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Glossary

aliasing The misidentification of a signal frequency introducing distortion er-
ror.

emf The electromotive force is the electrical intensity generated by another
form of energy.

flywheel A flywheel is a heavy rotational wheel in a machine that is used to
increment its momentum.

gecko The gecko is a lizard who lives in warm climates throughout the world.
They range from 1.6 cm to 60 cm. These animals have adhesive toe pads
that let them adhere to most surfaces.

H-bridge The H bridge is an electrical circuit often used to allow DC motor
to run forward and backward.

NEOs Near Earth Objects are comets and asteroids whose orbits are in the
neighborhood of the Earth.

probe Similar to spacecraft.

regolith This term refers to a layer of material covering solid rock, which can
come in the form of dust, soil or broken rock.

rover This name is referred to any exploration vehicle designed to move across
extraterrestrial lands.

small bodies The term small bodies or low gravity bodies are all the objects
in the Solar System that are not planets.
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CAD Computer-aided Design.
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DAC Digital-to-Analog Converter.

DLR German Aerospace Center.

ESA European Space Agency.

ISAS Institute of Space and Astronautical Science.

ISS International Space Station.

JAXA Japan Aerospace Exploration Agency.

LEMUR 3 Limbed Excursion Mechanical Utility Robot.

LTI Linear Time-Invariant.

MUSES-CN Mu Space Engineering Spacecraft.

NASA National Aeronautics and Space Administration.

PWM Pulse-width Modulation.

SLAM Simultaneous Localization and Mapping.

ZOH Zero Order Hold.
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Abstract

The exploration of asteroids and comets will give us clues about the formation
of the Solar System, besides it is an important step for space travel. Moving on
the surface of this interplanetary objects could be challenging for future robotic
explorers due to the weak gravity force. In this work, we present an approach
that bases on a new kind of jumping rovers, which have internal flywheels in
their interior. By slowly spinning up the flywheels and suddenly braking them,
it is possible to perform a hop from a few meters until hundreds of them. Unlike
similar researches that stop the flywheel instantaneously, we focus on stopping
the flywheel by voltage inversion in a short lapse with the aim of modifying
the launch angle, a quite useful action over terrains with different degrees of
inclination. In this work, we discussed the dynamics of the rover for a 2D
model, the speed control of the flywheel and also we conducted experiments in
a prototype to validate the effectiveness of the braking and later, we analyze
the stopping performance to make simulations of the ballistic trajectory under
low gravity conditions.

La exploración de asteroides y cometas nos darán pistas acerca de la for-
mación del Sistema Solar, además de ser un paso importante en la exploración
espacial. Moverse sobre la superficie de estos cuerpos interplanetarios podŕıa
ser un desaf́ıo para futuros exploradores robóticos debido a la débil fuerza de
gravedad. En este trabajo, presentamos un enfoque que se basa en un nuevo
tipo de robots brincadores, los cuales cuentan con ruedas inerciales en su inte-
rior. Al girar lentamente estos volantes y frenarlos repentinamente, es posible
realizar un salto desde unos pocos metros hasta cientos de ellos. A diferencia
de investigaciones similares que detienen el volante instantáneamente, nosotros
nos enfocamos en detener la rueda mediante inversión de voltaje en un lapso
corto con el objetivo de modificar el ángulo de lanzamiento, una acción bas-
tante útil en terrenos con diferentes grados de inclinación. En este trabajo,
discutimos la dinámica del veh́ıculo para un modelo 2D, el control de velocidad
del volante y también realizamos experimentos en un prototipo para validar
la efectividad del frenado y, posteriormente, analizamos el rendimiento del fre-
nado para realizar simulaciones de la trayectoria baĺıstica bajo condiciones de
baja gravedad.
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Chapter 1

Introduction

1.1 Motivation

T
he study of small interplanetary bodies such as asteroids and comets, in
addition to other objects like little moons, provides useful information

about the origin and evolution of the Solar System [1]. Most of the bodies
with low mass are analyzed with ground-based telescopes and in some cases
with space telescopes. Since these bodies are covered with a layer of regolith
the information about their physical and chemical properties is limited. Also,
as the spectrum of these small bodies is almost unavailable, the understanding
about their origin an evolution is quite limited. These aspects are pointing
to the development of a new generation of space missions whose aim will be
collect data in situ, i.e. directly from the surface in order to obtain hopefully
information about their origin and nature [2].

The analysis of these objects has become relevant to the leading space agen-
cies in the past two decades. There have been interplanetary spaceships such
as Dawn, Osiris-REX, Deep Impact, Rosetta, Stardust-NExt, among others
[3], which have had an impact, both, in the scientific community as and in
popular culture. Similarly, other robotic missions like Curiosity or Cassini-
Huygens have been considered historical missions due to the complexity of
their objectives. The fascinating discoveries from each of these spacecrafts
have transformed our understanding of different bodies in the Solar System.
Nevertheless, without the development of visionary technologies that allowed
the spacecrafts to upgrade their capabilities, these engineering feats could not
have been realized.

19
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1.2 Problem Statement

Although the ability and perseverance of scientists and engineers have shown
space exploration as a routine; actually, it represents one of the most challeng-
ing ventures in humankind history. Any spaceship, no matter its destination,
must fulfill the challenges of traveling very long distances, work correctly during
its mission and operate without any control in real time with sporadic transmis-
sions to the Earth. In order to make a wide variety of tasks and simultaneously
fulfill the concerning issues of the inhospitable environment in which they are,
these space vehicles/robots must be equipped with technological advances in
the next categories [1]:

• Minimize the mass and energy demand of the spacecraft and its subsys-
tems.

• Improve their capability for communications.

• Increase their autonomy.

• Have a significant efficiency in the propulsion systems in all the phases
of the mission.

• Improve the security that contributes to keep the spacecraft safe in ex-
treme environments.

One of the principal priorities for the National Aeronautics and Space Ad-
ministration (NASA) and the European Space Agency (ESA) is the study of
NEOs. NASA was developing the first robotic spacecraft capable of visiting an
asteroid and pick up a stone from the surface, to bring it into a stable orbit
around the Moon [4]. This mission was canceled in December 2017. ESA is
currently working on the Asteroid Impact Mission [5], that plans to hit a binary
asteroid to observe the repercussions of such impact, as part of the European
planetary defense program.

The proposal of the National Research Council of the United States about
the technological development priorities of NASA published in 2015 [6], has
divided these priorities into 15 fields. One of this fields is Robotics and Au-
tonomous Systems. Within this field, the Small-Body and Microgravity Mobility
topics are identified as of high priority.

The principal goal of a rover within a low gravity environment is to provide
certain motion autonomy. A rover usually needs actuators and effectors for
moving on over almost the total surface of the explored object to have access
to places previously determined by scientists and designers. Among scientific
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and technical considerations, complex characteristics of the object to be ex-
plored such as the gravity force fluctuations, the land irregularities must be
taken into account too. The temperature of the environment and the available
energy sources. Also, it is important to consider the specific requirements of
the mission such as operation time, on-board instrumentation and the equip-
ment needed to collect, keep and protect samples.

The milli-micro gravity force of the small bodies is a constraint for the tradi-
tional wheeled rovers. For these reasons, it is convenient to analyze alternative
motion strategies that take advantage of low gravity.

There are some difficulties for future low-gravity rovers:

• A robot needs to include some mechanism specifically designed to work
in low gravity environments.

• A robot needs an effective locomotion mechanism to be able to traverse
uneven surfaces.

• Due to the limitations of real experimentation on our Planet, accurate
simulations of the complete functionality are necessary.

Castillo-Rogez et al. [2] have divided into four classes the solutions for
mobile platforms for surface exploration:

1. Thruster Motion. Mobility by rocket thrusters would land few times to
collect soil samples and data using on-board instruments. A drawback
of this alternative is the limited number of locations that the spacecraft
could visit [2], [7]. However, is faster than other forms of locomotion.

2. Wheeled Motion. Wheeled vehicles have been very successful in Martian
and Lunar explorations, however, the lack of traction causes that the
maximum speed that can be reached is about 1.5 mm/s [8]. Bouncing
and dust are other inconveniences for wheeled rovers.

3. Legged Motion. Locomotion based on legs is mechanically complicated
because it requires an anchoring system and also is slower than the other
mentioned solutions. However, a legged robot could reach some unattain-
able places for mobile robots that do not rely on legs, such as cliffs [9],
[10].

4. Hopping Motion. This kind of locomotion is based on a robotic platform
able to jump. The hopper has a minimalistic design with little weight,
small dimensions, and low cost. This robot relies on inertial wheels which
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are held within the robot. The movement is produced by slowly acceler-
ating these wheels and suddenly stopping them, generating in that way
a braking torque and the consequent transfer of energy from the wheels
to the chassis that causes the robot jumps [11], [12], [13]. There are two
basic categories of hopping locomotion:

(a) Sticking Mechanism. The robot has a push system that sticks the
surface of the explored object to generate the impulse.

(b) Moving Inertial Masses. This system consists of one or more internal
masses that spin at a certain velocity, the abrupt change in this
velocity generates a momentum that makes the robot jump, turn or
flip.

1.3 Proposed Solution

The present investigation focuses on locomotion by jumping using spinning in-
ertial masses. It has the advantage that using a simple mechanism (the actuator
is a flywheel attached to a simple DC motor), hopping robots are capable of
doing significant traverses, and also, as the actuation is encapsulated internally,
there is no risk of stuck by dust [2], [12]. Hockman et al. [14] have established
that the best morphology of a hopper is a cubic shape since it always offers a
launch angle of 45o over flat surfaces.

To perform a jump maneuver a reaction wheel is slowly accelerated and
suddenly stopped to generate the momentum that will provide a ballistic tra-
jectory. A hop maneuver is divided into two phases:

1. Leverage phase. The time elapsed between the moment when the robot
is in a rest position and the time when it entirely has no contact with the
ground.

2. “Fly” phase. The time elapsed between the moment when the robot
leaves the ground and the moment when it falls again.

In recent related works, hopper robots have an instantaneous mechanical
brake of the inertial wheel that is applied by both, a rubber band [14] and
an impact hammer [15]. This approach might be harmful to the robot. In
contrast, as the surface of an asteroid or comet is rarely flat, is a motivation for
this research to deflect the launch angle depending on the slope of the ground
to maximize the hop distance. The application of a controlled-time-braking
of the DC motor by voltage inversion over surfaces with different degrees of
inclination is proposed.
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1.4 Hypothesis

Through the implementation of a control system for decelerating an internal
flywheel of a jumping rover, it will be possible to explore the surface of small
bodies of the Solar System.

1.5 Objectives and Contribution

The main goal of this research is to develop a speed control system for a fly-
wheel of a cubic robot that allows it to jump over the surface of interplanetary
bodies with low gravity.

To achieve the main objective, a set of specific objectives have been
defined as follows:

• To analyze the dynamic properties of the hopper robot.

• To implement a control technique that allows stopping the flywheel in a
specific time applying controlled braking by voltage inversion.

• To adjust the jump angle to reach the desired distance over sloped sur-
faces.

• To design a real test system to validate the effectiveness of braking the
flywheel by voltage inversion.

• To perform computational simulations of the robot and its trajectory.

In recent related works, the hopper robot has an instantaneous mechani-
cal brake that is applied by both, a rubber band [14] and an impact hammer
[15]. In contrast, in this research the main contribution is the application
of controlled braking of the wheels by voltage inversion over surfaces with dif-
ferent degrees of inclination, with the aim of changing the launch angle for
always getting the desired displacement regardless the slope of the ground in
which the robot is located. This choice aims at protecting eventual damages
that might happen to the mechanical components of the robot for a sudden
uncontrolled brake. As a first approximation, it has been only considered a
2D ballistic flight and one single flywheel and also has been assumed that the
center of mass of the hopper is situated at its geometric center.
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1.6 Methodology

This section briefly presents the methodology to be used in order to reach the
previously defined objective.

1. Hopping Dynamics

The first step is to develop a mathematical model of the relationships
among the flywheel, the chassis of the hopper, the inclination of the land
and the jump trajectory. The appropriate model will be obtained based
on the related bibliography.

2. Adjust the Trajectory for Uneven Terrains

The optimal trajectory is at a launch angle of 45o no matter the incli-
nation of the surface. It is possible to change the jumping angle and
consequently, the travel distance switching between instant-braking of
the flywheel to time-controlled-braking. Through the slope of the surface
and the desired distance, it is possible to determinate the angular speed
and the lapse in which the inertial mass must stop to always approximate
to a 45o launch angle.

3. Design of the Speed Controller

The next step is to design a control system that allows braking the fly-
wheel in the lapse specified above. Good design prevents oscillations,
improve both time response and the stability, as well as minimize the
steady state error. In this work, it has been applied the state feedback
by pole placement technique.

4. Validation The last step is to develop a computer simulation to visualize
and validate the response of the implemented control technique and the
trajectory of the hopper ; also, it is necessary to build a prototype to
perform the necessary experiments to verify the effectiveness of the speed
control of the flywheel.

It is almost impossible to hit the target place in the first jump. For this
reason, it is necessary to establish a target area instead of an accurate location,
and then, carry out a series of jumps that allow the hopper to reach the target
area.

1.7 Constraints

The slips and bounces of the robot are governed by the friction with the regolith
and rocks on the surface of the comets or asteroids. These interactions are
beyond the scope of current research. Due to the difficulty of experimentation of
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milli-microgravity, the way to validate the results will be focusing on computer
simulations.

1.8 Organization of this Document

The rest of this document is organized as follows. The second chapter revises
the related work to this research. The third chapter presents all the theoretical
foundations required to meet the objectives. The fourth chapter explains in
detail the methodology applied to achieve the goals. The fifth chapter focuses
on describing the experiments and simulations conducted in this research. The
sixth chapter of this document summarizes the results and the feasibility of the
proposed approach. In the last chapter are presented the concluding remarks
of this research.
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Chapter 2

Related Work

S
o far it does not exist any robot with an efficient locomotion system that
enables it to explore an asteroid or comet on which it can be brought.

In this chapter it is shown the relevant work to the four classes of mobility
platforms mentioned in Chapter 1.

2.1 Rocket Thruster Motion

Figure 2.1: Artist concept of CHopper.

The CHopper mission was a lander proposed by NASA [7], [16]. If it had been
built, it would have orbited and landed multiple times on the comet 46p/Wirta-
nen. This spacecraft had as a primary goal to map the spatial heterogeneity
of the surface solids and analyze dust and gas emissions. When the comet had
approached to the Sun, the space probe would take off and land several times

27
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to record surface changes as the comet became more active. This mission was
canceled in 2012. Figure 2.1 shows an artist concept of CHopper [16].

2.2 Wheeled Motion

Wheeled robots have been very successful in the exploration of the Moon and
Mars. Not only NASA is in the way to build rovers, other space agencies and
companies have already sent or are developing their space vehicles to send them
to our natural satellite or Mars in the next years, for example, ESA’s Exomars
[17] and c©Google Lunar XPRIZE [18]. Nevertheless, for low gravity objects,
the physical conditions are entirely different, and wheeled rovers might not be
very efficient. As the energy transmission between the wheel of the robot and
the ground depends on friction, the loose and soft soil of the comets or asteroids
is not appropriate to transform wheel rotation into forwarding motion without
losses. Every disturbance on the road like a rock or gap can lead to a flip of
the wheels [12].

To solve these problems NASA and the Institute of Space and Astronautical
Science (ISAS) of Japan created a prototype of a rover called MUSES-CN [8]
with a mass of 1300 g. The rover consisted of a rectangular body with 14×14×6
cm in dimension with four wheels with a top speed of 1.5 mm/s. The robot
had six optical detectors on its external faces to determinate the direction of
the Sun. It had a laser range finder, which enables it to determine the range of
nearby objects. The rover carried three science instruments: a visual camera,
a near infrared spectrometer, and an alpha X-ray spectrometer. The entire
robot had being qualified for a temperature range of -180 oC to 110 oC. The
MUSES-CN was also designed to be self-righting and was able to operate upside
down. The project was canceled by NASA in November 2000 due to budget
constraints [19]. Figure 2.2 shows the MUSES-CN nanorover prototype [8].

Figure 2.2: MUSES-CN nanorover prototype.
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2.3 Legged Motion

Helmick et al. [9] have presented a limbed robot with stable, robust and precise
mobility and the capacity of collect samples from the surface of small bodies.
Due to the lack of traction on comets and asteroids, the advantages that a
robot with extremities and anchorages presents over irregular terrain are:

• The capacity of moving over rough surfaces.

• The ability to strategically choose contact points.

• The multifunctional capabilities of limbs beyond locomotion.

Figure 2.3: The prototype of the limbed robot.

Figure 2.3 [9] shows a robot with limbs designed to minimize unexpected
forces that could lose contact with the terrain, change its trajectory, or exceed
the escape velocity of small bodies. An important aspect to consider is the
power requirement. This walking robot has twelve actuators and can be ener-
gized with solar power or batteries.

Figure 2.4 shows a more complex robot than the previous one [10]. The
LEMUR 3 was built from two projects, one focused on crawling across the
outdoor of the International Space Station (ISS) using gecko-adhesive [20], and
the second one focused on climbing vertical cliffs and traversing cave ceilings
using microspine grippers [21]. Its design was motivated by a desire of climbing
extreme terrains with seven links per extremity. This prototype only needs
switching its end effector to climb across icy, sandy or rocky terrains.
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Figure 2.4: The LEMUR 3 robot.

Figure 2.4 presents the LEMUR 3 climbing a rock [10].

2.4 Hopping Motion

In this section, significant research about hopping robots is revised.

Figure 2.5 shows a robot called Cubli [22], designed mainly for terrestrial
applications. This robot is based on the principle of an inverted pendulum in
a three-dimensional environment. It presents a cubic form design of 15 cm per
side and has three internal spinning wheels that provide the necessary torque
and momentum to carry out the appropriate movements that enable the robot
to reach a balancing position. Cubli uses a nonlinear control approach that
makes possible rising from a rest position and balance.

Figure 2.5: The Cubli prototype balancing on one of its corners.

Another related space rover has been presented by ESA and the German
Aerospace Center (DLR), with the name of MASCOT [11], [12]. On June 26th,
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2018, this lander met the asteroid Ryugu, on board the spaceship HAYABUSA-
2 led by the Japan Aerospace Exploration Agency (JAXA) [23]. It uses a loco-
motion strategy that is similar to the proposed one in this research; however,
MASCOT only needs one single mass, that is outside its gravity center, which
gives it the possibility of jumping to another location on the surface of an as-
teroid. MASCOT is unable to focus on a particular place of interest since it
has been designed to collect information from random locations.

Figure 2.6: MASCOT CAD model.

Figure 2.6 shows the subsystems on board [11].

Kato et al. [24] have presented a small rocket-propelled robot, Figure 2.7,
which also has an inertial load within its body, Figure 2.7. This strategy uses
a small main rocket engine to lift off from the ground and a second engine to
stabilize the traverse trajectory. When the robot is flying, a reaction wheel
starts to rotate for adjusting the thrusting direction of both drivers. This
strategy needs one shot, and it can be very challenging to control under low
gravity.

Figure 2.7: CAD model showing the internal parts of the robot.

The research of Hockman et al. [14] is based on the work of Muehlebach and
D’Andrea [22] and is adapted to a situation of low gravity. The validation of
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the experiments and the response of the algorithms is conducted using a crane
type system. This work leaves several open problems, such as the development
of realistic contact models of sandy terrain (regolith) found in asteroids; the
improvement of the reliability of the maneuvers on rocky terrains, and the
development of Simultaneous Localization and Mapping (SLAM) techniques
to deal with the complexity of the environment, among others. The work of
Hockman et al. is the primary reference of this document. Figure 2.8 [14] shows
the prototype and a CAD model of its interior.

Figure 2.8: Prototype and CAD model showing some internal components of
the rover.

As we said before, our research focuses in this last form of locomotion. It is
important to recall that the main difference between the related works in the
Hopping Mobility field and the presented in this document is that, we change
the manner to stop the flywheel using controlled braking for avoiding some
eventual damage to the structure of the robot.

The next chapter presents the mathematical basis and the theoretical foun-
dations of this work.



Chapter 3

Foundations

I
n this chapter are presented the necessary theoretical basis of classical me-
chanics, dynamic systems and modern control theory for a better under-

standing of this research.

3.1 Mathematical Modeling of Dynamic Sys-

tems

In control theory, a mathematical model of a system is the set of differential
equations which describes the behavior of the system [25]. Based on the model
it is possible to calculate the response of the system variables for any instant
of time. Unfortunately, it is almost impossible to make an exact model of a
physical system. However, even if a model represents partially the reality, it
can be useful if it describes the dominating dynamic properties of the system.

3.1.1 The Inverted Pendulum

In the mathematical representation of the hopper robot, it is necessary to know
the model of an inverted pendulum because this model describes the first phase
of the jump (when the robot is at rest position until it loses ground contact).

The primary objective of this model is to maintain a bar in a vertical po-
sition. For the next analysis, it is considered a problem in two dimensions, in
which the pendulum only moves in the horizontal and vertical planes. Assum-
ing that the bar’s gravity center is at its geometrical center and it is supplied
with a control force u(t) to the cart. A free-body diagram of the inverted
pendulum system [26] is shown in Figure 3.1.

33



34 CHAPTER 3. FOUNDATIONS

Figure 3.1: The inverted pendulum system.

Symbol Value Units
I Moment of inertia of the bar kg ·m2

θ Angular position of the bar rad

θ̇ Angular speed of the bar rad/s

θ̈ Angular acceleration of the bar rad/s2

l Half the length of the bar m
V Vertical reaction force N
H Horizontal reaction force N
x Position of the cart m
ẋ Speed of the cart m/s
ẍ Acceleration of the cart m/s2

M Mass of the cart kg
m Mass of the bar kg
g Gravity acceleration m/s2

b Friction coefficient −
u Force applied to the cart N

Table 3.1: Parameters of the inverted pendulum Figure 3.1.

Be θ the angular position of the bar concerning to the vertical and trans-
forming the gravity center coordinates of the bar (x, y) as Expressions (3.1)
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and (3.2)
xgc = x+ l sin θ, (3.1)

ygc = l cos θ. (3.2)

The rotational motion of the bar in its gravity center is expressed by For-
mula (3.3)

Iθ̈ = V l sin θ −Hl cos θ, (3.3)

where I is the inertial moment of the bar.

From the mass of the bar m times the acceleration of x it is possible to
obtain the horizontal motion of the gravity center of the bar given by (3.4)

m
d2

dt2
(x+ l sin θ) = H. (3.4)

The vertical movement is described by the mass of the bar times the accel-
eration in y, minus the gravity force, as in Equation (3.5)

m
d2

dt2
(l cos θ) = V −mg. (3.5)

The horizontal motion of the cart is denoted by (3.6)

Mẍ+ bẋ = u−H, (3.6)

where M is the mass of the cart and u is the supplied control force. Forces of
the cart in the vertical direction are not useful information.

Since the pendulum must remain in vertical position, it is feasible to suppose
that θ and θ̇ will be small, so, sin θ ≈ θ, cos θ ≈ 1; then, the Equations (3.3),
(3.4) and (3.5) are respectively linearized in the form of Equations (3.7), (3.8)
and (3.9)

Iθ̈ = V lθ −H, (3.7)

m
(
ẍ+ lθ̈

)
= H, (3.8)

0 = V −mg. (3.9)

The Expression (3.10) indicates the horizontal motion of the bar, and can
be derived from Equations (3.6) and (3.8)

(M +m) ẍ+ bẋ+mlθ̈ = u. (3.10)

The angular motion of the bar, Formula (3.11), can be obtained from Equa-
tions (3.7), (3.8) and (3.9)

Iθ̈ = mglθ −Hl = mglθ − l
(
mẍ+mlθ̈

)
, (3.11)
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alternatively expressed by (3.12)(
I +ml2

)
θ̈ +mlẍ = mglθ. (3.12)

Consult [26] and [27] for a detailed description of this model.

3.1.2 The DC Motor

As it was mentioned in Section 1.3, the actuator of the hopper is a simple DC
motor. The motion of the robot depends on the braking force of the motor and
the mass of the load J . Develop the appropriate mathematical model of the
engine is essential for meeting the desired performance. The electromechanical
circuit of a direct-current motor with permanent magnets [28] is referenced in
Figure 3.2.

Figure 3.2: The electromechanical circuit of a direct-current motor.

Symbol Description Units
v Input voltage V
R Motor winding resistance Ω
L Motor winding inductance H
ı Armature current A
J Moment of inertia of the rotor kg ·m2

ε Electromotive force of the motor V
τ Torque N ·m
θ̇ Angular speed of the rotor rad/s

θ̈ Angular acceleration of the rotor rad/s2

b Friction coefficient of the rotor N ·m · s
Km Mechanical constant N ·m/A
Kb Electrical constant V

rad/s

Table 3.2: Parameters of the DC motor.



3.1. MATHEMATICAL MODELING OF DYNAMIC SYSTEMS 37

In Formula (3.13) the torque in the rotor is proportional to the current and
the magnetic field force

τ = Kmı, (3.13)

where Km is the mechanical constant and is related to the magnetic field force
of the motor.

The friction torque T is equal to the friction coefficient of the rotor multi-
plied by the angular speed, as expressed in (3.14)

T = bθ̇. (3.14)

The voltage induced by the motor, also called emf, is a tension proportional
to the angular speed of the rotor and the electrical constant Kb, which is also
a physical parameter of the motor, this is given by Formula (3.15)

ε = Kbθ̇. (3.15)

Applying the laws of Kirchhoff, it is obtained that, the sum of the voltage
drops is equal to the voltage supplied, as shown in Formula (3.16)

v = Rı+ L
dı

dt
+ ε. (3.16)

Applying Newton’s second law, in Expression (3.17) the inertial load of the
rotor times the derivative of the angular speed is equal to the sum of all the
torques in the rotor

Jθ̈ = −T + τ. (3.17)

The mechanical and electrical constants are equivalents Km = Kb, henceforth
denoted only by K.

This leads to two differential equations that establish the relationship be-
tween the electrical and mechanical behavior of the motor. By substituting the
value of ε(t) in Equation (3.16) it is obtained the description, given by (3.18),
of the current through the circuit

v = Rı+ L
dı

dt
+Kθ̇, (3.18)

moreover, by substituting Equation (3.13) and (3.14) in (3.17), the equation
that describes the angular movement of the rotor can be derived as in (3.19)

Jθ̈ = −bθ̇ +Kı (3.19)

Consult [25] and [28] for a detailed analysis of this model.
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3.2 Modern Control Theory

Control theory has played an essential role in the advancement of science and
technology. Practically all new complex technological systems require some or
several types of feedback control. Control engineering is a vital part of, among
other examples, space vehicles, robots, modern industrial fabrication processes,
airplanes, and cars.

At this point, it is important to remark that some basic definitions such
as plant, actuator, sensor, controller, open-loop, closed-loop, reference, control
variable, output variable, error, perturbation. These terms are all taken from
[29].

3.2.1 Preliminaries

Laplace Transform

Laplace transform is the representation of a linear ordinary differential equa-
tion in an algebraic form [30].

The Laplace transform of a function f(t) is defined as indicated in Formula
(3.20)

F (s) = L [f(t)] =

∫ ∞
0

f(t)e−stdt, (3.20)

where s is the transform variable, generally has complex values and is expressed
by s = σ + jω.

The inverse Laplace transform is expressed in (3.21)

f(t) = L−1 [F (s)] =
1

2πj

∫ γ+j∞

γ−j∞
F (s)estds, (3.21)

where γ is chosen such that the infinite integral converge.

Some useful transform pairs in control problems are:

1. Constant (3.22)

f(t) = a⇐⇒ F (s) =
a

s
. (3.22)

2. Exponential function (3.23)

f(t) = e−at ⇐⇒ F (s) =
1

s+ a
. (3.23)
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3. First-order derivative (3.24)

L[f ′(t)]⇐⇒ sF (s)− f(0). (3.24)

4. Second-order derivative (3.25)

L[f ′′(t)]⇐⇒ s2F (s)− sf(0)− f ′(0). (3.25)

For a complete list of Laplace transforms see [31] and Appendix A of [26].

Initial and Final Value Theorems These theorems are used to find the
values at the extremes t = 0 (3.26) and t = ∞ (3.27) of a time-domain func-
tion without employing the inverse Laplace transform, assuming that initial
conditions are 0 [30]:

• Initial value theorem

lim
s→∞

[sF (s)] = lim
t→0

f(t) (3.26)

• Final value theorem
lim
s→0

[sF (s)] = lim
t→∞

f(t) (3.27)

Transfer Function

The concept of transfer function G(s) is the Laplace transform relation be-
tween the output variable Y (s) of a process and its input variable U(s) [26].
Considering a Linear Time-Invariant (LTI) system described as indicated in
Formula (3.28)

a0y
(n)+a1y

(n−1)+· · ·+an−1ẏ+any = b0y
(m)+b1y

(m−1)+· · ·+bm−1ẏ+bmy. (3.28)

The Laplace transform of this equation is given in Formula (3.29)

a0s
nY (s) + · · ·+ an−1sY (s) + anY (s) = b0s

mU(s) + · · ·+ bm−1sY (s) + bmY (s).
(3.29)

A common representation of the transfer function is expressed as in Formula
(3.30)

G(s) =
Y (s)

U(s)
=
b0s

m + b1s
m−1 + · · ·+ bm

a0sn + a1sn−1 + · · ·+ an
. (3.30)

A transfer function has the next properties [30]:

• The denominator of G(s) is the characteristic polynomial of the differen-
tial equation.
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• The roots U(s) of the characteristic equation are the poles of G(s). De-
noted by U(s) = 0 : p1, p2, · · · , pn.

• The term roots of the characteristic equation is the same that poles of the
transfer function.

• The poles reveal the behavior of the model differential equations qualita-
tively.

• The roots of the polynomial Y (s) are zeros. Denoted by Y (s) = 0 :
z1, z2, · · · , zm.

Second-Order Systems

The order of a dynamic system is the highest derivative of its governing differ-
ential equation [32] or the highest power of s in the denominator of its transfer
function. This section only reviews the second-order system properties.

A second-order differential equation is given by (3.31) [25]

mÿ(t) + bẏ(t) + ky(t) = f(t). (3.31)

The above expression can be written as in Equation (3.32)

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = Kω2

nu(t). (3.32)

Its transfer function is indicated in (3.33)

G(s) =
1

ms2 + bs+ k
=

Kω2
n

s2 + 2ζωns+ ω2
n

, (3.33)

where ζ is the damping ratio, and ωn is the natural frequency.

Gain The gain is the ratio of the magnitude of the steady state step response
to the magnitude of the step input, Equation (3.34)

K =
1

k
. (3.34)

Damping Ratio The damping ratio ζ is the rate at which an oscillation
decay. From (3.33) is defined by (3.35)

ζ =
b

2
√
km

. (3.35)
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Natural Frequency The natural frequency ωn is the frequency in which the
system will oscillate when ζ = 0, Equation (3.36). This expression also can be
obtained from (3.33)

ωn =

√
k

m
. (3.36)

Poles and Zeros A second-order transfer function has two poles, p1 and p2
(3.37). These are the roots the denominator of (3.33)

p1,2 = −ζωn ± jωn
√

1− ζ2. (3.37)

The value of ζ determines if the poles are real or complex conjugate, also,
determines the step response of the system.

Classification of Second-Order Systems The second-order systems are
classified according to [30] as overdamped, critically damped, underdamped, un-
damped and unstable. Figure 3.4 shows this classification with respect to the
value of ζ.

Overdamped Systems ζ > 1. The step response has not overshoot.
The poles are real and distinct.

Critically Damped Systems ζ = 1. The step response has no over-
shoot. The poles are real and have the same location.

Underdamped Systems 0 < ζ < 1. In this case, the step response has
overshoot. The poles are complex conjugate.

The overshoot (OS) is the value by which the response exceeds its steady-
state value and is given in percentage, as indicated by (3.38)

OS = e
−ζπ√
1−ζ2 . (3.38)

From Formula (3.38), ζ is given by (3.39)

ζ =
− log(OS)√
π2 + log2(OS)

, (3.39)

this result is in agreement with Equation (3.35).

The settling time (Ts) is the time required to reach a certain percentage of
the steady-state value [32]. Common tolerances are
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10% 5% 2% 1%
Ts = 2.3

ζωn
Ts = 3

ζωn
Ts = 3.9

ζωn
Ts = 4.6

ζωn

Table 3.3: Common tolerances for settling time.

According to Table 3.3, the natural frequency ωn is given by (3.40)

ωn =
tolerance

ζTs
. (3.40)

The rise time (Tr) is the time required to rise from 10% to 90% of its
steady-state value.

Undamped Systems ζ = 0. The step response permanently oscillates
at frequency ωn [25]. The poles are imaginary.

Unstable Systems ζ > 1. The step response always increases over time.
The poles are real.

Figure 3.3: Some characteristics of a second-order response.

In Figure 3.3 some characteristics as peak response, rise time, and settling
time, among others, of a second-order response are represented in green letters
[33].
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Figure 3.4: Classification of second-order systems by the value of ζ.

3.2.2 State-Space Model

For LTI systems, the state-space equations [30] are a set of differential equations
represented by a matrix form. This representation is expressed by (3.41) and
(3.42)

ẋ(t) = Ax(t) + Bu(t), (3.41)

y(t) = Cx(t) + Du(t), (3.42)

where x(t) is the state-variable vector, u(t) is the input and y(t) the output.
A is the process (plant) matrix, B is the input matrix, C is the output matrix
and D is the feedback matrix (almost always 0).
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Relation of State-Space Models with Transfer Function Models

The Laplace transform of Equations (3.41) and (3.42) are respectively given in
Equations (3.43) and (3.44)

sX(s) = AX(s) + BU(s), (3.43)

Y (s) = CX(s) + DU(s), (3.44)

also, from Equation (3.43) it can be obtained (3.45)

BU(s) = (sI−A)X, (3.45)

where I is the identity matrix.

From Equations (3.43) – (3.45) the transfer function can be derived as in
(3.46) [26]

G(s) =
Y (s)

U(s)
= C (sI−A)−1 B + D. (3.46)

The limitation of transfer function representation becomes helpless for com-
plex systems with multiple inputs and outputs; transfer function matrices can
become very complex.

Canonical Forms Considering the system defined by Equation (3.30):

Controllable The matrix representation used in Equations (3.47) and
(3.48) is known as controllable canonical form [26]

ẋ1
ẋ2
...

ẋn−1
ẋn

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1




x1
x2
...

xn−1
xn

+


0
0
...
0
1

u, (3.47)

y =
[
bn − anb0 bn−1 − an−1b0 · · · b2 − a2b0 b1 − a1b0

]

x1
x2
...

xn−1
xn

+ b0u.

(3.48)
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Observable The next matrix representation, (3.49) and (3.50), is known
as observable canonical form

ẋ1
ẋ2
...

ẋn−1
ẋn

 =


0 0 · · · 0 −an
1 0 · · · 0 −an−1
0 1 · · · 0 −an−2
...

...
. . .

...
...

0 0 · · · 1 −a1




x1
x2
...

xn−1
xn

+


bn − anb0

bn−1 − an−1b0
...

b2 − a2b0
b1 − a1b0

u, (3.49)

y =
[
0 0 · · · 0 1

]

x1
x2
...

xn−1
xn

+ b0u. (3.50)

Stability, Controllability, and Observability

Stability For LTI systems, the stability is guaranteed only if all the eigen-
values of matrix A have negative real parts [29]. The systems that meet this
feature are asymptotically stables. The solutions of this eigenvalues or system’s
poles are given by (3.51) [34]

det(λI−A) = 0. (3.51)

Controllability A system described by (3.41) and (3.42) is completely con-
trollable, if there exists an input u that can transfer an initial state to any
other final state without restrictions, over a finite time interval t0 < t < tf .

If the system is completely controllable, the matrix (3.52)

CO =
[
B AB · · · An−1B

]
, (3.52)

must be of rank n [26]. This matrix is commonly called controllability matrix.

Observability A LTI system described in Equations (3.41) and (3.42) is en-
tirely observable if every initial state x(0) can be deduced from knowledge of
the output y(t) over a finite time interval t0 < t < tf .

If the system is completely observable, the matrix (3.53)

OB =


C

CA
CA2

...
CAn−1

 , (3.53)
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must be of rank n. This matrix is commonly called observability matrix [26].

3.2.3 Control Design with State Feedback

In modern control design, all the poles are located in closed-loop; however,
there is a cost. It is necessary to acquire proper measures of all state variables,
or include a state observer in the system if they are inaccessible [26].

Figure 3.5: Closed-loop blocks diagram.

Considering again the state-space representation, Equations (3.41) and (3.42)
respectively

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

the control signal is chosen as in Equation (3.54)

u(t) = −Kx(t), (3.54)

where K is the state feedback gain vector.

Equation (3.55) is obtained by substituting (3.54) into (3.41)

ẋ(t) = (A−BK)x(t). (3.55)

The solution of x(t) is given by Expression (3.56)

x(t) = e(A−BK)tx(0). (3.56)

First, it is necessary to write the model of the plant, Equation (3.41), in
the controllable canonical form as in (3.47); by choosing an appropriate K, the
matrix A−BK becomes asymptotically stable. The eigenvalues of this matrix
are called the regulator poles. The goal is to find K, such that it satisfies all
the eigenvalues of this matrix.
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Pole Placement

Arbitrary placement of the poles is possible, if and only if, all the system is
entirely controllable [26] as is shown in Equation (3.52). Equation (3.37) places
the poles for second-order systems.

Determination of K Using Ackermann’s Formula There are several
methods to obtain K, one of them is a widespread method known as Acker-
mann’s formula.

The method of Ackermann is expressed as in (3.57) [30]

K =
[
0 0 · · · 0 1

] [
B AB · · · An−1B

]−1
P(A), (3.57)

being P(A), Equation (3.58), the polynomial matrix of A [35]

P(A) = α0A
n + α1A

n−1 + · · ·+ αn−1A + αnI, (3.58)

and αn, is the characteristic equation for the poles determined in Equation
(3.37).

Tracking Systems

For tracking a reference, it is desired that y(t) ≈ r(t) as t → ∞ [36]. Consid-
ering the final value theorem (3.27), it is possible to obtain (3.59)

lim
t→∞

y(t) = lim
s→0

sY (s). (3.59)

For a good tracking performance, the transfer function from R(s) over Y(s)
should be 1 as indicated in Equation (3.60)

sY (s) ≈ sR(s), s→ 0 ⇒ Y (s)

R(s)

∣∣∣∣
s=0

= 1. (3.60)

One method to reach a proper tracking is to scale the reference input r(t)
in the way expressed in (3.61)

u(t) = Nr(t)−Kx(t), (3.61)

where N is the extra gain used to scale the transfer function.

By substituting Equation (3.61) into (3.41) and neglecting D in Equation
(3.42) are obtained the Expressions (3.62) and (3.63)

ẋ(t) = (A−BK)x(t) + BNr(t), (3.62)

y(t) = Cx(t), (3.63)
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so that the transfer function G(s) is represented as in (3.64)

G(s)N =
Y (s)

R(s)
= C(sI− (A−BK))−1BN (3.64)

Considering Equation (3.59) for a step input y(t)→ constant as t→∞, it
is possible to obtain the expression for the extra gain N (3.65)

N = G(0)−1 = −(C(A−BK)−1B)−1. (3.65)

3.3 Digital Modern Control Theory

A digital system or digital signal is a sampled system in which there is a quan-
tization process to convert analog to binary signals [37]. With the arrival of the
Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC), it
is possible to use computers as a control element. Some advantages and disad-
vantages of continuous-time control and discrete-time control are summarized
below:

• Advantages

– The possibility of real-time execution.

– Flexibility in the implementation, tests, and reprogramming of al-
gorithms.

– The capability to obtain good results with low-cost microcontrollers.

• Disadvantages

– Due to the sampling procedure, there is a loss of the information.

– It requires learning a different theory, complementary to continuous
systems.

– It is necessary to bring the analog signal to conditioning for its digital
conversion.

As many topics of digital control systems are similar in many ways to con-
tinuous control systems, the next section only presents the topics of interest in
a summarized way. See [37], [38] and [39] for a detailed explanation of these
topics.
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3.3.1 Preliminaries

Mathematical Models of Digital Systems

A discrete time function is represented as indicated in Formula (3.66) [37]

y = f(k), (3.66)

where, k represents an instant in time where the function has some value.

A n-order linear discrete time system can be described by Equation (3.67)

y(k)+a1y(k−1)+· · ·+any(k−n) = u(k)+b1u(k−1)+· · ·+bmu(k−m), n ≥ m,
(3.67)

subject to initial conditions: {y(−1), y(−2), · · · , y(−n), u(−1), u(−2), · · · , u(−n)},
where a and b are constants, y(k) is the output, u(k) is the input, n and m are
the orders.

Sample and Hold Signals

Figure 3.6: ZOH sampling.

Sampling Signals To get a sampled signal f ∗(t), it can be represented as
the product of a pulse train multiplied by the function f(t) [37], which has
samples every T time units as indicated in (3.68)

f ∗(t) = I(t)f(t). (3.68)
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The Fourier transform of f ∗(t), where ωs = 2π/T , is given by (3.69)

F ∗(ω) =
∞∑

k=−∞

CkF (ω − kωs). (3.69)

Formula (3.69) shows that the transform of the original signal composes the
Fourier transform of the sampled signal, but with many copies out of phase in
multiples of the sampling frequency ωs.

Selection of sampling period It is essential to emphasize that to pre-
vent aliasing it is necessary that the sampling signal ωs is at least twice the
frequency of the original signal ωn as indicated in (3.70)

ωs ≥ 2ωn. (3.70)

In control theory is a common practice to choose a sampling time between
2 to 3 times the rise time [37].

Holding Signals It is necessary to use holders or extrapolators (3.71) [39]
from a set of samples f(tk) to rebuild a continuous-time signal from a sampled-
signal

f(t) = f(tk), tk ≤ t < tk+1, (3.71)

obtaining a continuous signal by joining two points through a constant (zero
order polynomial). This way is called ZOH. Figure 3.6 shows the effect of ZOH.

Z Transform

The Z transform can be used to solve discrete differential equations in an equiv-
alent form as the Laplace transform and is defined by Formula (3.72) [40]

Y (z) = Z[y(k)] =
∞∑
k=0

y(k)z−k, (3.72)

where z is a complex variable.

The key property of the Z transform is that it allows a solution to discrete
differential equations

Z[f(k − 1)] = z−1F (z). (3.73)

For a complete table and more characteristics of Z transform see [38].
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Transfer Function

A discrete linear differential equation (3.67), also can be represented as in
Equation (3.74)

any(k)+an−1y(k+1)+· · ·+a0y(k+n) = bmu(k)+bm−1u(k+1)+· · ·+b0u(k+m).
(3.74)

The Z transform has the same role in discrete systems that the Laplace
transform has [38]. To get the Z transform to each term it is necessary to
apply Equation (3.73) into Equation (3.74)

a0z
nY (z)+a1z

n−1Y (z)+ · · ·+anY (z) = b0z
mU(z)+b1z

m−1U(z)+ · · ·+bmU(z).
(3.75)

The general discrete transfer function H(z) is given by (3.76)

H(z) =
b0 + b1z

−1 + · · ·+ bmz
−m

a0 + a1z−1 + · · ·+ anz−n
, (3.76)

moreover, if n ≤ m, Equation (3.76) can be used to write the above as a ratio
of polynomials in z, this is expressed as in (3.77)

H(z) =
b0z

m + b1z
m−1 + · · ·+ bmz

n−m

zn + a1zn−1 + a2zn−2 + · · ·+ an
. (3.77)

The properties of the transfer function are the same that were revised in
the continuous-time domain in Section 3.2.1.

3.3.2 Digital State-Space Model

The discrete state-space equations and continuous state-space equations are
similar in several ways. The present and the next sections only overhaul the
fundamental similarities and differences to implement the state feedback con-
trol method into a computational algorithm.

Discretization of Continuous State-Space Model

Given the continuous state-space model, Equations (3.41) and (3.42)

ẋ = Ax + Bu,

y = Cx + Du,

preceded by a ZOH, with a sample time Ts, and defining the matrices Φ and
Γ as the discrete equivalents of matrices A and B [39], Expressions (3.78) and
(3.79) are obtained

Φ = eATs , (3.78)
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Γ =

∫ Ts

0

eAηTsdηB. (3.79)

Then the discrete state-space equivalent will be (3.80) and (3.81)

x(k + 1) = Φx(k) + Γu(k), (3.80)

y(k) = Hx(k) + Ju(k), (3.81)

being k a instant of time when the function takes a value, and k + 1 the value
at the subsequent instant of time.

The relation between discrete state-space model and discrete transfer func-
tion and the canonical forms are the same as in continuous time (3.43)–(3.50).

Stability, Controllability, and Observability

Stability A discrete LTI system described by Equations (3.80) and (3.81) is
asymptotically stable, if and only if, all the eigenvalues of Φ are located in the
interior of the unitarian circle λi < 1 [37].

Controllability The deduction of the discrete controllability matrix is anal-
ogous to Equation (3.52), substituting Φ and Γ into A and B, respectively,
the discrete controllability matrix stays as in (3.82) [37]

CO =
[
Γ ΦΓ · · · Φn−1Γ

]
, (3.82)

Observability As in the same way above, the discrete observability ma-
trix, given by Equation (3.83), is analogous to its continuous matrix, Equation
(3.53). It just needs to replace A with Φ and C with H

OB =


H

HΦ
HΦ2

...
HΦn−1

 , (3.83)

3.3.3 Digital Control Design with State Feedback

This section is similar to Section 3.2.3. The most important things are sum-
marized for a digital state feedback application. More details can be found in
[37] and [38].
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The discrete control signal u(k) is chosen considering the discrete state-
space Equations (3.80) and (3.81) as (3.84)

u(k) = −Kx(k). (3.84)

By substituting Equation (3.84) into Equation (3.80), it is obtained the
Expression (3.85)

x(k + 1) = (Φ− ΓK)x(k). (3.85)

As it was done for the continuous-time system, it is necessary to write the
model of the plant in controllable canonical form. Verify that the ranks of the
discrete controllability and observability matrices are acceptable. The goal is
still to find some value of K, such that it satisfies all the eigenvalues of the
matrix Φ− ΓK.

Pole Placement

For an arbitrary placement of the poles, the rank of CO, Equation (3.82), must
be the same as the order of the system. For a second-order system, the location
of the poles are defined by (3.37) [25]

p1,2 = −ζωn ± jωn
√

1− ζ2.

It is necessary to move these poles to the Z-plane as in (3.86) [37]

pz = epTs . (3.86)

Determination of K Using Ackermann’s Formula The method of Ack-
ermann also works for discrete systems and is expressed as indicated in Formula
(3.87) [38]

K =
[
0 0 · · · 0 1

] [
Γ ΦΓ · · · Φn−1Γ

]−1
P(Φ), (3.87)

defining P(Φ) as in (3.88)

P(Φ) = α0Φ
n + α1Φ

n−1 + · · ·+ αn−1Φ + αnI. (3.88)

Tracking Systems

The solution for a good tracking performance for a discrete state feedback
control is scaling the reference input r(k) as in Section 3.2.3. This scaling is
indicated in Equation (3.89)

u(k) = Nr(k)−Kx(k). (3.89)
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By substituting Equation (3.89) into (3.80) and equating J = 0 in Equation
(3.81), the Expressions (3.90) and (3.91) are obtained

x(k + 1) = (Φ− ΓK)x(k) + ΓNr(k), (3.90)

y(k) = Hx(k). (3.91)

N is defined by (3.92) [41]

N = (H(I− (Φ− ΓK))−1Γ)−1. (3.92)

In this thesis, Sections 3.1.1 and 3.1.2 are used to analyze the properties of a
single jump of the hopper. Section 3.2 is employed for the required simulations
and Section 3.3 is used for perform real experiments in our prototype test-bed.

In the next chapter the methodology of this research is discussed.



Chapter 4

Methodology

T
his chapter describes the detailed solution of the problem, summarized in
Chapter 1, of how the cubic robot can jump to a specific place over the

surface of a comet or asteroid. Figure 4.1 shows the reaction forces and torque,
as well as its ballistic trajectory [14].

Figure 4.1: By rotating a flywheel, reaction forces make the rover jump.

Key Features

• The milligravity is exploited to generate big traverses with a low energy
cost.

• The hopper robot has three orthogonal flywheels in its interior.

• As a first approximation, in this research, it is only considered a 2D bal-
listic flight and one single flywheel, and it also assumes that the center of
mass of the hopper is at its geometric center. The implication of a move-
ment in 3 dimensions will extend the analysis of the ballistic trajectory
to a vectorized way. That analysis is left out for future work.

• To realize a jump maneuver a reaction wheel is slowly accelerated and
suddenly stopped to generate the momentum that will propel a ballistic
trajectory.

55
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• A hop maneuver consists of two phases.

– Leverage phase. The time elapsed between the moment when the
robot is in a rest position and the time when any of the spikes have
no contact with the ground.

– “Fly” phase. The time elapsed between the moment when the plat-
form leaves the ground and the moment when it falls again.

Figure 4.2: Diagram of a complete jump maneuver.

In Figure 4.2 it is explained in more detail how a complete maneuver of the
robot is made to perform a jump to the target area. Table 4.1 describes the
parameters of the hopper for a 2D model.

1. Consider the target distance dobj and the surface inclination β.

2. Slowly spinning up the flywheel with motor torque τ < τmin, Equation
(4.3), to prevent the robot loses contact with the ground in advance.

3. dobj and β give the target angular speed ωf , Section 4.3; once it is reached
stop the flywheel.

4. Stop the motor applying a voltage inversion brake at a specific time. This
time is also related to dobj and β.
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5. Initiate the ballistic trajectory and wait until the platform falls again,
Figure 4.1.

6. Verify if dobj was reached; otherwise, make another jump repeating the
complete process.

4.1 Hopping Dynamics

For a 2D model and just one flywheel, the robot is represented as a circle with
four rigid bars attached to it, Figure 4.3 and Table 4.1 [14]. At the center of
mass, there is a DC motor with an inertial wheel that provides a torque to the
robot.

It is assumed that there are no slips on the edge of the spikes. The slips
and bounces are governed by the friction with the regolith and rocks on the
surface of the comets or asteroids. These interactions are beyond the scope of
this research.

Figure 4.3: Robot model in 2D.
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Symbol Value Units
θ Hopper’s angle degrees
β Surface slope degrees
l Spike’s length m
If Flywheel’s rotational inertia kgm2

Ip Platform’s rotational inertia kgm2

τ Flywheel’s torque Nm
2α Angle between spikes degrees
ωf Flywheel angular velocity rad/s
g Gravity acceleration m/s2

mp Platform’s mass kg

Table 4.1: Parameters of the hopper model in 2D.

The surface inclination β will be positive for counterclockwise angles and
negative for clockwise angles.

4.1.1 Instant Braking of the Flywheel

For the leverage phase, the equations of motion are based on the inverted
pendulum model, Equations (3.10) and (3.12). For this analysis the second
one is considered, as represented in (4.1)(

I +ml2
)
θ̈ +mlẍ = mglθ. (4.1)

By substituting mlẍ = τ , the inertia I = Ip, and the total mass of the platform
m = mp, we have the expression for the angular velocity of the pendulum θ̈ in
(4.2)

θ̈ =
mpgl sin θ − τ
Ip +mpl2

. (4.2)

Allen et al. [13] have derived that the minimum torque to initiate a rotation
from rest is given by (4.3)

τmin = mpgl sin(α + β), (4.3)

also, the cited authors have defined the energy transfer ratio as Equation (4.4)

η =
E−

E+
=

If
Ip +mpl2

, (4.4)

where E− is the energy just before actuation (flywheel kinetic energy), and E+

is the energy just after actuation (platform kinetic energy) [14].
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By combining the angular momentum of the flywheel to the angular mo-
mentum of the platform about a spike, it is obtained Expression (4.5)

Ifωf = θ̇(Ip +mpl
2), (4.5)

also, assuming an immediate momentum transfer as in (4.6)

vh = lθ̇, (4.6)

by substituting Equation (4.5) into Equation (4.4) it is obtained the resulting
hop velocity (4.7)

vh = ηωf l. (4.7)

The hop angle θh is obtained only by the geometry of the robot α and the
slope of the surface β. For horizontal terrains β = 0o, this angle is always 45o,
as indicated by Equation (4.8)

θh = α + β. (4.8)

It is important to remind that, this is the primary reason because the hop-
per is a cube instead of another polyhedron.

The formula of projectile movement, (4.9), gives the horizontal distance

dh =
v2h sin(2θh)

g
. (4.9)

From Equations (4.4)–(4.9) it is possible to obtain the flywheel speed re-
quired to cover a horizontal distance, as given in (4.10)

ωf =

√
dhg

η2l2 sin(2(α + β))
. (4.10)
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Figure 4.4: By stopping the flywheel instantaneously, the launch angle (repre-
sented as a green cone in the figure) will always be 45o plus the inclination of
the surface 18.43o in the figure. Equation (4.8).

4.2 Proposed Solution

In this section, a solution for controlling jumps of the hopper cube is presented
in detail. First, as the surface of an asteroid or comet is rarely flat, is a
motivation of this research to deflect the launch angle depending on the slope
of the ground to maximize the hop distance, as shown in Figure 4.5; for this, it
will be necessary to extend the levering phase. Second, as sudden braking by
impact of the inertial wheel might be harmful to the robot, we propose to stop
the flywheel by voltage inversion. This approach also decreases the weight of
the robot.

4.2.1 Controlled Braking of the Flywheel

Since the momentum transfer is no longer instantaneous [14], it is considered
that the braking torque τ and the angular momentum of the flywheel are related
by (4.11)

τ∆t = Ifωf , (4.11)

where ∆t is the braking time.
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For big jumps, it is assumed that, τ � mpgl sin θ, so Equation (4.2) can be
approximated by (4.12)

θ̈ ≈ −τ
Ip +mpl2

. (4.12)

The new expressions will be: the launch velocity vh, Equation (4.13), re-
mains equal as described in Equation (4.7)

vh =
Ifωf l

Ip +mpl2
; (4.13)

the launch angle θh can be determined by (4.14) [14]

θh = α + β −
ηIfω

2
f

2τ
; (4.14)

and the horizontal distance dh, (4.15), is given by the projectile formula as in
Equation (4.9)

dh =
v2h sin(2θh)

g
. (4.15)

Figure 4.5: By a controlled braking torque τ of the flywheel, the launch angle
can be deflected. The goal is to approach the launch angle to 45o for maximizing
the jump distance (4.14).

Braking torque, launch angle and jump distance relationships

To better understand the implementation of a controlled braking of the inertial
wheel, some numerical simulations illustrating the relationships between the
braking torque τ , the launch angle θh, and the jump distance dh, have been
generated.
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Specifications Taking into account an angular speed of the flywheel of ωf =
3500 rpm or 366.5 rad/s, a surface slope of β = 15o, and the physical charac-
teristics of the robot summarized in Table 5.1.

Description The objective of these simulations is to know how θh and dh
change in function of τ . For these examples τ ranges from 10−2 Nm to 101 Nm.

Expected Results It is expected that the maximum jump distance and a
launch angle of 45o can be found at the same magnitude of the braking torque.

Obtained Results Figure 4.6 shows how the launch angle changes, while
the braking torque increases. In the same way, Figure 4.7 illustrates the re-
lationship between the jump distance and the braking torque. Both images,
demonstrate that the application of a torque of τ = 0.03 Nm (red dotted line)
under a gravity acceleration of 77 µm/s2, enables the reaching of a maximum
distance about dh = 102.03 m and a launch angle of θh = 45o.

Figure 4.6: Resulting θh as function of τ .
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Figure 4.7: Resulting dh as function of τ .

4.3 Adjusting the Trajectory for Uneven Ter-

rains

The angular speed ωf cannot be calculated directly, as we did in Equation
(4.10). It will be necessary to obtain it numerically making a table which
contains the target angular speed, the braking time in function of the distance
and the surface inclination. Applying Equations (4.3), (4.11), (4.13), (4.14)
and (4.15) it is possible to generate this table, as well as other characteristics
such as the minimum speed-up time of the flywheel, the launch velocity and
the “fly time”. The algorithm to write this table is presented in Section 5.1.

4.4 Design of the Controller

The next step is to develop an angular speed controller that enables the robot
to brake the motor from ωf to 0, in a time ∆t. Stop the flywheel in a short
lapse can be challenging for a small robot, in which the power consumption and
the reduced space that is available internally are factors to consider. In this
work, it is implemented a state feedback control by pole placement, based on
continuous time for the simulations and on discrete time for real experiments.

As we see previously, the actuator of the hopper consists of an inertial load
or flywheel attached to a DC motor. For developing a state feedback control it
is essential to get the model of the motor. This model is derived in Section 3.1.2.
Henceforth, to simplify the notation of the angular speed θ̇ will be denoted as
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ωf . The equations that describe its behavior are given in (4.16) and (4.17)

v(t) = Rı(t) + L
dı(t)

dt
+Kωf (t), (4.16)

Jω̇f (t) = −bωf (t) +Kı(t). (4.17)

Applying the Laplace Transform to above equations, it is possible to obtain
(4.18) and (4.19)

V (s) = RI(s) + LsI(s) +KΩf (s), (4.18)

JsΩf (s) = −bΩf (s) +KI(s), (4.19)

the transfer function can be obtained by Equation (4.20)

Ωf (s)

V (s)
=

K

(R + Ls)(Js+ b) +K2
. (4.20)

where the output angular speed Ωf (s) can be controlled through the input
voltage V (s). This is a second-order transfer function, some of its properties
are reviewed in Section 3.2.1.

Taking the angular speed ωf (t) and the circuit current ı(t) from Equations
(4.16) and (4.17) as the output state variables, Equations (4.21) and (4.22) are
indicated as

dωf (t)

dt
= − b

J
ωf (t) +

K

J
ı(t), (4.21)

dı(t)

dt
=
v(t)

L
− R

L
ı(t)− K

L
ωf (t). (4.22)

From (4.21) and (4.22), the state-space representation is given by (4.23)
and (4.24)

ẋ(t) =

− bJ K

J

−K
L
−R
L

x(t) +

[
0
1

L

]
v(t), (4.23)

y(t) =
[
1 0

]
x(t), (4.24)

where the state vector x(t) =
[
ωf (t) ı(t)

]T
and ẋ(t) = dx(t)/dt. R is the

armature resistance, L is the electric inductance, K is the back electromotive
force (emf), J is the inertial load on the rotor, b is the viscous motor friction,
v(t) is the input voltage.
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4.4.1 State Feedback by Pole Placement

For continuous LTI systems, the state representation is reviewed in Section
3.2.3, Equations (3.41) and (3.42)

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

where A, B, and C are the state-matrices from Equations (4.23) and (4.24).
D is equal to 0.

For tracking a reference r(t), in this case, the desired angular speed ωf (t)
of the inertial wheel, the control signal can be selected as in Equation (3.61)

u(t) = −Kx(t) +Nr(t).

For discrete LTI systems, the state representation was reviewed in Section
3.3.3, Equations (3.80) and (3.81)

x(k + 1) = Φx(k) + Γu(k),

y(k) = Hx(k) + Ju(k).

The control signal for tracking the discrete reference in an instant of time
k is given by Equation (3.89)

u(k) = −Kx(k) +Nr(k).

N is the extra gain needed to compensate the steady state error. For a
continuous time is given as in Equation (3.65)

N = (C(−A + BK)−1B)−1,

and for discrete time, Equation (3.92),

N = (H(I−Φ + ΓK)−1Γ)−1,

where, in this case, I is the 2×2 identity matrix. For both, K is a 1×2 matrix
that can be found by Ackermann’s formula, Section 3.2.3 and 3.3.3. The ma-
trices Φ, Γ, and H are the discrete equivalents of A, B, and C, respectively,
and have the same size. Section 3.3.2 describes the process of discretization.

The parametrized values of the dynamics of the robot and the flywheel and
the control properties are reviewed in the next chapter.
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Chapter 5

Implementation

T
he implementation has been divided into two phases:

1. The viability of an effective, fast motor braking by voltage in-
version. Real experimentation with a DC motor, speed sensor, energy
supply, motor driver and a microcontroller.

2. The parabolic flight of the robot. The simulation of the trajectory
of the hopper under the gravity of the asteroid Itokawa.

5.1 Deflecting the Launch Angle of the Hop-

per

The first step for realizing a jump to a desired distance dh is getting the angular
speed of the flywheel ωf and the braking time ∆t to deflect the launch angle of
the robot θh, this with the aim of maximizing the jump distance of the robot
despite the inclination of the ground. The parameters required to find ωf and
∆t are shown in Table 5.1.

The model of the hopper is a 10× 10× 10 cm cube with an inertial wheel
of aluminum with a diameter of 6 cm and 76 g of weight. The total weight of
the robot is about 1.5 kg since current 1U cubesats are around that size [42].
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Symbol Description Value
g Itokawa’s mean gravity acceleration 77 µm/s2

β Surface inclination -30o< β <30o

α Half the angle between spikes 45o

l Spike’s length 0.071 m
mp Hopper ’s mass 1.5 kg
mf Flywheel’s mass 0.076 kg
Ip Hopper ’s rotational inertia 25e-4 kgm2

If Flywheel’s rotational inertia 3.42e-5 kgm2

Table 5.1: Parameters required to calculate the ballistic trajectory.

Algorithm 1 presents the procedure to calculate both, the angular speed
and the braking time. For the simulations it has been selected the asteroid
Itokawa with dimensions of 535× 294× 209 m [43]; also this asteroid has been
selected because most of the estimated population of NEOs are under 1 km
of diameter [44]. It is essential to remind that these specifications are merely
speculative and the robot could be bigger and heavier depending on the on-
board instruments and the tasks that the robot will perform.

Algorithm 1 Algorithm to find ωf and ∆t, given β

Require: Parameters of the robot, g, β
1: ωf ← 1 :max speed of the motor
2: τ ← 0.001 : 100
3: for i← 1 : length(ωf ) do
4: vh(i)← lηωf (i)
5: θh(i)← α− (ηIfωf (i)

2)/(2τ + β)
6: dh(i)← max(v2h sin(2θh)/g)
7: ∆t(i)← Ifωf (i)/τ(i)
8: end for

The MATLAB code of Algorithm 1 is presented in Appendix A.1.

Apart from the aforementioned parameters dh, ωf , ∆t, and θh; other pa-
rameters are also important to know the ideal trajectory of the jump. The
speed-up time Tmin is the minimum time to reach the objective angular speed
of the flywheel from rest position. Ls is the velocity at which the hopper will
be fired or launch speed. Tf is the time the robot takes to reach its destination
or “fly” time.
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Distance dh[m] 5 10 30 50 70 100
Angular speed ωf [rad/s] 81.3 115.0 198.9 256.7 303.7 363.0
Speed-up time Tmin[s] 375.0 531.0 919.0 1186.0 1403.0 1677.0
Braking time ∆t[s] 2.78 1.97 0.97 0.80 0.69 0.56
Launch speed Ls[cm/s] 2.0 2.8 4.8 6.2 7.3 8.8
Launch angle θh[degrees] 43.0 43.0 46.0 45.0 44.0 45.0
Fly time Tf [s] 347.0 491.0 900.0 1139.0 1335.0 1610.0

Table 5.2: Surface slope β = 20o.

Distance dh[m] 5 10 30 50 70 100
Angular speed ωf [rad/s] 83.8 118.4 205.0 264.7 313.2 374.4
Speed-up time Tmin[s] 612.0 865.0 1497.0 1933.0 2287.0 2733.0
Braking time ∆t[s] 0.0 0.0 0.0 0.0 0.0 0.0
Launch speed Ls[cm/s] 2.0 2.9 5.0 6.4 7.6 9.1
Launch angle θh[degrees] 35.0 35.0 35.0 35.0 35.0 35.0
Fly time Tf [s] 302.0 427.0 739.0 954.0 1128.0 1349.0

Table 5.3: Surface slope β = −10o.

Tables 5.2 and 5.3 summarize the calculations for the jump parameters for,
respectively, a surface slope of 20o and a slope of -10o. Both tables show repre-
sentative distances from 5 m to 100 m. It is worth to remark that for negative
angles on inclination the braking time is about ∆t ≈ 0 s.

As it can be seen in Tables 5.2 and 5.3, the longer the distance dh, the faster
the launch speed Ls. Greater distances than 100 m are achievable, however,
approaching the escape velocity could be dangerous. For Itokawa, the escape
velocity is about 11.28 cm/s [43]. For example, in Tables 5.2 and 5.3 the max-
imum launch speed Ls are 8.8 cm/s and 9.1 cm/s respectively.

Once the necessary parameters to perform a successful jump have been
obtained, the next step is to verify the viability to stop the flywheel in the
specific ∆t time using voltage inversion. To control the speed of the flywheel it
is necessary to develop the model of the motor and find its parametrized state
matrices. This model is derived in Section 3.1.2.

5.2 Find the Parameters of the DC Motor

Simulink Simscape ElectronicsTM R2017b was used to estimate the values b, R,
K and L described in Table 3.2; J was estimated by the weight and size of the
flywheel. Figure 5.1 presents the model of a DC motor assembling the inherent
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electrical (resistance, inductance, emf) and mechanical (shaft inertia, friction)
characteristics of the motor; also, the model contains an H-bridge, a Pulse-
width Modulation (PWM) voltage source, a current sensor and a rotational
motion sensor.

Figure 5.1: Model of a direct-current motor in SimscapeTM.

Using measured data from a real system is possible to get the parameters of
the motor. The experiments were conducted using an Arduino board MKR1000
[45], an H-bridge BTS7960B [46], a current sensor ACS712 [47] and a DC motor
with rotary optical encoder. Figure 5.2 shows the components of the cubic
robot. A DC power supply of 24 V — 2 A was used.

Figure 5.2: Prototype used for the experiments.
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Figure 5.3: Matching measured and simulated data of the DC motor model
in Simulink Parameter EstimationTM R2017b. In the right plot the values of
L, b and K are quite smaller than R, for that reason are a the bottom of the
picture.

Steps to estimate the parameters:

1. In the microcontroller, develop a speedometer and an ammeter to measure
their responses to a 12 V step input.

2. Import the measurement data of the angular speed ωf of the DC motor
and the electrical current ı of the circuit.

3. In the Simulink model give approximate values to b, R, K, and L.

4. Using Simulink Parameter EstimationTM, tune these parameters auto-
matically.

On the left of Figure 5.3 is presented the measured and simulated responses
of ı and ωf , respectively. On the right is shown the tuning of b, K, L, and R.

The obtained values of the electrical and mechanical parameters of the DC
motor are presented in Table 5.4.

Symbol Description Value Units
J Moment of inertia of the flywheel 3.42e-5 kg m2

b Friction coefficient of the rotor 2.20e-5 N m s
K Back-emf constant 47.96e-3 V

rad/s

L Motor winding inductance 7.75e-3 H
R Motor winding resistance 11.36 Ω

Table 5.4: Estimated parameters of the motor.
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5.3 State Feedback Controller by Pole Place-

ment

In Section 4.4 it was proposed a state feedback control by the pole placement
technique to develop an angular speed controller, based on continuous time for
simulations and on discrete time for real experiments.

Taking into consideration Equations (4.23) and (4.24), the parametrized
state-space representation rounded by 2 decimals can be represented as Equa-
tions 5.1 and (5.2), respectively

ẋ(t) =

[
−0.64 1402.21
−6.19 −1466.54

]
x(t) +

[
0

129.04

]
v(t), (5.1)

y(t) =
[
1 0

]
x(t), (5.2)

where the state vector x(t) =
[
ωf (t) ı(t)

]T
and ẋ(t) = dx(t)/dt.

5.3.1 Simulation of the State Feedback Controller

As a first approximation to verify the simulated performance of the controller,
a step input with a reference of ωf = 280 rad/s, an overshoot of OS = 4% and
a settling time equal to St = 0.5 s has been selected.

The controllable canonical form of the Equations (5.1) and (5.2) are given
by (5.3) and (5.4)

ẋ(t) =

[
0 1

−9622 −1467

]
x(t) +

[
0
1

]
v(t), (5.3)

y(t) =
[
1.81e5 0

]
x(t), (5.4)

Stability, Controllability, and Observability

The eigenvalues of the matrix A in Equation (5.3) are negatives λ1 = −6.59
and λ2 = −1460.60, therefore, the motor system is stable.

The controllability matrix for the DC motor system is given by (5.5)

CO =

[
0 1
1 −1467.19

]
. (5.5)

The rank of the matrix CO = 2; therefore, the system is entirely control-
lable.
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The observability matrix for the motor system is given by (5.6)

OB =

[
1.81e5 0

0 1.81e5

]
. (5.6)

The rank of the matrix OB = 2; therefore, the system is completely observ-
able.

Pole Placement

As it was mentioned in Section 3.2.1, the DC motor model can be analyzed as
an LTI second-order system. The value of the damping ratio in (5.7) is given
by Equation (3.39)

ζ = 0.72, (5.7)

also, the natural frequency in Equation (5.8) with a 2% tolerance is obtained
through Equation (3.40)

ωn = 10.90. (5.8)

In Equation (3.37) is given the way to find the poles of a second-order
system. For the actual design have the values of (5.9)

p =
[
−7.8 + ı7.61 −7.8− ı7.61

]
. (5.9)

Determination of K

Using Ackermann’s Formula, revised in Section 3.2.3, it is possible to get the
values of the gain matrix K, Equation (5.10)

K =
[
−9503.10 −1451.59

]
. (5.10)

Tracking a Referenced Angular Speed

As it was mentioned in Equations (3.61)–(3.63), for tracking a referenced ωf it
is necessary to add an extra gain N to reduce the steady-state error. Equation
(3.65) shows the method of getting this constant. For the current system is
expressed in Equation (5.11)

N = 1523.16. (5.11)

The control signal will be selected as in Equation (3.61).
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Obtained Results Figure 5.4 shows a simulation of the behavior of the
angular speed of the motor. The design parameters ωf = 280 rad/s, OS = 4%
and St = 0.5 s are successfully accomplished. Figure 5.5 shows the simulated
input power supply. The simulations have been done using MATLAB R© Control
System ToolbooxTM R2017b.

Figure 5.4: Simulated step response characteristics.
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Figure 5.5: Simulated input voltage.

5.3.2 Real Performance of the State Feedback Controller

Once the simulated response has been verified, it is necessary to perform real
experiments to compare them and check that the control model are feasible. As
in above section, the reference is a step input of ωf = 280 rad/s, an overshoot
of OS = 4% and a settling time equal to St = 0.5 s.

The parametrized discrete state-space representation from Equations (5.3)
and (5.4) with a sample time Ts = 0.0005 s rounded by 2 decimals is expressed
in Equations (5.12) and (5.13)

x(k + 1) =

[
1 3.54e-4

−3.41 0.48

]
x(k) +

[
9.93e-8
3.54e-4

]
v(k), (5.12)

y(k) =
[
1.81e5 0

]
x(k). (5.13)

The discretization of a continuous time system is reviewed in Section 3.3.2.

Stability, Controllability and Observability

The system is stable since both eigenvalues of the discrete matrix Φ are be-
tween −1 < λ1,2 < 1. λ1 = 0.99 and λ2 = 0.48.

The controllability matrix for the DC motor system is expressed by (5.14)

CO =

[
9.93e-8 2.25e-7
3.54e-4 1.69e-4

]
. (5.14)
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The rank of the matrix CO = 2; so, the system is completely controllable.

The observability matrix for the motor system is given by (5.15)

OB =

[
1.81e5 0
1.81e5 64.08

]
. (5.15)

The rank of the matrix OB = 2; also, the system is completely observable.

Pole Placement

For second-order LTI discrete systems, the damping ratio and the natural fre-
quency have the same values as in the continuous time domain. The previous
values of p = −7.8±7.61ı will be moving to the Z-plane using Equation (3.86).
The values of these poles are indicated in (5.16)

pz =
[
0.98 + ı4.35e-3 0.98− ı4.35e-3

]
. (5.16)

Determination of K

Ackermann’s Formula also works for discrete systems. Applying the method-
ology presented in Section 3.3.3 the gain matrix K, Equation (5.17), can be
calculated for the current DC motor system

K =
[
−7407.48 −1361.40

]
. (5.17)

Tracking a Referenced Angular Speed

Also, for tracking a referenced ωf in discrete systems, it is necessary to add an
extra gain N to reduce the steady-state error. The control signal is selected
as in Equation (3.89), where N has been calculated from Equation (3.92).
Equation (5.18) shows its value

N = 81.71. (5.18)

Obtained Results The behavior of the real response (black line) acting sim-
ilarly to the predicted response (red line), with a relative error of 1.43%. The
discrete input voltage (blue line) is shown in Figure 5.7, and the differences
between the simulated input voltage and the input voltage delivered by the
Arduino board is about 0 V . As it can be seen in Figure 5.6, a digital imple-
mentation of a state feedback controller is necessary for a good performance of
the code running in a microcontroller.



5.3. STATE FEEDBACK CONTROLLER BY POLE PLACEMENT 77

Figure 5.6: Measured and simulated speed responses of the motor.

Figure 5.7: Real input voltage of the motor.

5.3.3 Applying the Braking by Voltage Inversion

Algorithm 2 presents the way to control the braking of the flywheel by voltage
inversion using state feedback by pole placement. In Appendix A.2 there is
an example code for the Arduino MKR1000 board with design parameters
of: ωf = 198.758 rad/s, ∆t = 0.261 s, Ts = 0.0005 s, OS = 0.0001%, and
St = 0.1 s. It is worth to mention that the values of the matrices A and B,
and the gains K, and N , change respecting ωf and ∆t.
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Algorithm 2 DC motor braking: state-space method

Require: A, B, K, N , ωf , ∆t, Tmin, Ts.
1: r ← 0
2: δ1 ← ωf ∗ Ts/Tmin
3: δ2 ← ωf ∗ Ts/∆t
4: if clock = Ts then
5: if r < ωf then
6: r ← r + δ1
7: end if
8: if r = ωf then
9: r ← r − δ2

10: if r ≤ 0 then
11: r ← 0
12: end if
13: end if
14: u← −Kxk +Nr
15: xk+1 ← Axk + Br
16: xk ← xk+1

17: microcontroller ← u
18: end if

In this chapter the implementation of the proposed technique of control
that will allow the hopper to stop the flywheel from a certain ωf in a ∆t time
was discussed. To achieve the expected performance of the speed controller
(state feedback by pole placement) we owed know a priori the real parameters
of the actuator of the prototype.

The results of the braking and their simulated jumps will be presented in
the next chapter.



Chapter 6

Results

B
elow are presented the summary of the resultant ballistic trajectories of
the hopper robot derived from the application of the real braking of the

inertial wheels from the implementation of Algorithm 2.

6.1 Experimental Results and Simulations

For the sake of clarity, the test that were conducted are enumerated consecu-
tively from 1 to 14. For each test, a brief description of the test and its goal,
as well as the expected and the obtained results are included.

6.1.1 Braking Responses

Test 1. Speed control of the DC motor and its input voltage signal

Description This first experiment verified the efficiency of the speed con-
troller. The speed of the DC motor (black line) must decrease uniformly fol-
lowing, as close as it can, the simulated model (red dotted line); also, the input
signal (blue line) must be within the allowed ranges (±24 V ).

Expected Results Taking in consideration an objective distance of dh =
70 m and a surface inclination of β = 15o, the angular speed of the flywheel
needs to stop from ωf = 303.69 rad/s to 0 rad/s in a time ∆t = 0.50 s.

Obtained Results The upper plot of Figure 6.1 shows an example of the
implementation of the braking response. The blue line in Figure 6.1 is the
input voltage applied to the DC motor. For more aggressive braking, the
voltage inversion also will be faster and with more negative amplitude. The
real angular speed was ωf = 308.8 rad/s and the braking time was ∆t = 0.52 s,
this gives a parabolic “flight” with a distance equal to dh = 72.4 m.

79
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Figure 6.1: Example of the braking response of the flywheel. For the motor
used in the prototype some vibration is presented at a range close to 200 rad/s,
It is recalling that this vibration was imperceptible and do not change the
performance of the results.

Test 2–7. Overview of some speed control responses for a wide variety
of target distances and surface inclinations

Description The objective for the next tests is checking the effectiveness
of the speed control of the motor by voltage inversion under several angular
speeds and braking times.

Expected Results It is expected that the real responses (black lines) follow
the model responses (red lines). Table 6.1 summaries the objective parameters.

Test ωf [rad/s] β [degrees] ∆t [s] dh [m]
2 81.16 0 0.00 5
3 114.88 10 0.98 10
4 198.76 5 0.26 30
5 199.49 30 1.37 30
6 256.67 20 0.80 50
7 389.98 -15 0.00 100

Table 6.1: Ideal braking responses under several conditions and expected jump
distances.

Obtained Results As in Figure 6.1, the different plots in Figure 6.2 illustrate
the responses of the controlled braking of the inertial wheel. Several inclinations
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and target distances have been selected to illustrate the behavior of the motor
braking. The red lines indicate the ideal controlled speed of the motor and
how it decreases from a designated ωf to 0 in a ∆t time. Figure 6.2 shows
the behavior of the tests proposed in Table 6.1. Table 6.2 makes a comparison
of the obtained results. The relative error in Table 6.2 is obtained from the
Formula (6.1)

Error =
|expected response− real response|

|expected response|
× 100. (6.1)
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Figure 6.2: Examples of the application of the braking by voltage inversion and
the estimated distance that the robot could reach.
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Slope Parameter Exp. Response Real Response Error
0o dh [m] 5 3.00 40.00 %

ωf [rad/s] 81.16 62.83
∆t [s] 0.00 0.06

10o dh [m] 10 8.29 17.10%
ωf [rad/s] 114.88 104.51

∆t [s] 0.98 0.86
5o dh [m] 30 28.96 3.47%

ωf [rad/s] 198.76 195.3
∆t [s] 0.26 0.30

30o dh [m] 30 32.62 8.73%
ωf [rad/s] 199.49 207.97

∆t [s] 1.37 1.31
20o dh [m] 50 51.35 2.7%

ωf [rad/s] 256.67 260.02
∆t [s] 0.80 0.79

-15o dh [m] 100 89.59
ωf [rad/s] 389.98 400.13 10.41%

∆t [s] 0.00 0.16

Table 6.2: Comparison between the simulated and resultant responses of Figure
6.2.

6.1.2 Jump Results

To validate the resultant parabolic trajectories of the rover, the surface slope
was divided each 5o from 30o to -30o; for every angle, representative distances
have been selected (5 m, 10 m, 30 m, 50 m, 70 m, and 100 m); for each of these
distances, 14 repetitions of the braking of the DC motor and their consequent
simulated jumps under the gravity of the asteroid Itokawa were conducted.
Given a total of 1092 experiments carried out.

In this research, three surface inclinations have been chosen for the presen-
tation of the results: 15o, 0o, and -15o. From these angles, have been plotted
three target distances: 5 m, 50 m, and 100 m, in which the robot has reached,
respectively, the worst, the best and an average performance according to the
landing point and the original objective distance. As we said before, we do not
considering bouncing.

Test 8. 50 m target

Description In this test, have been conducted a series of 14 jump simula-
tions for each of the three selected inclinations to reach a 50 m target. Every
simulated jump has been obtained from a real braking experiment of the motor.
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Expected Results It is expected that for a 50 m target distance, each land-
ing will be within a 5 m tolerance area.

Obtained Results Figure 6.3 offers a perspective from above of the target
distance dh = 50 m (◦) with a 10% error tolerance and the place where everyone
of the 14 simulations for each selected inclination touched the ground (×) of the
asteroid. Figure 6.3 scores the best results with a 50 m range with a relative
error of 2.4%.

Figure 6.3: Best performance: 50 m.

Test 9. 100 m target

Description In this test, have been conducted a series of 14 jump simulations
for each of the three selected inclinations to reach a 100 m target. Every
simulated jump has been obtained from a real braking experiment of the motor.

Expected Results It is expected that for a 100 m target distance, each
landing will be within a 10 m tolerance area.

Obtained Results Figure 6.4 offers a perspective from above of the target
distance dh = 100 m (◦) with a 10% error tolerance and the place where
everyone of the 14 simulations for each selected inclination touched the ground
(×) of the asteroid. Figure 6.4 presents the average results in the 100 m range
with a relative error of 5.9%.
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Figure 6.4: Average performance: 100 m.

Test 10. 5 m target

Description In this test, have been conducted a series of 14 jump simulations
for each of the three selected inclinations to reach a 5 m target. Every simulated
jump has been obtained from a real braking experiment of the motor.

Expected Results It is expected that for a 5 m target distance, each landing
will be within a 0.5 m tolerance area.

Obtained Results Figure 6.5 offers a perspective from above of the target
distance dh = 5 m (◦) with a 10% error tolerance and the place where everyone
of the 14 simulations for each selected inclination touched the ground (×) of
the asteroid. Figure 6.5 records the worst results in the 5 m range with a
relative error of 24.4%.
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Figure 6.5: Worst performance: 5 m.

6.1.3 Average Trajectories

Tests 11–13. 5 m, 50 m, and 100 m trajectories.

Description Apart from knowing the landing site of the robot, it is necessary
to know its “fly” trajectory. In Tests 11–13, the average trajectories of the
simulated jumps presented in Section 6.1.2 for the 5 m, 50 m, 100 m targets,
as well as the ideal path are displayed.

Expected Results The ideal trajectory is indicated by the dotted black line.
It is expected that the average paths marked in red, green and blue colors ends
up in the same place.

Obtained Results Figures 6.6 and 6.7 show the average parabolic trajecto-
ries for the 50 m, 100 m, and 5 m travels displayed in Figures 6.3, 6.4 and 6.5,
respectively, as well as the ideal flight. Figure 6.6 and left plot in Figure 6.7
present acceptable results, since average landings are within the 10% tolerance
error. Right plot in Figure 6.7 scores bad results because the average landings
are far away from the target point.
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Figure 6.6: Average trajectories for a 50 m courses.

Figure 6.7: Average trajectories for 100 m and 5 m courses.

6.1.4 Consecutive Jumps

Test 14. Big distances: 385 m

Description As it has been said in Section 5.1, greater distances than 100
m are possible, but reaching the escape velocity is a considerable risk to the
hopper. To prevent this, a series of jumps are needed for the hopper to go to
the desired place.

Expected Results For a dh = 385 m with 5 m error tolerance, three jumps
of 100 m and one jump of 85 m are needed. It is expected the the hopper lands
within the tolerance area.

Obtained Results In Figure 6.8 are shown the trajectories of the four jumps
needed for a target distance of 385 m over flat terrain. In the same way, as
in the previous section, the parabolic flights are simulated from the braking
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responses of the flywheel under the gravitational pull of the asteroid Itokawa.
Table 6.3 presents the results of these jumps.

Figure 6.8: Demonstration of an ideal path to reach the objective target of 385
m with a 5 m of tolerance over flat terrain.

Target Distance [m] Resultant Distance [m] Error [%]
100 102.41 2.41
100 102.18 2.18
100 105.67 5.67
75 73.95 1.40

385 384.33 0.17

Table 6.3: Simulated jumps of the hopper. The accumulation of the resultant
distances reduced the length of the last jump.

6.2 Summary of the Results

In this part, the summarized jump results described in Sections 6.1.2 and 6.1.3
are presented. In Section 6.2.1, 6.2.2, and 6.2.3 the results are presented accord-
ing to surface inclinations. In Section 6.2.4 the results are presented according
to target distances.

6.2.1 Surface Inclination β = 15o

From Table 6.4 it can be seen that the best response is in the 50 m range with
a relative error of 3.7% and the worst is in the 5 m distance with a relative
error of 27.2%.



6.2. SUMMARY OF THE RESULTS 89

Target Distance Mean Distance Std Deviation Relative Error
5 m 3.6 m ±0.2 m 27.2%
10 m 8.5 m ±0.2 m 15.5%
30 m 35.7 m ±1.6 m 19.1%
50 m 51.9 m ±0.4 m 3.7%
70 m 73.6 m ±0.2 m 5.1%
100 m 106.3 m ±0.9 m 6.2%

Table 6.4: Summary of the results of β = 15o.

6.2.2 Surface Inclination β = 0o

From Table 6.5 it can be noticed that the best response is in the 50 m range
with a relative error of 2.7% and the worst is in the 5 m distance with a relative
error of 23%.

Target Distance Mean Distance Std Deviation Relative Error
5 m 3.8 m ±0.2 m 23.0%
10 m 8.5 m ±0.2 m 14.8%
30 m 31.4 m ±1.9 m 4.8%
50 m 51.4 m ±0.5 m 2.7%
70 m 73.0 m ±0.4 m 4.2%
100 m 105.3 m ±1.0 m 5.3%

Table 6.5: Summary of the results of β = 0o.

6.2.3 Surface Inclination β = −15o

From Table 6.6 it can be noticed that the best response is in the 50 m range
with a relative error of 0.8% and the worst is in the 5 m distance with a relative
error of 23.1%.

Target Distance Mean Distance Std Deviation Relative Error
5 m 3.9 m ±0.1 m 23.1%
10 m 8.4 m ±0.3 m 16.1%
30 m 34.1 m ±2.2 m 13.7%
50 m 49.6 m ±1.2 m 0.8%
70 m 66 m ±0.7 m 5.7%
100 m 93.8 m ±1.4 m 6.2%

Table 6.6: Summary of the results of β = −15o.
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6.2.4 Target Distances 5 m, 10 m, 30 m, 50 m, 70 m, 100 m

Within each box, the red line marks the median, the bottom and top edges
of the box indicates the percentile 25 and 75, respectively. The outliers are
represented by (+). All the plots show the surface inclinations of 15o, 0o, and
-15o in the horizontal axis. In the vertical axis, the set of distances obtained
through each jump are displayed. Table 6.7 summarizes these datasets.



6.2. SUMMARY OF THE RESULTS 91

Figure 6.9: Box plot representation by target distance.

Target Distance Slope Median Distance Max Distance Min Distance
5 m 15o 3.7 m 3.9 m 3.1 m

0o 3.8 m 4.2 m 3.3 m
-15o 3.9 m 4.0 m 3.7 m

10 m 15o 8.5 m 8.7 m 8.1 m
0o 8.6 m 8.7 m 8.2 m

-15o 8.5 m 8.6 m 7.8 m
30 m 15o 36.5 m 37.6 m 33.3 m

0o 31.9 m 34.0 m 28.8 m
-15o 33.8 m 39.0 m 30.7 m

50 m 15o 51.7 m 52.5 m 51.2 m
0o 51.3 m 52.4 m 50.8 m

-15o 49.2 m 53.0 m 48.7 m
70 m 15o 73.6 m 74.0 m 73.3 m

0o 73.0 m 73.5 m 72.3 m
-15o 66.0 m 67.1 m 64.7 m

100 m 15o 106.1 m 107.8 m 104.9 m
0o 105.6 m 106.6 m 103.9 m

-15o 93.9 m 96.0 m 91.1 m

Table 6.7: Summary of the results according to target distances.
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Chapter 7

Concluding Remarks

T
his section summarizes the main contributions of this research as well as
the possible future related research.

7.1 Overview

A new kind of space robots with locomotion based on jumps developed in this
research provides a new way for the exploration of small bodies of our Solar
System, taking advantage of the low gravity of these interplanetary objects.

This robot has a cubic small shape with no external actuators. The neces-
sary momentum for executing a jump is provided by internal inertial wheels.
This approach consist in three basic steps: 1) develop the mathematical model
of the dynamics of the robot; 2) implement a speed controller for the inertial
wheels in a prototype of the robot; and 3) with the results of the experiments in
the prototype simulate the trajectory of the robot over some asteroid of interest.

This research focuses on the speed control of one inertial wheel, precisely
on the braking of one single flywheel and its relationship with the parabolic
movement of the hopper.

7.2 Conclusions

Considering the examples given in Section 6.1.1 it is possible to observe the
behavior of the braking responses.

• Due to the inertia of the flywheel used in the prototype of this research,
stopping angular speeds higher than 350 rad/s in a short braking time is
difficult to achieve, but it is still a good trade-off.
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• The response of the DC motor achieved the expected behavior provided
that the angular speeds is in between of 150 rad/s and 350 rad/s.

• For angular speeds lower than 150 rad/s, the objective angular speed is
not reached for the DC motor and its response does not fit the expected
results causing the biggest relative errors.

The jump distance results from the response of the DC motor. Section 6.2
indicates that large courses dh > 30 m have less than 10% of error, but lower
distances have greater errors; however, this approach of locomotion has the
advantage that if the rover does not reach the indicated place in the first jump,
it can perform a series of jumps to reach a given location.

7.3 Contributions

1. The main contribution has been to control the inertia of the flywheels
in such a way that the launch angle of the jump can be deflected in an
effective way to reach a given location regardless the surface inclination
on which the robot is located. It is worth to mention that in related
works, the braking of the flywheel is instantaneous thus giving always
the same launch angle.

2. A prototype of the hopper was built to verify the efficiency of the proposed
speed controller of the flywheel.

3. Computer simulations were developed that emulate the parabolic jumps
of the rover under milli-microgravity environments according to the real
responses of the braking of the inertial wheel.

7.4 Future Work

For future work, it will be necessary to extend the analysis to the 3 degrees
of freedom of the hopper. Traditionally the DC motors are considered as LTI
models, but in practice, controlling high and low velocities could be a nonlinear
problem, for this reason, develop a system capable of controlling nonlinear
systems is important. Also, it will be essential to study the bounce over different
kind of soils and consider irregular gravity fields.
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Appendix A

A.1

MATLAB R© algorithm to find ωf and ∆t as well as other character-
istics of the parabolic flight of the hopper.

1 close a l l ; clear , clc
2 % Parameters o f the robo t
3 g = 77e−6;
4 a = pi /4 ;
5 mp = 1 . 5 ;
6 mf = 0 . 0 7 6 ;
7 h = 0 . 1 ;
8 r = 0 . 0 3 ;
9 Ip = mp ∗ (2 ∗ hˆ2) / 12 ;

10 I f = mf ∗ r ˆ2 / 2 ;
11 l = sqrt (2 ∗ hˆ2) / 2 ;
12 n = I f / ( Ip + mp ∗ l ˆ 2 ) ;
13 % Surface i n c l i n a t i o n
14 i n c l i n a c i o n = 0 ;
15 b = deg2rad ( i n c l i n a c i o n ) ;
16 % rpm of the f l ywh e e l from 1 u n t i l the top speed o f the motor
17 rpm = 1 : 5000 ;
18 wf = rpm ∗ pi / 30 ;
19 % Torque from 10E−3 Nm un t i l 10E2 Nm
20 tau = 0 . 0 0 1 : 0 . 0 0 1 : 1 0 0 ;
21 % Operat ions to f i nd the maximum d i s t ance and the requ i r ed brak ing
22 % time
23 nn = length (wf ) ;
24 dMax = zeros (1 , nn ) ;
25 deltaT = zeros (1 , nn ) ;
26 thetaH = zeros (1 , nn ) ;
27 for i = 1 : nn
28 vh ( i ) = l ∗ n ∗ wf ( i ) ;
29 thetah = a − (n ∗ I f ∗ wf ( i )ˆ2) . / (2 ∗ tau ) + b ;
30 for k = 1 : length ( thetah )
31 i f thetah (k ) < b
32 thetah (k ) = b ;
33 end
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34 end
35 dh = vh ( i )ˆ2 ∗ sin (2∗ thetah ) / g ;
36 [ dMax( i ) , pos ] = max(dh ) ;
37 deltaT ( i ) = I f ∗wf ( i )/ tau ( pos ) ;
38 thetaH ( i ) = a − (n ∗ I f ∗ wf ( i )ˆ2) / (2 ∗ tau ( pos ) ) + b ;
39 end
40 % Code to f i nd the a c c e l e r a t i o n o f the f l ywhee l , the speed up time
41 % and the f l y time o f the pa r a bo l i c t r a j e c t o r y
42 tauMin = mp ∗ g ∗ l ∗ sin ( a + b ) ;
43 a c e l = tauMin / I f ;
44 tA = wf / a c e l ;
45 tV = dMax . / ( vh .∗ cos ( thetaH ) ) ;
46 % Table wi th a l l t he ob ta ined va l u e s
47 tablaCompleta = [dMax ’ rpm ’ wf ’ tA ’ deltaT ’ vh ’ rad2deg ( thetaH ) ’ . . .
48 tV ’ ] ;
49 % Table wi th d i s t anc e s each 10 m
50 contador = 5 ;
51 for i = 1 : nn
52 i f tablaCompleta ( i , 1 ) > contador && contador == 5
53 tab la = tablaCompleta ( i , : ) ;
54 contador = contador + 5 ;
55 e l s e i f tablaCompleta ( i , 1 ) > contador
56 tab la = [ tab la ; tablaCompleta ( i , : ) ] ;
57 contador = contador + 10 ;
58 end
59 end
60 save ( ’ t ab la . mat ’ , ’ t ab la ’ )

A.2

Arduino code for controlling the speed of the DC motor through
state feedback by pole placement.

1 // Var iab l e s
2 bool IRSensor = LOW, IRSensor1 = LOW;
3 int v , rpm , di f fTime , i = 0 , i n t e r va l , stopTime ;
4 unsigned long pulseTime = 0 , pulseTime1 = 0 ;
5 unsigned long sampleTime = 0 , sampleTime1 = 0 ;
6 double r e f = 0 . 0 , T min = 2 . 0 , u , dr1 , dr2 ;
7 // Angular speed , brak ing time , sample time
8 double ve l = 198 .758 , Bt = 0 .261 , Ts = 0 . 0005 ;
9 // S ta t e matr ices and ga ins

10 double A[ 2 ] [ 2 ] = {{ 0.999780133410321 , 4.893277156134714 e−04 } ,
11 { −0.784246890026860 , 0.961578374365074 }} ;
12 double B[ 2 ] = { 2.415148963049716 e−07 , 8.614647027497394 e−04 } ;
13 double K[ 2 ] = { −7.407483727521837 e+03 , −1.361396558743178 e+03 } ;
14 double G = 0.012238219193920 ;
15 double x [ 2 ] , x1 [ 2 ] ;
16 // Setup func t i on
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17 void setup ( ) {
18 di f fTime = Ts ∗ 1e6 ;
19 dr1 = ve l ∗ Ts / T min ;
20 dr2 = ve l ∗ Ts / Bt ;
21 stopTime = 6000 + Bt / Ts ;
22 pinMode (3 , OUTPUT) ;
23 pinMode (4 , OUTPUT) ;
24 analogWriteReso lut ion ( 1 2 ) ;
25 S e r i a l . begin (115200 ) ;
26 while ( ! S e r i a l ) {} ;
27 }
28 // Loop func t i on
29 void loop ( ) {
30 speedometer ( ) ;
31 sampleTime = micros ( ) ;
32 i f ( sampleTime − sampleTime1 >= di f fTime ) {
33 i f ( i <= 4000) {
34 r e f = r e f + dr1 ;
35 } else i f ( i > 4000 && i <= 6000) {
36 r e f = ve l ;
37 } else i f ( i > 6000 && i <= stopTime ) {
38 r e f = r e f − dr2 ;
39 } else {
40 r e f = 0 . 0 ;
41 }
42 i++;
43 c on t r o l S i gna l ( ) ;
44 S e r i a l . p r i n t l n (rpm ) ;
45 sampleTime1 = sampleTime ;
46 }
47 }
48 // Speedometer func t i on
49 void speedometer ( ) {
50 IRSensor = d ig i t a lRead (A5 ) ;
51 i f ( IRSensor == HIGH && IRSensor1 == LOW) {
52 pulseTime = micros ( ) ;
53 i n t e r v a l = ( pulseTime − pulseTime1 ) ;
54 rpm = 1.5 e6 / i n t e r v a l ;
55 pulseTime1 = pulseTime ;
56 }
57 IRSensor1 = IRSensor ;
58 }
59 // Contro l s i g n a l f unc t i on
60 void c on t r o l S i gna l ( ) {
61 u = −K[ 0 ] ∗ x [ 0 ] − K[ 1 ] ∗ x [ 1 ] + G ∗ r e f ;
62 i f (u > 24 . 4 ) {
63 u = 24 . 4 ;
64 } else i f (u < −24.4) {
65 u = −24.4;
66 }
67 v = u ∗ 4095 / 2 4 . 4 ;
68 x1 [ 0 ] = A[ 0 ] [ 0 ] ∗ x [ 0 ] + A[ 0 ] [ 1 ] ∗ x [ 1 ] + B[ 0 ] ∗ r e f ;
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69 x1 [ 1 ] = A[ 1 ] [ 0 ] ∗ x [ 0 ] + A[ 1 ] [ 1 ] ∗ x [ 1 ] + B[ 1 ] ∗ r e f ;
70 x [ 0 ] = x1 [ 0 ] ;
71 x [ 1 ] = x1 [ 1 ] ;
72 i f ( v >= 0) {
73 analogWrite (3 , v ) ;
74 analogWrite (4 , 0 ) ;
75 } else {
76 v = −v ;
77 analogWrite (3 , 0 ) ;
78 analogWrite (4 , v ) ;
79 }
80 }


