with previous analytic and numerical results. The impact of the initial

conditions of the ejected material on the long-term evolution of SNRs is also

discussed.

• Chapter 4 deals with the transition from the Sedov-Taylor stage to the Snow-

plough phase. Hence, the cooling function is presented and a radiation term

for the leading shock is added to the TSA. The transition time between both

stages is defined, calculated and compared with previous results. It is shown

that during the ST stage, the leading shock moves approximately as R ∝ t0.39

and during the Snowplough stage as R ∝ t0.3.

• Chapter 5 merges the previous chapters to study the full SNR evolution for

different densities of the ambient medium. In order to achieve this, a radiation

term for the shocked ejecta is also include in the TSA code. For low density

models, the energy lost by the ejecta gas due to radiative cooling is shown to be

negligible. The radiated energy from the leading shock is shown to peak about

Astrophysics Department Instituto Nacional de Astrof́ısica, Óptica y Electrónica



1.2 Structure of the Thesis 5

the transition time to the Snowplough stage. Later, a study of the impact of the

ambient medium on the thermalization of the ejecta mass for a wide range of

densities is presented. The highest density that allows a SNR to thermalize its

ejecta mass before reaching the SP stage, is determined. For higher densities,

part of the ejecta mass still has not been shocked when the remnants become

fully radiative.

• Finally, chapter 6 summarizes the main results, presents the conclusions of

this work and discusses briefly possible future directions.

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants
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Chapter 2

The Thin-Shell Approximation

Introduction

Supernova explosions produce an important feedback on the interstellar medium due

to the injection of a huge amount of energy and momentum (e.g. Silich & Tenorio-

Tagle 2017; McKee & Ostriker 1977; Conroy & Spergel 2011; Tenorio-Tagle et al.

2015). SNRs also play a pivotal role on the contamination of the surrounding medium

with metal-rich gas generated both as by-products of the explosion and during the

life of the star (Tenorio-Tagle, 1996).

Modelling the dynamical evolution of a supernova explosion in the ISM requires solv-

ing the hydrodynamic equations with sophisticated numerical tools and demands high

spatial and temporal resolution making the solution computationally expensive (Mi-

halas & Mihalas, 2013; LeVeque et al., 2006). In many cases, however, a much simpler

method known as the the Thin-Shell Approximation (TSA), could be used to

follow faithfully the 3D evolution of SNRs even in non-uniform media1. The theo-

retical foundation and numerical implementation of this method is discussed in this

chapter. Although the focus will be on describing the adiabatic solution, subsequent

chapters discuss a generalization of this method that allows one to follow the full

evolution of SNRs from the ejecta dominated phase to the radiative phase.

1See a review by Bisnovatyi-Kogan & Silich (1995) and references therein.

[7]



8 2. The Thin-Shell Approximation

Model equations

The Thin-Shell approximation was developed several decades ago and is based on two

basic assumptions: the first one is that, gas swept-up by the shock is concentrated in

a shell which is thin compared to the size of the remnant ( e.g. Clarke & Carswell

2007, Mihalas & Mihalas 2013, Draine & McKee 1993) and it is moving with the

shocked-gas velocity U (which for an adiabatic shock is just U = 2
γ+1

Vs, where Vs is

the shock velocity and γ is the ratio of the specific heats). The second assumption

is that the gas thermal pressure is uniform throughout the volume enclosed by the

leading shock.

In non-spherical cases, the shell must be split in a set of N Lagrangian elements and

one has to follow the motion of each of these elements by making use of the equations

of mass and momentum conservation. The set of equations is coupled by means of

the energy conservation equation.

Blast wave dynamics

Let us consider a single Lagrangian element with mass µ, velocity U and radius-vector

r. The equations of mass and momentum conservation can be written then as (Silich,

1992):
dµ

dt
=
γ + 1

2
ρ (x, y, z) (U−V) · ndΣ (2.2.1)

d

dt
(µU) = PndΣ + V

dµ

dt
+ µg (2.2.2)

dr

dt
=
γ + 1

2
U (2.2.3)

Where ρ (x, y, z) and V (x, y, z) are the density and velocity of the unshocked, sur-

rounding medium, dΣ is the area of the Lagrangian element, n is the unit vector

normal to the surface of the Lagrangian element, g is the gravitational acceleration

and P is the thermal pressure inside the remnant, which is determined by the energy

conservation equation.

As it is well known (e.g. Apostol 2007), any surface can be parametrized with two
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2.2 Model equations 9

parameters λ1 and λ2. The surface of any Lagrangian element dΣ and the unit vector

n are, respectively:

dΣ = Sdλ1dλ2, (2.2.4)

n =
1

S

∂ (y, z)

∂ (λ1, λ2)
n̂x +

1

S

∂ (z, x)

∂ (λ1, λ2)
n̂y +

1

S

∂ (x, y)

∂ (λ1, λ2)
n̂z, (2.2.5)

where:

S =

√(
∂ (y, z)

∂ (λ1, λ2)

)2

+

(
∂ (z, x)

∂ (λ1, λ2)

)2

+

(
∂ (x, y)

∂ (λ1, λ2)

)2

(2.2.6)

and ∂ (xi, xj) /∂ (λi, λj) are the Jacobians. The volume enclosed by the surface is

calculated as:

Ω =
1

3

∫ ∫ [
x
∂ (y, z)

∂ (λ1, λ2)
+ y

∂ (z, x)

∂ (λ1, λ2)
+ z

∂ (x, y)

∂ (λ1, λ2)

]
dλ1dλ2 (2.2.7)

Using equations 2.2.4, 2.2.5 and 2.2.6, one can write equations 2.2.1, 2.2.2 and 2.2.3

in cartesian coordinates as:
dµ

dt
=
γ + 1

2
ρε, (2.2.8)

dUx
dt

=
P

µ

∂ (y, z)

∂ (λ1, λ2)
− Ux − Vx

µ

dµ

dt
+ gx, (2.2.9)

dUy
dt

=
P

µ

∂ (z, x)

∂ (λ1, λ2)
− Uy − Vy

µ

dµ

dt
+ gy, (2.2.10)

dUz
dt

=
P

µ

∂ (x, y)

∂ (λ1, λ2)
− Uz − Vz

µ

dµ

dt
+ gz, (2.2.11)

dx

dt
=
γ + 1

2
Ux,

dy

dt
=
γ + 1

2
Uy,

dz

dt
=
γ + 1

2
Uz, (2.2.12)

where x, y, z, Ux, Uy, Uz are the cartesian coordinates of the position and velocity

vectors of the Lagrangian element and:

ε = (Ux − Vx)
∂ (y, z)

∂ (λ1, λ2)
+ (Uy − Vy)

∂ (z, x)

∂ (λ1, λ2)
(Uz − Vz)

∂ (x, y)

∂ (λ1, λ2)
. (2.2.13)

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants



10 2. The Thin-Shell Approximation

The gas thermal pressure P changes with time, but remains uniform inside the rem-

nant and is equal to:

P = (γ − 1)
Eth
Ω
. (2.2.14)

In equation 2.2.14, Ω is the volume which is calculated using equation 2.2.7 and Eth

is the SNR thermal energy:

Eth = E0 − Ek, (2.2.15)

where E0 is the initial explosion energy and Ek is the kinetic energy:

Ek =
1

2

∫ ∫
µU2dλ1dλ2. (2.2.16)

In order to solve equations (2.2.8-2.2.12) numerically, it is necessary to compute the

determinants ∂ (xi, xj) /∂ (λi, λj) and formulate the initial conditions for each La-

grangian element.

Numerical Method: Code description

Computing the Jacobian Determinants

Let us split the remnant into a set of Lagrangian elements with indexes (i, j), where

i ∈ {1, . . . , Nz} and j ∈ {1, . . . , Nφ}. The Jacobian for a given Lagrangian element is:

∂ (x, y)

∂ (λ1, λ2)
=

∣∣∣∣∣ ∂x∂λ1 ∂x
∂λ2

∂y
∂λ1

∂y
∂λ2

∣∣∣∣∣ =
∂x

∂λ1

∂y

∂λ2
− ∂x

∂λ2

∂y

∂λ1
. (2.3.1)

To calculate 2.3.1 for the element (i, j), its closest neighbours are used. In other words,

the derivatives on the point (i, j) are calculated as finite differences with respect to

the surrounding points. Hence:

∂x (i, j)

∂λ1
=
x (i+ 1, j)− x (i− 1, j)

dλ1
, (2.3.2)

∂x (i, j)

∂λ2
=
x (i, j + 1)− x (i, j − 1)

dλ2
, (2.3.3)
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[i,j] 

[i,j+1] [i+1,j] 

[i,j−1] [i−1,j] 

Figure 2.1: Illustration of the procedure used to compute the Jacobian Matrices. Its is
shown an arbitrary point. This plot is a projection of the sphere onto the xy plane.

∂y (i, j)

∂λ1
=
y (i+ 1, j)− y (i− 1, j)

dλ1
, (2.3.4)

∂y (i, j)

∂λ2
=
y (i, j + 1)− y (i, j − 1)

dλ2
, (2.3.5)

∂z (i, j)

∂λ1
=
z (i+ 1, j)− z (i− 1, j)

dλ1
, (2.3.6)

∂z (i, j)

∂λ2
=
z (i, j + 1)− z (i, j − 1)

dλ2
. (2.3.7)

As the values of the coordinates at each Lagrangian point are known, it is possible

to calculate the Jacobians 2.3.1 at each Lagrangian element. Fig. 2.1 illustrates this

procedure. Here the red lines indicate the neighbour points used to calculate the

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants



12 2. The Thin-Shell Approximation

derivatives over the two variables.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
x 

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

y [1,1] 

[2,jc] 

[2,ja] 

[2,jb] 

[2,jd] 

Figure 2.2: Same as Fig. 2.1 but for the north pole.

In order to compute the Jacobians for the poles, one should select points which belong

to the first Lagrangian layer above or bellow the pole. Introducing the following

notation:

ja = 1 (2.3.8)

jb =
Nφ

4
+ 1 (2.3.9)

jc =
Nφ

2
+ 1 (2.3.10)

jd =
3Nφ

4
+ 1 (2.3.11)
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2.3 Numerical Method: Code description 13

For clarity, Fig. 2.2 shows these points for the north pole. In this case the derivatives

are calculated as:
∂x (1, 1)

∂λ1
=
x (2, jc)− x (2, ja)

dλ1
, (2.3.12)

∂x (1, 1)

∂λ2
=
x (2, jd)− x (2, jb)

dλ2
, (2.3.13)

∂y (1, 1)

∂λ1
=
y (2, jc)− y (2, ja)

dλ1
, (2.3.14)

∂y (1, 1)

∂λ2
=
y (2, jd)− y (2, jb)

dλ2
, (2.3.15)

∂z (1, 1)

∂λ1
=
z (2, jc)− z (2, ja)

dλ1
, (2.3.16)

∂z (1, 1)

∂λ2
=
z (2, jd)− z (2, jb)

dλ2
. (2.3.17)

This allows one to compute the Jacobian determinants for every Lagrangian element.

The accuracy of the calculations depends on the number of elements and becomes

better if more Lagrangian zones are used (large Nz and Nφ). As an illustrative ex-

ample, Fig. 2.3 shows the relative errors ε = (Vreal − Vcomp) /Vreal of computing the

volume Vcomp of the initial sphere by means of equation 2.2.7. The standard case used

for this work is: Nz = Nφ = 40.

Setting the initial conditions

It is assumed that at t = 0 the remnant is spherical. It is split into a number of

Lagrangian elements whose cartesian coordinates are determined by a user-selected

set of points in the azimuth (Nφpoints) and polar (Nz points) directions. Let ∆αi and

∆αj be the angles that separate points in these directions:

∆αi =
π

Nz − 1
, ∆αj =

2π

Nφ

(2.3.18)

Then, for every i ∈ {1, . . . , Nz} and for every j ∈ {1, . . . , Nφ}, the initial positions and

velocities of the Lagrangian elements for a remnant of initial radius R0 and velocity

U0, whose center is located at (x0, y0, z0) are:

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants



14 2. The Thin-Shell Approximation
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Figure 2.3: Relative error ε = (Vreal − Vcomp) /Vreal of computing the volume of a
sphere with equation 2.2.7.

xij = R0 sinαi cosαj + x0, (2.3.19)

yij = R0 sinαi sinαj + y0, (2.3.20)

zij = R0 cosαi + z0, (2.3.21)

V xij = U0 sinαi cosαj, (2.3.22)

V yij = U0 sinαi sinαj, (2.3.23)

V zij = U0 cosαi, (2.3.24)

where:

αi = (i− 1) ∆αi, αj = j∆αj. (2.3.25)
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2.3 Numerical Method: Code description 15

Fig. 2.4 shows the initial positions for the Lagrangian elements in the case when the
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Figure 2.4: Initial positions for the Lagrangian elements with Nz = Nφ = 20.

initial remnant radius is 1 pc and Nz = Nφ = 20. These definitions determine how

many ordinary differential equations (ODEs) must be solved per time step. The total

number of Lagrangian elements in the simulation is:

Ntot = Nφ (Nz − 2) + 2. (2.3.26)

As every Lagrangian element is described by 7 ODE’s (equations (2.2.8-2.2.12)), which

must be combined with the global equation of energy conservation, the total number

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants



16 2. The Thin-Shell Approximation

of differential equations that must be solved every time step is:

Neq = 7Ntot + 1 = 7 (Nφ (Nz − 2) + 2) + 1. (2.3.27)

In a typical run of the code (i.e., Nφ = Nz = 40), the total number of differential

equations Neq is 10655.

Dimensionless form of the main equations

The initial conditions are used to present the main equations in a dimensionless form.

The initial radius R0 and shell velocity U0 are the length and velocity units, respec-

tively, and the coordinates and velocities of the Lagrangian elements are normalized

as:

x′i,j = xi,j/R0, y′i,j = yi,j/R0, z′i,j = zi,j/R0, (2.3.28)

V x′i,j = V xi,j/U0, V y′i,j = V yi,j/U0, V z′i,j = V zi,j/U0. (2.3.29)

The mass is measured in the units:

Munit = ρ (x0, y0, z0)R
3
0. (2.3.30)

The initial swept up mass then is:

M ′ =
M0

Munit

=
4π

3
.

The initial total energy of the remnant E0 is used as the unit of energy. Then the

pressure is measured in the units:

Punit =
E0

R3
0

. (2.3.31)

Finally, the time scale is defined as:

tunit =
R0

U0

. (2.3.32)
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2.4 Testing the code 17

To solve the set of dimensionless equations we adapted the Dormand-Prince method

for the eight order Runge-Kutta-Fehlberg integrator (Dormand & Prince, 1980), cou-

pled with a proportional-integral (PI) stepsize control (Press, 2007). This algorithm

guaranties that the integration is performed under a user-selected value for the tol-

erance and it also calculates the value of the next time step h. This is done for every

Lagrangian element, which implies that in order to keep the same time step for the

entire remnant, one should select the minimum time step calculated for all Lagrangian

elements as the new h for the following integration.
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Figure 2.5: Comparison of the numerical simulation with the Sedov-Taylor solution:
the remnant radius and shock expansion velocity.

Testing the code

In order to verify the numerical method described before, the evolution of a SNR in

the uniform ISM is compared with the well known Sedov-Taylor (ST) solution.

Sedov-Taylor solution

As discussed in section 2.3.2, in order to start a calculation, it is necessary to fix the

initial radius and velocity of the remnant. The ST- solution is a self-similar solution

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants



18 2. The Thin-Shell Approximation

in which the radii of the remnant is a power-law function of time (e.g. Zel’dovich &

Raizer 2012; Bisnovatyi-Kogan & Silich 1995):

R = (ξ0E0/ρ0)
1/5 t2/5, (2.4.1)

Where ξ0 = 2.026, E0 is the explosion energy and ρ0 is the ISM density. The initial

radius of the remnant is fixed, equation 2.4.1 then determines the initial time t0 and

the initial velocity of the remnant.

v0 =
dR

dt

∣∣∣
t=t0

=
2

5

R0

t0
, (2.4.2)

Fig. 2.5 presents the results of the calculation in the case when the energy of the

explosion is E0 = 1051 erg and the ISM number density is n0 = 1 cm−3, although

results were obtained also for a wide range of values of the parameter space (n0, E).

In the ST solution, the thermal and kinetic energies of the remnant are (Sedov, 1946):

Eth =
γ + 1

3γ − 1
E, Ek = 2

γ − 1

3γ − 1
E (2.4.3)

These energies are compared to those predicted by the Thin-Shell code.

In the case when the specific heats ratio is γ = 5/3: E ′th = 2/3 and E ′k = 1/3. Mass

conservation is checked by comparing the swept-up mass with that located inside a

sphere of radius R = Rs, where Rs is the shock radius.

Fig. 2.5 shows the comparison of the shock position and expansion velocity calculated

by the Thin-Shell code with the ST solution. One can note that the numerical results

are in very good agreement with equation 2.4.1. Fig. 2.6 shows the evolution of the

kinetic and thermal energies. It is clear that the code conserves the total energy and

predicts the proper fractions for the kinetic and thermal energies of the remnant.
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Figure 2.6: Comparison of the numerical simulation with the Sedov-Taylor solution:
Values of kinetic and thermal energies provided by the integration.

Finally, Fig. 2.7 shows the swept-up mass compared to the mass that initially was

contained in a sphere with radius R and density ρ0. Fig. 2.7 proves that the code

implemented in this work conserves mass very accurately.

SNRs expanding in an ellipsoidal density distribution

As it has been long known, most of the old supernova remnants are not spherical

(Hnatyk & Petruk, 1999). Their morphologies reflect the basic property of shock

waves of moving faster into regions of lower densities (e.g. Zel’dovich & Raizer 2012;

Draine & McKee 1993). To test how the code reproduces the expansion of shock waves

evolving into an inhomogeneous ISM, it was assumed an ellipsoidal ambient density

distribution:

ρ = ρ0

[
1− α0

1 + (x/x0)
2 + (y/y0)

2 + (z/z0)
2 + α0

]
, (2.4.4)

where α0 = 0.01, n0 = ρ0/µ = 1 cm−3, x0 = 2 pc, y0 = 4 pc and z0 = 8 pc.

Fig. 2.8 shows the results of the calculations when the remnant age is t ≈ 9500 yr

whereas Fig. 2.9 shows the slices over the three planes. As expected, the symmetry is
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20 2. The Thin-Shell Approximation

lost, the remnant traces regions of low and high densities in excellent agreement with

Bisnovatyi-Kogan & Silich (1995).
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Figure 2.7: Mass conservation: it is compared the mass swept-up by the Thin-Shell
code, calculated by adding up the masses of every Lagrangian element, with the mass
that initially was contained in a sphere of radius R in a medium of uniform density
(which we call the control mass).

Summary

This chapter has introduced the basic numerical scheme based on the Thin-Shell

approximation. The main equations have been described together with the numerical

method which allows one to follow the evolution of SNRs in an inhomogeneous media.

The implemented code reproduced well the Sedov-Taylor analytic predictions for a

homogeneous medium, including the shock radius, the expansion velocity, and also
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2.5 Summary 21

Figure 2.8: 3D Remnant generated by SNe into an ellipsoidal density distribution.

the values of the thermal and kinetic energies. Cases with an inhomogeneous density

medium were also considered and the results are in good agreement with the results

in the literature. This code is the core for the remaining parts of this work and the

following chapter discusses a method for extending this numerical scheme to cover

also the initial phase of SNRs evolution, i.e., the ejecta-dominated phase.
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Figure 2.9: Slices in the three planes for the remnant shown in Fig. 2.8.
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Chapter 3

The ejecta-dominated Phase

Introduction

There is an increasing observational data from young SNRs (Hwang & Laming 2012;

Laming & Hwang 2003) that show features of a double-shock structure, implying

that the freely expanding ejecta is still dynamically important for these remnants.

Moreover, as demonstrated by Terlevich et al. 1992, the evolution of an SNR in a

high density ambient medium could prevent totally the existence of the adiabatic ST-

stage due to strong radiative cooling. Therefore, one cannot always start the study of

SNR from the ST solution and a theoretical understanding of the ejecta-dominated

(ED) phase (e.g, Micelotta et al. 2016; Orlando et al. 2016) is needed in order to

study young SNRs or remnants evolving into a high density media.

This chapter presents an extension of the numerical scheme discussed in the previ-

ous chapter, that allows to simulate the evolution of SNRs from the ED-phase. The

dynamics of the reverse shock, which moves into the ejected matter, is considered.

This secondary shock is dynamically relevant as it thermalizes the rapidly expanding

ejecta.

In the ED-phase, the ejecta mass and its density structure play a dominant role,

so additional equations must be introduced to describe the dynamics of the reverse

shock and the region between the leading and the reverse shocks. This introduces a

new dimensional parameter: the ejecta mass Mej. Nevertheless, the basic system of

units introduced in the previous chapter is kept through this chapter.

[23]
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The density and velocity structure of the ejecta

The ejecta is considered to have a negligible thermal pressure and to be freely ex-

panding. Its velocity then is:

v (r, t) =

{
r
t

if r ≤ Rej,

0 if r > Rej,
(3.2.1)

where Rej = vejt. The distribution of density in the ejecta is assumed to be given by:

ρej (r, t) =
Mej

v3ej
f

(
v

vej

)
t−3, (3.2.2)

where Mej and vej are the ejecta mass and the free-expansion velocity, respectively.

f (v/vej) is a function which determines the time-independent spatial structure of the

ejecta. Power law functions are considered hereafter:

f (w) =

{
f0 if 0 ≤ w ≤ wcore,

fnw
−n if wcore ≤ w ≤ 1,

(3.2.3)

where:

w =
v

vej
, wcore =

vcore
vej

. (3.2.4)

In this equation vcore is the velocity of the ejecta at the core radius and f0 and fn are

parameters determined by continuity and mass normalization (Truelove & McKee,

1999, hereafter TM99). A core is required for obtaining a finite mass Mej when the

ejecta index n > 3. Here it is assumed that n < 3, and thus vcore = 0. In such cases,

the constant fn is (TM99):

fn =
3− n

4π
, n < 3, (3.2.5)

and:
E0

(1/2)Mejv2ej
= α, (3.2.6)

where:

α =
3− n
5− n, n < 3. (3.2.7)
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Figure 3.1: Sketch of the proposed model for the ED-phase. a) The initial condition
at t = t0 for a remnant in the ED-phase. b) The SNR structure for any t > t0. See
the text for a discussion on the labels of this scheme.

The independent parameters are {E0,Mej}. The explosion releases a total energy E0,

which is assumed to be all as kinetic energy of the ejected gas. Therefore the free-

expansion velocity vej depends on the value of these input parameters through the

equation:

E0 =
1

2
Mejv

2
ej

∫ 1

0

4πw4f (w) dw. (3.2.8)

Ejecta energies

To apply the Thin-Shell approximation (TSA) to the early evolution of SNRs, it is

necessary to calculate the thermal pressure behind the leading shock at RLS. The

main assumptions to extend the TSA to the ED-Phase are: the reverse shock is

spherical with radius RRS and velocity VRS in the rest frame. Second, following Silich

& Tenorio-Tagle (2018), the thermal pressure is assumed to be uniform in the region

between the two shocks, with a small fall (to be discussed in section 3.5) just behind

the reverse shock. Finally, the shocked ambient gas and the shocked ejecta move

with the same velocity.

In order to determine the reverse shock dynamics, one has to consider additional

energy terms in the energy conservation equation. At early times, most of the total
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26 3. The ejecta-dominated Phase

energy E0 is in the form of kinetic energy of the ejecta Ek,free:

Ek,free =
1

2
Mejv

2
ej

(
3− n
5− n

)(
RRS

tvej

)5−n

. (3.3.1)

As the leading shock expands into the ambient gas, the kinetic energy of the free

ejecta starts to decrease while being converted into kinetic energy of the shocked

ejecta Ek,ej, kinetic energy of the ambient swept-up gas Ek,ism and thermal energy

Eth of all the gas located between the two shock surfaces.

The shocked ejecta is separated from the shocked ambient gas by a contact discon-

tinuity RCD. Fig 3.1b shows a sketch of the SNR structure at this stage. Under the

assumptions adopted for this model, the kinetic energy of the shocked ejecta is:

Ek,ej =
1

2
MthU

2. (3.3.2)

In this expression Mth is the mass of the thermalized ejecta:

Mth = Mej

[
1−

(
RRS

vejt

)3−n
]
, (3.3.3)

and U is the gas velocity behind the leading shock. Ek,ism is calculated as in the

previous chapter:

Ek,ism =
1

2

∫ ∫
µU2dλ1dλ2. (3.3.4)

If radiative losses are negligible, the energy conservation equation yields:

E0 = Ek,free + Ek,ej + Eth + Ek,ism. (3.3.5)

From this equation it is possible to calculate Eth at every instant of time if RRS and

VRS are known. The thermal pressure between the two shocks is:

P = (γ − 1)
Eth

ΩLS − ΩRS

, (3.3.6)

where ΩLS and ΩRS are the volumes enclosed by the leading and the reverse shocks,
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respectively. Equations 3.3.6 assumes that the thermal pressure is uniform between

the leading and the reverse shock, which is a good approximation as P falls only in

a narrow region behind the reverse shock.

Setting the Initial Conditions

At the initial time t0, the values of E0, Mej and n must be selected. With these values

the free-expansion velocity vej is obtained from equation 3.2.8.

At t0 it is assumed that a small fraction β (usually β < 5%) of the energy E0 has been

already transformed into Ek,ism, Eth and Ek,ej. In order to determine the maximum

velocity of the ejecta at the initial position of the reverse shock Vmax, one has to note

that (see equation 3.3.1):

Ek,free =
1

2
Mejv

2
ej

(
3− n
5− n

)(
v

vej

)5−n

. (3.4.1)

Therefore, at the initial time:

(1− β)E0 =
1

2
Mejv

2
ej

(
3− n
5− n

)(
Vmax
vej

)5−n

. (3.4.2)

Taking into account that:

E0 =
1

2
Mejv

2
ej

(
3− n
5− n

)
, (3.4.3)

one can obtain:

Vmax = vej (1− β)1/(5−n) . (3.4.4)

Following Truelove & McKee (1999), Chevalier (1982a), Hamilton & Sarazin (1984),

or Hwang & Laming 2012, let us define the leading factor:

l (t) =
RLS

RRS

, (3.4.5)
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and the value of the leading factor at the initial time t0 as:

lED = l (t0) , (3.4.6)

then:

RLS (t0) = lEDRRS (t0) . (3.4.7)

It is assumed that at the initial time t0, the position of the reverse shock coincides

with the contact discontinuity (TM99) (see Fig. 3.1a):

RLS (t0) = lEDRCD (t0) . (3.4.8)

Then:

VLS (t0) = lEDvmax, (3.4.9)

where VLS (t0) is the velocity of the leading shock at t0. The value of lED is calculated

from equation 3.4.8 and mass conservation. Indeed, assuming that at t = t0 the post-

shock density is uniform and 4 times larger than the density of the unshocked ambient

gas, mass conservation yields:

(
R3
LS (t0)−R3

CD (t0)
)

4ρ0 = R3
CD (t0) ρ0, (3.4.10)

this implies lED = 1.1. The initial velocity of the shocked ISM then is:

Uini =
2

γ + 1
lEDVmax. (3.4.11)

Finally, the shock positions are determined from equation 3.4.7 and the energy con-

servation equation. As β is the fraction of the ejecta kinetic energy converted into

other energies, the energy conservation equation reads:

βE0 = E0
k,ism + E0

th + E0
k,ej, (3.4.12)

Astrophysics Department Instituto Nacional de Astrof́ısica, Óptica y Electrónica
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where the terms on the right-hand side of this expression are the thermal and kinetic

energies of the shocked ejecta and the shocked ISM at time t0:

E0
k,ism =

1

2
ρ0

4π

3
R3
LS (t0)

(
2

γ + 1
lEDVmax

)2

, (3.4.13)

E0
k,ej =

1

2
Mej

[
1−

(
Vmax
vej

)3−n
](

2

γ + 1
lEDVmax

)2

, (3.4.14)

E0
th =

4

γ − 1

kρ0
µ
Tshock

4π

3

(
1− 1

l3ED

)
R3
LS (t0) . (3.4.15)

Here , Tshock is the post-shock temperature behind the leading shock, assuming that

the post-shock density is 4n0. Note that in equations (3.4.13-3.4.15) the only un-

known parameter is RLS. The initial position for the leading shock radius RLS (t0) is

calculated by making use of equation 3.4.12 together with equations (3.4.13-3.4.15).

Finally, RRS (t0) is obtained from equation 3.4.7.

The Reverse Shock Position

The position and velocity of the reverse shock are determined by making use of the

Rankine-Hugoniot relations. In the frame of the unschocked ejecta, the shock velocity

is (Zel’dovich & Raizer, 2012):

Ṽ 2
RS =

γ + 1

2

PRS
ρej

, (3.5.1)

where PRS is the pressure behind the reverse shock and ρej is the density of the freely

expanding ejecta. In the rest frame the shock velocity is given by:

VRS =
RRS

t
− ṼRS. (3.5.2)

As stated in section 3.3, the thermal pressure falls behind the reverse shock (Silich

& Tenorio-Tagle, 2018). Therefore, it is expected that PRS < P . To understand the

relation between PRS and the remnant pressure P (calculated in equation 3.3.6), let
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us define the pressure ratio φ between the leading and the reverse shock as (TM99):

φ =
PRS
P

=
ρej (RRS/t, t) Ṽ

2
RS

ρ0V 2
LS

. (3.5.3)

A uniform pressure between the two shocks would imply φ = 1, but several calcula-

tions (e.g. Gull 1973, Gull 1975, Chevalier 1982b, McKee & Truelove 1995, Hamilton

& Sarazin 1984, Silich & Tenorio-Tagle 2018) show that φ < 1. For example, both for

steep power-law ejecta (Chevalier, 1982a) and uniform ejecta (Hamilton & Sarazin,

1984): φ = 0.3. In fact, as it is shown in Appendix A, the adopted initial conditions

for this work (see subsection 3.4) require the pressure ratio to be φ ≈ 0.3 at the initial

time t0. Moreover, in this appendix is also shown that when the reverse shock reaches

the center of the explosion, i.e., when the remnant enters the Sedov-Taylor phase: φ

is also equal to 0.3 (Gaffet, 1978).

A precise knowledge of φ is complex and it is beyond the scope of our approximation.

But, given the fact that at early and late times φ is approximately 0.3 and taking into

account that numerical simulations have shown that φ is a slowly varying function of

time (e.g. McKee & Truelove 1995, Fabian et al. 1983), hereafter it is assumed that

φ = 0.3.

Discussion

Density and Temperature profiles for a SNR produced by a

uniform density ejecta

To test the method discussed above, let us consider a SN explosion with E = 1051

erg and Mej = 3 M� that occurs in an ISM with n0 = 1 cm−3. First, lets considered

the case of an ejecta with a uniform density (i.e., index n = 0).

The method proposed in this work allows to determine the position of the leading

RLS and reverse RRS shocks for the entire evolution. Under certain assumptions, it

is also possible to estimate the position of the contact discontinuity RCD and the

densities and temperatures of the region between the two shocks.
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Figure 3.2: The SNR density structure for a uniform density ejecta. The x-axis is
normalized with the value of RLS at the time of the snapshot. The top left panel shows
the initial condition. The existence of shocks is revealed by the density jumps. As time
advances, the reverse shock rapidly converges towards the center of the explosion.

Let us assume that the mass M overtaken by RLS is concentrated in a shell of uniform
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temperature equal to the post-shock temperature and a uniform pressure P . The

width ∆R of this shell and therefore the position of RCD can be calculated as:

∆R =
M

dΣρshell
, (3.6.1)

where:

ρshell =
µP

kTshock
. (3.6.2)

In these equations, k is the Boltzmann constant, P the remnant Pressure, and dΣ,

Tshock, M are the surface area, post-shock temperature and mass of the shell, respec-

tively. These variables are known at every time step. ∆R is obtained from equation

3.6.1 and hence the value of RCD.

The density of the shocked ejecta is estimated as a mean density:

ρs,ej ≈
3Mth (RRS, t)

4π (R3
CD −R3

RS)
, (3.6.3)

where Mth is the thermalized mass (calculated using equation 3.3.3). The tempera-

ture of the shocked ejecta is calculated from equation 3.6.3 and the equation of state

such that the pressure of this region is equal to the remnant pressure P .

Under these assumptions, Fig. 3.2 and 3.3 show the density and temperature

evolution during the ED-phase calculated with the initial conditions fixed for this

test. The top left panel of both figures correspond to the initial condition, where the

reverse shock coincides with the contact discontinuity (see Fig. 3.1).

Note that this figure makes clear that during the early evolution, the ejecta mass

dominates over the swept-up mass. As time advances, the reverse shock (located at

the density jump) starts to accelerate inwards and at t ≈ 1000 yr reaches the center

of the explosion. Fig 3.3 shows the temperature structure. After the reverse shock has

reached the center, the remnant interior is diffuse and hot (see right bottom panels

of Figs. 3.2 and 3.3), as stressed in previous works (e.g., LeVeque et al. 2006, Cioffi

et al. 1988b).
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Figure 3.3: Same as Fig. 3.2 but for the gas temperature.

Impact of the ejecta density distribution on the evolution of

SNRs

Fig.3.4 compares the reverse and leading shocks positions for ejecta with different

density distributions (n = 0 and n = 2). The reverse shock moves outwards until
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both the thermal and ram pressures of the free ejecta become small enough, to drive

the shock back towards the origin of the explosion. Note that it takes a longer time

for the reverse shock to reach the center of the explosion for the case n = 2. This is

because in this case more of the ejecta mass is located in the central zone and the

density ahead of the reverse shock increases at smaller radii as ρ ∝ r−2. Therefore in

the case when n = 2, the reverse shock velocity is smaller than in the case when n = 0.
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Figure 3.4: Leading and reverse shocks for n = 0 (dashed lines) and a power-law n = 2
(solid lines) density distributions.

The evolution of the energies is shown in Fig. 3.5. As mentioned before, initially most

of the explosion energy is concentrated in the kinetic energy of the cold ejecta. At late

times all of it has been transformed into the thermal and kinetic energy of the shocked

ISM and shocked ejecta. For the uniform density ejecta (n = 0), there is more mass

in the outer part of the remnant and therefore Ek,ej is bigger in this case than in the

power-law density case (bottom left panel on Fig. 3.5). Note that at t ≈ 2 × 103 yr,

the energies calculated for n = 0 and n = 2 begin to converge. The convergence is also
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noticeable in Fig. 3.4, for the leading shocks. This implies that the long term SNRs

dynamical evolution is insensitive to the initial structure of the SN ejecta. Fig. 3.6

shows the global kinetic and thermal energies of the remnant. Here the kinetic energy

has been defined as the sum of Ek,ej, Ek,ism and Ek,free. This figure explains why

some authors name the ED-phase as the thermalization epoch. The original kinetic

energy of cold ejecta is transformed into thermal and kinetic energy of the hot gas.

0.0

0.2

0.4

0.6

0.8

1.0

E
[1
05

1
er
g]

 

Ek,ism n=2

n=0

Ek,free 

n=2

n=0

102 103 104 105

t[yr] 
0.0

0.2

0.4

0.6

0.8

1.0

E
[1
05

1
er
g]

 

Ek,ej n=2

n=0

102 103 104 105

t[yr] 

Eth 

n=2

n=0

Figure 3.5: Evolution of energies at early SNR evolution. The black lines correspond
to the case n = 2 and the blue lines to the case n = 0.

Comparison with analytical results

This section compares the outcome of the thin-shell code with the results of TM99,

who obtained expressions for the position and velocity of both the reverse and leading

shocks, from the early ejecta-dominated stage to the Sedov-Taylor phase1. Our results

for the leading shock RLS is compared with those obtained by TM99 in Fig. 3.7. As

1see appendix B for a review.

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants



36 3. The ejecta-dominated Phase

one can see, our result is in excellent agreement with the analytic prediction2 (errors

≤ 5%). The reverse shock position coincides with the numerical result of TM99 even

better than their analytic formula, as can be seen in Fig. 3.8.
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Figure 3.6: Total kinetic and thermal energies of a SNR during the ED-phase for a
uniform density ejecta (dashed lines) and a power-law ejecta n = 2 (solid lines).

Summary

A method based on the energy conservation equation has been developed. This

method allows one to study the dynamics and evolution of supernova remnants from

the ejecta-dominated stage to the Sedov-Taylor stage. It was shown that the long

term evolution of SNRs does not depend on the specific conditions of the ejected ma-

terial. The result of calculations were compared with previous analytic and numerical

results and it was found a good agreement for the dynamics of both shocks.

2And therefore, also in excellent agreement with the numerical result, as the formula obtained
by TM99 for RLS follows closely the results of their numerical calculation.
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Figure 3.7: Comparison of the leading shock radius. The solid line is the value calcu-
lated in this work and the dashed line is the result of TM99. The starred variables at
the axis are dimensionless variables as defined in TM99 (see Appendix B).
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Figure 3.8: Comparison of the reverse shock radius. The solid line is the value calcu-
lated in this work, the dashed and dotted lines are the analytic and numerical results
of TM99, respectively. The starred variables at the axis are dimensionless variables
as defined in TM99 (see Appendix B).
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Chapter 4

Effects of radiative cooling on the

evolution of SNRs

Introduction

During the Sedov-Taylor stage (ST), the shocked gas is heated to high temperatures

as the shock velocity is large (T ∝ V 2) and radiative losses of energy behind the

leading shock are thus negligible. However, the shock velocity and the shocked gas

temperature become smaller with time. This leads to enhanced radiative cooling.

After the end of the ST stage, the remnant further evolves in the Snowplough regime

(e.g., Terlevich et al. 1992, Cioffi et al. 1988b, Petruk 2006, Blondin et al. 1998).

The dynamical evolution of a SNR at the snowplough phase is dominated by the

radiative losses of energy. During this phase, all the swept-up gas collapses into a cold

shell. The purpose of this chapter is to include the effects of radiative cooling into the

Thin-Shell code.

The cooling Function

The rate of radiative cooling is determined by the gas density, temperature and the

chemical composition (e.g., Raymond et al. 1976, Wiersma et al. 2009, Schure et al.

2009). In the case of collisional ionization equilibrium (CIE), the cooling rate LR is

[39]
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determined by a cooling-function Λ (T, Z) (where Z is the gas metallicity):

LR =

∫
nineΛ (T, Z) dΩ. (4.2.1)

In equation 4.2.1, ni and ne are the gas ion and electron number densities, respectively.

In the case of a completely ionized plasma, ni = ne = n and the cooling rate is:

LR =

∫
n2Λ (T, Z) dΩ, (4.2.2)

The cooling function is the result of several radiative processes: recombination, colli-

sional excitation and free-free emission. Fig. 4.1 shows the cooling function calculated

for a gas in Collisional Ionization Equilibrium (CIE) and a solar metallicity. The solid

and dotted black lines are the results of Raymond et al. (1976) and Wiersma et al.

(2009), respectively. The contribution of individual chemical elements to the cooling

function is shown in color lines.

At low temperatures T < 104 K, the radiative cooling is inefficient and depends on the

degree of ionization. In the temperature range 104 K< T < 106.5 K, cooling is strong

due to line emission from elements as H, He, C, O, Si and Fe. At T ≈ 3×107 K, all the

atoms become fully ionized and the cooling function drops to a local minimum value.

At higher temperatures, the cooling is produced mainly by free-free radiation. Here-

after, the CIE cooling function from Raymond et al. (1976) is used for our calculations

and it is assumed that ni = ne.

Model equations

The thin shell-formation time

Let us define the thin shell-formation time tsf as the time when a cold, dense shell

is formed and the SNR enters the snowplough stage. The shocked gas cools and in

order to compensate for the lost of temperature and to keep a similar pressure to that

of the shocked ejecta, it collapses into a thin dense shell. If an element of the gas is
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Figure 4.1: Collisional Ionization Equilibrium (CIE) cooling function. The black dot-
ted line is the result of Wiersma et al. (2009) and the solid black line is taken from
Raymond et al. (1976). The contribution to the cooling function due to several chem-
ical elements is also shown.

shocked at time t, it cools at:

tc = t+ ∆tcool (t) , (4.3.1)

where ∆tcool (t) is the gas cooling time (e.g. (Kim & Ostriker, 2015, hereafter KO15):

∆tcool (t) =
1

γ + 1

kBTshock
n0Λ (Tshock)

. (4.3.2)

In this expression, kB is the Boltzmann constant, Tshock is the post-shock temperature,

n0 is the density of the unshocked medium and γ is the ratio of specific heats. In our

simulations tc is calculated at each time-step and the minimum tmin is determined:

tmin = min (tc (t) , tc (t+ ∆t) , . . .) . (4.3.3)

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants



42 4. Effects of radiative cooling

The transition time tsf to the Snowplough regime occurs when the time t is larger

than tmin. Fig. 4.2 shows the shell formation time calculated with the Thin-Shell

code for SNRs evolving into an ambient medium with different densities. This figure

presents also a comparison with previous results.
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Figure 4.2: The shell formation time tsf as a function of the ambient gas density.
The star symbols presents values calculated with the Thin-shell Code. The red solid
curve, the magenta dashed and the cyan dotted curves show characteristic cooling
times calculated by (Cioffi et al., 1988a, hereafter CMB88), KO15 and (Petruk, 2006,
hereafter PE06), respectively.

The energy equation

The SNR dynamics are determined by the set of equations presented in chapter 2.

However, radiative cooling changes the equation of energy. During the Sedov-Taylor

stage, radiative losses of energy are negligible. Here, however, radiative cooling is

introduced into the energy conservation equation to study the transition from the ST

to the Snowplough stage.
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The swept-up mass is assumed to be contained in a shell with uniform temperature

(equal to the post-shock temperature, i.e., Tshell = Tshock) and uniform pressure (equal

to the uniform remnant pressure Pshell = P ). Tshock is calculated from the adiabatic

Rankine-Hugoniot relations.

The remnant consist of a hot central bubble surrounded by the shell of swept up

matter. In the Thin-shell approximation, the mass and therefore the kinetic energy are

concentrated in the shell Ek,shell. The total thermal energy Eth includes the thermal

energy of the central bubble Eth,b and the thermal energy of the shell Eth,shell:

Eth = Eth,shell + Eth,b. (4.4.1)

Eth,b changes due to the expansion of the hot gas located inside a volume encompassed

by the contact discontinuity:
dEth,b
dt

= −PdΩ. (4.4.2)

The energy lost by the bubble is transferred to the shell, which also losses energy by

radiation. Therefore, the total energy of the shell Etot,shell changes as:

dEtot,shell
dt

=
dEth,shell

dt
+
dEk,shell
dt

= PdΩ−
∑
i,j

n2
shell,i,jΛ (Tshock) Ωi,j. (4.4.3)

In equation 4.4.3, the shell number density and volume are given by:

nshell,i,j =
ρshell,i,j
µmH

=
P

kBTshockmH

, (4.4.4)

Ωi,j =
Mi,j

ρshell,i,j
. (4.4.5)

In these equations, mH is the proton mass and Mi,j is the mass of the Lagrangian

element (i, j). Combining equations 4.4.2 and 4.4.3 and taking into account equation

4.4.1, one can obtain:

dEth
dt

= −
∑
i,j

n2
shell,i,jΛ (Tshock) Ωi,j −

dEk,shell
dt

. (4.4.6)
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The total remnant energy Etotal is:

Etotal = Ek + Eth. (4.4.7)

At the initial time t0, Etotal is equal to the explosion energy:

Etotal (t0) = E0. (4.4.8)

Table 4.1: SNR parameters measured at the shell formation time tsf . Column 1 is the
fixed number density of the ambient gas. Second column: tsf calculated with the thin-
shell code compared with the result from KO15 in parenthesis. Columns 3 to 6: shock
radius, post-shock temperature, swept-up mass and remnant momentum calculated
in this work compared with the respective results from KO15 shown in parenthesis.

n tsf Rsf Tsf Msf ~psf
cm−3 103 yr pc 106 K 103 M� 105 M� km s−1

0.1 158(150) 58.4(58.5) 0.26(0.31) 2.60(2.96) 2.69(2.78)
1.0 50(41.9) 23.2(22.5) 0.41(0.57) 1.64(1.68) 2.10(2.05)
10.0 11.8(10.6) 8.25(8.34) 0.91(1.04) 0.74(0.85) 1.42(1.43)
100.0 3.10(2.63) 3.04(3.03) 1.82(1.90) 0.37(0.41) 1.0(0.97)

Results

To verify the method discussed in the previous subsections, 4 cases for the density

of the ambient medium: n0[cm−3] = 0.1, 1, 10, 100 have been considered. This

permits us to compare our results with the ones obtained in recent high resolution

hydrodynamic simulations carried out by Kim & Ostriker (2015) and Li et al. (2015).

Table 4.1 shows the values of different physical quantities of the remnant calculated

at tsf . These results are compared (in parenthesis) with the numerical values obtained

from KO15. From this table one can see that our results are in reasonable agreement

with the results of numerical calculations.
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Fig. 4.3 shows the evolution of kinetic, thermal and total energies during the

transition from the Sedov-Taylor to the snowplough stage. One can note that at this

stage the thermal energy of the remnant changes more rapidly than the kinetic one,

as already has been mentioned in previous calculations (e.g. Thornton et al. 1998,

Kim & Ostriker 2015, Haid et al. 2016, Li et al. 2015).
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Figure 4.3: Evolution of thermal, kinetic and total energies for a SNR that evolves
into an ISM with density n = 1 cm−3 and undergoes the transition from ST to the
Snowplough stage.

Finally, as has long been known, the shock radius is well described by power-laws

R ∝ tβ both during the Sedov-Taylor and the Snowplough stages. During the ST, the

analytic solution yields βST = 0.4, whereas at the Snowplough stage, βSP ≈ 0.3 (see

Draine & McKee 1993, Kim & Ostriker 2015, Li et al. 2015).
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Figure 4.4: Power-law fitting to the shock radius both during the ST stage (blue dashed
line) as during the Snowplough stage (red dashed line). Our results are in excellent
agreement with those in the literature.

The shock radius obtained with the Thin-Shell code is shown in Fig. 4.4. The color

dashed lines shows the power-law fitting to the radius for both stages. Our results are

βST = 0.39 and βSP = 0.29, which are in excellent agreement with the results of Kim

& Ostriker (2015) and Li et al. (2015).

Summary

In this chapter, the Thin-Shell method described in previous chapters was modified

in order to take into account strong radiative cooling that occurs at late stages of the

SNRs evolution. The numerical method was compared with recent numerical results

and a good agreement was found.
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Chapter 5

Evolution of SNRs in different

ambient densities

Introduction

The previous chapters have addressed different stages of the SNR evolution and how to

implement and accurately calculate them by means of the Thin-Shell approximation.

The aim of this chapter is to merge these results to construct a complete picture of

the SNR evolution including also different environments.

The energy conservation equation

If radiative losses of energy are negligible, the equation of energy conservation during

the ejecta-dominated (ED) stage is (see chapter 3):

E0 = Ek,free + Ek,ej + Eth + Ek,ism, (5.2.1)

where E0 is the explosion energy, Eth is the total thermal energy and Ek,free, Ek,ej,

Ek,ism, are the kinetic energies of the free ejecta, the shocked ejecta and the shocked

ambient gas, respectively. Equation 5.2.1 was used in chapter 3 to calculate the ther-

mal pressure P (t) between the leading and the reverse shocks. This, in turn, allowed

us to follow the dynamical evolution of the leading and the reverse shocks.

[47]
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After full thermalization of the SN ejecta, this equation reduces to (see chapter 4):

E0 = Eth + Ek,ism + Erad. (5.2.2)

In equation 5.2.2, Erad is the energy lost by radiation due to cooling of the shocked

ambient gas.

In order to follow the complete evolution of SNRs taking into account all possibilities

of gas cooling, an additional radiation term for the shocked ejecta must be included

into the energy conservation equation. Therefore, equation 5.2.1 is generalized as:

E0 = Ek,free + Ek,ej + Eth + Ek,ism + Erad1 + Erad2, (5.2.3)

where Erad1 and Erad2 are the amounts of energy lost by radiation at the outer and

inner shells, respectively. Equation 5.2.3 can be written in a differential form:

dEth
dt

= −dEk,free
dt

− dEk,ej
dt

− dEk,ism
dt

−Q1 −Q2, (5.2.4)

where:

Q1 =
dErad1
dt

, Q2 =
dErad2
dt

, (5.2.5)

are the rates of energy radiated by the shocked ambient gas and the shocked ejecta,

respectively.

The time derivatives of the kinetic energies Ek,free, Ek,ej and Ek,ism can be calculated

by means of equations 3.3.4, 3.3.1 and 3.3.2. The cooling rates Q1 and Q2 could be

calculated as proposed in chapter 4. The cooling time ∆tcool,1 and ∆tcool,2 for the

outer and inner shells are:

∆tcool,1 (t) =
µ

γ + 1

kBTLS
ρ0Λ (TLS)

, (5.2.6)

∆tcool,2 (t) =
µ

γ + 1

kBTRS
ρej (RRS, t) Λ (TRS)

. (5.2.7)

In these equations, ρ0 and ρej (RRS, t) are the density of the ambient gas and that
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of the unshocked ejecta, respectively. Λ is the cooling function introduced in chapter

4 and TLS and TRS are the temperatures behind the leading and the reverse shocks,

respectively.

The cooling rate in the outer shell is:

Q1 =
∑
i,j

n2
shell,i,jΛ (TLS) Ωi,j, (5.2.8)

where nshell,i,j and Ωi,j are calculated by means of equations 4.4.4 and 4.4.5,

respectively.

The cooling rate behind the reverse shock is:

Q2 = n̄2Λ (TRS) Ω2, (5.2.9)

where:

n̄ =
PRS

kBTRSmH

, (5.2.10)

Ω2 =
Mth

ρ̄
, ρ̄ = µmH n̄. (5.2.11)

In these equations, Mth is the ejecta mass that passed through the reverse shock

(calculated from equation 3.3.3) and PRS is the pressure behind the reverse shock

(calculated from equation 3.5.3).

Results

SNR evolution in a low density ambient medium

As a test case, a complete evolution of an SNR in a low density ambient medium

(n0 = 1 cm−3) was calculated.

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants
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Figure 5.1: Rate of energy loss from the outer (dotted) and inner shells (solid) for the
case of n0 = 1 cm−3.

The radiative losses of energy from the reverse (Q2) and leading (Q1) shocks are

shown in Fig. 5.1. One can notice a short period, ∆t ≈ 20 yr, when strong radiative

cooling from an initially weak reverse shock dominates. During this time, the fraction

of ejecta mass cooled by radiation is:

M rad
ej = 0.014Mej. (5.3.1)

These values of ∆t and M rad
ej are in good agreement with the results presented in

Truelove & McKee (1999).

Fig. 5.1 shows that during most part of the evolution, Q2 is small compared to Q1.

Note that the peak of Q1 occurs around the transition time to the Snowplough (SP)
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stage. This is in agreement with previous results, as sometimes the peak of luminosity

has been used in order to estimate the characteristic time to the Snowplough transition

(Thornton et al., 1998).

The full evolution of thermal, kinetic and total energies is shown in Fig. 5.2. The

transition time from the ST to the SP stage occurs about t ≈ 5× 104 yr and agrees

with that obtained in the previous chapter. Note also that during the last stages

Etot ≈ Ek,ism.
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) 
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Figure 5.2: Evolution of the total, thermal and kinetic energies (solid, dotted and
dashed lines, respectively) for a SNR evolving in the ambient medium with density
n = 1 cm−3. The three evolutionary stages are marked by the vertical lines.

SNR evolution in a high density medium

A test case for SNR evolution in a high density ISM was presented in Terlevich et al.

(1992), who selected a density of n0 = 107 cm−3 for the ambient gas.

To compare our simulations with these results, the structure and velocity of the

The Impact of the Ambient Gas Density on the Evolution of Supernova Remnants
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ejecta and the initial conditions discussed in the previous chapters were modified

(see Appendix C).

The early (first 10 yr) evolution of the reverse and the leading shock radii in this

case is presented in Fig. 5.3. One can note that the evolution proceeds very rapidly

and that in this case the distance between the leading and the reverse shock is small

due to strong radiative cooling.
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Figure 5.3: The reverse and leading shock positions for a SNR evolving into an ambient
medium with density n = 107 cm−3.

One can compare the results of our simulations presented in Fig. 5.3 with the results

obtained by Terlevich et al. (1992) at two evolutionary times (t = 0.53 yr and

t = 4.5 yr). Table 5.1 presents the calculated values of RLS and RRS and compares

them to those of Terlevich et al. (1992) (shown in parenthesis). The leading and the

reverse shock radii obtained in the 2D numerical simulation and in the Thin-Shell

approximation are in good agreement.
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Table 5.1: The leading and the reverse shock positions obtained in our calculation
and in Terlevich et al. (1992); in parenthesis, at two different stages.

R t = 0.53 yr t = 4.5 yr

RLS[10−2pc] 1.10(1.08) 2.20 (2.15)
RRS[10−2pc] 0.96(0.84) 1.50 (1.52)
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Figure 5.4: The kinetic (dotted line) and thermal (solid line) energies of the SNR
evolving in an ambient medium with density n = 107cm−3.

Fig. 5.4 presents the evolution of the remnant energies. As one can note, strong

radiative cooling leads to a considerable decrease of the thermal energy in a short

time interval and it never reaches Eth = 0.66E0. Therefore the Sedov-Taylor stage is

completely inhibited. Our results are in excellent agreement with those presented in

Fig. 1 of Terlevich et al. (1992).
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Fig. 5.5 presents the evolution of the ejecta and swept-up gas energies in the high

density calculation. The panel (a) shows how the kinetic energy of the shocked

ambient medium rapidly grows to values expected for the ST stage, however, the lost

of thermal pressure yields to a faster deceleration of the outer shell and therefore to

a rapid decrease of its kinetic energy. The panel (c) shows that the kinetic energy of

the shocked ejecta remains small during the entire evolution. This is because strong

radiative cooling makes the reverse shock less strong and hence, the rate at which

the ejected mass passes through it is smaller in the high density cases. This figure

also shows that at late times the kinetic energy of the outer expanding shell (panel

a) dominates over the total thermal energy (panel d) and kinetic energies of the

ejecta (panels b and c).
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Figure 5.5: Evolution of the SNR energy in the case of a high density (n0 = 107 cm−3)
ambient medium. Ek,ism, Ek,free, Ek,ej are the kinetic energies of the shocked ambient
gas, the free ejecta, and the shocked ejecta, respectively. Eth is the thermal energy.
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The trace of the ejecta structure on the SNRs dy-

namics at high density

Fig. 5.6 presents the evolution of the remnant energies for an ejecta structure given

by power-law functions with indexes n = 0 and n = 2 (as in chapter 3). The SN is

assumed to explode in an ambient medium of density n0 = 107 cm−3. The evolution

depends on the ejecta structure. All the remnant energies on Fig. 5.6 differs from

the ones presented in the Fig. 5.5. For instance, the thermal energy reaches different

peaks for the three possibilities of the ejecta density considered in this work.
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Figure 5.6: Evolution of the kinetic energies Ek,ism, Ek,free, Ek,ej, and the thermal
energy Eth of a remnant evolving into an ambient medium of density n0 = 107 cm−3,
for two different ejecta densities: n = 0 and n = 2 (see chapter 3.1).

In all the cases, however, the reverse shock is not able to move rapidly into the

expanding ejecta, as the thermal energy and therefore the thermal pressure decreases
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behind both shocks. Hence, in a short period of time (t ≈ 6 − 11 yr), the shocked

ambient gas and the shocked ejecta merge to form a dense shell, see also Terlevich

et al. (1992). The further evolution of the remnant at such cases is addressed in

section 5.6. For the remaining part of this chapter, the calculations are performed

assuming a power-law n = 2 for the ejecta density.

The Thermalization of the ejecta mass

SNRs do not enter the Sedov-Taylor stage if the density of the ambient medium is

n0 = 107 cm−3, because in this case radiative cooling is very strong even at the ED

stage. The numerical approximation developed in this work allows one to study the

evolution of SNRs considering a wide range of values for the ambient density. This is

a difficult task for full hydrodynamical codes, because a high spatial and temporal

resolutions are required in order to follow correctly the evolution of compact radiative

shells.
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Figure 5.7: The shock positions and energies evolution for a SNR evolving into an
ambient medium of density n0 = 102 cm−3.

Astrophysics Department Instituto Nacional de Astrof́ısica, Óptica y Electrónica
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Our aim in this section is to study the impact of the ambient density n0 on the early

evolution of SNRs, i.e, for the ejecta-dominated stage. Simulations were carried out

for densities n0 [cm−3] = 102, 103, 5× 103, 104, 5× 104, 105, 106, 107. A Mej = 3 M�

ejecta with initial kinetic energy E0 = 1051 erg and a power-law index n = 2 for the

ejecta density have been used in these calculations.

Fig. 5.7 presents the results for the n0 = 102 cm−3 model. One can note that the

remnant follows the usual evolutionary track. All the ejecta mass is thermalized at

the age of t ≈ 1115 yr. At this time, the ratio of the ambient swept up mass to the

ejecta mass is about 38, which is in agreement with the results of Gull (1973) and

Tenorio-Tagle et al. (1990). The time of the cold thin-shell formation tsf for the

leading shock, i.e the transition to the Snowplough stage, is about 3216 yr after the

explosion (see the right panel of Fig. 5.7 ).

100 101 102 103 104
t[yr] 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
[p
c]
 

Reverse Shock
Leading Shock

100 101 102 103 104
t[yr] 

0.0

0.2

0.4

0.6

0.8

1.0

E
[1
05

1
er
g]
 

Kinetic Energy
Thermal Energy

Figure 5.8: Same as Fig. 5.7 but for n0 = 104 cm−3.

For larger ambient gas densities, cooling becomes important even earlier. For

example, the results of our simulation in the case n0 = 104 cm−3 are presented in

Fig. 5.8. In this case, the thermalization of the ejecta culminates at about 250 yr and

the remnant reaches the Snowplough stage at the time t ≈ 270 yr without having

reached the ST phase. For higher densities, the remnant enters the Snowplough stage
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earlier, when the ejecta has not even been completely thermalized.

Table 5.2 summarizes the results of the calculations for all the cases. the shell forma-

tion time tsf is shown in the second column. At this time strong radiative cooling sets

in and the SNR evolves into the Snowplough stage. The mass of the thermalized ejecta

at this time Mth,ej (tsf ) is shown in the third column. If Mth,ej (tsf ) is less than the

total ejecta mass, the remnants enter the strong radiative cooling phase before end-

ing the thermalization process. Hence, such remnants do not evolve into the ST stage.

Table 5.2: Properties of SNRs evolving into different ambient media. The second
column is the shell formation time tsf (see text) and the third column shows the mass
of the thermalized ejecta measured at tsf .

n0 [cm−3] tsf [yr] Mth,ej (tsf ) [Mej]
102 3215.7 1.0
103 1054.5 1.0

5× 103 404.7 1.0
104 271.2 1.0

5× 104 100.4 0.97
105 60.4 0.93
106 10.2 0.70
107 1.19 0.29

Table 5.2 shows that for the adopted model of the ejecta, the remnant enters the

Snowplough stage after the thermalization of the ejecta only for densities lower

than ncri = 104 cm−3. For densities n > ncri, the remnant becomes radiative when

the fraction of unshocked ejecta is still non-negligible and therefore the kinetic and

thermal energies of the remnant do not reach the ST values.

Even in the models with n < ncri, SNRs do not evolve exactly as the ST solution

predicts. Indeed, as the cooling rate depends on the shocked ambient gas density,

only in the case of the lowest densities the energy lost by radiation is small enough

to permit the remnant to reach the ST stage with the predicted value of thermal
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energy (Eth ≈ 0.66E0, see chapter 2). Fig. 5.9 shows the thermal energies of SNRs

evolving in ambient media with different densities. Note that only for n0 < 102 cm−3,

the thermal energy approaches the ST value.
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Figure 5.9: The thermal energy for a SNR evolving into an ISM with different densi-
ties.

The full evolution of SNRs in high density media

Section 5.4 discussed how the rapid decrease of the thermal pressure leads to the

merging of the shells of shocked ejecta and shocked ambient gas into a very thin and

dense expanding shell. At this time the free ejecta gas still moves with a large velocity

(vej ≈ 103 km s−1) and cools effectively. This shell keeps sweeping up the ambient

gas and is pushed by the ram pressure of the ejecta Pram. At the same time, the shell

also incorporates a fraction of the ejecta mass as it rapidly decelerates.
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The equations governing such shell dynamics are the mass and momentum conserva-

tion equations:

dMshell

dt
= 4πR2

shell

(
ρ0Ushell + ρej (Rshell, t)

[
Rshell

t
− Ushell

])
, (5.6.1)

Mshell
dUshell
dt

= 4πR2
shellPram − Ushell

dMshell

dt
, (5.6.2)

dRshell

dt
= Ushell. (5.6.3)

In these equations, Mshell, Rshell and Ushell are the shell mass, position and velocity,

respectively. The first term in equation 5.6.1 takes into account the mass of swept

up ambient gas and the second term the mass of shocked ejecta. These equations

are solved taking as initial conditions the values of mass, radius and velocity of the

remnant at the moment when the shells merge.

Fig. 5.10 shows the shell radius after the shells merge by a dashed line. In this case,

the merging occurs at about 8 yr after the explosion.

The shell stalls at about tstall = 220 yr because at that time the ram pressure of the

ejecta drops below the ambient pressure1 Pamb, i.e., Pram < Pamb (see Fig. 5.11). At

this time, the radius of the shell is Rstall ≈ 0.058 pc and its mass is Mshell = 258

M�, which contains about 2.94 M� from the ejecta. Therefore, at the stalling point,

about 3% of the ejecta gas has not yet been shocked.

1Pamb is calculated assuming a temperature Tamb = 1000 K.
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Figure 5.10: The reverse and leading shock positions for a remnant evolving into an
ambient medium of density n0 = 107 cm−3. The dashed line indicates the evolution of
the expanding shell formed at the outer boundary.

Conclusions

This chapter has presented a method that allowed us to simulate the full evolution

of SNRs into different ambient media. For the low density cases, our results are in

agreement with previous results and a briefly early radiative period for the shocked

ejecta gas was found. The high density cases were successfully tested with a density

n0 = 107 cm−3. Simulations were performed over a wide range of densities in order to

study the impact of radiative cooling on the evolution of SNRs. The critical density

that allows a remnant to thermalize its ejected mass before the onset of the strong ra-

diative phase is found. Finally, the fate of remnants evolving into an ambient medium

of density n0 = 107 cm−3 is addressed.
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Figure 5.11: Evolution of the ejecta ram pressure Pram (solid line) for a SNR evolving
into an ambient medium of density n0 = 107 cm−3 and temperature Tamb = 1000 K.
The dashed line shows the ambient pressure.
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Chapter 6

Concluding Remarks

The aim of this Thesis is to study the full evolution of SNRs, from the ejecta-

dominated to the Snowplough stage. For this purpose, a 3D numerical scheme based

on the Thin-Shell approximation was developed. This numerical scheme accounts for

the ejecta structure and strong radiative cooling and allows one to study the SNRs

evolution in a wide range of circumstances efficiently.

Such studies are of paramount importance in the understanding of supernova ex-

plosions and their remnants evolution in a number of cases where their feedback is

considered to be important (e.g. star clusters, galaxies and star-forming clouds).

The main conclusions derived from this work are:

• The Thin-Shell code has reproduced with high accuracy the Sedov-Taylor solu-

tion, both the kinetic and thermal energy fractions as well as the leading shock

position and expansion velocity. Although it was not the main goal of this work,

the evolution of a SNR in a non-homogeneous ISM could also be simulated by

making use of this code.

• The ejecta-dominated phase was studied for several ejecta models. The initial

condition of the ejecta mass distribution was shown to have imperceptible con-

sequences on the long-term evolution of SNRs in low-density cases.

• The transition time from the Sedov-Taylor to the Snowplough phase was de-

fined, calculated and compared with previous results. A good agreement be-

tween ours and other groups calculations was obtained in all cases. The leading

[63]
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shock position was found to change as R ∝ t0.4 during the Sedov-Taylor stage

and as R ∝ t0.3 during the Snowplough phase.

• In models with low ambient density, the energy radiated by the shocked ejecta is

important only for an initial short period of time. For most part of the evolution,

the reverse shock can be considered as an adiabatic shock. The peak of the rate

of energy loss of the shocked ambient gas was found to be very near to the

transition time to the Snowplough stage.

• Our results for a SN explosion in a high density medium of n0 = 107 cm−3 are

in excellent agreement with the results presented in Terlevich et al. (1992). In

such case, radiative cooling of the swept-up ambient gas and of the shocked

ejecta is important very early in the SNR evolution. The remnant loses most of

its thermal energy approximately 10 yr after the explosion.

• It was shown that the ejecta density structure does change the evolution of

SNRs for the n0 = 107 cm−3 model. However, in all cases, strong radiative

cooling leads to a rapid decrease of the thermal energy and to the formation

of a dense, cold expanding shell, pushed by the unshocked ejecta ram pressure.

The shell continues its expansion while sweeping-up ambient gas and collecting

the ejecta until the ram pressure is comparable to the ambient pressure. At this

point, the shell stalls and merges with the ambient medium.

• Simulations were carried out for densities ranging from n0 = 1 up to n0 = 107

cm−3. A critical density ncri = 104 cm−3 was determined. The SNRs manage

to thermalize all the ejected mass before the onset of the Snowplough stage if

n0 < ncri. Otherwise, a non-negligible part of the ejecta mass has yet to be

shocked by the time the remnant becomes fully radiative without reaching the

ST phase.

Future work

The model here discussed can be extended to include the radiation from dust particles.

It is important to integrate all the relevant processes as SNRs have been identified
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6.1 Future work 65

as major producers of interstellar dust (e.g.Morgan et al. 2003, Dunne et al. 2003,

Maiolino et al. 2004) and the cooling by dust can be up to two orders of magnitude

more effective than gas cooling, impacting noticeably the hydrodynamical evolution

of such remnants and the feedback they provide to the environment (e.g. Tenorio-

Tagle et al. 2013, Mart́ınez-González et al. 2016).

It would also be interesting to study how the results of this work can contribute to

the understanding of dust formation during the early life of the Universe. Low-mass

evolved stars cannot be a source of dust formation at these ages, because their evolu-

tionary time scale are longer than the age of the universe at that moment. Therefore,

it is expected that most of the dust grains formed in the supernova ejecta (e.g.Todini

& Ferrara 2001, Marchenko 2006, Bianchi & Schneider 2007b). However, although a

non-negligible amount of dust is formed in the cold ejecta, just a small fraction (about

10− 20%) survives the passage through the reverse shock (e.g. Micelotta et al. 2016,

Hwang & Laming 2012).

Our results show that the reverse shock is much weaker for SNRs evolving into high

density media, therefore, it is expected that a larger fraction of dust grains could

survive in these cases. At the same time, the high densities and low temperatures of

the shells are likely to enhance the formation of dust grains. Both effects can lead to

explain the reason to observe high redshift objects with such a large amount of dust

(Hines et al., 2006).
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Appendix

The pressure ratio at the beginning

of the ED and at the ST stages

Here, the pressure ratio φ (see chapter 3) is estimated at the early ejecta-dominated

phase and during the Sedov-Taylor stage. It is shown that in both cases φ is close to

0.3.

The ejecta-dominated phase

At the ED stage, the pressure gradient between the leading shock PLS and the reverse

shock PRS can be estimated from the stationary Euler equation:

dP

dr
= −ρudu

dr
. (A.1.1)

At the initial time t0:

PRS − PLS ≈ −ρLSULS (URS − ULS) , (A.1.2)

where ρLS is the density behind the leading shock, ULS and URS are the gas velocities

behind the leading and the reverse shock in the rest frame, respectively. The ratio of

the gas pressures φ then is:

φ =
PRS
PLS

= 1− ρLSULS
PLS

(URS − ULS) . (A.1.3)

[69]
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From the Rankine-Hugoniot conditions

PLS =
γ + 1

2
ρ0U

2
LS, ρLS =

γ + 1

γ − 1
ρ0, (A.1.4)

where ρ0 is the density of the ambient medium. Substituting A.1.4 into A.1.3 one can

obtain:

φ = 1− 2

γ − 1

(
URS
ULS

− 1

)
. (A.1.5)

The post-shock velocities are:

URS =
2

γ + 1
VRS +

γ − 1

γ + 1

RRS

t
, (A.1.6)

where VRS and RRS are the velocity and position of the reverse shock and γ is the

specific heats ratio. At t0:

VRS (t0) =
RRS (t0)

t0
= Vmax, (A.1.7)

where Vmax is the maximum velocity of the free ejecta at the initial time. Therefore:

URS (t0) = Vmax. (A.1.8)

The gas velocity behind the leading shock ULS is (see chapter 3):

ULS (t0) =
2

γ + 1
lEDVmax, (A.1.9)

where lED = 1.1 is the leading factor (see chapter 3). Substituting equations A.1.8

and A.1.9 into equation A.1.5, one can obtain:

φ (t0) = 1− 2

γ − 1

(
γ + 1

2lED
− 1

)
= 0.3636. (A.1.10)
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The Pressure ratio in the Sedov-Taylor solution

During the Sedov-Taylor (ST) stage, the reverse shock has already reached the center

of the explosion, therefore φ is equivalent to the ratio between the central gas pressure

Pc and the pressure behind the leading shock: Pc/PLS. It was calculated as a function

of the specific heats γ by Gaffet (1978):

φ = 1− 1

ωs (1 + 2ωs)

(
q1 +

2ωs (1− ωs)X0

2 + ωs

)
, (A.2.1)

where:

ωs =
2

1 + γ
, (A.2.2)

X0 = (2− ωs)
(
2 + 5ωs − 4ω2

s

)
+ q0

(
5ω2

s − 2ωs − 11
)

+ q20

(
5− 3

2
ωs

)
. (A.2.3)

q1
ωs (1− ωs)

=

(
4− 3ωs
1− ωs

)
q0 − 2 (2− ωs) , if γ 6= 1, (A.2.4)

and

q0 = −RLS
dULS

dt

U2
LS

= 3/2. (A.2.5)

For γ = 5/3, equation A.2.1 gives φ ≈ 0.3045.
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Appendix

Analytic expressions for the

reverse and the leading shocks

The analytic expressions for the leading and reverse shock radii and velocities are

presented in (Truelove & McKee, 1999, hereafter TM99), who used:

Mch = Mej, (B.0.1)

Rch = M
1/3
ej ρ

−1/3
0 , (B.0.2)

tch = E−1/2M
5/6
ej ρ

−1/3
0 , (B.0.3)

as units of mass, radius and time. In these units, a non-dimensional form of any

physical variable x is:

x∗ = x/Rβ1
ch t

β2
chM

β3
ch , (B.0.4)

where β1, β2 and β3 are constants. Mej, E and ρ0 are the ejecta mass, the explosion

energy and the ambient medium density, respectively. Note that the TM99 solution

is adiabatic and thus does not take into account the effects of radiative cooling.

The ejecta-dominated phase

In the TM99 solution the position of the leading shock R∗LS during the ED-phase is

given implicitly as a function of time:

t∗ (R∗LS) = 0.6428

(
3− n
5− n

)1/2

R∗LS

[
1− 0.3493 (3− n)1/2R

∗3/2
LS

]− 2
3−n

. (B.1.1)
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The leading shock velocity V ∗LS as a function of R∗LS is:

V ∗LS = 1.556

(
5− n
3− n

)1/2

[
1− 0.34926 (3− n)1/2R

∗3/2
LS

] 5−n
3−n

1 + 0.34926R
∗3/2
LS

n

(3−n)1/2
. (B.1.2)

The reverse shock position and velocity are:

t∗ (R∗RS) = 0.7071

(
3− n
5− n

)1/2

R∗RS

[
1− 0.7612 (3− n)1/2R

∗3/2
RS

]− 2
3−n

, (B.1.3)

V ∗RS (R∗RS) = 3.2296
(5− n)1/2

3− n R
∗3/2
RS

[
1− 0.7612 (3− n)1/2R

∗3/2
RS

] 2
3−n

1 + 0.7612R
∗3/2
RS

n

(3−n)1/2
. (B.1.4)

The Sedov-Taylor Stage

During the ST phase, the shock positions and velocities are:

R∗LS (t∗) =

[
0.4506 + 1.4233

(
t∗ − 0.6390

(
3− n
5− n

)1/2
)]2/5

, (B.2.1)

V ∗LS (t∗) = 0.5694

[
0.4506 + 1.4233

(
t∗ − 0.6390

(
3− n
5− n

)1/2
)]−3/5

, (B.2.2)

R∗RS (t∗)

= t∗

[
1.1− (0.106− 0.128n)

(
t∗ − 0.6390

(
3− n
5− n

)1/2
)

−
(

0.585− 0.6390 (0.106− 0.128n)

(
3− n
5− n

)1/2
)

ln

(
1.5649

(
5− n
3− n

)1/2

t∗

)]
,

(B.2.3)

V ∗RS (t∗) =
R∗RS
t∗
−
[

0.585 + (0.106− 0.128n)

(
t∗ − 0.639

(
3− n
5− n

)1/1
)]

. (B.2.4)
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The transition time between the ED and SR stages is:

t∗ST = 0.495

[
5

3

(
3− n
5− n

)]1/2
. (B.2.5)
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Appendix

Initial conditions for high density

runs

The ejecta density profile and its velocity structure in the pioneer hydrodynamical

simulations presented at Terlevich et al. (1992) and related works (e.g, Franco et al.

1991; Tenorio-Tagle et al. 1991) are here discussed. A method to introduce this pre-

scription for the ejecta structure within the frame of chapter 3 is also addressed.

The density and velocity structure

A power-law density ρej ∝ r−n for the ejecta gas was assumed throughout this work

(see chapter 3). It was also assumed that n < 3 and therefore an ejecta core was not

needed. Now, the following structure is considered:

v (r, t) =

{
r−Rc

Rej(t)−Rc
if r ≥ Rc,

0 if r < Rc,
(C.1.1)

where:

Rej (t) = R0
ej + vejt, (C.1.2)

is the free-expansion radius of the ejecta, vej is the ejecta maximum velocity and Rc is

the inner surface of the ejected mass, i.e., the boundary defining the size of the stellar

remnant. The term R0
ej is the initial outer boundary of the ejected matter. The mass

[77]
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Mej expelled by the explosion is assumed to be located between Rc and Rej (t):

ρej (r, t) =

{
Mej

4π ln(Rej(t)/Rc)
r−3 if r ≥ Rc,

0 if r < Rc,
(C.1.3)

Equations C.1.2 and C.1.3 yield the following equation for the kinetic energy of the

free ejecta:

(C.1.4)
Ek,free (r, t) =

Mejv
2
ej

2 ln (Rej (t) /Rc) (Rej (t)−Rc)
2

[
1

2

(
r2 −R2

c

)
− 2Rc (r −Rc)

+R2
c ln (r/Rc)

]
The kinetic energy of the shocked ejecta Ek,ej is still calculated as in chapter 3 (see

equation 3.3.2), the only difference is that the fraction of Mej that has been shocked

by the reverse shock is now given by:

Mth = Mej(1−
ln (RRS/Rc)

ln (Rej (t) /Rc)
) (C.1.5)

Te introduction of equations C.1.4 and C.1.5 into the Thin-shell code require the

knowledge of Rc and R0
ej, as also of E0 , Mej and vej. This is possible by setting the

initial configuration of the explosion at time t = 0, as discussed in the next section.

Initial condition at t = 0

At t = 0, the leading shock is assumed to be at R0
ej and therefore the total explosion

energy E0 is the kinetic energy of the free ejecta, which is located between Rc and

R0
ej. Hence, at t = 0:

Ek,free (t = 0) = E0 =
Mejv

2
ej

4 ln (x) (1− x)2
[
x2 − 4x+ 3 + 2 ln (x)

]
, (C.2.1)

where

R0
ej = xRc. (C.2.2)
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Equation C.2.1 is a non-linear equation in x that can be solved if values of Mej, E0

and vej are given.

The density at the outer boundary R0
ej is assumed to be equal to ρ0, the density of

the ambient medium (Rodŕıguez-González, 2000):

ρej
(
R0
ej, t = 0

)
= ρ0. (C.2.3)

Equation C.2.3 allows one to calculate R0
ej as:

R0
ej =

(
Mej

4πρ0 ln (x)

)1/3

. (C.2.4)

In summary, the initial conditions are set once the values of E0 and vej are given.

Later, an approximate value of x is found numerically with equation C.2.1, R0
ej is

obtained with equation C.2.4 and Rc from equation C.2.2.

As an example of the procedure, let us determine the initial conditions fulfilling the

data from Terlevich et al. (1992). They set Mej = 2.5 M�, and state that an initial

energy E = 1051 erg and momentum p0 = 2.44 × 1042 g cm s−1 were deposited into

an ambient medium of n0 = 107 cm−3.

There is a degeneracy on this prescription of the problem, due to the fact that several

velocities vej can satisfy these conditions and also satisfy the equation C.2.1. In this

case, vej = 1.4 × 104 km s−1 is set and equation C.2.1 gives x ≈ 6.25. The different

parameters for this example are shown in Table C.1.
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Table C.1: Initial conditions for a SNR evolving into a medium of density n0 = 107

cm−3.

Mej[M�] 2.5
vej[km s−1] 1.4× 104

E0 [erg] 1051

x 6.25
R0
ej[10−2 pc] 0.70
Rc[10−2 pc] 0.11

Initial condition for the Thin-Shell code

Following the ideas from chapter 3, the Thin-Shell code is started under the suppo-

sition that a small fraction of the original kinetic energy has become thermal and

kinetic energy of the shocked gas. Hence, this yields an initial time t0 > 0. However,

unlike chapter 3, this energy fraction will not be the starting point for the definition

of the initial conditions.

The starting point is given by the initial position of the leading shock RLS (t0):

RLS (t0) = R0
ej + αR0

ej, (C.3.1)

i.e., the leading shock is assumed to have travelled at a velocity 4/3vej to a position

that is off by (1 + α) from the original position. In this equation, α will be adjusted

iteratively (usually α < 0.15). Equation C.3.1 in turn yields an initial time t0:

t0 =
3/4αR0

ej

vej
. (C.3.2)

As in chapter 3, the initial position of the reverse shock RRS (t0) is set as:

RRS (t0) = RLS (t0) /lED, (C.3.3)
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with lED ≈ 1.1. The initial velocity of the reverse shock is the maximum velocity of

the ejecta at RRS (t0):

VLS (t0) =
RRS (t0)−Rc

RLS (t0)−Rc

vej = Vmax. (C.3.4)

Equations C.3.3 and C.3.4 lead to the initial velocity of the leading shock VLS (t0):

VLS (t0) = lEDVRS (t0) = lEDVmax. (C.3.5)

The initial velocity of the shocked gas is:

Uini =
2

γ + 1
lEDVmax. (C.3.6)

The equation of energy conservation at t0 is:

E0 = E0
k,ism + E0

th + E0
k,ej + E0

k,free. (C.3.7)

The fraction of thermalized ejecta mass is non-zero at t0 and therefore E0
k,ej > 0.

Similarly, the leading shock has already swept-up some of the ambient gas and hence

E0
k,ism > 0. Equation C.3.7 allows one to calculate E0

th. The parameter α is adjusted

iteratively until E0
th > 0.
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