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1 INTRODUCTION 

Time reversal symmetry is a basic concept in physics. It implies 

that if a particular physical process is allowed, then there also exist a 

“time reversed process” that is related to the original process by 

reversing momenta and the direction of certain fields. These symmetry 

operations are equivalent to change the sign of the time variable in the 

dynamical equations, and for the case of steady state they correspond 

to interchanging incoming and outgoing fields.  

Based on everyday life observations, time reversal symmetry does 

not seem too obvious in real life. It always seems that all events occur 

in one direction in time. For example a movie, whether you run it 

forward or backward, of two billiard balls colliding and moving off at 

different speeds and different directions is consistent with Newton’s 

laws. At least it would have time reversal symmetry if the friction 

between the billiard balls and the surface they are rolling on is 

negligible. The friction arises from process that cannot be reversed in 

time under typical experimental conditions. Thus friction breaks time 

reversal symmetry. 

 Maxwell’s equations describing the propagation of waves in 

vacuum have the same time reversal symmetry as frictionless 

mechanics. But when in the presence of matter, interactions between 

the radiation and the medium play the same role as friction. Absorption 

violates the time reversal symmetry. However, the equations that 

describe the propagation of electromagnetic radiation in the presence 

of matter show a more general form of symmetry that relates two 

different process: absorption and emission. 
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 Humans have learned to use amplifying devices that may reverse 

the effects of uniform losses in the propagation of electromagnetic 

waves. An electromagnetic amplifier is used to reverse the effects of 

uniform losses due to the propagation medium. The first amplifiers 

where in the range of radio frequencies (RF), eventually scientist 

learned how to amplify microwaves and optical radiation and the 

concept of maser and laser was introduced.  

This ability of amplifiers to reverse the effects of electromagnetic 

losses points to a generalization of the time reversal symmetry: given 

an electromagnetic process in which a propagating electromagnetic 

wave is uniformly amplified to certain degree, there is a time reversed 

process with the same degree of absorption [1]. 

The most famous optical amplifier is the laser. In the laser 

oscillation process, a gain medium embedded in an optical cavity is 

subjected to an energy flux (the pump). When a threshold value of the 

pump is reached, it causes the emission of coherent electromagnetic 

radiation. The emitted radiation that escapes from the cavity does in 

the form of outgoing monochromatic waves. The emitted radiation field 

has a specific frequency and spatial distribution and it is generated 

without the need of an input field. 

Therefore, by the generalized time reversal symmetry of 

electromagnetism; it should be possible to generate a field that will be 

perfectly absorbed if it has the same frequency and spatial distribution 

as the emitted laser field but be incoming rather that outgoing and the 

gain medium must be replaced by a medium that absorbs at the same 

rate that the laser’s gain medium amplifies.  
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A device acting as a time-reversed laser is termed a Coherent 

Perfect Absorber (CPA) or just an antilaser [2]. Actually the absorbing 

medium needs not to be strongly absorbing. The time reversed laser, 

the CPA, works as a perfect interference trap for radiation with a specific 

frequency and spatial distribution. So even if light can travel a long 

distance in the absorbing medium before it is absorbed, it will 

eventually get absorbed as it bounces back and forth indefinitely. On 

the other hand, a different radiation pattern will not be totally absorbed 

because the interference trap will not be created, in that case, a weakly 

absorbing medium will allow most of the light to scape even if the 

radiation pattern has the same frequency as the fully absorbed one. 

Highlighting this characteristic, one can consider tuning the external 

field to either enhance or suppress absorption. 

The CPA concept idea has received great interest and stimulated 

theoretical and experimental studies. In reference [3], time reversal 

lasing and interferometric control of absorption was reported. Where a 

silicon wafer acting as a Fabry-Perot etalon illuminated from both sides 

with two counterpropagating coherent beams was used. Whereas in 

reference [4], a device acting as a laser oscillator and as an absorber 

has been proposed using the concepts of CPA and parity-time (PT) 

symmetry.  

An extension of the time reversed laser concept and CPA has been 

suggested [5] for plasmonics nanostructures. Here coherent light is 

completely absorbed by matching the frequency and field pattern to 

that of a localized surface plasmon resonances.  

A device that allows focusing radiation at nanoscale regions using 

the concept of coherent perfect nanoabsorbers based on the properties 
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of a slab with negative refraction and small loses was proposed in 

reference [6]. 

As expected, the CPA concept also has attracted research interest 

into different fields like plasmonics [5, 7, 8, 9, 10, 11, 12], graphene 

optics [13, 14, 15], acoustic waves [16], terahertz optics [17, 18], 

photonics crystals [17, 19, 20], and quantum optics [21, 22], in the 

latter for example the possibility of absorbing single photons was 

investigated. 

Among the applications found for the CPA the more prominent are 

in integrated optical circuits where they may be used as optical 

modulators, transducers, detectors, and optical switches based on 

silicon (Si) waveguide or ring resonator technology [23, 24, 25]. 

Integrated optical circuits based on Si technology are quite 

promising for the new technological era [26]. The demonstration of a 

large number of ultracompact high-performance photonic components, 

overcoming the traditional limitations of silicon photonics, has been 

enabled by the progress in the nanofabrication techniques. Silicon 

based microring resonators are a key building used to perform many 

optical functions in silicon photonics networks 

This technological era requires more sophisticated devices that can 

implement optical functions in a small scale with the aim of use them 

in integrated photonic networks. Taking advantage of the potential of 

the CPA and the versatility of silicon photonics technology in this work 

we investigate the design, simulation, fabrication, and characterization 

of a Coherent Perfect Absorber device based on an SOI microring 

resonator coupled to optical waveguides.  
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This work is divided in five chapters, chapter II provides the 

theoretical foundations to describe an optical resonator. The theoretical 

background of microring resonators coupled to optical waveguides 

using the matrix formalism of coupled mode theory is presented in 

chapter III. In Chapter IV the design and the fabrication process flow 

of the device is explained. The characterization setup and process of 

the fabricated device is detailed in chapter V including the results. 

Finally, the conclusions are given in chapter VI. 
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2 OPTICAL RESONATORS. 

The optical resonator characteristics are briefly discussed. The Fabry 

Perot cavity is treated as a classical electromagnetic problem, then with 

this approach the basic parameters describing an optical resonator are 

derived. Subsequently, we analyze a slab cavity with two incident beams 

on both sides. This problem set the basis to understand the so called 

coherent perfect absorber that will be treated on next chapters.  

2.1 The optical resonator. 

An optical resonator, resonating cavity or optical cavity, the optical 

counterpart of an electronic resonant circuit is an arrangement of mirrors 

that confines and stores light at certain resonance frequencies. The 

simplest resonator comprises two parallel planar mirrors faced each other. 

Optical resonators are key components of lasers, surrounding the gain 

medium and providing feedback of the laser light. Light confined in the 

cavity reflect multiple times with little loss producing standing waves 

patterns at certain resonance frequencies. The produced patterns are 

called modes. In this chapter we examine the modes of the one 

dimensional simplest resonator better known as a Fabry-Perot etalon. 

2.2 Resonant modes. 

Consider the resonant cavity shown in Figure 2.1 and follow a wave 

as it bounces back and forth between the two mirrors. Looking the electric 

field just to the right of mirror 1  1 ,M labeled by 0 ,E  propagates to  2M  

and back to the starting plane experiencing and amplitude change of 1 2   

( 1  and 2  are the amplitude change caused by mirror 1 and mirror 2 

respectively) and a phase factor  exp 2ik d  as it travels that round trip and 
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thus generates the field labeled 1 ,E  which experiences the same as 0E  

and generates 2 ,E  and so on. At every point along the path between the 

two mirrors, the fields 1 ,E 2 ,E  and so on are to be added to 0E  to which 

the reference phase 0° is assigned. This phasorial addition is shown in 

Figure 2.2 where because there is an assumed lagging phase angle, the 

round trip phase shift (RTPS), 2 2 ,kd   was assumed to be almost an 

integral multiple of 2  radians. That difference is labeled as   and is 

related to kd  by  

 2 2 2 ,kd m       (2.1) 

where m  is an integer. 

In a similar way, the total field TE  will be many times 0E  if 1 2   are 

almost 1 and 0  . This is a very important point: the intensity of the 

Figure 2.1. Optical cavity. (Figure extracted from reference [36]) Incident field 

shown at the right side of mirror 1 undergoes multiple bounces inside the cavity. At 

the right side of mirror 2 is shown the transmitted field. At the left part of mirror 1 is 

shown the reflected field traveling in the opposite direction as the incident field. 
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waves is maximized by the simple equation 0,   this physical fact is 

characteristic of resonance, and is defined as:  

  round trip phase shift = (RTPS)=2kd=m2π ,  (2.2) 

looking at Equation (2.2) we can obtain a lot of interesting information. 

As / 2 / ,k n c     c  is the velocity of light in vacuum and n  is the 

refractive index of the medium, we can use one of the equalities to find 

the resonant wavelengths 

 
2 2 2

2 2 ,
n d d

k d m
c

 




 
       (2.3a) 

 ,
2

m
d


   (2.3b) 

where 0 / .n   In this view of resonance that there has to be an integral 

number of half wavelengths between the two mirrors. This implies that 

the integer m  is a very large number for optical frequencies. 

We can also interpret Equation (2.2) in terms in the frequency    

Figure 2.2. Phasor diagram. (Figure extracted from reference [36]) 
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nd

 




 
   

 

   (2.4) 

because m  is restricted to integer values, there are only discrete 

frequencies which obey the resonance condition. The separation between 

those frequencies is given by 

 1 .
2

m m

c

nd
      (2.5) 

2.3 Q Factor and Finesse 

If we look again at Equation (2.2) it is obvious that the maximum 

internal field occurs at the resonance condition: (or RTPS =  2 ),m   but what 

happens to the amplitude when there is a small deviation from the exact 

resonance condition? The issues to be addressed are (1) how small (2), 

what is the ratio of the fields at resonance to that at anti-resonance, and 

(3) what is the frequency selectivity of the cavity. 

Three interrelated characteristic parameters associated with the 

cavity describe the resonance phenomenon: Q factor, F (finesse), and p  

(photon lifetime). An analytic description of the fields inside the cavity and 

their relationship to those exciting the cavity is needed to derive an explicit 

relationship between the resonance, these quantities and the construction 

of the cavity. 

The total electric field at the right side of mirror  1M  and traveling to 

the right (indicated by the subscript “+”) is given by the field 0E , which is 

the field transmitted through the mirror from the source, plus the fields 

that have made  1 to N  round trips to 2M , back to 1M , and starting the 
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 2 to  1N  trip. The amplitude of these fields are related to 0E  by the 

reflection coefficient of each mirror. The phase of the thN  component, NE

, is delayed with respect to 0E  by N  times the round trip phase shift of 

2 2kd   and N times the phase contributed by each mirror1. For simplicity 

the last contribution is ignored 

 

  2 2
0 1

2

2 1 2

0 2
1 2

1 ...

1
,

1

ik d ik d
T N

T i

E E e e

E
e 

     





       

 
  

   

 E

E

  (2.6) 

where   is the optical length of the cavity  /nd c  . 

The total field traveling to the left returning from 2M (indicated by the 

subscript “-”) and incident on 1M is just 2  times TE   times the round trip 

phase factor 

 
2

2 2
2 0 2

1 2

.
1

i
i

T T i

e
E e E

e







  



 
    

  
E   (2.7) 

Equations (2.6) and (2.7) state that the fields are a maximum when 

the denominators are a minimum  i.e., when 2 2m   .  

The intensity of the traveling waves I   and I   are simply related to 

E  and E  by * / 2I E E   2. For the right traveling wave we have:  

 
2

0
02 * * 2

1 2 1 2

1 1
0

2 1 1i i
I z

e e 
 



    
   
       

  
   

E
E  

                                                           
1 The phase of the reflection coefficient is usually a slow function of frequency, and here 

is neglected. 
2   is the medium impedance. 
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2
0

2
2

1 2 1 2

.
1

0
2 1 4 sin

E
I z

R R R R 

 

 
 
 
 
 

 
 

   (2.8) 

Here we assume that the field reflection coefficients are real numbers 

and the power reflection coefficients have been substituted
2

1,2 1,2R   . The 

reference plane  0z   is just to the right of the surface of 1.M  

The quantity 2
0 / 2E   is an intensity and is simply the power 

transmission coefficient of 1M times the intensity 2
1 inc / 2T E  , where 

1 11T R   for lossless mirrors. In a similar way the intensity transmitted 

through 2M is the power transmission coefficient 2 21T R  times the 

intensity given by Equation (2.8) with z d . Converting to reflectivities 

and incident intensity, an expression for the intensity or power 

transmission coefficient through the two mirrors is obtained: 

  
 

 

2
20

1 inc 1 inc 2
2

1 2 1 2

1
1 ,

2 1 4 sin
t

RE
I T I R I

R R R R 

 
  

     
   

 

  (2.9) 
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or 
   

 
1 2trans

2
2

inc
1 2 1 2

1 1
( ) .

1 4 sin

R RI
T

I R R R R




 
  

   
  
 

  (2.10) 

The net transmission is maximum when the denominator is a 

minimum. A plot of the transmission given by Equation (2.10) is shown in 

Figure 2-3, the horizontal axis is  / m   .Thus it can be changed by 

varying the frequency 2  , the wavelength 0/ 2 /c   , a distance d , 

or an index n . The vertical axes is the transmission coefficient but it can 

also serve as a measure of the relative fields, energy, or traveling 

intensities inside the cavity.  

  

Figure 2.3. The transmission through a Fabry – Perot cavity as a 

function of the optical length in units of  the three curves were 

plotted for  
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2.3.1 Quality factor (Q) 

Under appropriate conditions the light can be “trapped” inside the 

optical resonator. In this particular case the optical beam becomes a mode 

of the resonator. A universal measure of this property is the quality factor 

of the resonator: Q. 

The quality factor of the cavity is a measure of the sharpness or 

selectivity of the resonance. If 0  is the frequency of one resonance, then 

the Q is given by 

 0 0 0

1/2 1/2 1/2

,Q
  

  
  
  

  (2.11) 

where 1/2   1/2  is the full width at half maximum (FWHM). For 

reasonable values of the product of the reflectivities, one can expand sin  

around the peak: 

 
   

 

1/2

, 1 2

, 1/4

1 2

1
sin sin ,

nd R R

d R R




 

 

  
   

  

  (2.12a) 

and thus: 

 
 

 

1/2

1 2

1/2 1/4

1 2

1
.

2

R Rc

nd R R
  


 

  
     

  

  (2.12b) 

Thus the cavity Q is given by  / 2m c nd  divided by 1/2 . We should 

recognize that m  is merely the number of half wavelengths between the 

two mirrors; thus 

 
   

 

1/4

1 2

1/2
1/2 0 1 2

/ 2 2
,

1

m c nd R Rnd
Q

R R



 
 

 
  (2.13) 

since 

 
0

.
/ 2

nd
m
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To provide a measure of the filtering properties of the cavity, one 

uses another term, the Finesse (F). 

 
1/2

free spectral range / 2
,

full width at half maximum 

c nd
F


 


  (2.14) 

or 

 
 

 

1/4

1 2

1/2

1 2

.
1

R R
F

R R





  (2.15) 

2.4 Photon Lifetime 

Related to the quality factor or the finesse F of a cavity is the photon 

lifetime. It is a time constant describing the build up or the decay of 

energy in a cavity and is one of the most useful parameters describing a 

cavity.  

 Consider Figure 2.4, which depicts a single cavity with a package of 

photons bouncing back and forth between the mirrors. Assuming that at 

0t   there are pN  photons in this package. Hence, the energy in the cavity 

is ph N .the number of photons surviving one round trip is  1 2S R R  times 

the initial number of photons and thus the number lost is 

  number of photons lost in one round trip =  1 .pS N   (2.16) 

The time rate of change of photons (or energy) in the cavity is given 

by the negative of the number lost divided by the time for the round trip 

 RT  

 
     1

,
p p p RT p p

RT RT

N dN N t N t S N

t dt



 

   
   


  

or 

 ,
p p

p

dN N

dt 
   (2.17a) 
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where 

 ,
1

RT
p

S


 


  (2.17b) 

here p  is the photon lifetime. 

Equation (2.17a) has a simple solution: 

     /
0 .pt

p pN t N e


   (2.18) 

Thus it takes on the order of  
1

1 S


  round trips for the stored photon 

energy to decrease to 36.8%  1e  of its initial value. For the cavity in 

Figure 2-4, 2 /RT nd c   and S  is the product of the reflectivities.  

The concept of photon life time is more important for the theoretical 

point of view and it can be related to Q by the theoretical definition of Q 

 
2 (energy stored in the system at resonance = W)

.
(energy lost in a cycle of oscillation)

Q


   (2.19) 

The energy lost in a cycle is the average power lost in one cycle times 

the period of oscillation: 

Figure 2.4. Decay of photons in a cavity. (Figure 

extracted from reference [36]) 
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 0

2
.

W W
Q

T P P


     (2.20) 

The average power is equal to the time rate of change in the stored 

energy W . 

 0 ,
/

W
Q

dW dt



  

 

 0 ,
dW

W
dt Q


    (2.21) 

rewriting the power in terms of the number of photons we have: 

 0 ,
p p

p

p

d h N h N
h N

dt Q

 




               

thus 

 
0

p

Q



   (2.22) 

Equation (2.22) is the connection between the photon lifetime and 

the quality factor. Since 1/2 0 / Q   , we have the relationship: 

 1/2

1
,

p




    

or 1/2 1.p     (2.23) 

If we know the FWHM of the resonance 1/2 1/2 / 2 ,     the calculation 

of the Q factor or the Finesse is easy. For the example cavity:  

 
1 2

2 /
,

1 1
RT

p

nd c

S R R


  

 
  by (2.17b) 

and using Equation (2.23) we arrive to: 

 
 
 

1 2

1/2

11
.

2 2 2p

c R R

nd


 


  


  (2.24) 
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If we use the definition of Q from Equation (2.13) and the definition 

of FWHM from the last equation we have: 

 0
0

1/2 1 2 0 1 2

2 1 4 1
2 ,

1 1

nd nd
Q

c R R R R

 


 

  
     
     

  (2.25) 

and finally the finesse: 

 
1/2 1/2 1 2

/ 2 2
.

1

FSR c nd
F

R R



 
  
  

  (2.26) 

The derived equations describe an optical cavity in the simplest case 

(Fabry-Perot) and are very useful in laser cavities design. There are three 

important issues regarding a cavity: (1) the resonant enhancement of the 

internal energy inside the cavity, (2) the spectral separation and 

selectivity of the resonances and (3) the integration constant p  

associated with each resonance. 
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2.5 Fabry-Perot cavity with two input beams.  

So far, we have analyzed a Fabry Perot cavity made of two facing 

mirrors, now we turn to a slab acting as a Fabry Perot cavity. This slab 

has the faces polished in a way that they act as two partial transmitting 

mirrors. The slab of thickness d   has a complex refractive index r in n in   

and is immersed in a medium with real refractive index 0n , which is 

approximately 1 in air. In this analysis we consider two impinging beams, 

a left beam with electric field  i
LE  and a right beam with electric field  i

RE . 

Figure 2.5 depicts a schematic model of this situation. The electric fields 

are:  

            ,Li i i kz t i i kz t

L LE E e A e         (2.27) 

            ,Ri i i kz t i i kz t

R RE E e A e         (2.28) 

where  i
LA  and  i

RA  are complex amplitudes,  is the angular frequency of 

light, k  is the wave number 0 / ,k n c  and c  is the speed of light. The 

subscripts L  and R  stand for the left and right side of the cavity, 

respectively; and the suffixes ,i r  and t  refer throughout to the incident, 

reflected and transmitted waves respectively. We assume that both beams 

have the same real amplitude  iE , polarized in the x  direction, 

propagating in the z  or z  directions, with initial phase factors L  and 

R  for the left and right beams, respectively. All vectors are referred to 

the Cartesian coordinate system defined in Figure 2.5.  

The problem of a light beam at normal incidence on a Fabry Perot 

cavity filled with a real refractive index medium has been treated in [27]. 

At the first interface, the incident beam is partially reflected by the slab 

face. The transmitted beam subsequently undergoes further reflections 

and transmissions in multiple round trips in the cavity ()as we saw in the 

previous section).At the left surface, the outgoing beam, propagating in 

z  direction as shown in Figure 2.5, is the superposition of the reflected 
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beam on the left surface and the transmitted beams originated from the 

left beam after multireflections, and the transmitted beams originating 

from the right beam after multireflections. The reflection and transmission 

coefficients at the left surface are r  and t  fro an external reflection and 

r  and t  for an internal reflection where the coefficients satisfy the 

following relations derived from [27]: 

  0 0

0 0 0

2 2
,     ,     ,r r

r r r

n n n n
r r t t

n n n n n n


     

  
   (2.29) 

  2 2 1,tt r tt r tt rr             (2.30) 

where 0n  and rn  are the real parts of the refractive indices of the 

surrounding medium and the slab, respectively. For semiconductors, such 

as silicon, rn  is dispersive and depends on the doping concentration. As 
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Figure 2.5. Fabry Perot cavity of thickness d and complex refractive index 

immersed in a medium of real refractive index. Two coherent beams impinging 

on both end surfaces are shown. Each incident wave causes a reflected and 

transmitted wave. 
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the beam traverses through the slab, the phase shift   after each round 

trip in the cavity, is given by: 

 
0

4
,rn d




   

where 0  is the wavelength in free space. When the cavity filled with an 

absorbing medium, an imaginary part of the refractive index must be 

included and the round trip phase shift becomes a complex number: 

  1 2

0 0 0

444
,ir n dn dnd

i i


  
  

        (2.31) 

where 1  stands for a phase shift caused by the real part of the refractive 

index rn  and 2  stands for the round trip absorption caused by the 

imaginary part of the refractive index in . The electric field of the reflected 

beam, originated from the left beam, is the sum of the reflected wave on 

the left surface, and transmitted beams originated from the left beam after 

multiple reflections in the slab.  r

LE  can be expressed as 

            ,Lr r i kz t r i kz t

L LE E e A e           (2.32) 

where  r

LA  is given as [27] 

       
2

1
.

1

i

r i

L Li

e r
A A

r e









   (2.33) 

At the left surface, there will be another contribution to the outgoing beam 

originated from the right beam after multiple reflections in the cavity, 

whose electric field is given by: 

            ,Rt t i kz t t i t kz

R RE E e A e           (2.34) 

      2

2
,

1

it i

R Ri

tt
A A e

r e









   (2.35) 

where the term 2
i

e


 represents the phase shift and absorption in a single 

pass to correctly describe the phase relation between beams originated 

from the left and right beams.  
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The total amplitude of the outgoing beam,  total

LeftA , propagating towards the 

left, is the coherent addition of  r

LE  and   :t

RE   

 

 

          2total

Left 2 2

1
,

1 1

i

ii i

L Ri i

e r tt
A A A e

r e r e





 

 
 

 
   (2.36) 

similarly, the total amplitude  total

Right ,A  propagating towards the right is: 

          2total

Right 2 2

1
,

1 1

i

ii i

R Li i

e r tt
A A A e

r e r e





 

 
 

 
   (2.37) 

with: 

         ,        L Ri i i ii i
L RA E e A E e     

Equation (2.36) becomes  

   
 

  2total

Left 2
1 ,

1
L R

i
ii ii

i

E
A e re tt e e

r e

 


   
 

   (2.38) 

   
 

  2total

Left 2
1 ,

1

Li i
ii i

i

E e
A e r tt e e

r e








   
 

   (2.39) 

and Equation (2.37)  

   
 

  2total

Right 2
1 ,

1

Ri i
ii i

i

E e
A e r tt e e

r e








    
 

   (2.40) 

where R L    . 

When the phase difference is 0, even mode, the two beams are in 

phase, and the thickness d  satisfices the relation 0 ,rn d m  where m is an 

integer. For the odd mode the two beams are out of phase, ,R L       

and the thickness d  satisfices the relation  1
02 ,rn d m    where m  is an 

integer. 

In both cases,  total

LeftA  is 
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2

2 2

2

total

Left 2
1 ,

1

Li iE e
A e r tt e

r e











     

   (2.41) 

If the numerator goes to zero, the outgoing light is completely 

extinguished. For this to happen, is required that: 

     
2 2

2 2 21 1e r tt e rr e
 

            (2.42) 

The solution for Equation (2.42) is: 

    0
2

0

2 ln 2 2ln ,r

r

n n

n n


 
     

 
   (2.43) 

then, we have the next condition for the imaginary part of the refractive 

index to fully extinguish the outgoing wave: 

  0

0

1
ln .r

i

r

n n
n

kd n n

 
  

 
   (2.44) 

Because of the symmetry, the total amplitude  total

RightA  at the right 

surface also vanishes as  total

LeftA  vanishes.  

The above analysis shows an important result that a slab with a 

complex refractive index n  and thickness d  becomes a coherent perfect 

absorber operating in the even or odd modes when the imaginary part 

of the slab refractive index satisfies Equation (2.44). Such a device will be 

explained for a ring geometry in a subsequent chapter.  

 

We have derived the basics parameters whose describe an optical 

cavity, then we analyzed a cavity made of a slab with complex refractive 

index and found that for certain values of the imaginary part the outgoing 

radiation is fully extinguished.  
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3 MICRORING RESONATORS. 

We describe an optical cavity which is made of a microring 

resonator and derive all its parameters. Two important geometries are 

studied, microring resonator coupled to one optical waveguide and a 

microring laterally coupled to two optical waveguides. Both 

configurations are analog to those presented in previous chapter. 

3.1 Microring resonators. 

A ring resonator is formed by placing three mirrors in a triangular 

geometry, when light is reflected in each mirror it forms a closed path. 

A straight waveguide bent in a circular form makes a ring resonator, if 

the radius of the formed ring is in the order of microns it is called micro-

ring resonator [27]. When a ring resonator is placed close enough to a 

waveguide through which a light beam propagates, the light is 

transferred to the ring via evanescent field and therefore will travel 

around the ring. If the light accumulates a phase shift equal to an 

integer multiple of 2� in each full trip around the close loop it will 

constructively interfere. The frequency of this light is then the 

resonance frequency of the micro-ring. Light that does not meet this 

resonance condition will be coupled back to the waveguide without 

undergoing any change. From another point of view, a ring resonator 

is nothing but a filter that captures light meeting the resonant condition 

keeping unchanged light which does not meet this condition. A micro 

ring resonator is a frequency-selective device. Ideally a ring resonator 

only selects light of single frequency, deviations from this ideal behavior 

are described by the ring Q factor.  
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This frequency-selective characteristic makes the micro ring 

resonators useful as building blocks for a variety of integrated photonic 

devices such as filters, switches, modulators, detectors, and laser 

cavities. In this work a micro ring resonator will be used as a cavity for 

a coherent perfect absorber. The low bending loss of SOI (Silicon on 

Insulator) based waveguides and its high index contrast has made them 

very promising for the fabrication of micro-ring resonators with smaller 

radius and also to couple light into them with high efficiency [26]. In 

addition, advanced fabrications techniques such as electron beam 

lithography (e-beam lithography) make possible the fabrication of rings 

with a width waveguide of about a hundred of nanometers which could 

not be achieved with conventional optical lithography due to the 

diffraction limit. This makes the SOI-based technology the most 

appropriate to fabricate integrated photonic circuits on micro and nano 

scale which can perform complex tasks.  

This chapter gives an introduction to the theory of ring resonators 

using the coupled mode theory matrix formalism [28]. Two basic 

geometries are considered, micro-ring coupled to a waveguide and 

micro ring coupled to two waveguides and then the parameters that 

help to characterize the resonator are obtained. 

A microring-resonator is an optical cavity that has a resonant 

frequency spectrum that is dependent of the size. Manipulating the 

coupling of optical waveguides and microring resonators is an important 

area of research and development [26], the basic configuration consist 

in a bus waveguide coupled via evanescent field to a microring 

resonator. To analyze this geometry we consider the region where 

power exchange between the waveguide and the micro resonator takes 

place. If we consider that the coupling is lossless and that a single 

unidirectional mode of the resonator is excited (no reflection takes 
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place) then the coupling can be described by means of the unitary 

coupling matrix: 

 
 

  

    
         

1 1

1 1

,
*

b a

b a
  (3.1) 

   
2 2

1,   (3.2) 

where   is the coupling factor and   is a coupling parameter. 1 1,a a  are 

the mode amplitudes at the input of the coupling area and 1 1,b b  are the 

amplitude at the output. The complex mode amplitudes are normalized 

such that their square magnitude corresponds to the modal power. The 

specific form of   depends on the coupling mechanism employed, here 

the coupling of modes mechanism is used and the derivation of the 

coupling factor � is shown in appendix A.  

Figure 3.1 Microring resonator coupled to an optical waveguide, input, output, 

and circulating waves are indicated with red arrows. The coupling region is 

marked with a gray box, in this area the role of the coupling parameters takes 

place. 
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The round trip in the ring is given by  

 1 1,ia e b    (3.3) 

where   is the attenuation factor, is real. For zero internal loss 1.   

  is the total phase accumulated when light travels around the ring 

02 ,effRk n   � being the radius of the ring measured from the center of 

the ring to the center of the waveguide, effn  is the effective index and 0k  

is the vacuum wavenumber. The propagation constant is 0 effk n  . 

From Equation (3.1) we have:  

 1 1 1 ,b a a      (3.4) 

 1 1 1* * .b a a       (3.5) 

Using Equation (3.3) into Equation. (3.4) and solving for 1b   we 

obtain: 

  * *
1 1 1 ,ib k a e b       

 
*

1
1 *

,
1 i

k a
b

e  


 


  (3.6) 

now, using Equation (3.6) in Equation (3.3) and substituting into 

Equation (3.4) we arrive to: 

  1 1 1 ,ib a e b      

 
*

1
1 1 *

,
1

i

i

k a
b a e

e



  

 

  
    

  
  

 
 2 2

1 1

1 *
,

1

i

i

a a e
b

e





   

 

 



 

using Equation (3.2) in the last equation and multiplying for /i ie e     

we have: 

 1 1*
.

i

i

e
b a

e





 

 





 

 

  (3.7) 
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The transmission factor in the input waveguide is given by: 

 
 

 

2 22

1

2 2
1

2 cos
,

1 2 cos

b

a





     

     

  


  
  (3.8) 

where  exp i    ,   represents the coupling losses and   is the 

coupling phase.  

Similarly, using Equation (3.3) and Equation (3.6) we obtain: 

 
*

1 1*
,

i
a a

e 



 


 

 
  (3.9) 

 
 

 

22

1

2
1

1
.

1 2 cos

a

a


 

     




  
  (3.10) 

In Equation (3.10), 
2

1a  is the total circulating power around the 

ring. In the above equations 
2

1a  and 
2

1b  are the respective traveling 

wave power. For simplicity we can set the input power 
2

1a  equal to 

unity, that is to have normalized output intensities. 

The most interesting features of this resonator occur near 

resonance, that is   2 ,m     m  being an integer, Equation (3.8) 

and (3.10) become: 

 
 
 

2

2

1 2
,

1
b

 

 





  (3.11) 

 
 

 

2

2

1 2

1
.

1
a

 

 


 


  (3.12) 

Equation (3.11) is of special interest. It shows that when the 

internal losses are equal to the coupling losses i.e. ,   the 

transmission power vanishes  2

1 0b  . This particular condition is 

known as critical coupling. Critical coupling is due to destructive 
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interference between the transmitted wave in the waveguide 1a  and 

the internal field coupled to the input waveguide 1a  . 

Using the equations obtained one can have a good idea of the 

behavior of a micro ring resonator coupled to a waveguide. Figure 3.2 

shows the frequency selective characteristic of a micro ring with a 

radius of 150 µm. the parameters were obtained with the derived 

expressions. Two frequencies where the transmission is zero 

(resonance frequencies) are observed indicating that we are in the 

critical coupling condition for that frequencies. 

3.2 Microring resonator coupled to two optical waveguides. 

Another geometry of special interest is when two waveguides are 

coupled to the micro ring resonator, a schematic is shown in Figure 3.3. 

Using the same matrix method used above we can deduce the 

amplitudes of the waves outgoing from the waveguides: 

 
 

 

    
         

1 1 1 1

* *
1 1 1 1

,
b a

b a
   (3.13) 

Figure 3.2 Microring resonator optical spectral response. 
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*
2 22 2

*
2 22 2

,
b a

b a
  (3.14) 

the following relationships between the couplers are valid, 

    
2 2

1 2 1,    (3.15) 

    
2 2

2 2 1,    (3.16) 

the field amplitudes inside the ring are related by 

    1/2 /2
2 1 ,ia e b    (3.17) 

    1/2 /2
1 2 ,ia e b    (3.18) 

where 1/2  and /2ie   are the half round trip loss and phase respectively. 

In order to have a transmission in the second waveguide, the mode 

circulating around the ring must pass the second coupler. For simplicity 

the amplitude of the input wave can be unitary and we consider a zero 

Figure 3.3. Microring resonator coupled to two optical 

waveguides 
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input field i.e. 2 0a  . Using the above expressions we can obtain the 

field amplitudes for the outgoing and circulating waves: 

 
*

1 2
1 1* *

1 21
,

i

i

e
b a

e









 

 





   (3.19) 

 
* *
2 1

1* *
1 2

1
1

,
i

i

e
a a

e





  

 


 


   (3.20) 

 
* * 1/2 /
1 2

2

2

1* *
1 2

.
1

i

i

e
b a

e





 









   (3.21) 

If we normalize the mode amplitudes then the square magnitude 

corresponds to the modal power. The power at the output of each 

waveguide and the circulating power is: 

 
 

2 2 2
2 1 1 2 2

1 2 2 2
1 2 1 2 1 2

2 cos
,

1 2 cos
b

  

   

   

    

 


   
  (3.22) 

 
 
 

2 2 2
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2 2 2
1 2 1 2 1

1
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,

1 2 cos
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  (3.23) 

 
  

 

2 2 2
2 12

2 2 2
1 2 1 2 1 2

2

1 1
,

1 2 cos
b



   

 

   

 


   
  (3.24) 

where we have considered ii

i i e   , i with  1,2i    is the phase 

change in each coupler. 

Considering the case of resonance  1 2 2m       the following 

expressions are obtained: 

 
 
 

2

2 1 2

1 2

1 2

,
1

b
 

 









  (3.25) 
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  (3.26) 
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2 2 2
2 1

2

2

2

1 2

1 1
.

1
b







 

 



  (3.27) 

Looking at Equation (3.24), the transmission power at the upper 

waveguide is zero when the following conditions are fulfilled: 1   (zero 

internal losses) and 1 2   in this case 
2

1 0b   and 
2

2 1b   what 

means that all the input power is transferred to the lower waveguide. 

In practice achieving zero internal loss implies incorporating a sort of 

gain in the ring. Typically   is less than unity, in this case for achieving 

a full transfer power to the lower waveguide the condition, 1 2/    

must be satisfied. The so called critical coupling condition is only 

satisfied with asymmetric coupling. Figure 3.4 shows the output at the 

two waveguides of this geometry. As we observe, when the power at 

the upper waveguide drops the power at the lower waveguide is 

maximum, this is the critical coupling condition. 

 

Figure 3.4. Resonances of the microring coupled to two waveguides 
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3.3 Microring resonator parameters. 

3.3.1 Free spectral range.  

Micro ring resonators can be described using the same parameters 

used in describing optical cavities. The distance between two resonance 

peaks is called free spectral range (FSR). When in resonance 2 ,L m   

where    is the propagation constant 0 ,effk n   here 0 2 /k    and L, 

 2L R  is the perimeter of the ring. One way of approximating the 

FSR (in the wavelength domain) using the propagation constant is, 

neglecting the wavelength dependence of the effective refractive index, 

  0

2
,effneff k n

 

   

   
  

   
  

 
1 2

,effn
 

  


 


  

  .
 

 


 


   (3.28) 

The FSR is of the form: 

 
2

0

Δ 2 / 2 /
Δ .

/ // eff eff

L L
FSR

k n Ln

   


   

 
    

   
  (3.29) 

If the wavelength dependence of the effective refractive index 

cannot be neglected a modified form of the FSR can be obtained as:  

  0 0

1
,eff effk n k n



  

 
  

 
  

  0

1
,gk n



 


 


  

where the group index is defined as follow: 

 .g eff effn n n



 


  (3.30) 
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The group index can be used instead of the effective index to 

obtain more accurate values of the FSR. Then the modified value of the 

FSR is then given by, 

 
2

.
g

FSR
Ln


   (3.31) 

The FSR is a quantity inversely proportional to the perimeter of the 

ring, so in applications where a greater spectral range is required a 

smaller radius would be useful. 

3.3.2 Full Width at Half Maximum 

Another important parameter to know is the width of the resonance 

peak defined as the full width at hall maximum (FWHM). From Equation 

(3.10) and (3.12) we have: 

 
 

 

 
 

2 22 2

2 22

1 11
,

21 2 cos 1

 

  

 

  

 


   
  

without considering the phase term we obtain, 

    
2221 2 cos 2 .1          (3.32) 

For small � the series expansion of the Euler formula can be used, 

so: 

 
2

cos 1 ,
2


     (3.33) 

therefore; 
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2 222 1 2 1 1,
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   (3.34) 

In the wavelength domain compared to the phase change of 2  

for the FSR we have: 

 
2

,
2

FWHM

FSR




   

 
2

,
2

FWHM FSR



   

 
  22 1

.
2 g

FWHM
Ln

 

 






   (3.35) 

Assuming a weak coupling, that is 1  , and 1    we have the 

expression: 

 
2 2

.
g

FWHM
Ln

 


    (3.36) 

3.3.3 Finesse 

Another important parameter describing a resonator is the finesse 

that is defined its free spectral range divided by the bandwidth (FWHM) 

of its resonances. From the previous results we obtain the finesse of 

the micro ring resonator as: 

 
2

2 2 2
,

/

/

g

g

LnFSR
F

FWHM Ln

 

   
     (3.37) 

it is determined by the resonator losses and is independent of the ring 

length. 

3.3.4 Q Factor 

A resonator Q factor is a parameter that characterizes the 

bandwidth of a resonator relative to its center frequency. A large Q 

indicates a slow rate of energy loss relative to the stored energy in the 

resonator. There can be two definitions of the Q factor that are not 

necessary the same, they become equivalent as the Q factor becomes 

larger. The first definition is: 
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Stored energy per cycle

2 ,
Lost energy per cycle

Q     (3.38) 

the   2  factor is keep to maintain the equivalence with the other 

definition at high Q. 

The other definition is the ratio of the center frequency relative to 

the bandwidth of a resonance. 

 
2

  g gLn Ln
Q F

FWHM



  
     (3.39) 

The Q factor is directly proportional to the ring perimeter, the Q 

factor rises as the ring perimeter is increased, because this decrease 

the optical loss per cycle. However, high Q values can be achieved not 

only by using very long resonators, but rather by strongly reducing the 

losses per round trip. The Q factor of a resonator is a measure of the 

sharpness of the resonance, high-Q resonators can be used for 

obtaining laser output with a very narrow linewidth 

3.4 The transfer matrix. 

The transfer matrix method is a method used to analyze the 

propagation of electromagnetic waves through a stratified medium. In 

this section we use this method to obtain the transfer matrix of a micro 

ring resonator coupled to an optical waveguide. From the matrix in 

Equation (3.1) 

  1 1

* *
1 1

,
b a

b a









    
         

  

 
1

1

1

1 .
b a

b a

   
       
M    (3.40) 

TheM  matrix relates linearly the two output mode amplitudes 

 11,b b  and the two input mode amplitudes  11,a a  with the coupler 

through the coupling parameters  ,  . Using Equation (3.4) and (3.5) 
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 1 1 1,b a a      (3.4) 

 1 1 1* * ,b a a       (3.5) 

dividing Equation (3.5) by *  and solving for 1a  we arrive to, 

 
*

1
1
* * 1,

b
a a



 


     

 
*

1 2* 1 *
,

1
a a b



 
    (3.41) 

substituting Equation (3.41) in Equation (3.4) we obtain: 

 11 * 1 1

*

,
1

b a b a


 
 

 
     

 
  

 

2

1 * *1 1,b b a



 

 
      

 
 

  

 

2 2

1 11 * *
,b b a

 

 

 
     

 
 

  

with Equation (3.2) de arrive to: 

 1* 11 *
,

1
b a b



 
     (3.42) 

rewriting Equation (3.41) and Equation (3.42) in a matrix form, 

 1 1
*

1

1 1
*

1

11
.

1

a a a

b b bt





       
              

T   (3.42) 

The matrix T   is a linear relationship between the two mode 

amplitudes of one waveguide to the mode amplitudes of the ring. This 

matrix is regarded as the system’s transfer matrix. 

We have studied two geometries of a microring resonator-

waveguide system. The geometry with two waveguides is the analog of 

the Fabry Perot cavity used in the previous chapter and is the basis to 

describe the coherent microring perfect absorber. 
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4 DESIGN AND FABRICATION PROCESS 

We have studied a device that can fully extinguish the outgoing 

radiation, such a device can be formed with a slab of thickness d  and 

complex refractive index. Now, we show that a microring resonator 

coupled to two optical waveguides can act as a coherent perfect 

absorber if the right conditions are satisfied. We design, fabricate, and 

characterized a device with this geometry.  

4.1 The Coherent microring perfect absorber model 

Years ago fully absorption of light into a microring resonator was 

demonstrated [28] using an optical fiber to couple light into the cavity. 

This fully absorption phenomenon was termed as “critical coupling”. 

Although this device can be regarded as a one channel CPA we cannot 

control the spatial distribution of the input field. In a recent work [3], 

the enhance and suppression of absorption was demonstrated using a 

silicon slab i.e. a two channel CPA. Illuminating a cavity with two beams 

of equal amplitude traveling in opposite direction and changing its 

relative phase difference one can enhance or suppress the absorption. 

With this phase control device is possible to turn absorption almost 

completely on or off. Hence the CPA could work as an optical switch, 

optical modulator, or optical detector and could see potential 

applications in silicon photonic devices.  

A model of the proposed device is presented in Figure 4.1 As we 

studied in the previous chapter, using the coupled mode theory wen 

can relate the input and output fields by the coupling matrix, the fields 

amplitudes in the first coupler are related by the matrix: 

  1 1 1 1

* *
1 1 1 1

,
b a

b a

 

 

    
         

   (4.1) 
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and the fields in the second coupler are related by the matrix, 

 
*

2 22 2

*
2 22 2

,
b a

b a

 

 

    
          

   (4.2) 

where  1 2 1 2, , ,a a b b     are the field amplitudes at the input/output of each 

coupler in the ring resonator and are related by the matrix 

 
/2

2 1

/2
2 1

0
.

0

iknL

iknL

b ae

a be

     
          

   (4.3) 

This matrix is regarded as the propagation matrix. Here iknLe  is the 

total accumulated phase when a wave travels around the ring, L is the 

length of the ring, n is the refractive index and is of the form ,r in n in   

for gain 0ni   and for loss 0in  . 

Figure 4.1. Schematic model of the proposed CPA with a lossy micro ring 

resonator of a 50 µm radius, input and output wave intensities are marked 

with arrows. The letter κ represents the coupling strength between the mode 

in the waveguide and the mode in the microring. The separation between the 

waveguide and the microring is 150 nm 
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Using the matrices in Equation (4.1) and (4.2) we can obtain the 

transfer matrix linearly relating the fields in the waveguide with the 

fields in the microring 

  1 1 1

*
1 1 11

11
,

1

a a

b b





     
         

   (4.4) 

  2 2 2

*
2 2 22

11
,

1

b b

a a





    
        

   (4.5) 

and with Equation (4.3), (4.4), and (4.5) we obtain the relationship  

 
/2

2 2 1 1

* */2
2 2 1 12 1

1 101 1
.

1 10

iknL

iknL

b ae

a be

 

  

        
        

        
  (4.6) 

In this analysis we assume symmetric coupling

 1 2 1 2i.e.  ,        . Here we are going to use the expressions 

obtained in the appendix A for the coupling parameters: 

 
cos

sini



 

 


   (4.7) 

where couplerl   is defined as the coupling angle in the coupling areas 

 is the coupling constant and couplerl  is the coupler length. Substituting 

Equation (4.7) in Equation (4.6) we obtain: 

 

/2
2

/2
2

1

1

cos 1 01

1 cossin 0

cos 11
.

1 cossin

iknL

iknL

b e

a i e

a

bi









     
      

    

   
   

   

   (4.8) 

The first step is to obtain the conditions for fully absorption, 

considering the case of resonance  2rn kL m    we have: 

 

/2 2 /2

2 1

2
2 1/2 2 /2

cos 2sinh cos
21

.
sin

2sinh cos cos
2

.

e e
b a

a b
e e

 

 


 

 
 





  
    

               
  

  (4.9) 
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Here we have defined ikn L   as the distributed loss coefficient. 

The conditions for perfect absorbing the incident waves is to have zero 

reflections, so these conditions are: 

 1 2

1 2

, finite,

0,b

a a

b



 
  (4.10) 

therefore the transfer matrix elements must satisfy: 

 11 12 120  and   ,T a T a    (4.11) 

from the last conditions we obtain the relationship, 

 /2 2 /2cos 0,e e      

 /2 2 /2cos ,e e     

 
/2

2

/2
o ,c s

e
e

e








    

 /2os .c e     (4.12) 

We realize that Equation 4.12 is exactly the critical coupling 

condition (coupling parameter is equal to the internal loss) and is 

exclusively determined by the device and is independent of the initial 

conditions. In addition, the previous condition shows that the initial 

conditions must satisfy 1 2a a  to have perfect absorption what implies

21 1T  , under this conditions the transfer matrix reduces to: 

 2

/2 /2

1

2 1

0 1
.

1

b a

e e ea b   

    
    

    
  (4.13) 

So far, we have derived the conditions for perfect absorption: the 

coupling losses cos  must be equal to the half trip internal losses 

 exp / 2  and the input waves must have the same amplitude and 

phase. 

Perfect absorption occurs when an interference trap is created into 

the cavity, in this way, input waves with a specific spatial pattern are 
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trapped and eventually get absorbed by the lossy medium. For this 

device, in the critical coupling condition the absorption is strongly 

enhanced. So, for having strong absorption we need a critically coupled 

microring, two input waves with the correct phase and equal amplitude. 

From Equation (4.8), we obtain the matrix which relates the input 

and output waves in the form: 

 

 

 

22

1 1

2
2 2

2

2 sin
1

11
.

2 sin
1

1

ikna ikna

i kna

b a

b ai knae e









 

 
 

    
    

    
  

   (4.14) 

We also found that the relative phase difference must be n for 

perfect absorption. Input waves with different phase difference will not 

be fully absorbed, because the interference trap is not created and 

eventually they escape.  

Figure 4.2. Semilog plot of the CPA resonances when the condition of 

Equation 4.12 is satisfied. When the critical coupling condition is 

achieved the absorption is increased up to nine orders of magnitude. 

Red (blue) line is the output intensity when the input waves have   zero 

(  ) phase difference 
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Figure 4.2 shows a Semilog plot of the CPA resonances when the 

input phase difference is 0 (red) and  (blue), the simulated device has 

a 50 µm radius. Red line corresponds to 
2

1b  and 
2

2b  when the input 

phase is 0, blue line corresponds to a phase difference of  . In this case 

we are in the critical coupling condition, achieving an absorption up to 

nine orders of magnitude. 

Figure 4.3 is a COMSOL simulation of the device when the perfect 

absorption conditions are satisfied. The integrated ring resonator has a 

high index contrast. The black arrows show the input waves, the output 

waves are represented by the red arrows, as we see there is no output 

waves meaning that the light is fully absorbed in the ring resonator 

To fully understand the properties of the CPA we consider the 

effects of changing the relative phase between the input waves. If we 

suppose two normalized input waves of equal intensities of the 

form[1, ±exp(��)]/√2. Changing the relative phase difference we can 

enhance or suppress the absorption.  

 

Figure 4.3. Simulation of a CPA with a high index contrast microring 

resonator. 
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Figure 4.4 shows the total normalized output intensities from the 

left and right waveguides as a function of the wavelength. The CPA 

resonances are parity odd (4.4 a) red) and parity even (4.4 a) blue). 

When the input phase is between 0 and   the output intensities do not 

correspond to CPA modes. This characteristic of the CPA enable us 

tuning the absorption from zero to full absorption by changing the 

relative phase difference between the input waves. This property makes 

the CPA useful for switching applications. 

 

Figure 4.4 a) Normalized total output intensity  as function of the 

wavelength when the input waves have a zero (red) and   (blue) phase difference. 

Arrows point to three wavelengths of interest (1546.35, 1546.6, and 1546.86). b-d) 

Individual output intensities for each channel  (blue)  (red) for the marked 

wavelengths as the phase difference is varied from 0 to  . Black line represents 

the total output intensity  as the phase is varied. The point where blue 

and red lines crosses in a) is a phase insensitive wavelength, as we observe in d), 

the total output intensity is constant for each phase. 
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4.2 Design of the coherent perfect absorber.  

Waveguides for integrated photonics devices serve as transmission 

media. Due to the easy fabrication waveguides with rectangular cross 

section are usually used. The CPA device was designed based on silicon 

waveguide embedded in SiO2 rectangular cross section of 450nm 220nm.

This dimension was used in other photonics devices [30, 31, 32]. The 

asymmetric dimension of this kind of waveguides have different optical 

properties when transmitting light with different polarizations. In this 

work the waves with electric field polarized in the plane of the chip are 

referred as TE polarized. This waveguide is single mode at the proposed 

working wavelength of ~1.55 m . The dimensions of the waveguide 

ensure a maximal confinement of light in the core. 

Bending the straight waveguide we obtain a microring resonator 

which FSR is inversely proportional to the ring radius according to 

Equation (3.31) in the previous chapter. For achieving higher FSR a 

smaller radius is needed. However as the radius get smaller the bending 

loss get significant which limit the quality factor. In this design, a 50 m 

radius microring where the bending loss can be negligible [33].  

A high Q is usually desired for a resonator. The operating Q 

depends inversely on the coupling efficiency 2  according to Equation 

(3.39). The straightforward way of tuning the coupling efficiency is to 

adjust the gap (distance) between the input waveguide and the 

microring. For this device a separation distance of 150nm  was used. 

With this distance a Q factor of about ~4000 is achieved. The 150nmgap 

size can be well controlled with electron beam lithography, which makes 

the device practical at the fabrication stage.  

The optical design of the CPA is shown in Figure 4.5. The size of 

the chip is about 4mm in length and 4mm in width. This size is the 

minimal capable of being manipulated comfortably with tweezers. The 

input and output ports both ends are with nanotapers [33], which make 

characterization convenient. Nanotapers are used to reduce insertion 

loss and to greatly increase the fiber to waveguide coupling efficiency. 

In order to achieve equal intensity at the couplers the input waveguide 
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is designed in a “Y” branch shape. For the device shown in Figure 4.5 

the arm’s length is the same for both,  ~ 1300 m  the right and left arm. 

With this design we ensure equal waves intensities and equal phase 

relationship at the coupling region. In order to change the phase of one 

of the input waves the arm length was modified slightly. In this work 

two devices were fabricated, one with equal arm length and the other 

with an arm length difference of 150 m  , the choice of this length 

difference is suitable for observe the effect of the phase difference in 

the CPA.  

4.3 Fabrication process flow.  

4.3.1 Electron-beam Lithography  

Electron-beam lithography often called e-beam lithography is the 

practice of scanning a focused beam of electrons to draw custom 

patterns on a surface covered with an electron-sensitive film called 

resist. The e-beam changes the solubility of the resist enabling selective 

removing of either exposed or non-exposed area of the resist depending 

on the resist type. The purpose is to create very small structures in the 

resist that can subsequently be transferred to the substrate material, 

often by etching. Compared to photolithography, e-beam lithography 

Figure 4.5. Optical design of the CPA, The input waveguide is designed in a Y branch 

shape. Input waves are marked with arrows. Output wave is marked with a red 

arrow at the right side. 
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can create smaller structures in the resist because it beats the 

diffraction limit of light. It can draw custom patterns with sub-10 nm 

resolution. The key limitation of ebeam lithography is throughput. A 

very long exposure time is often needed for a common sample. The 

high resolution and low throughput limit its usage to photomask 

fabrication, low volume production of semiconductor devices, research 

and development.  

The patterning of our device based on 450 nm width waveguide 

with nanometer precision is beyond the capabilities of the conventional 

photolithography systems, we decided to use ebeam lithography for the 

device patterning. The Leica EPBG 5000+ system for patterning the 

optical layer of the designed device is an advanced ebeam lithography 

system capable of reproducibly achieving feature sizes less than 10nm.  

The EPBG system can align different patterns. Alignment marks 

are always needed on the pre-existing pattern. The EPBG can establish 

a coordinate system based on alignment marks detected on the wafer 

and precisely place a pattern with respect to pre-existing patterns. 

4.3.2 Fabrication 

Using the design described in the previous section, the CPA device 

was fabricated. The fabrication is totally compatible with silicon-on-

insulator (SOI) technology, which makes the device very promising for 

photonic integrated circuits.  

The fabrication process flow is shown in Figure 4.6. The fabrication 

started with a SOI wafer with 220 nm thick Si device layer over a 2 m  

buried oxide layer. The layer thickness was chosen according to the 
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designed waveguide dimension. The waveguide pattern was generated 

by a Leica EPBG 5000+ ebeam lithography system at 1 nA exposure 

current with 1 nm beam step. A negative ebeam resist named hydrogen 

silsesquioxane (HSQ) was used. After spinning the resist at 2500 rpm 

and baking it at 100°C for 2 minutes a ~600 nm HSQ film was created. 

The used dose to write the waveguide and ring pattern was 1100 

µC/cm2. Post exposure baking was carried out at 100°C for 2 minutes. 

After the patterning process the waveguide pattern was transferred to 

silicon by Cl2 dry etching. The dry etching process etched the 

unpatterned area, leaving a vertical sidewall on the edge of the 

patterned area, which forms the strip waveguide. The upper SiO2 

cladding was deposited using PE-CVD. Figure 4.7 shows the microring 

resonator after this process.  

The fabricated samples need further processing before they are 

ready for the characterization process. Integrated photonic circuits 

Figure 4.6. Fabrication process flow. (Figure extracted from reference [35] ) 
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enable optical devices with multiple functions to be integrated in a very 

small area of substrate, typical dimensions are from centimeters to 

even micrometers.  

The advantage of the small foot print is to put tens or even 

hundreds of devices in a single wafer which increase the throughput. 

Preparation and packing is needed before one can characterize the 

fabricated device. 

4.3.3 Device preparation.  

The way the device is tested is to couple light in and out via tapered 

fiber. This process requires that the input and output waveguides end 

at the edge of the chip. The facet needs to have a good flatness to avoid 

big losses due to coupling and scattering. The width of the waveguide 

was tapered down from 450 nm to 100 nm.  

To prepare the sample for optical characterization, the fabricated 

substrate was diced into small samples. The samples was placed and 

held in a stable metal surface. Using a vision system and a needle lines 

are drawn in the x   and y   direction. Then sample is placed on a sharp 

Figure 4.7 Microscope image of the fabricated microring 

resonator coupled to two optical waveguides. 
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knife and manually is pressed to cut it. The edges after dicing are with 

roughness on the facets. 

 

Polishing is a common approach to prepare the optical interfaces 

to obtain ultra-flat and clean facets needed to avoid high light-

scattering loss. The nanotaper tips need to be located at the edges of 

the chip in order to couple light in and out the waveguide efficiently. 

The samples were polished manually using a rotating plate equipped 

with diamond lapping films. To manipulate the samples to be polished, 

the samples were glued on a holder by crystal bond. A lapping film with 

the larger diamond grit size removes materials faster yielding to a 

rougher surface. In order to obtain good facet quality and efficiency, 

the procedure was carried out using a multi-step polishing process. First 

using a rough lapping film with large diamond grit size, followed by finer 

films to remove the rough edge left by the last step. The finest film left 

a very shiny facet. Frequent inspection under microscope is needed in 

monitoring the polishing process. Over polishing is unacceptable as it 

will damage the nanotaper. The fabricated device after polishing and 

ready for the characterization process is shown in Figure 4.8. 

Figure 4.8. Fabricated device after polishing and ready for 

characterization. Red arrow represents the input. Output 

waveguide is at the chip right side. 
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5 DEVICE CHARACTERIZATION 

In this chapter the optical method for the characterization process 

is explained, the measured results are shown and compared with the 

analytical results obtained in the previous chapter.  

5.1 Characterization Setup 

The characterization process of the fabricated coherent microring 

perfect absorber was carried out using our optical setup. The block 

diagram of the setup is shown in Figure 5-1. In order to characterize 

the optical properties of the device, light needs to be sent in the input 

waveguide and collected from the output waveguide. To couple the light 

into the waveguide a single mode polarization-maintaining tapered fiber 

was used. To collect the light an objective lens was used instead. A Thor 

NanoMAX manual XYZ stage with piezo controller was used to align the 

input tapered fiber to the input waveguide on the sample. The piezo 

controller and the internal piezos of the stage were used to obtain fine 

alignment. The fine alignment has 20 nm resolution for all 3 axes and 

is done without touching the stage. An objective lens was mounted on 

top of the sample to help monitoring the alignment process. The whole 

setup was mounted on an optical table with vibration isolation. 

The transmitted power was collected using an objective lens. The 

objective lens makes possible imaging of the output facet of the sample 

by camera, which gives information of the power distribution at the 

output. After the objective lens a 4f system was used. Photographs of 

the setup are shown in Fig 5-2.  

We are interested in the spectrum response of the device under 

test. It can be obtained with our setup, using a tunable laser (0.1 pm 

resolution) shown in Figure 5-1. A polarizer controller was used in order 

to have the right light polarization state before it reaches the input 

waveguide in the chip. Light is then captured with an 20x objective lens. 

After it, light passes through two 20cm focal length lenses. Once light 
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passes through the second lens it is deviated 90° with a mirror to 

another lens of 5cm focal length. Then light is captured with an IR 

camera. The IR camera is helpful to observe the mode profile and to 

focus the objective lens into the right area at the facet. For measure 

the output power the mirror is removed and another 20cm focal length 

lens is collocated and then light reaches the photo detector. A polarizer 

between the lens and the photo detector was needed on order to 

measure the right polarization. The optical power was read by a HP 

optical meter with a resolution of 0.5nW. 

While maintaining the output power of the tunable laser, the 

transmitted optical spectrum response of the device under test was 

measured by sweeping the output wavelength of the tunable laser and 

recording the detected transmitted power for each wavelength. Both 

tunable laser and optical meter were controlled by a computer through 

GPIB ports. A Matlab program was written to control the tunable laser 

and the optical meter while recording data. 

 

Figure 5.1. Block diagram of the characterization setup. 
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Figure 5.2. Photographs of the characterization setup. Top part, input 

and sample stage are shown. Bottom part, full setup including the free 

space optics is shown. 
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5.2 Optical spectral response.  

The optical properties of the fabricated CPA were characterized at 

room temperature. The input polarization was set to TE using the 

configuration in Figure 5.1. The transmitted power spectra through the 

output waveguide of the CPA is shown in Figure 5.3 in the wavelength 

range 1545 nm – 1550 nm. 

Each spectrum was normalized to its maximum power. With the 

data, the values of resonance wavelengths, FSR and FWHM for the TE 

modes were extracted and listed in Table 5.1. 

 

Figure 5.3. Measured transmission spectra of the fabricated coherent microring 

perfect absorber showing two resonances in the wavelength range. 
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Table 5.1. Summary of the CPA parameters 

Resonance (nm) 1546.35 1548.8 

FSR (nm)  2.05 

FWHM (nm) 0.375 .475 

ng 3.768 3.723 

Q 4118.46 3259.72 

F 5.38 4.32 

 

Measurements were repeated for the other CPA with identical 

design on the same sample. The group index and Q factor for each 

device were calculated from the extracted parameters using Equations 

(3.30) and (3.38). 

Figure 5.4. Measured transmission spectra of the second fabricated 

coherent microring perfect absorber showing two resonances in the 

wavelength range. This device has a 150 µm arm length difference. 



V DEVICE CHARACTERIZATION. 
 

62 
 

The transmitted power spectra through the output waveguide of 

the CPA with a length arm difference of 150 µm is shown in Figure 5.4 

 

With the data, the values of resonance wavelengths, FSR and 

FWHM for the TE modes were extracted and listed in Table 5.2. 

 

Table 5.2. Summary of the parameters of the CPA with a phase difference. 

Resonance (nm) 1545.71 1547.81 1549.89 

FSR (nm)  2.11 2.08 

FWHM (nm) 0.4241 .475 .3711 

ng 3.768 3.723 3.676 

Q 4118.46 3259.72 4176.50 

F 5.38 4.32 5.605 

 

5.3 Experimental results vs analytical calculations. 

In this section the comparison between the experimental results 

and the theoretical calculations are presented. For the first CPA, with 

zero phase difference between the input fields, the results are shown in 

Figure 5.5. 

As we observe the experimental results and the theoretical 

analysis are in good agreement. For both resonances (1546.35 nm and 

1548.4 nm) we have an absorption up to ~23 dB. Figure 5.7 shows the 

CPA with an arm length difference of 150 �m. As we observe the 

resonances are shifted to the left. To better observe this effect both 

results are plotted in Figure 5.6. The shift is about 0.84 nm.  

Looking at the resonance of 1546.35 nm, for the CPA with zero 

phase difference the absorption is about ~23 dB. The arm length 
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difference almost corresponds to a phase change of about  �, so the 

absorption for the CPA with this phase difference is ~0.5 dB. Absorption 

at this resonance has been suppressed via phase tuning. 

Figure 5.5. Experimental optical response vs analytical data for the CPA 

with zero phase difference. 
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Figure 5.7. Experimental optical response for the CPA with an arm 

difference of 150µm 

Figure 5.6. Observation of a shift to the left when the arms have a 

length difference of 150 µm. 
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Another interesting characteristic of the CPA is that when an input 

channel is modulated as ie  , the output intensity will be modulated as: 

  2
0 sinI I    

For appreciate this effect the output power of the CPA 2 (CPA with 

phase) is plotted in the wavelength range 1540 nm to 1550 nm. The 

results is shown in Figure 5.8. 

 

 

 

 

Figure 5.8 Modulated output when there is a phase difference between 

the input waves. 
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Normalized output intensity of both CPAs is plotted in Figure 5.9, 

this intensities almost correspond to those in Figure 4.4 a), the 

difference is; in Figure 4.4 a) the red line corresponds to the normalized 

output intensity when the input phase is 0, blue line when the phase is 

, in the experimental the blue phase shift introduced by the length 

difference of 150 µm is almost   .  

As we mentioned before, strong absorption occurs at the critical 

coupling condition, in this case for both CPAs we calculated 

  cos / exp( / 2) 0.6 , in the plot shown in Figure 4.2 this ratio is 1, so, 

we can say that our device is 60% critically coupled.  

 

 

 

Figure 5.9. Normalized output intensities from both CPAs, 
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6 CONCLUSIONS 

The design of a microring perfect absorber based on laterally 

coupled optical waveguides was presented. The analytical expressions 

derived using the coupled mode theory show that for a strong 

absorption we need a critically coupled microring resonator, i.e., 

internal losses must me equal in magnitude to the coupling losses. 

When in the critical coupling condition, absorption can be up to nine 

orders of magnitude. It can be suppressed just varying the input waves 

phase difference from 0 to   . This characteristic of controlling the 

absorption makes the device striking for switching, modulating and 

sensing applications.  

The fabricated device is in good agreement with the analytical 

results showing an absorption up to 2 orders of magnitude although the 

system is not critically coupled. With the experimental extracted 

information we found that the system is 60% critically coupled, being 

this the main cause for not achieving the strong absorption.  

The second CPA with a phase difference between its input waves 

shows a reduction of the absorption by a 99.8%. Due to the optical 

design we were not able to measure the output intensity from the left 

side channel. But this is not a major problem for the device 

performance.  

A direct application in integrated photonics is a modulator. 

Changing the refractive index of one input waveguide, by injecting 

current, one can obtain the desired phase difference for achieve an 

output modulated intensity.  
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8 APPENDIX A 

8.1 Coupled mode theory. 

In this appendix the coupling matrix and the coupling parameters 

are derived based on the coupling of electromagnetic modes. For the 

approximate solutions of Maxwell’s equations for radiation propagating 

in periodic media, two approaches are generally used, one is the Bloch-

wave formalism and the other is the coupled mode theory. In the 

latter theory, the periodic variation of the dielectric tensor is considered 

as a perturbation that couples the unperturbed normal modes of the 

structure. In other words, the dielectric tensor as a function of space is 

written as: 

  0( , , ) ( , ) ( , , ),x y z x y x y z        (A.1) 

where 0 ( , )x y  is the unperturbed part of the dielectric tensor, and 

0 ( , , )x y z  is periodic in the z  direction and is the only periodically 

varying part of the dielectric tensor. If we compare Equation. (A.1) with 

the Fourier expansion of ( , , )x y z  as in ( ) ,ie   G x
G

G

x   then 0 ( , )x y  is 

the zeroth component of the series and ( , , )x y z  contains the rest of 

the series.  

We assume that the normal modes of propagation in the 

unperturbed dielectric medium described by the dielectric tensor 0 ( , )x y  

are known.  

Since the unperturbed dielectric medium is homogeneous in the z  

direction 0[i.e.,  ( , ) / 0],x y z    the normal modes can be written in the 

form  

 ( )( , ) ,mi t z
m x y e  E   (A.2) 



V APPENDIX. 
 

72 
 

where m  is the mode subscript, which can be either continuous for 

unbound modes, such as plane waves, or discrete for confined modes, 

such as waveguide modes. These normal modes satisfy  

 
2 2

2 2
02 2
( , ) ( , ) 0.m mx y

x x
x y  

  
     

E   (A.3) 

If an arbitrary field of frequency   is excited at 0z  , the 

propagation of this field in the unperturbed medium can always be 

expressed in terms of a linear combination of normal modes,  

 ( )( , ) ,m
m

mi t z
mA x y e  E E   (A.4) 

where the mA ’s are constants. Such as expansion is possible because 

these normal modes form a complete set. The modes are usually 

normalized to a power flow of 1 W in the z  direction. Thus the 

orthogonal relation of the modes can be written 

   *1
,

2
l k lkz

dxdy   E H    (A.5) 

where kH is the magnetic field associated with the mode kE . When 

0 E  and the modes mE  satisfy Equation (A.3), this orthogonal 

relation becomes 

 * 2
,( , ) ( , )

k
k l klx y x y dxdy




 E E   (A.6) 

where kl  is the Kronecker delta for confined modes and the Dirac delta 

function for unbounded modes. If a single mode is excited at 0,z   say 

1( )
1( , ) i t zx y e  E  in the perturbed medium described by the dielectric 

tensor 0( , , ) ( , ) ( , , )x y z x y x y z     . The presence of the dielectric 

perturbation ( , , )x y z gives rise to a new perturbation polarization  
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  1( )
1 .( , , ) ( , ) i t zx y z x y e     P E   

If this polarization wave, acting as a distributed source, can feed 

energy into (or out of) some other mode 2( )
2 ,( , ) i t zx y e  E  then we say 

that the dielectric perturbation ( , , )x y z  couples (i.e., causes energy 

exchange) between modes 1E  and 2E . Let us find next under what 

conditions this coupling takes place.  

The energy exchange between unperturbed modes due to the 

dielectric perturbation is analogous to a transition between the 

eigenstates of an atom under the influence of a time-dependent 

perturbation. The mathematical approach is sometimes called the 

method of variation of constants. The procedure consists of expressing 

the electric field vector of the electromagnetic wave as an expansion in 

the normal modes of the unperturbed dielectric structure, where the 

expansion coefficients evidently depend on z , since for 0 0   the waves 

( )( , ) ,mi t z
m x y e  E  are no longer eigenmodes: 

 ( )
,( ) ( , )m

m

mi t z
mA z x y e  E E   (A.7) 

 

substituting Equation (A.7) into the wave equation  

   2 2
0 ( , ) ( , , ) 0,x y x y z      E   (A.8) 

and using Equation (A.3)  

 2 2
0

( )
0,( )( , ) ( , , ) ( , )m

m

mi t z
mA zx y x y z x y e             E   

obtaining the partials derivatives  
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2

2

2

2
( )

,( )
( , )

m
m

mi t zm
x

A z
x

x y e  







E E

  

 
2

2

2

2
( )

,( )
( , )

m
m

mi t zm
y

A z
y

x y e  







E E

  

  ( )
,( ) ( , )m m

m

mi t z
m

d
i

z dz
A z x y e     

  
  


E E   

   
2 2

2

2 2

( )
,( ) ( , )m m m m

m

mi t z
m

d d d
i i

z dz dz dz
A z x y e      

     
  


E E   

 
2 2

2

2 2

( )
2 .( ) ( , )m m m

m

mi t z
m

d d
i

z dz dz
A z x y e     

   
  


E E   

The laplacian is of the form: 

2 2 2
( )2 2

2 2 2
,2 ( ) ( , ) mi t z

m m m m
m

d d
i A z x y e

dzx y dz
   

  
  

    

 
     

 E E   

then the wave equation results: 

2
0

2

2 2 2
( )2

2 2 2

( )

( )
0,

( , )

( , , )

2 ( ) ( , )

( ) ( , )

( ) ( , )

m

l

m

m

l

i t z
m m m m

m

i t z
m m

i t z
l l

x y

x y z

d di A z x y e
dzx y dz

A z x y e

A z x y e

 

 

 

 

  

  






  
  
  

   



 

    
 





 E

E

E

  

rearranging some terms we have: 
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2

( )

2

2

2 2
( )2 2

02 2

( )
0,

2 ( ) ( , )

( , , )

( , ) ( ) ( , )

( ) ( , )

k

m

i t z
k k k

k

l

i t z
m m m

m

li t z

l l

d d
i A z x y e

dzdz

x y z

x y A z x y e
x y

A z x y e

 

 

 



  

  







 
 
  

 
  
 





 

 
  

 







E

E

E

  

the first part of the last equation is Equation. (A.3), the expression 

reduces to: 

 

2

2

2

.( , , )

( ) ( )
2 ( , )

( ) ( , )
l

k

l

i zk k
k k

k

i z

l l
x y z

d A z dA z
i x y e

dzdz

A z x y e




  

 



 
 
 
 

  





 E

E

  (A.9) 

We now assume further that the dielectric perturbation is “weak”, 

so that the variation of the mode amplitudes is “slow“ and satisfies the 

condition  

 
2

2
.

( ) ( )k k
k

d A z dA z

dzdz
    (A.10) 

This condition is known as parabolic approximation and is often 

used when the perturbation is small. Thus, neglecting the second 

derivative in Equation (A.9) leads to 

 

2

2

.( , , )

( )
( , )

( ) ( , )
l

k

l

i zk
k k

k

i z

l l

i

x y z

dA z
x y e

dz

A z x y e




  

 



 
 
 
 

  

 E

E

   (A.11) 
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We next take the scalar product of Equation (A.11) with ( , )k x yE  

and integrate over x  and y .  

 

*

*

2

,2

( , ) ( , )
( )

( ) ( , ) ( , , ) ( , )

k

l

i z
k k

k
k

k

i z

l k l
l k

i x y x y dxdye
dA z

dz

A z x y x y z x y dxdye







 





 
 
 
 

 







 

E E

E E

  

using the orthogonal relation (A.6) we can write: 

 
2

( )2
,

2

( )
| ( )

k

k li zk
l

li

dA z
k k A z k l e

dz
  


  

 
 
 

    (A.12) 

where 

 * 2
| ,( , ) ( , )

m
k kk k x y x y dxdy




  E E   (A.13) 

 * .| | ( , ) ( , , ) ( , )k lk l x y x y z x y dxdy   E E   (A.14) 

Since the dielectric perturbation ( , , )x y z  is periodic in z , we can 

expand it as a Fourier series 

  
0

,
2

, exp( , , ) m
m

x y im zx y z 


 
 
 



     (A.15) 

where the summation is over all m  except 0m   because of the 

definition of ( , , )x y z  in Equation A.1. Substitution of Equations (A.15), 

(A.14), (A.13) in Equation A.12 leads to 
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2( )*( )

4
( ) ( , ) ( , ) ( , )

m
kk

m

k

k li z

l k l
ml

dA z

dz
i A z x y x y x y dxdye

 








   E E   

 
2

( ) ( )
.

( )
( )

mk mk
kl

k

k li z

l
ml

dA z

dz
i A z C e

 







    (A.16) 

where the coupling coefficient ( )m
klC is defined as  

 ,
( ) * ( , ) ( , ) ( , )m
m

kl k l
C x y x y x y dxdy E E   (A.17) 

this coefficient 
( )m
klC  reflects the magnitude of coupling between the 

 thk  and the  thl  modes due to the  thm  Fourier component of the 

dielectric perturbation.  

Equation A.16 constitutes a set of coupled linear differential 

equations. In principle, an infinite number of mode amplitudes are 

involved. However, in practice, especially near the condition of resonant 

coupling, only two modes are strongly coupled, and Eq. (A.16) reduces 

to two equations for the two mode amplitudes. By resonant coupling 

we mean a mode coupling at the condition when  

 
2

0,k l m
   


  (A.18) 

for some integer m . This condition is of fundamental importance, and 

we will refer to it as “longitudinal phase matching” or just as phase 

matching. This condition is the spatial analogue of the conservation of 

energy in time-dependent perturbation theory and therefore may be 

called the conservation of momentum. The resonant coupling can be 

explained as follows: by examining the coupled Equation (A.16), we 

notice that the increment in the field amplitude of the  thk mode, kdA , 
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due to the mode coupling with the  thl mode in the region between z  

and z dz  via the  thm  Fourier component of the dielectric perturbation 

is given by 

 
( ) 2

( ) ( )exp ,m
k kl l k l

k

k

A z C A z i m z dzd i  



  
      

 


   (A.19) 

since the field amplitudes are slowly varying functions of space, we may 

integrate Equation (.19) over a distance which is much larger than the 

period  , yet is much smaller than the variation scale of the field 

amplitudes. This leads to an expression for the net increment of the 

field amplitude, kA , due to mode coupling with  thl  mode over the 

distance between z  and z L  via the  thm Fourier component of the 

dielectric perturbation: 

 
( ) 2

( ) ( ) exp ,
L

m
k kl l k l

k

k

A z C A z i m z dzi  


 

  
      

  


      

  (A.20) 

from this equation we find that mode coupling between the  thk  and 

 thl  modes is insignificant when the condition (A.18) is not satisfied of 

some integer m , because the integral (A.20) is non-vanishing only 

when the exponent is zero, which is exactly the phase-matching 

condition (A.18) 

The propagation of electromagnetic radiation in a periodically 

perturbed dielectric medium can be described by the method of 

variation of constants. These mode amplitudes (“constants”) are 

governed by the coupled-mode equations (A.16). For significant mode 

coupling to take place between modes k and l, two conditions must be 

satisfied. The first is expressed by Eq. (A.18), the kinematical condition. 
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Second, the coupling coefficient,  m

klC , must not vanish. The latter is 

also called the dynamical condition, since it depends upon 

characteristics of the waves such as their polarizations and mode 

profiles.  

8.2 Coupled mode equations. 

Equation (A.16) describes the most general case of mode coupling 

due to a periodic dielectric perturbation. In practice, often only the 

coupling between two modes is involved. Let the two coupled modes be 

designated as 1 and 2. Neglecting interaction with any of the other 

modes, the coupled-mode equations become 

 

( )1
1 12 2

1

( )1
2 21 1

1

exp( ),

exp( ),

m

m

d
A i C A i z

dz

d
A i C A i z

dz












  

   

  (A.21) 

where  

 1 2 ,
2

m


     


  (A.22) 

and ( ) ( )
12 21,m mC C   are the coupling coefficients given by (A.17). It can be 

shown directly from the definition (A.17) that 

 
*

( ) ( )
12 21 ,m mC C  

 
   (A.23) 

provided that  , ,x y z  is a Hermitian dielectric tensor.  

8.3 Codirectional coupling. 

When the coupled modes are propagating in the same direction, 

say the z  direction, the sign factors 1 1/   and 2 2/   are both equal 

to 1. The coupled equations become  
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1 2

2 1

,

,

i z

i z

e

e

d A i A
dz
d A i A
dz





 

 




  (A.24) 

where  

 
( )
12 .mC    (A.25) 

Remember that 1A  and 2A  are the complex amplitudes of the 

normalized modes. Therefore 
2

1A  and 
2

2A represent the power flow in 

modes 1 and 2, respectively. The coupled mode equations (A.24) are 

consistent with the conservation of energy, which requires that  

  2 2

1 2 0.
d

A A
dz

    

Next we are going to solve the system (A.24). First we propose 

two fields of the form      1 1 exp / 2a z A z i z    and      2 2 expa z A z i z 

, taking the derivative of these fields leads: 

 

   
 

   
 

1 1
1

2 2
2

exp exp ,
2 2 2

exp exp ,
2 2 2

da z dA z z z
i i A z i

dz dz

da z dA z z z
i i A z i

dz dz

  

  

       
           

       
          

  (A.26) 

substituting Equation (A.24) in (A.26) 

 

 
   

 
   

1 2 2
2 1

2 2 2
1 2

,
2

,
2

z
i i z

z
i i z

da z
i A z e i A z e

dz

da z
i A z e i A z e

dz

 

 







 


 





  


  

  (A.27) 

Equation (A.27) can be written in matrix form 
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1 1

2 2

2 ,

2

.

i i
a z a zd

a z a zdz
i i

d

dz







 
     

     
     

 


a

Ma

  (A.28) 

The eigenvalues of M  are found by solving the equation 0 M I

, where I  is the identity matrix 

 2det 0,

2

i i

i i


 


 

 
   

 
   

 

  

 0,
2 2

i i
 

   
   

      
  

  

  
2

2

2 0,        

solving for   we obtain, 

  
2

1,2 2

1,2

,

,

i

is

  



   

 
  

where  
2

2

2s        

For finding the eigenvectors, 1,2v , of M  we need to solve the 

equation 1,2 1,2.is Mv v   

So, for the eigenvalue is  we have  

 

11 112

12 122

11 12 112

11 12 122

,

,

,

s s

s s

v vi i
is

v vi i

v v v

v v v





 

















      
    

     

  

  

  (A.29) 
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Giving a value for 12v , here we chose 12 1v  , using this value yields 

to  

  11 2 1 ,s
sv 



    

so the eigenvector 1v  is  

 
 2

1

1
.

1

s
s





 
  
 
 

v   (A.30) 

In a similar way as for 1v  we find out the eigenvector 2v  

 
 2

2

1
,

1

s
s





 
  
 
 

v   (A.31) 

the general solution of Equation (A.28) is 

 1 2
isz iszAe Be a v v   (A.32) 

where A  and B  are constants. Substituting Equations (A.30) and 

(A.31) in (A.32) leads to the solution.  

 

   

   

1 2 2

2

1 2 2

2

1 1
,

1 1

1 1 ,

,

s s
s sisz isz

isz iszs s
s s

isz isz

a
Ae Be

a

a A e B e

a Ae Be

 

 

 

 

 

 

 



  



     
              

   

 

  (A.33) 

using the initial conditions  

 
   

   
1 1

2 2

0 0 ,

0 0 ,

a A

a A




  (A.34) 

we can find the constants.  

 
   1 12 2

2 2

(0) 1 1 (0),

(0) (0),

s s
s sa A B A

a A B A

 

  

     

  
  (A.35) 
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solving for A  and B  we find 

 

     

     

2 1 2

2 1 2

0 0 0

2 2 2 2

0 0 0

2 2 2 2

,

,

A A A

s s

A A A

s s

A

B













  

  
  (A.36) 

substituting Equation (A.36) in (A.33) we have 

 

          
        

        
      

2 1 2

2 1 2

2 1 2

2 1 2

0 0 0

1 2 2 2 2 2

0 0 0

2 2 2 2 2

0 0 0

2 2 2 2 2

0 0 0

2 2 2 2

1

1 ,

.

A A A iszs
s s s

A A A iszs
s s s

A A A isz

s s

A A A isz

s s

a z e

e

a z e

e

 



 



















 

  



 

   

   

  

  

  (A.37) 

Equation (A.37) reduces to 

 
       

       

1 1 22

2 1 22

cos sin 0 sin 0 ,

sin 0 cos sin 0 ,

s s

s s

a z sz i sz A i szA

a z i szA sz i sz A

 







  

   
  

so, the solution of Equation (A.24) is 

 
      
      

2

2

1 1 22

2 1 22

cos sin 0 sin 0 ,

sin 0 cos sin 0 ,

i z

s s

i z

s s

A z e sz i sz A i szA

A z e i szA sz i sz A





 





 



 

    

     

  (A.38) 

where  1 0A  is the amplitude of mode 1 at 0z  ,  2 0A is the amplitude 

of mode 2 at 0z  ,  1A z and  2A z are the amplitudes of the coupled 

modes 1 and 2.  As was said before, coupling takes place only at the 

phase matching condition, 0  , so equation (A.38) reduces to 

 
         

         

1 1 2

2 1 2

cos 0 sin 0 ,

sin 0 cos 0 .

A z z A i z A

A z i z A z A

 

 

 

  
  (A.39) 
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If we define z  , where   is the magnitude of the coupling 

factor and z  is the coupling distance. So the mode amplitudes can be 

written in the form of matrix 

 
1 1

2
2

cos sin
,

sin cos

A Ai

AiA

 

 

     
           

  (A.40) 

here 1 1 2 2( ), ( )A A z A A z    and 1 1 2 2(0), (0)A A A A  .  

Equation A.40 describes the amplitude of each mode after the 

coupling distance z.  

 


