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The three great essentials to achieve anything worthwhile are: Hard work, Stick-to-

itiveness, and Common sense.

Thomas A. Edison



Abstract
by Adriana Carolina Sanabria Borbón

Automatic biasing and sizing of analog integrated circuits (ICs) remains an open chal-

lenge. This Thesis introduces an automatic technique for sizing analog ICs through

combining multi-objective optimization techniques and the gm/ID design technique. In

this manner, two evolutionary algorithms are described and they are applied as mono-

and multi-objective algorithms for optimizing analog ICs. They are known as: differential

evolution (DE) and non-dominated sorting genetic algorithm (NSGA-II), respectively.

Although current literature summarizes recent sizing techniques for analog ICs, those

techniques do not consider the usefulness of exploiting the advantages of biasing tech-

niques, which can enhance DE and NSGA-II algorithms to guarantee DC operating

conditions of transistors, and to limit the search space of evolutionary algorithms. That

way, this Thesis highlights the advantages of using the gm/ID design technique for estab-

lishing the sizes, width (W) and length (L) ranges, for each transistor while guaranteeing

the appropriate bias levels conditions. The established feasible sizes ranges become the

initial search spaces for Ws/Ls when performing automatic IC optimization.

The experiments shown herein, lets us concluding on the appropriateness of applying the

gm/ID design technique to accelerate the computation time of evolutionary algorithms

for optimizing analog ICs. This Thesis discusses the main advantages of this biasing and

sizing approach, which are: the search spaces for W/L are feasible values for the given

IC technology; the bias conditions of all transistors are guaranteed, and the computing

time required by evolutionary algorithms is diminished because the convergence of the

algorithms being improved.

Finally, real IC designs not only require accomplishing industrial target specifications,

but also they should do it plus guaranteeing robustness, which means the designed IC

must support Process, Voltages and Temperature (PVT) variations. This is directly

related to yield improvement, i.e. guaranteeing the correct work of a high percentage of

fabricated chips. In addition, another strategy to estimate the robustness with respect to

parameter variations, like performing sensitivity analysis, is also presented in this Thesis.

At the end, the main contribution of this Thesis is the introduction of a multi-objective

optimization approach for analog ICs by combining gm/ID technique and evolutionary

algorithms, and by including PVT variation analysis.



Resumen
by Adriana Carolina Sanabria Borbón

El dimensionamiento automático de circuitos integrados (CIs) analógicos sigue siendo un

desafío. Este trabajo muestra una técnica automática para dimensionar CIs analógicos

combinando técnicas de optimización y diseño basado en ecuaciones. Primero se de-

scriben los algoritmos evolutivos y se explica cómo se usan para resolver este problema

de optimización. En este trabajo se han incluido dos tipos de algoritmos: La Evolución

Diferencial y el NSGA-II como ejemplos de algoritmos mono y multi-objetivo, respecti-

vamente.

Aunque la literatura resume técnicas actuales de dimensionamiento de CIs analógicos,

no considera la utilidad de explotar las ventajas técnicas de polarización antes de ini-

ciar el dimensionamiento automático. De ésta forma, este trabajo muestra la utilidad

de la metodología gm/ID para calcular los rangos de las dimensiones de cada transistor

que garanticen condiciones de polarización dadas. Los rangos factibles se convierten en

el espacio de búsqueda inicial de Ws/Ls para la optimización automática. Los experi-

mentos nos permiten concluir que la técnica gm/ID es apropiada para reducir el tiempo

computacional de los algoritmos evolutivos en la optimización de CIs analógicos. La

principales ventajas de esta propuesta son: los espacios de búsqueda son acordes con la

tecnología dada, se garantizan las condiciones de polarización y el tiempo de cómputo

del algoritmo evolutivo es reducido porque la convergencia del algoritmo se mejora.

Finalmente, el diseño de circuitos reales en entornos industriales requieren no sólo cumplir

las especificaciones sino hacerlo a pesar de las variaciones de Proceso, Voltaje y Temper-

atura. Esto también está relacionado con el aumento del yield, es decir en garantizar que

un alto porcentaje de las muestras fabricadas funcionen y cumplan las especificaciones.

Por esta razón, una etapa de optimización que tenga en cuenta las esquinas de PVT ha

sido incluida en el algoritmo de dimensionamiento desarrollado en este trabajo. Otra

estrategia para estimar la robustez a variaciones ha sido incluida en este trabajo la cual

está basada en el análisis de sensitividad.
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Chapter 1

Introduction

Despite the digital integrated circuits (ICs) applications and capabilities grow everyday,

analog ICs are still needed when designing mixed-signal systems. For instance, analog

ICs are specially required in the input/output stages for signal conditioning circuits, data

converters, clock-signals generation and Radio Frequency (RF) applications.

Considering fabrication technologies, the miniaturization processes do not scale in analog

ICs, because Moore’s law is not as valid for analog as for digital ICs [7]. This means that

designing an analog IC with micro-technology, it does not scale down to nanotechnology,

as it may be done for digital IC. In addition, compared to digital ICs, analog ones

need to accomplish many more target specifications that are more difficult to accomplish

than when designing digital ICs. Besides, in all design cases, for analog, digital and/or

mixed-signal circuits, their device sizes determine the performance features and their

functionality, so that appropriate biasing and sizing techniques are required to improve

the design of integrated circuits.

Design automation or manual IC design consists of finding the right topology and its

feasible circuit element values that satisfy some target performance specifications. Figure

1.1 sketches traditional IC design flow. Once the topology is selected by the designer (at

the transistor level of ICs design) the bias voltages and branch currents are estimated

considering some specifications. The next step is the sizing task that is performed using

MOSFET equations and models to determine the widths (W) and lengths (L) of the

transistors until accomplishing target specifications. After that, circuit simulations are

executed to check the circuit behavior and tune it in order to accomplish the desired

performance in the different domains, namely: DC, AC and time. However, varying the

W and L sizes makes the sizing task to be a difficult one when it is manually executed.

In this manner, this task is automated herein by applying evolutionary algorithms and

considering process, voltage and temperature (PVT) variations. The biasing conditions

1
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of the transistors are guaranteed by applying the gm/ID design technique, and also to

improve automatic sizing when applying evolutionary algorithms, as described in the

following chapters.

Topology
design

Sizing by
formula

Simulation
(sweeps, MC,
corners,... )

Numerical sizing=
adjusting device

parameters
(W,L,R, ...) based

on simulation
results

Layout Parasitic
extraction

Done

Figure 1.1: Traditional analog design method [1]

In the electronic design automation (EDA) industry, it is well known that, while the

digital ICs design is well supported by sophisticated EDA tools, the same cannot be

said for the case of analog EDA tools in several important respects [8]. For example,

analog ICs are difficult to design due to the many constraints, and trade-offs that appear

particularly for each kind of circuit; further, analog circuit performance features are

involved in compromises that make infeasible improving one of them without affecting

other or others. Figure 1.2 is an example of the main tradeoffs that an analog IC

designer can found in amplifier design [2]. In addition to gain and bandwidth there are

some other important specifications for amplifier design like power dissipation, linearity,

noise and voltage swings. However, other aspects like input and output impedances are

also important because they determines how the circuit interacts with the other stages

of the system. The same figure shows how each feature trades at least with another two;

in that sense it illustrates the compromises a designer has to balance in analog design.

Noise Linearity

Gain
Power

Dissipation

Input/Output
Impedance

Speed

Supply
voltage

Voltage
Swings

Figure 1.2: Analog design octagon [2]

In consequence, analog design is reluctant to be an automatic process [9]. In this manner,

automatic circuit biasing and sizing tasks are currently considered as main research topics
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in the EDA business [10]. In this context, several strategies for the automatic biasing

and sizing of analog ICs have been summarized in [11]

1.1 Background

Strategies for performing the automatic ICs sizing are classified into two main groups:

knowledge based and optimization based. The first one uses a design plan derived from

expert knowledge of IC designers [11]. Examples of these techniques are IDAC, OASYS,

TAGUS, CAMP, ISAID and BLADES. All these tools are expert systems that employ

artificial intelligence to capture the designer knowledge [11]. One of the main advantages

is shorter execution time; but the complexity (an independent design plan have to be

developed for each type of circuit), long time (the design plan deriving can be many

times longer than the manual design process) and high load of deriving the design plan,

make these techniques inefficient [12]. Moreover, according to Rocha [11] the obtained

results with these techniques are not optimized at all.

Due to the need of developing sizing tools that can provide optimal design solutions

and can operate independently of the circuit topology and IC fabrication technology, the

next generation of sizing strategies were based on optimization techniques. The word

optimization can be defined as the process of finding the best way to use the available

resources to obtain a desired result, without violating any constraint imposed by IC

technology. [13]. Optimization techniques can also be divided into three main groups,

namely: equation-based, simulation-based, and model-based ones [11].

The equation based techniques employs analytical equations that describe the behavior

of the circuit under design to evaluate the circuit performance. Examples of these are

the tools STAIC, OPASYN, OPTIMAN, ISAAC, DONALD, GPCAD and DARWIN.

Nevertheless, these methods are not accurate because the complexity of deriving analyt-

ical expressions for all the performance features (for example slew rate) [12]. For this

reason, it were proposed another techniques such as FASY, which employ the analytical

expressions in order to give a first approach and combines it with simulations to fine

tune the solutions [11]. In summary, the main advantage of this method is the short

execution time once the design analytical expressions are derived. But in contrast, the

approach error in the analytical expressions and the complexity of deriving expressions

for all metrics becomes the disadvantage of these techniques.

In simulation-based sizing techniques the circuit’s behavior is obtained by numerical

SPICE simulations at the transistor level of abstraction and the sizing is performed using

optimization techniques. Tools such as DELIGTH.SPICE, FRIDGE, MAELSTROM,
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ASTRX/OBLX and ANACONDA belong to this class [11, 12]. Besides, in order to

improve the yield, some sizing strategies include layout parasitic extraction. Another

authors report the use of evolutionary algorithms to solve the sizing task [14, 15].

Finally, model-based sizing techniques employ macro-models like neural networks, neural-

fuzzy, support vector machines (SVM) in order to reduce the execution time due to the

less electrical simulator usage in the loop [11].

Other kinds of optimization techniques include: direct search optimization, gradient

search optimization, simulated annealing, genetic algorithm and multi-objective opti-

mization [12]. Among them, one can appreciate the usefulness of multi-objective evo-

lutionary algorithms (MOEAs), as the ones applied herein called differential evolution

(DE) and Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [16]. Both DE and

NSGA-II are linked to a circuit simulator (SPICE, located in the loop) to evaluate the

fitness functions of each individual, as already shown in [17–20].

1.2 Problem Formulation

The previous subsection briefly summarized the EDA tools oriented to automate the

biasing and sizing of integrated circuits and the main tendencies in automating the analog

IC design processes. However, it is still a topic for future research that is aimed to develop

new and feasible methodologies for the EDA industry. On the one hand, the increasing

fluctuations in IC fabrication processes have introduced an intrinsic uncertainty in circuit

performance; therefore, one of the main challenges in IC design is to ensure the fabrication

considering parameter and other variations [21]. On the other hand, the main challenges

in the development of EDA tools for improving the performance of analog ICs are:

• Computation load: Reduce memory consumption and execution time.

• Level of abstraction: Make optimization at the system level of abstraction.

• Layout: Analog placement, routing and parasitic study.

• To provide feasible sized solutions for the industry in fabrication scale.

• Robustness: Include tolerances, process, volage and temperature variations analysis

and design centering.

• Complexity: Reduce the complexity of models or equations.

• Structural and signal path analysis.
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• Yield optimization.

The optimization technique developed in this Thesis aims to face some challenges: first, to

make automatic sizing of ICs, generating feasible sizes according with the IC fabrication

technology; second, to guarantee the sizing being robust to variations, and finally, to

reduce the computational load and the execution time.

1.3 Motivation

The motivation of this Thesis is mainly based on the challenges in the analog IC design

process, like to find the optimal circuit elements biases and sizes that satisfy all the

performance specifications and balances appropriately the trade-offs. However, the IC

technology miniaturization includes new challenges related with the reliability and the

yield of the circuits. In consequence, nowadays is quite important to consider PVT

(Process, Voltages and Temperature) variations in order to provide robustness.

In that way, this Thesis involves the development of an EDA tool for automating the

biasing and sizing of analog ICs, employing the direct current (DC) operational point

formulae, the sensitivity analysis and the analysis of PVT variations. As a result, and

as stressed in [9], analog IC design is reluctant to be an automatic process. For this

reason, automatic IC biasing and sizing are currently main research fields in the EDA

business, where process and technology variations are the main bottle-necks to mitigate

for improving yield [22].

1.4 Objectives

1.4.1 General objective

The main objective of this Thesis is focused on the development of a new EDA tool

for the automatic biasing and sizing of analog ICs, based on evolutionary algorithms

for performing optimization and DC operating point approach, e.g. gm/ID design tech-

nique. At the end, the feasible solutions must guarantee the design to be robust to PVT

variations.

1.4.2 Specific objectives

• Application of an evolutionary algorithm as an optimization technique to automate

the biasing and sizing of analog ICs.
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• Employ explicit equations and models of the MOSFET transistor in order to reduce

the search space for each sizing parameter and to improve the performance of the

optimization algorithms.

• Combine gm/ID design technique to evolutionary algorithms for improving biasing

and sizing approaches.

• Introduce an automatic approach to guarantee the biases and sizes being robust to

PVT variations.

1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces the theory about EAs and the

basic terminology related with IC optimization. In this manner, it is outlined the oper-

ating principle of two specific EAs for mono-objective and multi-objective optimization.

Finally, it is explained how they can be applied to the automatic biasing and sizing of

integrated circuits and how the circuits simulator is introduced in the loop.

Chapter 3 is devoted to describe the gm/ID design technique and a brief comparison of

it with traditional design techniques. After that, it is described how to combine this

design methodology with evolutionary techniques. The gm/ID technique employs the

DC operating point formulation to formulate a proper and reduced search space for each

optimization parameter.

On Chapter 4 is presented the challenge of consider process, voltage and temperature

variations in analog circuit design and some ways to analyze that. In order to guarantee

the solution’s robustness to variations it is proposed an additional stage in which opti-

mization is performed considering all the combinations of variations corners. Other way

to estimate the variation that a sizing is able to manage is performing sensitivity analy-

sis. For that reason is presented an automatic tool that from circuit netlist extracts the

symbolic expressions of the transfer function. Then, sensitivity calculation is explained

and a graph-based tool is employed to derive the expressions ans perform the numerical

evaluation of the sensitivities with respect of each parameter. Finally the numeric values

can be computed in the frequency domain, it is for a range of frequency values. Per-

forming sensitivity analysis is probed being a way to identify the circuit most sensitivity

elements, it means that ones with more impact in degrading the whole response.

Through Chapter 5 a set of experiments is presented, including sizing problems of differ-

ent analog circuits. First, some examples using two evolutionary algorithms are presented

as described on Chapter 2, DE and NSGA-II. After that, there are included some exam-

ples of combining evolutionary algorithms with the gm/ID design technique, and finally
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a variation analysis is performed with corners optimization and sensitivity analysis ex-

amples.

Finally, Chapter 6 describes some conclusions of this Thesis.



Chapter 2

Evolutionary algorithms

As described in [23], evolutionary algorithms are optimization techniques based on the

biological evolution and the natural selection of the species theory presented by Darwin.

These population based techniques have been developed to solve optimization problems,

it means, maximizing or minimizing one or more functions. On these algorithms, an

individual is a feasible solution encoded by a chromosome which, in turn, is composed

by genes that represent the optimization problem parameters. In the same context, a

set of individuals is a population; at the beginning of the algorithm execution an initial

population is randomly generated. After that, it evolves iteratively by modifying the

chromosomes, through genetic operations such as: crossover, mutation and selection. In

each generation only the individuals with better fitness, which is a measure related to

some objective functions and constraints, can survive to the next one.

2.1 Evolutionary Algorithms Terminology

According with [13], some important terminology related with EAs is defined:

• Gen: The basic building block in all evolutionary algorithms. Each gen represents

an optimization parameter.

• Chromosome: A set of concatenated genes that represent a solution.

• Individual: An aggregate of a chromosome, optimization parameter values x, and

objective function (including constraints) value.

• Population: A set of individuals. The solution to a given problem is a set of feasible

solutions.

8
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• Fitness function: The measurement of the goodness of a chromosome and it is

related with the objectives and constraints. This measurement is employed to

compare and classify the individuals that reach the next generation.

• Stop criteria: The criteria that have to be accomplished to stop the algorithm

execution.

• Generation: Is the same as one iteration. It also corresponds to each evolution step

where a new population is created.

• Operator: Operations between chromosomes in order to generate new ones.

In order to visualize how it works, Figure 2.1 shows the basic flow diagram of any

evolutionary algorithm.

Begin

First population
randomly generated

First population
evaluation

Satisfy stop
criteria?

Crossover

Mutation

Selection

Output results

End

Satisfy stop
criteria?

Yes

YesNo

No

Figure 2.1: Evolutionary Algorithms flow chart.

In the current literature, there have been reported different kinds of evolutionary algo-

rithms, like differential evolution (DE), non-dominated sorting genetic algorithm (NSGA-

II), co-evolutionary algorithms, cultural algorithms [23], and others.

2.2 Mono-objective Optimization

2.2.1 Differential Evolution

Differential evolution is a population based search algorithm proposed by Storn and

Price in 1997 [24]. DE is also defined as an optimization technique that belongs to the

evolutionary algorithms category [23]. In that sense, DE minimizes multimodal (with
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not only one solution) cost functions [25]. In this kind of algorithms the cost function

uses to be a lineal combination of weighted constraints or objectives.

Like any evolutionary algorithm, DE implementation is based on an iterative procedure

that employs some operators, namely: crossover and mutation to modify the population

in each generation. In addition, a selection operator is responsible for the choice of the

new population’s individuals, according to the cost function comparison; in that way

only the best adapted individuals reach the next generation.

In DE, the initial population is randomly selected and the gen values are distributed into

the search space. Subsequently, the population is modified by the genetic operators in an

iterative process until the stop criteria is reached. The stop criteria can be a minimum

threshold for the cost function or a maximum number of iterations.

Algorithm 1 Differential Evolution
1: procedure DE(N, g, fk(xk))
2: Evaluate the initial population P of random individuals.
3: while stopping criterion is not met do
4: for each individual in Population do
5: Create a candidate c from randomly chosen parent p.
6: Evaluate the candidate.
7: if the candidate dominates the parent then
8: The candidate replaces the parent.
9: else

10: the candidate is discarded
11: end if
12: end for
13: end while
14: end procedure

The previous pseudocode rough out the DE procedure, as a function of the population size

N , the number of generations g, and the cost function which in turn is dependant of the

circuit parameters x. DE working principle is the generation of a mutant chromosome

for each individual by adding the weighted difference between two randomly selected

population individuals to a third one. It is y = x1 + F (x2 − x3), where F is a scaling

factor and x1, x2, x3 are randomly selected from the actual population with the constraint

to be different between them. In this evolutionary algorithm, the difference operation

allows a gradual exploration of the search space. After mutation the crossover operator

takes place. By this operator, parts of the current individual and the chromosome created

by mutation are combined in a new one; as a consequence, a trial vector is built according

to the crossover probability (CR) [26]. The crossover probability is a control parameter

that can take a value from 0 to 1, both included.
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After that, a comparison is done between the cost function of both individuals, the trial

generated and the current one; only the individual with the best cost value survives to

the next iteration [25].

However, this basic principle has been extended to some variants, called strategies. These

are conventionally named DE/x/y/z, where DE refers to differential evolution; x is a

string that denotes the base individual and can take values such as rand (a randomly

selected individual) or best (the individual with the best, usually minimum, cost); y

refers to the quantity of differences implied on the operators, and z refers to the crossover

method, which can be binomial or exponential. The most useful differential evolution

strategies are described in the references [13, 25, 27, 28].

As mentioned before, the crossover operator can be implemented by either of these

options: exponential or binomial. According with [26], the functionality of each one can

be described by the following pseudocode:

Algorithm 2 Binomial Crossover
1: procedure Binomial crossover((x,y))
2: k ← irand(1, . . . ,n).
3: for j = 1, n do
4: if rand(0, 1) < CR or j = k then
5: zj ← yj
6: else
7: zj ← xj
8: end if
9: end for

10: return z
11: end procedure

Algorithm 3 Exponential Crossover
1: procedure Exponential crossover((x,y))
2: z ← x; k ← irand(1, ..., n); j ← k;L← 0
3: repeat
4: zj ← yj ; j ← (j + 1)n;L← L+ 1
5: until (rand(0, 1) > CR) or (L = n)
6: return z
7: end procedure

It is also important to check that the new trial generated chromosome parameters are

into the search space. For this reason, it is necessary to compare each parameter value

with its range boundaries [28].

In a real implementation, DE algorithm control parameters are: the crossover probability

CR, the scaling factor F and the population size NP . They are usually fixed as constants
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during all the evaluation. However, they can also variate during execution time as already

shown in references [29–31].

Among the main advantages of DE algorithm, it is possible to highlight the simplicity of

the operation and programming, the good performance to solve multi-modal and multi-

variable problems, and the fast convergence [32]. Due to its success, this technique has

been extended to other kinds of problems such as the multi-objective ones [33].

DE algorithm has been successfully employed in the design of analog integrated circuits

like those that can be reviewed in [34]. In this application field, the cost function can be

represented as a combination of the error of several specs. In that sense, if the designed

spec has to overload a lower or upper threshold, equations (2.2) or (2.1) respectively can

be used to estimate the error.

CA(x) = 1− A

Aspc
;A < Aspc (2.1)

CB(x) =
B

Bspc
− 1;B > Bspc (2.2)

The total cost function is a lineal combination of all the specs error, as follows:

Ctotal = α1CA + α2CB + ... (2.3)

where αi are the weight of each error component.

2.3 Multi-objective Optimization

2.3.1 Non Dominated Sorting Genetic Algorithm NSGA version II

The Non Dominated Sorting Genetic Algorithm Version II (NSGA-II) is a non-domination

based multi-objective optimization technique (MOO) introduced in 2002 by Deb et al.

[16]. The main characteristics of this MOO algorithm are: diversity, convergence and

robustness of solutions in the Pareto front (PF) [35]. In these kinds of algorithms there

are not only a unique solution, instead there are a set of non dominated solutions that

form the Pareto front as showed in Figure 2.2 [24].

NSGA-II approximates the PF of a MOO problem by sorting and ranking all solutions in

different Pareto sub-fronts, in order to choose the best solutions to create new offsprings

[20]. NSGA-II is summarized by Algorithm 4, in which NSGA-II is described as a function
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Objective 1

Objective 2

Pareto Front

Dominated
Solutions

Non-dominated
solutions

Figure 2.2: Pareto Front

of the population size N , the number of generations g, and the objective functions which

in turn is dependant of the circuit parameters x

Algorithm 4 NSGA-II algorithm [6]

1: procedure NSGA-II(N, g, fk(xk)) . N members evolved g generations to solve
fk(x)

2: Initialize randomly the population P
3: Calculate objective values
4: Assign rank (level) based on Pareto dominance - sort generated child population
5: Binary tournament selection
6: for i = 1 to g do
7: for each Parent and Child in Population do
8: Assign Rank (level) based on Pareto - sort
9: Generate sets of non-dominated vectors along PF known

10: Loop (inside) by adding solutions to the next generation starting from the
first front until N individuals found determine crowding distance between points on
each front

11: end for
12: Select points (elitist) on the lower front (with lower rank) and are outside a

crowding distance
13: Create next generation
14: Binary Tournament Selection
15: end for
16: end procedure

Then NSGA-II is based on two main procedures: Fast Non-dominated Sort (withO(MN2)

computational complexity) and Crowding Distance Assignment. According to the pseu-

docode, initially the algorithm builds a population of competing individuals, uses the

nondomination level to rank and sort each individual; then applies crossover, mutation

and selection operators to create an offspring population; and finally it combines the

parents and offspring before partitioning the new combined population into fronts. Ad-

ditionally, this algorithm includes crowding distance operation in its selection operator

and uses it to keep a diverse front by making sure each member stays a crowding dis-

tance apart. The crowding distance is a measure of how close an individual is to its
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neighbors used to keep the population diversity and helps the algorithm to explore the

fitness landscape [6, 36]

2.4 EAs in IC’s sizing

The works like [17–20, 37, 38] highlights the usefulness of applying evolutionary algo-

rithms for sizing analog ICs, and also it shows an heuristic technique inspired from fuzzy

logic to bound or limit the search space in which the W/L relationships accomplish

the desired performance. This is not a trivial task, because, as it was outlined before

in the introduction part, in general: analog ICs are difficult to design due to the con-

straints and trade-offs for each topology and also due to the characteristics of the IC

fabrication technology, which do not scales the sizes as IC technology scales down to the

nanometer regime. In consequence, as stressed in [9], analog IC design is reluctant to

be an automatic process. For this reason, automatic IC sizing is currently one of the

main research fields in the Electronic Design Automation business, where process and

technology variations are the main bottle-necks to mitigate for improving yield [22].

As a field in research, some attempts of applications have been reported in literature. For

this application, the optimization problem is the analog integrated circuit sizing. In this

context, the optimization parameters are transistor sizes W and L; biasing conditions

and element values like C and R. Additionally, the fitness function is a combination of

constraints and objectives, it means, circuit performance specifications.

Figure 2.3 shows a simple example of the circuit codification employed to build each

chromosome. In the current mirror, each W and L is assumed as a gene (different L in

a current mirror is not a practical choice, but in this example is used to explain how

the codification is performed), and the concatenation of all genes conform the whole

chromosome.

Iref Io

M1 M2

LM1 LM2 WM1 WM2 ...

Chromosome

LM1 LM2

gen gen

Figure 2.3: Analog integrated circuits codification.

For each parameter, the circuit designer fixes a search space, it means a range in which

parameters can get a value. This range must be a feasible set of values according with the

IC fabrication technology. It is also assumed the same for the same kind of parameters.
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For example, all MOSFET channel widths Ws have usually the same search space, and

the same is assumed for all channel lengths Ls.

2.4.1 Fitness function evaluation

Due to the objectives and constraints in the case of analog circuit optimization corre-

sponds to circuit performance specifications, one of the most common forms to measure

these involves a circuit simulator. In consequence, the evaluation function is updated

by linking the circuit simulator SPICE. In the algorithm implementation (in C language

in this case) has been programmed a function to perform the evaluation. This function

writes the parameter values in the simulation field, then it performs the simulation exe-

cution by a system call, and finally it reads the objectives and constraints data from the

output files.

For the evaluation stage in this implementation three data files have been employed:

the model that includes the BSIM technology parameters of the NMOS and PMOS

transistors; the kernel file that contains the netlist of the IC to be sized; and the test-

bench file.

The kernel file specifies the netlist of the circuit under optimization alike SPICE (simu-

lation program with IC emphasis). The circuit under design is declared as a subcircuit

so the biasing, input and output nodes are declared as inputs and output of the subcir-

cuit. All MOSFETs are parameterized by their design variables Ws and Ls using the

command .param.

Traditional real encoding is done by describing the MOSFET sizes using real numbers,

as for the following SPICE file:

...

.param p1=900u

.param q1=2u

.param p2=147u

.param q2=.5u

...

MP1 drain_node gate_node source_node bulk_node PMODEL W=’p1’ L=’q1’

MN1 drain_node gate_node source_node bulk_node NMODEL W=’p2’ L=’q2’

MP2 drain_node gate_node source_node bulk_node PMODEL W=’p1’ L=’q2’

...

In this case, the optimized sizes Ws and Ls, associated to the real numbers pi and

qi, should be rounded to be multiples of the IC technology. For example, for an IC
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technology of 0.18µm, neither the pis nor the qis given above are multiples of 0.9µm

(lambda of the IC technology), so that a post-processing step is needed to round those

real values to be multiples of 0.9µm.

In order to avoid a rounding-off stage, it is used an integer encoding for the Ws and

Ls sizes of the MOSFETs, it is performed by assigning integers to p and q, and those

integers will be multiplied by the IC technology by using the command .option scale

within SPICE. In this manner, using an IC technology of 90nm, the proposed integer

encoding updates the SPICE file described above, by the following one:

...

.option scale=90nm

.param p1=100

.param q1=2

.param p2=140

.param q2=50

...

MP1 drain_node gate_node source_node bulk_node PMODEL W=’p1’ L=’q1’

MN1 drain_node gate_node source_node bulk_node NMODEL W=’p2’ L=’q2’

MP2 drain_node gate_node source_node bulk_node PMODEL W=’p1’ L=’q2’

...

In this case, the Ws and Ls sizes of the MOSFETs are scaled by 90nm (lambda). For

example, for MP1 .. W = 100 ∗ 90nm (9um) L = 2 ∗ 90nm (0.18um), and so on.

The main advantage of applying integer numbers instead of real numbers in the encoding,

is the elimination of a post-processing step for rounding theW and L sizes to multiples of

the IC technology, as recently discussed in [4]. Therefore, by using integer encoding in the

evolutionary operators the computation time and the memory usage are also decreased.

By applying evolutionary algorithms, as was shown above, the W and L sizes for each

MOSFET are parameterized and then encoded by a gen that includes parameters p and

q. The chromosome of an analog IC consists of the whole group of genes (MOSFETs),

and one chromosome is associated to one individual in the population N .

In other part, the test bench is developed in order to measure the performance features

that corresponds to the objectives and constraints of the analog IC. This file includes the

subcircuit (kernel) instances, the commands to make the desired analysis (.AC, .TRANS,

.DC) and the .MEASURE command to extract the specific values of the constraints and

objectives in SPICE format described as follows:
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...

.OP

.AC dec 100 1 100G

.MEASURE AC UnitGainF when vdb(vo1)=0

.MEASURE AC DCgain MAX Vdb(vo1)

.MEASURE AC PhaseM MIN vp(vo1) from=1 to=UnitGainF

.MEASURE AC BW when Vdb(vo1)=′ DCgain− 3′

...

Additionally, in order to perform a single spice call for generation, the set of parameters

(chromosome) for each individual is included in one line of the test bench file starting

with .param command, and the lines are separated by .ALTER command, as shown

below:

...

.param p1=.. p2=.. p3=.. **Individual 1

.ALTER

.param p1=.. p2=.. p3=.. **Individual 2

.ALTER

.param p1=.. p2=.. p3=.. **Individual 3

...

In that way, the test bench file has as .param lines as individuals. Then, for a population

of N individuals, N SPICE simulations are executed in one system call for each gener-

ation. However, after the execution a single output file is created for each individual.

In that way, each output SPICE file has the label associated to each chromosome to

extract the performances (objective function) values, and keeping a pointer to the design

variables W and L for each individual.



Chapter 3

gm/ID design technique

In traditional IC design tasks, first, a circuit topology is selected, i.e. an architecture

composed by the circuit elements and their connections among them is chosen. Then,

explicit MOSFET equations are usually employed by analog IC designers to perform

biasing and sizing tasks. In this context, different MOSFET models have been reported,

but in recent times these have became more complex. This tendence is due to the

technology miniaturization; devices properties can not be scaled, so its behavior can not

be described and predicted accurately by the older models. In fact, new models has

more parameters than older ones, in order to consider secondary effects, like short length

effects, that are relevant only in new fabrication sizes.

In other part, automatic sizing of analog ICs requires an initial search space, it is a range

in which a variable can take a feasible value. Usually, the search space is initialized by the

designer as the same for all variables of the same type (for instance, Ws of all transistors).

However, there are not an specific criteria the designer can use to estimate a proper range.

A wider range can make the computation time longer because the algorithm need to try

more possible values. However, a narrow range can cause non convergency because the

feasible (or optimal) solutions can be out of that range.

For that reason, in order to approximate a feasible search space for each optimization

variable, some MOSFET equations and models are employed.

3.1 Analog design employing Quadratic model

Quadratic model for a MOSFET is composed by independent equations that describe

the behavior for each transistor region: cutoff, linear and saturation region.

18
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For example, for a MOSFET operating in saturation region, it means VGS > VT and

VDS > VDSsat and without considering the velocity saturation effects (these effects are

detailed explained in [39]), the drain current is described by

ID =
1

2

µC ′ox
n

(W
L

)
(VGS − VT )2 (3.1)

where the mobility µ, the oxide deep C ′ox, the slope factor n and threshold voltage VT
are technological parameters. Also in the equations are involved biasing conditions like

VGS and ID.

Manipulating the previous equation, the MOSFET transconductance can be derived as

gm =
δID
δVGS

=
µC ′ox
n

(W
L

)
(VGS − VT ) =

√
2ID

(µC ′ox
n

)(W
L

)
=

2ID
VGS − VT

(3.2)

Finally, the shape factor can be derived as,

W

L
=

ng2m
2µC ′ox

1

ID
(3.3)

However, some transistor models ignore short channel effects such as mobility degra-

dation, Drain-induced barrier lowering (D.I.B.L.) and gate length modulation. On the

other hand, there exist more complex models that take into account all these effects that

have too much parameters, but they make the manual calculation infeasible. Addition-

ally, advantages of weak and moderate inversion are become this operation regions more

exploited for different low power applications.

In this design technique, symbolic expressions for specifications are derived as functions of

component parameters. For instance, gain expression in amplifiers is usually associated

with the input transistor’s transconductance and the impedance of the output stage.

After that, for a predefined operating region, model equations and biasing conditions are

used to stablish the proper voltage and current levels and element sizes.

3.2 gm/ID biasing and sizing technique

The gm/ID design technique includes all the operation regions of the MOSFET transistor.

It was proposed for first time by Silveira [40].

According to (3.1) and (3.2), both terms, transconductance (gm) and drain current (ID)

are proportional to the transistor width (W ) and length (L), so that the ratio between
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gm and ID does not depend on the transistor sizes [41], but only on the DC biasing.

From the same equations the transconductance efficiency can be derived as:

gm
ID

=

√
2

ID

(µC ′ox
n

)(W
L

)
=

2

VGS − VT
(3.4)

Additionally, gm/ID shows a relationship between the small and large signal [41], and

several performance features can be described in terms of gm/ID.

To characterize a fabrication IC technology, a simulation of the IC is performed to mea-

sure transistor parameters such as threshold voltage (Vth), transconductance efficiency

gm/ID, intrinsic transistor gain (gm/go), current density (ID/W ), and transit frequency

(fT ) for a set of channel length values when gate to source voltage Vgs is changing. The

characterization data is saved in look-up tables and can be visualized in Figures 3.2 to

3.5.

(a) NMOS characterization setup (b) PMOS characterization setup

Figure 3.1: gm/ID MOSFET characterization setup

 

g m
/I

D
(V

-1
)

0

5

10

15

20

25

30

Vov=Vgs-Vth(V)
−0.5 0 0.5 1 1.5 2 2.5

L=180nm
L=360nm
L=540nm
L=720nm
L=900nm

(a) NMOS

 

g m
/I

D
(V

-1
)

0

5

10

15

20

25

30

Vov=Vgs-Vth(V)
−0.5 0 0.5 1 1.5 2 2.5

L=180nm
L=360nm
L=520nm
L=720nm
L=900nm

(b) PMOS

Figure 3.2: Transconductance efficiency

Based on the fact that transconductance and drain currents are proportional to the

channel width, one can define another useful expressions in order to obtain specific values
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Figure 3.3: Intrinsic gain
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Figure 3.4: Intrinsic bandwidth
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Figure 3.5: Current density

employing data extracted from the characterization measurements of the MOSFET. In

this manner, from the specifications are extracted desirable values for gm/ID and gm for

a determined L. For instance, the desired MOSFET transconductance can be extracted

from fT specification and capacitance value as follows:
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gm = wt ∗ C = 2 ∗ ft ∗ C (3.5)

Then, for a known gm, and considering the denominator values from the characterization

saved in LUT, the drain current can be derived using

ID =
gm(
gm
ID

)∗ (3.6)

where the denominator corresponds to the efficiency of transconductance saved on the

LUT.

After that, the specifications can be completely mapped in a current density value ID/W ,

so that the W value can be derived from

Wx =
ID(
ID
W

)∗ (3.7)

where the denominator corresponds to the current density stored on the LUT.

In general, the method proceeds according to the steps described below [41]:

1. Set-up look-up tables (LUTs) making use of Spice or BSIM.

2. Choose primary variables.

3. Estimate gate lengths in accordance with the desired gain and transit frequencies.

Short channel: Small capacitances, high ft (high speed), less layout area

Long channel: high intrinsic gain, good matching, reduction of flicker noise

4. Evaluate parasitic capacitances.

5. Evaluate currents and widths taking advantage of the target specifications. Since

closed form solutions cannot be found generally in complex circuits, some assump-

tions may be required wherever necessary.

6. Re-iterate drain and width evaluations to get rid of the assumptions.

7. Check the result by running a circuit simulator like Spice.

An IC design test can be developed in order to illustrate the accuracy of an IC design

using different techniques. That way, in order to compare the effectiveness of gm/ID
overt he traditional quadratic design model, an example is given.
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Let us consider the sizing of a common source amplifier, also known as intrinsic gain

stage shown in Figure 3.6, according with these Specs: Technology of 0.18 µm IBM,

unity-gain frequency of 100 MHz, DC gain of 4V/V or 12.04 dB, capacitive load= 1pF,

and voltage supply Vdd=1.8V.

Figure 3.6: Intrinsic gain stage circuit.

The voltage gain of the intrinsic gain stage is approximated to

Av = −gmR (3.8)

The dominant pole frequency can be approximated by the expression

ωp =
−1

RCL
(3.9)

Then, the unity-gain frequency can be obtained as

ωu = Avωp =
gm
CL
→ gm = ωuCL = 2πfuCL (3.10)

According with the specifications, the transconductance is

gm = 2π(100MHz)(1pF ) = 628.31e−6 (3.11)

The resistor value can be derived as

Av = −gmR→ R =
Av
gm

= 7639 (3.12)

and the drain current value is

ID =
0.9

7639
= 117.8µA (3.13)
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So, employing the quadratic model equation for MOSFET device operating in saturation

region
W

L
=

n(gm)2

2(µCoxID)
= 15.43 (3.14)

Finally, assuming n=1.2, and the minimum channel length L=180nm, W=2.77µm

on the other hand, employing the gm/ID technique, the efficiency of transconductance

value can be derived as

gm
ID

=
628.31e−6

117.8e−6
= 5.33 (3.15)

The gm
ID

value is associated to some specific characteristic in the LUT, as shown in Figure

3.7.

Figure 3.7: Look-up table.

Assuming again the minimum channel length,

W =
ID

( IDW )∗
=

117.8µA

74.07
= 1.59µm (3.16)

The sizing is validated with the simulation in frequency domain shown in Figure 3.8.

From this figure it is clear that employing gm/ID technique for sizing is more accurate

than by using the quadratic model.

Figure 3.8: Quadratic equation vs gm/ID sizing.
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Table 3.1: Comparison of MOSFET performance operating in weak, moderate and
strong inversion.

Spec. Weak I. Moderate I. Strong I.
Shape factor large medium small
Capacitance large medium small
Bandwidth low moderate high
DC leakage high moderate low
gm
ID

high moderate low
gain high moderate low
VEFF , VDS,sat low moderate high

*VEFF = VGS − VTH

3.3 ICs sizing combining gm/ID and evolutionary algorithms

Although [11] summarizes current sizing techniques for analog ICs, those works and also

[9, 42], do not consider the usefulness of exploiting biasing techniques advantages [43],

before starting the automatic sizing. In this manner, this Thesis shows the usefulness

of the gm/ID design technique [41], for computing sizing ranges for each transistor that

guarantees some bias levels conditions, a similar work as the one already done in [42], but

now applying the gm/ID design technique has the advantage that it guarantees biasing

conditions. The feasible ranges become the initial search spaces for Ws/Ls for the multi-

objective optimization algorithms DE and NSGA-II, described previously, in Chapter

2.

The proposed approach is depicted in Fig. 3.9, shows the procedure mean the gm/ID and

evolutionary algorithms (NSGA-II in this case) are combined. The first step consists on

IC technology characterization, in order build the LUT with the transistor parameters

mean an voltage sweep and for different transistor lengths as described before. Then,

an operating region for MOSFETS and biasing nodal voltages conditions are assumed in

order to figure a VGS range of each transistor. The operation region is a criteria assumed

by the designer; each of the operation regions: weak, moderate and strong inversion offer

different advantages in terms of performance as shown in Table 3.1. In order to estimate

the biasing conditions is necessary to take into account the biasing voltages, and the

input and output swing.

For instance, according with [44] the operating region of MOSFET devices of an amplifier

can be chosen as: a large input pair biased in weak/moderate inversion to maximize

bandwidth and minimize noise and offset, and current mirror devices with long channels

biased in strong inversion to improve mirroring accuracy and output impedance.
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Some specifications can also be included in order to determine feasible ranges for pa-

rameters such as ID, gm, and parasitic capacitances. After that, using LUT’s data and

gm/ID technique equations, all VGS ranges are mapped into W ranges.

At this point, there are a delimitated search space for each optimization parameter that

accomplish the biasing conditions and that is feasible for the IC technology. This search

spaces are employed like initial conditions for the optimization algorithm. It means, each

variable has now its own range which is different to the range of other variables. This

range defines the maximum and minimum values a variable can take at the initialization

part and after each operator application.
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Figure 3.9: Combining gm/ID technique and NSGA-II.

In the optimization stage, the inputs of the algorithm are the circuit netlist (as described

in the subsection 2.4.1); the objectives and/or constraints, which are related desirable

specifications of the circuit; and the range of each variable. Meanwhile the outputs

are different sizes combinations where all of them accomplish the target specifications.

Also, the evaluation step requires performing circuit simulations, which at the same time

includes the modification of the Spice netlist, the performance of circuit simulation and

the reading of specs measurements from output files.
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Biasing and sizing considering PVT

Variations

4.1 PVT Variations

The analog IC design industry has facing several important challenges related to some

issues. For example, how to achieve the best specifications; second, how to reduce silicon

area and, how to reduce power consumption, mainly; on the other hand, other issues

are how to reduce the time to market and guarantee a high yield. According to the

last requirement, besides an IC design accomplishes target specifications, it must be

also robust to parameter and process variations. For instance, a measure to estimate

robustness is reflected in the yield, which is defined as the ratio between the amount of

fabricated ICs that effectively work and accomplish all the specifications with respect to

the total fabricated ICs.

Yield decreases because the IC design does not support variations. During the fabrica-

tion process and during the operating time of the IC, an integrated circuit modifies its

response with respect to the target specs because a designer neither can control nor can

predict parameter and process variations.

Variations can be classified according to their causes in three main groups: due to voltage,

temperature or process. Another variations sources like aging have been introduced in

the literature but they are not case of study in this research.

With respect to process variations, electrical devices variations depend on global variation

(between die, wafers, and lots), local variation (i.e. mismatch, uncorrelated atomistic

variation of each device instance), and layout dependent effects [45]. So, considering

27
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variation issues is the best way to improve the yield, but sometime it also can lead us to

perform an over-design.

Over Design Under Design

Example: Excessive guard-
band to Spec

Yield

Meets performance Specs
Consumes too much power
Wastes area - higer die cost
Product not competitive

Area
Power Yield

Area
Power

Example: Insufficient
margin to Spec

Fails performance Specs
Yield Loss -higher die cost
Causes mask re-spins
Slow ramp to production

Figure 4.1: Comparison between under and over design [3]

Design considering variations is not a trivial task. As is depicted in the Figure 4.1, if

variations are not properly handled they can occur two scenarios [3]. In the first one,

due to a excessive safety a compromise between performance/power and area, this case is

called over-design; in the second one, due a relaxed or minimal consideration of variations

there is no sacrifice in power and area but the circuit might not met the specifications

under variations, which can derives in a poor yield, it it called under design [3]. Neither

of the described scenarios is desirable because all: power, area and yield in the industry

must be optimized, or at least well balanced.

Process variation is usually modeled in two ways:

• Process corners

• Process Monte Carlo

4.2 Corners Analysis

IC designers need to estimate the variation in a circuit performance due to process

variations, for this reason, ICs fabricant provides data about the corners of MOSFET

devices in their simulation models based on measured data. Usually, the variations have

been defined by corners as: T, S, and F, for typical, slow, and fast, respectively and

for MOSFET type N and P. So the following combinations are possible: FF, FS, TT,

SF and SS. Additionally, for voltage and temperature variations there are defined two

corners and the nominal value. A common used ranges for temperature are −20, 60 and

100 celsius degrees meanwhile for voltage it is ±10% the nominal value.



Chapter 4.
Biasing ans sizing considering PVT Variations 29

The variations simulations should consider all the combinations for: five process corners,

three voltage corners and three temperature corners. So, the total amount of corner

combinations is the product of all the possible values: five by the square of three, it is

45; then, in order to evaluate each individual fitness is necessary to perform 45 simulations

for individual instead of one.

Because of the corner analysis, computational time increases significantly so, it is neces-

sary to figure out the way to find solutions with the least number of simulations. One

way to do it is to simulate first the typical case and the nominal values, if the constraint

violation is equal to zero, it means if an individual accomplish all constraints at nominal

values, so it is feasible to evaluate the corners, otherwise it is not practical.

For this reason, the final implementation of the evolutionary algorithm showed in the

Figure 4.2 has two search spaces downsizing stages. The first one, applying gm/ID tech-

nique and the second one after running the algorithm and all the population individuals

reach all the constraints. The first case was already explained in the Section 3.3 and

the second one is implemented running the algorithm and until to accomplish the stop

criteria, in this case when the average constraint violation of all the population is equal

to zero, it is all the individuals of the population accomplish the constraints.
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Maximize Objectives

gm/ID technique
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algorithm
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algorithm with PVT
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Initial search
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Choose topology

New search space

Yes

Yes

Yes

No

No

No

Sensitivity analysis

gm/ID+Evolutionary
algorithm

}

Figure 4.2: Flow diagram of the optimization technique considering PVT corners

4.3 Sensitivity analysis

The frequency response of a linear circuit can be described by a transfer function that

can be further used to perform a sensitivity analysis, in order to identify sensitive circuit

elements. That way, one can know that when a circuit element behavior changes, it
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modifies the response of the whole circuit. In other words, sensitivity is a measure of the

variation of a circuit as a whole, due to the variation of a parameter or circuit element.

In general, the majority of sensitivity analysis techniques needs as input the transfer

function that can be obtained by performing linear algebraic or graph operations. On

the other hand, to get a better insight on the behavior of a circuit, performing symbolic

analysis is quite useful for deriving analytical expressions of analog integrated circuits

(ICs), and thus to improve their design as already shown in [46]. Deriving transfer

functions is a good starting point for characterizing the dominant behavior of an analog

IC [47], which can help to select the best conditions looking for an optimal design [48].

In this manner, several symbolic techniques have been developed to derive analytical

expressions or to transform certain characteristics of linear networks, see for instance [49–

51]. In particular, the work in reference [51], shows an improved graph-based symbolic

technique for performing sensitivity analysis of analog ICs.

4.3.1 Symbolic Expression computation

To perform symbolic analysis, there are several techniques ranging from using different

kinds of circuit-element models to distinct types of circuit descriptions [46]. In particular,

circuit with differential characteristics are quite simple to analyze by using nullors and

pathological circuit elements, as shown in [52]. In this work, analog ICs are modeled

using traditional voltage controlled models. In that way, the behavior of the transistor

can be modeled as a linearization of the large signal model, resulting in the small signal

equivalent circuit of the figure 4.3 discussed in [53]. In this model some parameters

such as the one related with the bulk terminal is neglected to facilitate the application

of symbolic sensitivity analysis.Consider more parameters can lead in a more accurate

approximation of the MOSFET behavior, but it is necessary to be aware because the

increase of the circuit complexity too.

Figure 4.3: MOSFET transistor small-signal model.

A symbolic analyzer was developed in this work. It was programmed in C language and

has as input the netlist of a circuit like SPICE. First, the program identify the kind of

element from the netlist, and extracts and all the current and voltage sources. These are
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separated between biasing and signal sources; then, biasing sources are disconnected, it

means the voltage sources are replaced by a short circuit and the current sources by an

open circuit. Signal sources are setted in the sources and variables vector as corresponds.

Then, the quantity of elements is calculated, and the program extract the nodes of all

elements forming the variables vector. Also name and value information is extracted for

each element and stored in a data structure. Afterwards, the MNA stamps are employed

to introduce each element in the admittance matrix. According to the nodes information,

the modified nodal analysis expression is formed as:

Y x = S (4.1)

where Y is the admittance matrix, x the variables vector and S the sources vector.

In order to get the transfer function the Cramer’s rule is employed. The user can choose

the output node and then, the program extracts both matrixes: the admittance matrix

and the admittance matrix modified with the sources vector.

Finally, the admittance matrix is presented in a suitable form to perform the sensitivity

analysis. Assuming Ri and Ci as the row and column indexes, respectively; s represents

the sign of the element which take values of 1 or -1 for positive and negative respectively;

and the name and value are also included, the admittance file has the form:

R1 C1 s name1 value1

R2 C2 s name2 value2

.

.

.

4.3.2 Example

The circuit shown in Figure 4.4 is employed to explain the developed software. This

simple circuit was chosen only for obtaining all the symbolic expressions in an easy way,

but in fact, the developed software can deal with more complex circuits.

The transfer function of this circuit can be easily derived as:

H(s) =
1

1 + rcs
(4.2)

Replacing R=1/, the transfer function becomes,
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Figure 4.4: RC example circuit.

H(s) =
g

g + cs
(4.3)

So now, the procedure used by the algorithm will be explained. First, the circuit should

be described in a Spice form, for the current example, it is:

V n1 0 AC 1

R n1 no 1e3

C no 0 10e-12

Then, the modified nodal analysis is summarized in the following equation:
g −g 1

−g g + sC 0

1 0 0




n1

no

iV

 =


0

0

V



With the objective of solve the system for the no node employing Cramer’s Rule, that

is:

xi =
det(Yi)
det(Y )

(4.4)

where xi is a system variable, and Yi results changing the ith column by the sources

vector. So, in the algorithm all resistor elements are changed to conductances and the

admittance matrix description obtained by the software becomes:

0 0 1 g 1.000000e-03

0 1 -1 g 1.000000e-03

0 2 1 1 1.000000e+00

1 0 -1 g 1.000000e-03

1 1 1 g 1.000000e-03

1 1 1 s*c 6.283200e-10
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2 0 1 1 1.000000e+00

The first column is the matrix row index, the second one is the matrix column index

(starting on zero). The third value represents the sign of the element Additionally, the

Y1 matrix is defined as the admittance matrix modified with the source vector, as


g 0 1

−g 0 0

1 V 0


0 0 1 g 1.000000e-03

0 2 1 1 1.000000e+00

1 0 -1 g 1.000000e-03

2 0 1 1 1.000000e+00

2 1 1 V 1.000000e+00

4.3.3 AC sensitivity

The sensitivity can be calculated from the transfer function H(s) = N(s)/D(s) using the

expressions already discussed in [51], and shown below. According to [9], the sensitivity

is described by the first order derivates of the objectives, in this case the performance

features, with respect to parameters of the circuit elements.

The normalized sensitivity can be expressed as:

Sens(H(s),W ) =
W

H(s)

∂H(s)

∂(W )
(4.5)

where W is the sensitivity parameter. This expression can be decomposed by dealing

with N(s) and D(s) directly, instead of H(s), leading to

Sens(H(s),W ) =

(
WD(s)

N(s)

) ∂N(s)
∂(W )D(s)−N(s)∂D(s)

δ(W )

D2(s)

 (4.6)

a simplification leads to the reduced formulae,

Sens(H(s),W ) = W

(
1

N(s)

∂N(s)

∂W
− 1

D(s)

∂D(s)

∂(W )

)
(4.7)

Henceforth, employing this last expression in (4.7), it is easy to compute symbolically the

sensitivity of the characteristics with respect to each circuit element. At this end, it can

be replaced the symbolic terms (circuit elements) by their numerical values computed

by Spice. It is worth mentioning, that this research employed the sensitivity identities

defined on [54]. For a due transfer function H(s), and a its parameter p are valid the

next identities:
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1. Let G=1/R

Sens(H(s), R) = −Sens(H(s), G) (4.8)

2.

Sens(|H(s)|, p) = Re{Sens(H(s), p)} (4.9)

3.

Sens(∠H(s), p) =
1

∠H(s)
Im{Sens(H(s), p)} (4.10)

4.

Sens(H(s), p) = Sens(H(s), ps) (4.11)

Employing the equation (4.7) and the identities, for the same circuit of Figure 4.4, the

sensitivity expressions can be easily derived as:

Sens(H(s), g) =
Cs

g + Cs
(4.12)

Sens(H(s), Cs) =
−Cs
g + Cs

(4.13)

According to the first sensitivity identity, the sensitivity w.r.t. R is equal to the sensitivity

w.r.t. G by a factor of -1. Also, according with the fourth identity, the sensitivity is the

same for C and Cs. So, in consequence, the sensitivity expression is exactly the same

for both w.r.t. Cs and R.

4.3.4 Sensitivity Calculation

The software developed employs the derivate matrices Y and Yi and the graphs based

method for the sensitivity evaluation developed in [51].

det(Y ) = −(g + sC) (4.14)

det(Y1) = (−gV ) (4.15)

So, the transfer function is due to:

H(s) =
V o

V 1
=

g

g + sC
=
N(s)

D(s)
(4.16)

∂det(Y )

∂g
= −1 (4.17)
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∂det(Y )

∂sC
= −1 (4.18)

∂det(Y1)
∂g

= −1 (4.19)

∂det(Y1)
∂sC

= 0 (4.20)

According with the equation (4.7), the sensitivity of the transfer function with respect

of each parameter can be calculated as

Sens(H(s), g) = g

(
1

g
(1)− 1

g + sC
(1)

)
=

sC

g + sC
(4.21)

Sens(H(s), sC) = sC(
1

g
(0)− 1

g + sC
(1)) =

−sC
g + sC

(4.22)

For example, values: R = 1kΩ and C = 10pF , the sensitivity as function on the frequency

was calculated. The Sensitivity with respect to the magnitude and the phase of the

transfer function are showed in Figures 4.5 and 4.6, respectively:
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Figure 4.5: Sensitivity of |H(s)| w.r.t Cs and G.

In order to probe the sensitivity results, the RC circuit was simulated for variation of R

and C of ±20% each. From the results in Figure 4.7, it can be probed that changing R

and C values in the same percentage have the same effect in the circuit response.
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Chapter 5

Examples

5.1 Optimal sizing for the OTA-Miller amplifier by DE Al-

gorithm

As a mono-objective optimization example, this approach is being employed to size a

two-stages operational amplifier with compensation network, as illustrated in Figure 5.1.

Figure 5.1: OTA Miller.

The DE kernel employed in this example was developed by Dr. Rainer Storn and Kenneth

Price at Berkeley university. One important issue is to determine a proper value for the

DE algorithm parameters F and CR, because they are problem dependable. For that

reason, the different strategies presented in [25] were tested; Figures 5.2 to 5.4 show the

response of the strategies with better convergency. The strategy that showed the better

convergency is described by DE/best/1/exp:

VG+1 = xbest + F (x1 − x2); (5.1)

37
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Table 5.1: Parameter values.

Parameter Value
Technology TSMC180nm

VDD = −VSS 0.9V

CL 3pF

Ibias 100µA

In addition, to stablish the best combination of values for F and CR for this kind of

problem some simulations were executed for all the combinations setting F = 0.5, 0.7 and

0.9, while CR = 0.3, 0.6 and 0.9. Figure 5.2 exhibit the comparison of the convergence

of the same strategy for the different combination of parameters.
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Figure 5.2: Comparison of the performance for different values of F and CR for
strategy 1.
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Figure 5.3: Comparison of the performance for different values of F and CR for
strategy 6.

The conditions employed in these simulations are described in Table 5.1, and the speci-

fications are presented in Table 5.2.
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Figure 5.4: Comparison of the performance for different values of F and CR for
strategy 8.

Table 5.2: OTA Specifications.

Parameter Value
DC Gain 60dB

BW 100KHz

Phase Margin 60

Power 1mW

Vos 100µV

SR(+) 20V/µs

SR(-) 20V/µs

All these specifications are formulated like constraints. According to [55], the constrains

for the upper and lower threshold can be formulated by 5.2 and 5.3, respectively.

go(x) = 1− ci
cmax

(5.2)

go(x) =
ci
cmin

− 1 (5.3)

On the other hand, each constraint value is compared with the specification umbral. The

cost of each specification (calculated by equations (5.2) and (5.3)) is only added to the

global cost function only if the specification is not reached.

The algorithm was executed for a 100 individuals population and with a stop criteria of

maximum number of iterations 150. The average cost function was calculated for each

generation (iteration) and plotted in Figure 5.5.

From the previous figure can be verified the cost function is always descendent and is

has the tendency to reach a minimum value.
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Figure 5.5: Cost function

Table 5.3: Solutions

Design param. Mean Std. dev.
WM1,WM2 81.47µm 37.99nm
WM3,WM4 2.97 µm 0nm
WM7,WMB 66.51 µm 265.16nm

WM5 6.03µm 9 nm
WM6 28.81µm 55.34nm
WMR 7.2µm 0nm

LM1,LM2 1.35µm 0nm
LM3,LM4 180nm 0nm
LM7,LMB 360nm 0nm

LM5 180nm 0nm
LM6 180nm 0nm
LMR 180nm 0nm
CC 1.3pF 0pF

The results at the end of the execution are summarized in the table 5.3. It can be

deduced, for differential evolution solutions are concentrated and those tend to the same

value for each optimization parameter.

5.2 Optimal sizing for the OTA-Miller amplifier by NSGA-

II Algorithm

This example was developed with the purpose of compare the performance of DE and

NSGA-II algorithms in the sizing of analog integrated circuits.

The same circuit of the Section 5.1 was optimized by NSGA-II algorithm. NSGA-II kernel

already implemented in C language by Deb, et al. [16], has been used herein, which is

sketched in Algorithm 4. The simulation parameters and the specifications are the same

of Tables 5.1 and 5.2, respectively. However, for the NSGA-II execution the Gain and
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Bandwidth are considered as objectives to maximize, while the other specifications are

considered as constraints.
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Figure 5.6: Comparison between DE and NSGA performance

Figure 5.6 shows the comparison between DE and NSGA-II results. In the DE algorithm

the population evolves in order to reach a value for all the specs in table 5.2, specifically

for Gain and Bandwidth, the algorithm try to reach 60dB and 100MHz, respectively.

Both thresholds are represented in Figure 5.6 as the vertical and horizontal lines. In

that way, the solution of the DE algorithm is the intersection point between the lines.

In other part, the same figure shows the pareto front (set of solutions) after the NSGA-

II execution for 100 and 150 generations. In the case of 100 generations, any of the

solutions reach or exceeds both thresholds, it means that for this number of iterations

NSGA-II performance is worse than DE. But, because the nature of the NSGA-II, as

more iterations better the solutions will be. It is demonstrated when the same algorithm

is executed for 150 generations. In this case exist some solutions that exceeds both

thresholds; in consequence NSGA-II algorithm can exhibits better performance than DE

depending on the number of iterations in the execution.
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Figure 5.7: Average constraint violation comparison for DE and NSGA-II

Figure 5.7 illustrates the comparison between the average constraint violation for DE and

NSGA-II algorithms. As expected, NSGA-II converges faster, it means, this algorithm

requires less generations to accomplish all the restrictions. However, it is necessary to
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remember that for this example just five of the seven specs are setted as constraints for

the NSGA-II based optimization.
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Figure 5.8: Comparison of the solutions of DE and NSGA-II algorithms

Then, the Figure 5.8 compares the solutions of both algorithms. For DE algorithm

the number of solutions is equal to population size, and all of them are almost equal.

Nevertheless, NSGA-II number of solutions is less than the population size, each one

exhibits different performance (represented in pareto front) and all are different between

them.

The execution time for DE algorithm was 699s meanwhile the execution of the same

150 generations takes 728s for the NSGA-II algorithm. The second algorithm is more

complex so it is expected this execution time was bigger. However, the most consuming

time part of both algorithms is the evaluation step. Due to the evaluation stage employs

the same circuit simulations for both algorithms, the two execution times are similar.

5.3 Optimal sizing for the OTA-Miller amplifier by NSGA-

II Algorithm comparing real vs integer codification

NSGA-II kernel already implemented in C language by Deb, et al. [16], has been used

herein, which is sketched in Algorithm 4.

The Operational Transconductance Amplifier (OTA) shown in Fig. 5.9, consists of 8

MOSFETs. It has two gain stages and a frequency compensation network given by re-

sistor Rz and capacitor CC . The first stage is composed by a differential input pair

(MOSFETs M1 and M2), and a current mirror as load (M3, M4). The second stage

(M5, M6) improves the differential gain, reduces the output impedance and also reduces

the bandwidth. This is a well-known trade-off called gain-bandwidth (GBW) product.

Rz and CC partially compensate the bandwidth (BW) reduction effect. Rz can be real-

ized with a MOSFET (e.g. Mz) operating in the linear region. Ibias and MB generates
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a voltage to properly bias M6 and M7. For the SPICE simulations, the following condi-

tions were employed: The MOSFETs model is BSIM 3 level 49 for standard IC technology

of 180nm, the load capacitance CL = 3pF , Vdd = 3.3V and Vss = 0V .

Figure 5.9: OTA Miller amplifier.

For optimizing this amplifier, two objectives are considered to be maximized, they are:

gain and bandwidth. Also four restrictions are considered:

• All the MOSFETs should operate in the saturation region. Except Mz if Rz is

realized with a MOSFET,

• Phase margin > 50 degrees,

• Input Offset < 1mV,

• Common-mode rejection ratio (CMRR) > 50dB.

The chromosome is formed by 14 genes, as listed in Table 5.4. In this manner, the

first column lists the gene associated to the design variable given in the second column,

and to the respective MOSFET(s) listed in the third column. The fourth and fifth

columns list the minimum and maximum values for the integers encoding the associated

gene. Those integers will be multiplied by the IC technology declared with the command

scale = 90nm, so that they are equivalent to the traditional real encoding values shown

at columns sixth and seventh, respectively. The integer encoding values have reduced

search spaces, which were established according to the current-branches-bias-assignments

approach introduced in [42]. The integer encoding values should change when scaling to

a different IC technology.

The NSGA-II algorithm was executed for a population of 100 individuals along 600

generations, with probability of crossover 0.9, probability of mutation 0.5, value of dis-

tribution index for crossover 10 and value of distribution index for mutation 20. The two

objectives values obtained at the last generation are presented in Fig. 5.10, where one
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Table 5.4: OTA encoding.

gene Design var. Element Int. min Int. max Real. min Real. max
x1 W MB,M6 100 999 9u 89.91u
x2 W M7 100 999 9u 89.91u
x3 W M1,M2 100 999 9u 89.91u
x4 W M3,M4 100 999 9u 89.91u
x5 W M5 100 999 9u 89.91u
x6 W Mz 80 200 7.2u 18u
x7 L MB,M6 2 25 0.18u 2.25u
x8 L M7 2 79 0.18u 7.11u
x9 L M1,M2 2 79 0.18u 7.11u
x10 L M3,M4 2 79 0.18u 7.11u
x11 L M5 2 79 0.18u 7.11u
x12 L Mz 2 79 0.18u 7.11u
x13 Capacitance CC 1p 20p 1p 20p
x14 Current Ibias 20u 200u 20u 200u

can appreciate the very known trade-off between the gain and bandwidth. The optimiza-

tion was performed using our proposed integer encoding and also using traditional real

encoding. Table 5.5 briefly summarizes the statistical results for the two objective func-

tions (gain and bandwidth (BW)), and three constraints, namely: phase margin (PM),

common-mode rejection ratio (CMRR), and voltage offset. Table 5.5 lists the maximum

(MAX), minimum (MIN), average (AVG) and standard deviation (STD) values for both

integer and real encodings. Additionally, Table 5.6 presents the genes values at the last

generation. As one sees, the better performances were computed using the proposed

integer encoding. In addition, using integer encoding it is not necessary to perform a

post-processing step (wasting computing-time), as when using real encoding values for

accommodating or rounding the feasible Ws and Ls to be multiples of the IC technology.

OTA's Gain vs Bandwidth
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Figure 5.10: Pareto Front for sizing the OTA Miller amplifier using integer and real
encoding values.

One can execute the sizing optimization process more times changing the number of in-

dividuals, the number of generations, as well as the search spaces for the genes encoding
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Table 5.5: OTA results

Integer encoding Real encoding
Performances MAX MIN AVG STD MAX MIN AVG STD

Gain[dB] 87.19 40.20 60.80 13.59 80.74 40.16 60.42 12.32
BW[KHz] 2191 0.852 609.48 685.58 1967 1.22 529.69 614.23
PM> 50 ◦ 63.21 50.01 53.75 3.38 60.45 50.14 52.93 2.90

CMRR>50dB 96.91 50.18 67.97 13.78 87.43 50.09 65.05 11.43
offset<0.1V 0.0085 -0.003 0.0007 0.0030 0.005 -0.003 0.00030 0.0016

Table 5.6: Last genes values.

gene Max Min Mean Std. Dev.
x1 986 203 501.333 200.876
x2 976 295 789.125 166.036
x3 694 139 393.333 105.525
x4 998 267 765.083 232.657
x5 302 100 123.812 50.7152
x6 162 95 129.438 15.5466
x7 53 2 10.7917 16.0756
x8 75 2 12.75 18.7906
x9 40 2 7.41667 8.47985
x10 78 48 66.375 8.67284
x11 18 3 6.79167 3.97844
x12 77 14 42.1667 16.4127
x13 6 1 1.60417 1.12495
x14 199 143 186.792 11.2476

the Ws and Ls, but at the end one can infer that the proposed integer encoding guar-

antees optimal performance with the advantage of avoiding the post-processing step for

rounding-off the feasible sizes solutions, using real encoding, to multiples of the IC tech-

nology. It means that the feasible Ws and Ls provided by the proposed integer encoding,

can be used directly to generate the layout of the IC. The simulations were executed in

an Intel R© CoreTM i7 @ 2.4GHz processor. During the simulations, it was appreciated

that SPICE employed in average 30% less CPU time using integer encoding values than

when using real encoding values. Another advantage of using integer encoding is devoted

to a reduction in the memory usage, because in a 64-bit processor the integer variables

employ 4 bytes, while real (double) variables employ 8.

5.4 Optimal sizing of a CCII by NSGA-II

In this example a second generation current conveyor is optimized and then employed in

the implementation of an filter bank and an oscillator.
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The first generation current conveyor was introduced in 1968 [56], and then it was evolved

to the second generation current conveyor (CCII), introduced in 1970 [57]. The generic

description of the CCII includes 3-ports named: X, Y and Z, and which electrical char-

acteristics are described by [58],


Iy

Vx

Iz

 =


0 0 0

1 0 0

0 ±1 0



Vy

Ix

Vz

 =⇒


Iy = 0

Vx = Vy

Iz = ±Ix

Figure 5.11 shows an implementation of the CCII using MOSFETs. Its sizing optimiza-

tion is performed considering two objective functions: The parasitic resistance at port X

(Rx) and its associated frequency response. The first objective should be minimized to

obtain a low Rx. The second objective associated to the current transfer between ports

X and Z should be maximized to obtain a high cut-off frequency fci. Both objectives

were computed for this CCII in [4], but by using traditional real encoding values for

the Ws and Ls sizes of the MOSFETs. Besides, for improving the sizing optimization

process, we apply our proposed integer encoding procedure. The optimization problem

has four restrictions:

• All the MOSFETs should operate in the saturation region,

• Error voltage tracking between ports Y and X (that behave as a voltage follower)

< 0.44dB,

• Error current tracking between ports X and Z (that behave as a current follower)

< 0.05dB,

• Offset between ports Y and X < 100mV.

The set-up of the experiment has the same conditions as for the OTA Miller. The

population has 100 individuals, and 600 generations. Now the chromosome consists of

9 genes, as shown in Table 5.7, where the first column lists the genes associated to the

design variables given in the second column, and to the respective MOSFET(s) listed in

the third column. The fourth and fifth columns list the minimum and maximum values

for integer encoding, and columns sixth and seventh list the minimum and maximum

values of the genes using real encoding values. As it was done for the OTA Miller

amplifier, the minimum and maximum values in both integer and real encoding cases have
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Figure 5.11: Second generation current conveyor (CCII) taken from [4].

Table 5.7: CCII encoding.

gene Variable Element Int. min Int. max Real. min Real. max
x1 W M5,M6,M11, 100 999 9u 89.91u

M12,M13
x2 W M7,M8,M9, 100 999 9u 89.91u

M10
x3 W M1,M2 100 999 9u 89.91u
x4 W M3,M4 100 999 9u 89.91u
x5 L M5,M6,M11 2 80 0.18u 7.2u

M12,M13
x6 L M7,M8,M9, 2 80 0.18u 7.2u

M10
x7 L M1,M2 2 80 0.18u 7.2u
x8 L M3,M4 2 80 0.18u 7.2u
x9 Current Ibias 20u 200u 20u 200u

been established by considering the current-branches-bias-assignment process described

in [42]. Those values can also change when scaling the IC technology.

The feasible values of the two objectives for the last generation are presented in Fig.

5.12. It is worth mentioning that for this case, the parasitic resistance Rx was measured

at direct current (DC) conditions. However, in general the impedance value at port X

changes according to the frequency variation, for this reason we present the frequency

response of three feasible solutions, that are shown in Fig. 5.13, in which one can see

the frequency behavior of the X-port parasitic impedance whose value associated to the

resistor Rx remains valid from DC (0Hz) near to the computed fci. In the Pareto front

one can note that the feasible solutions using both integer and real encodings have almost

the same behavior, but as mentioned above, the integer encoding requires lower SPICE
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Table 5.8: CCII results

Integer encoding Real encoding
Performances MAX MIN AVG STD MAX MIN AVG STD

Fci[MHz] 530.6 38.12 374.39 143.25 537.90 63.52 390.51 129.43
Rx[Ω] 270.26 112.24 156.95 45.21 293.19 110.48 156.47 43.60

Voltage[YX]< 0.44dB -0.11 -0.24 -0.16 0.04 -0.11 -0.24 -0.17 0.03
Current[XZ]< 0.05dB 0.05 0.048 0.049 0.00033 0.05 0.046 0.049 0.00052
offset[mV]<100mV 1.02 -3.06 -0.52 0.82 0.206 -2.71 -1.23 0.69

computing-time because it avoids the post-processing step for rounding the Ws and Ls

sizes to multiples of the IC technology when using real encodings.
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Figure 5.12: Pareto Front for sizing the CCII using integer (black dots) and real (red
dots) encoding values.
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Figure 5.13: Simulated X-port parasitic impedance, whose parasitic resistor Rx re-
mains constant from DC near to fci

Finally, Table 5.8 lists the statistical values for the feasible solutions. Additionally, Table

5.9 presents the genes values at the last generation, this means Ws and Ls solutions. In

this sizing optimization case of study, both integer and real encodings show similar

optimized performances, however the proposed integer encoding presents a reduction in

CPU-time and memory usage, as discussed in the previous section for optimizing the

OTA Miller amplifier.
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Table 5.9: Last genes values.

gene Max Min Mean Std. Dev.
x1 369 100 128.28 64.3062
x2 659 100 149.447 114.217
x3 999 118 529.86 346.973
x4 999 102 610.333 356.543
x5 52.5 17.9 23.8248 8.76545
x6 48 11 15.3465 7.17358
x7 3.98 2 2.61646 0.701492
x8 3.91 2 2.28905 0.399405
x9 200 198 199.808 0.278477

In order to test the feasible solutions for the CCII, it is used to implement a universal

filter and a single-resistor controlled oscillator (SRCO).

5.4.1 CCII-based filter working in current-mode

According to [5], a current-mode universal filter can be implemented using three dual-

output current conveyors (DOCCIIs), as shown in Fig. 5.14. By applying symbolic

analysis as shown by [59], the low-pass, high-pass, band-pass and stop-band responses

can be derived, for which the cut-off frequency is given by,

wc =

√
1

C1C2R1R2
(5.4)

To simulate the frequency response of this universal filter, it were selected feasible sizes

for the CCII. Afterwards, since the CCIIs should have two outputs, one simply can add

more MOSFETs to provide the other required terminal Z(+) or Z(-), i.e. it is performed

by extending the current mirrors formed by M5-M6 and M7-M8, as already shown in

[60].

Z1+

Z1-

Y1

X1
CCII1

Z2-

Z2-

Y2

X2
CCII2

Z3-

Z3-

Y3

X3
CCII3

C1
io1 io2

R1 R2

io3

R3

iin

C2

Figure 5.14: Current-mode universal filter based on DOCCIIs taken from [5].
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Table 5.10: Circuit element values for the universal filter.

Element Value
R1 1.71kΩ

R2 3.17kΩ

R3 1.71kΩ

C1=C2 68pF
RL 1Ω

The values of the passive elements are presented in Table 5.10. The SPICE simulation

results of the four filter responses at 100kHz, are shown in Fig. 5.15. The output currents

were measured by adding resistors RL at terminals io1, io2 and io3.
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Figure 5.15: Frequency responses of the universal filter working in current-mode.

5.4.2 CCII-based SRCO

The SRCO can be implemented by modifying the universal filter from Fig. 5.14, it is

obtained by eliminating the independent current source iin, and by adding a connection

between a new Z(+) terminal of the CCII1 and the X terminal of the CCII3, as already

described in [5]. In this case, the oscillation frequency fo depends on the values of the

elements C1, C2, R1 and R2, which is described by (5.5).

fo =
1

2π

√
1

C1C2R1R2
(5.5)

For the SPICE simulation, again it was selected one feasible solution for the CCII, and

it evolved to get the required DOCCIIs. The values of the passive elements are listed in

Table 5.11. The time-response is shown in Fig. 5.16, where one can appreciate the good

oscillatory response.
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Table 5.11: Circuit element values for simulating the SRCO.

Element Value
R1 1.5kΩ

R2 3.5kΩ

R3 3kΩ

C1, C2 24pF
RL3 1Ω
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Figure 5.16: Time-response of the SRCO computed by SPICE using an optimized
CCII.

5.5 Optimal sizing for the Recycling folded cascode (RFC)

amplifier

The architecture of Figure 5.17 was reported in [44], as an improvement of the folded

cascode transconductance amplifier.

Figure 5.17: Recycled OTA.

For this topology all devices are assumed working in saturation region. The NSGA-II

algorithm was employed to achieve the specs of 5.12 and to maximize gain and unity-gain

frequency.

The algorithm was executed for a population of 100 individuals and for 100 generations.

The simulations were executed in a Intel R© CoreTM i7 @ 2.4GHz processor. The measured

specs obtained for the 7 solutions found are shown in Table 5.13.
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Table 5.12: OTA recycling Specs.

Element Value
Technology TSMC 0.18µm

Input offset[V] <1mV
Slew Rate[V/µs] >90
Open Loop PM >70
Capacitive Load 5.6pF

Power consumption <800µW

Table 5.13: OTA recycling Results.

Ind. Gain[dB] GBW[MHz] PM[deg] Power[µV] In. offset[µV] SR+[V/µs] SR-[V/µs]
1 65.56 86.39 74.99 713 436 262 346.5
2 61.33 108.1 71.59 784 430 199.4 339
3 62.79 90.42 74.01 721 400 275.8 314.6
4 64.2 86.89 75.51 749 431 212.6 342.4
5 66.04 70.47 75.59 745 447 176 304
6 57.16 116.5 72.61 785 386 295.4 319
7 61.99 93.44 71.65 709 400 294.1 299.9
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Figure 5.18: Recycled OTA solutions.

Figure 5.18 shows the evolution of the average violation constraint, as well as the evolu-

tion (increase) of the objectives gain and GBW. From these plots one can conclude on the

fast convergence of the algorithm which in 59 generations accomplish all the individuals

satisfying all constraints.
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5.6 Optimization employing evolutionary algorithms com-

bined with gm/ID

5.6.1 Optimal sizing for the OTA Miller amplifier employing DE com-
bined with gm/ID

The procedure described on Chapter 3 was applied in the sizing of amplifiers. The

conditions for a MOSFET operating in saturation region are:

Vgs > Vth (5.6)

Vds > Vgs − Vth (5.7)

Furthermore, defining a ∆V voltage due to the overdrive variations tolerance as in [61],

the saturation condition can also be expressed as:

Vgs ≥ Vth + ∆V (5.8)

Vds ≥ Vgs − Vth + ∆V (5.9)

Employing these simple inequations, the biasing voltages VDD and VSS and the desired

output voltage swing are finding all the set of conditions that the nodal voltages must

satisfy. After that, a sweep for all nodal voltages is made from VSS to VDD in order to

find all the nodal voltages combinations that satisfy the saturation biasing conditions.

The collected voltage ranges of nodal voltages are mapped in Vgs voltages of all MOS-

FETs. Then, the initial extracted MOSFET characterization data is employed to map-

ping the Vgs in the corresponding Id
W . Finally, to find the sizes W for each x transistor,

it is possible to use a relationship between Id
W and the Ids of the desired transistor, as

follows:

After, for sizing a particular analog circuit one should propose an initial guess for the

DC operating point. It means biasing voltages and currents with the aim to guarantee

that all transistors will be operating in saturation region. In this context, one can

suppose reasonable values for overdrive voltages (Vov) and gate to source voltages due

VDD and VSS . Additionally, the derived analytical expressions which define the frequency

response: gain, and roots (which stablish the Bandwidth and phase margin) for the

particular circuit, can be generated. In order to employ the gm/ID technique to outline
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the parameters range, the following inequalities summarize the bias conditions to keep

all transistors are operating in saturation region.

Vr1 ≥ Vss + Vtn + ∆V

Vr1 ≤ Vocm + (Vsw/2) + Vtn + ∆V

Vr2 ≥ Vr1 − Vtn + ∆V

Vr2 ≤ Vicm − Vtn −∆V

Vr3 ≥ Vicm − Vtn + ∆V

Vr3 ≥ Vr4 − |Vtp|+ ∆V

Vr3 ≤ Vdd − |Vtp| −∆V

Vr4 ≥ Vicm − Vtn −∆V

Vr4 ≥ Vocm + (Vsw/2)− |Vtp|+ ∆V

Vr4 ≤ Vdd − |Vtp|+ ∆V

The Vgs for each transistor is due to:

Vgs1 = Vicm − Vr2
Vgs3 = Vdd − Vr3
Vgs5 = Vdd − Vr4
Vgs7 = Vr1 − Vss
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Figure 5.19: Cost evolution.

Figure 5.19, shows the comparison of the cost value evolution during 100 generations.

From that Figure, it is clear that to reach the same minimal cost, the DE approach needs

85 generations, meanwhile the DE + gm/ID takes only 40 generations. The execution

time for the first case reaches the minimum value to be 850.92s, while the execution time

for reaching the minimum value with this approach is 474.51s. It means, including the

DE + gm/ID it is possible to reduce the execution time around 44%.

The final population cost is illustrated in Figure 5.20.
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Figure 5.20: Final Population Cost.

5.6.2 Optimal sizing for the OTA Miller amplifier employing NSGA-II
combined with gm/ID

The same procedure previously described was employed to integrate gm/ID technique

with the optimization algorithm NSGA-II.

Figure 5.21 the average violation constraint for three cases: only NSGA-II and two im-

plementations of NSGA-II +gm/ID. The implementation (1) is based on the biasing

conditions set detailed previously, while in the implementation (2) and specific opera-

tional point was proposed, it means a fixed value for each nodal voltage. It was expected

for a specific biasing values the search space is even smaller than the based on biasing

conditions and it becomes an advantage in terms of convergency speed.
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Figure 5.21: Violation constraint average comparison.

Figure 5.22 shows the results for the three cases. Based on the picture can be concluded

that the pareto front in similar for all the cases in terms of the range achieved for each

objective, however as smaller the search space, bigger the solutions set.
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5.7 Optimization employing evolutionary algorithms under

process variations

The set of solutions shown in Figure 5.22, accomplish all the constraints for nominal

conditions of operation. However, the same sizings were simulated using the corner

conditions of voltage, temperature and process, and the results are shown in Figures

5.23(a) to 5.24(f).
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Figure 5.23: Solutions under variations for corners: TT and SS
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Figure 5.24: Solutions under variations for corners: SF, FS and FF

According with the simulation results, PVT variations make the sizing’s constraint vio-

lation increase, it means that under variations the sizes can not accomplish the specifi-

cations and also the pareto front suffers modifications.

So, by applying the implementation technique formulated on Section 4.2 and based on

all corners evaluation, new solutions were obtained. Figure 5.25 shows the violation

constraint for the whole execution. Recalling how it works, the first search space is

generated employing gm/ID design technique, after that the evolutionary algorithm is

executed for nominal values of temperature, supply voltage and for the TT process corner,

this execution ends when the average violation constraint is equal to zero, it means,

when all the individuals of the population reach the constraints. In this case it happens
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in iteration 28. The plot in red dots represents the violation constraint for the first

generations. Then, the search space is again reduced according with the minimum and

maximum values for each parameter of the individuals that accomplish the constraints

(generation 28). With the new search space the algorithm is executed again but now the

violation constraint is the sum of the cost for all 45 corners. This execution is showed in

black dotes. As expected the violation constrain reaches bigger values because all corners

evaluation, however population evolution leads in less cost values, it means, individuals

that reach the constraints despite the PVT variations. The second algorithm execution

stops when the maximum number of iterations is reached, in this case 150. This test was

made for a population of 150 individuals.
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Figure 5.25: Violation constraint average comparison.

5.8 Sensitivity Analysis

According with the analysis described on Chapter 4. The sensitivity analysis of the OTA

Miller of Figure 5.1 was derived. For that purpose the symbolic expression of the transfer

function was derived as a function of all circuit parameters, including gm, gds, cgs and

cgd of each transistor. The differential of transfer function in the frequency domain w.r.t.

each parameter is shown in Figure 5.26, for magnitude and 5.27 for phase.

Previously, it is well known that the gain of the amplifier is due to the product of the

gain of both stages. The gain of the first one is related with the transconductance of the

input pair transistor by the output resistance, which is inversely the output conductance

of the input pair and active load transistors. The second stage gain is related directly

with the gain transistor and inversely with the output conductance of the load or biasing

transistor.

According with magnitude plot is possible to deduce that for low frequencies (near to

DC operating) the most sensitive parameters are gm5, gds6, gm2, gds2 and gds4.
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Figure 5.26: Sensitivity of |H(s)| w.r.t each OTA parameter.
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Figure 5.27: Sensitivity of ∠H(s) w.r.t each OTA parameter

Once the more sensitivity element is identified, a sweep of the sizes associated with the

parameter can be done in order to identify the variation percentage that can support

while it still accomplish the specifications. As a result, the individuals with the largest

variation range can have preference to be selected.

For instance, in this case a sweep of W(M5) was made and the maximum percentage of

variation for each individual is ploted in figure 5.28.

In this example, the individuals with larger percentage of variation can ensure more

robustness to variations.
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Conclusion

Analog design include a lot of challenges for a designer. All the constraints and the

presence of second order effects in a determined fabrication technology make the autom-

atization of the design a difficult task.

Facing this problem, in this work was showed the usefulness of applying optimization

techniques for the automatic sizing optimization of analog ICs by applying evolutionary

algorithms; specifically the implementation was done for both Differential Evolution

and NSGA-II algorithms. As a first improvement to the current approaches, it was

stressed a comparison between using traditional real and integer encoding; our proposed

integer encoding for ICs, provides feasible Ws and Ls sizes of MOSFETs that can be used

directly to generate the layout of the design, because those optimal sizes are multiples

of IC technology. In this manner, our proposed integer encoding eliminates the post-

processing tasks on rounding-off the feasible solutions using traditional real encoding

values. Another important advantage of using integer encoding is the reduction in the

memory usage, because in a 64 bit processor a integer variable employs 4 bytes, while a

real (double) variable needs 8 bytes.

The proposed integer encoding was used in the optimal sizing of the OTA Miller amplifier

and the CCII. The sizing optimization for both ICs using integer encoding showed a

reduction of execution time and memory usage vs. using real encoding. The optimized

CCII was tested to implement a universal filter and an SRCO, showing good responses,

thus justifying the usefulness of the proposed integer encoding.

A new sizing approach that combines the gm/Id technique with evolutionary algorithms,

has been introduced. The results provided in the Chapter 5 shows that by including

the gm/Id technique to DE or NSGA-II algorithms, the multi-objective optimization

61
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converges in less generations than when using only the optimization algorithm, as tradi-

tional cases. The main advantages of this approach are: the searches spaces are feasible

values for the given technology, the bias conditions are guaranteed and the computing

time required by the algorithm is diminished because the convergence of the algorithm is

improved, so the circuit simulator (SPICE, located in the optimization loop) to evaluate

the fitness functions, is less times called.

Another apport of this work is the consideration of the variations as a tool to compare

the solutions found by the algorithm. Variations in process fabrication, voltage fluc-

tuations and temperature changes modify the response of a circuit. In analog circuits

this variations derive in impairing the response features. For that reason, the automatic

design tool was modified including the evaluation of 45 PVT corners and minimizing

the total cost function. As a result, now the solutions of the algorithm are sizings that

accomplish the specifications and also are robust to variations.

Another option to estimate variations was explored. In this work was demonstrated

usefulness of performing symbolic sensitivity analysis for compare the impact of each

circuit element in the whole behavior of analog circuits. A tool for deriving symbolic

expressions for transistor level circuits was developed in this work. After that, an Graph

based technique for symbolic differentials was employed to derive the sensitivity with

respect of each parameter. The sensitivities were ranked to identify the most sensitive

elements, and the procedure was validated by performing HSpice simulations to compare

numerical results with the associated symbolic expressions. Finally, from the simulated

results, we can conclude that the symbolic sensitivity analysis is an effective method to

estimate which components requires special attention in the design process to keep the

good performance of an analog IC.
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