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a b s t r a c t

Several methods have been presented in the literature that successfully used SIFT features for object
identification, as they are reasonably invariant to translation, rotation, scale, illumination and partial
occlusion. However, they have poor performance for classification tasks. In this work, SIFT features are
used to solve object class recognition problems in images using a two-step process. In its first step, the
proposed method performs clustering on the extracted features in order to characterize the appearance
of the different classes. Then, in the classification step, it uses a three layer Bayesian network for object
class recognition. Experiments show quantitatively that clusters of SIFT features are suitable to represent
classes of objects. The main contributions of this paper are the introduction of a Bayesian network
approach in the classification step to improve performance in an object class recognition task, and a
detailed experimentation that shows robustness to changes in illumination, scale, rotation and partial
occlusion.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Recognizing object classes is one of the oldest problems in Com-
puter Vision. However, it remains as one of the most challenging
problems, due to the undefined nature of object classes similarity.
Sometimes, objects in different classes can have more similar char-
acteristics compared to others in the same class. Several research-
ers have addressed this problem in many ways. In Ullman (1996),
object recognition is divided into three subcategories, based on the
major principles they employ: the approach that uses invariant
properties and feature spaces, those that use parts and structural
descriptions, and finally alignment approaches.

The first subcategory assumes that there are certain invariant
characteristics that are common to an entire class of objects. Most
current research is based on this assumption, looking for different
and increasingly robust invariant features. The second subcategory
used parts and structural decomposition. In this case, it is assumed
that all the objects are composed of a set of generic components.
The third subcategory is the alignment approach. The main idea
of these methods is to compare the new object to be recognized
with a stored model and estimate the changes that separate them.

Generally, stored models are 3D models, which make these meth-
ods very expensive in computational terms.

Also, most objects class recognition methods characterize ob-
jects by their global appearance, usually of the entire image. These
methods are not robust to occlusion or variations such as rotation
or scale. Moreover, these methods are only applicable to rigid ob-
jects. Local invariant features have become very popular to give
solution to the limitations of these methods in object detection
and recognition.

In the last few years, local features (e.g. Harris-Affine (Mikolajc-
zyk & Schmid, 2004), SIFT (Lowe, 2004), SURF (Bay, Ess, Tuytelaars,
& Van Gool, 2008)) have proven to be very effective in finding dis-
tinctive features between different views of a scene. The traditional
idea of these methods is to first identify structures or significant
points in the image and to obtain a discriminant description of
these structures from its surroundings, which is then used for com-
parison using a similarity measure between these descriptors.

A keypoint detector is designed to find the same point in differ-
ent images even if the point is in different locations and scales. Dif-
ferent methods have been proposed in the literature. A study and
comparison of these approaches is presented in Tuytelaars and Mi-
kolajczyk (2007).

Local features have been mainly used for the identification of
particular objects within a scene. For instance, a particular book
is given to a system, which extracts its SIFT features and uses them
to recognize that particular book. However, such features cannot
be used to recognize another book or books in general on the scene.

One of the most popular and widely used local approaches is
the SIFT (Scale Invariant Features Transform) method, proposed
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by Lowe (2004). The features extracted by SIFT are largely invariant
to scale, rotation, illumination changes, noise and small changes in
the viewing direction. The SIFT descriptors have shown better re-
sults than other local descriptors (Mikolajczyk & Schmid, 2005).

For object class recognition, many methods use clustering as an
intermediate level of representation (Agarwal, Awan, & Roth, 2004;
Leibe, Seemann, & Schiele, 2005). Due to the robustness of local
features and the good results of clustering in object classification,
several authors have recently been investigating the use of cluster-
ing for object class recognition using local features based ap-
proaches. In Dorkó and Schmid (2005), for invariant region
detection, the authors use the Harris-Laplace (Mikolajczyk & Sch-
mid, 2001) and the Kadir and Brady detector (Kadir & Brady,
2001). These regions are described using the SIFT descriptor (Lowe,
2004). In their work, Dorkó and Schmid perform clustering of
descriptors to characterize class appearance. Then, they build clas-
sifiers of smaller parts of objects from the clusters formed. By dis-
carding several of these clusters they kept only the most
discriminative ones.

Mikolajczyk, Leibe, and Schiele (2005) evaluate the perfor-
mance of various methods based on local features in the object
class recognition task. The invariant region detectors evaluated
were Harris-Laplace, SIFT, Hessian–Laplace, and MSER. The evalu-
ated features descriptors were SIFT, GLOH, SIFT-PCA, Moments,
and Cross-Correlation. In their paper the authors evaluate several
detector–descriptor combinations. Clustering is also performed
on the descriptors to characterize the appearance of classes. To
classify a new sample, the extracted descriptors are matched with
the clusters obtained and a threshold determines the class
membership.

Zhang, Lazebnik, and Schmid (2007), proposed a method that
represents images as distributions of features extracted from a
sparse set of keypoint locations and learns a Support Vector Ma-
chine classifier with kernels based on two effective measures for
comparing distributions, the Earth Mover’s Distance and the v2

distance. They evaluated the performance and classifiers (i.e., SIFT
and SPIN detectors, and the EMD kernel and SVM for classification).

In Wang et al. (2010) to recognize object classes, the authors
proposed a coding scheme called Locality-constrained Linear Cod-
ing (LLC) instead of the vector quantization in spatial pyramid
matching (Lazebnik, Schmid, & Ponce, 2005). LLC project each
descriptor into its local-coordinate system by using the locality
constraints. In order to generate a final representation the pro-
jected coordinates are integrated by max pooling. To describe fea-
ture points they used SIFT descriptor and a SVM linear classifier is
utilized for classification.

In these works it is mentioned that their proposed methods
have invariance to occlusion, changes in illumination, rotation
and scale. However, there is no experimentation for the above; nei-
ther do they express how robust these methods are. It is also as-
sumed that their proposed methods outperform a
straightforward classification method using local features, but no
evidence of this is given. In this paper we analyze these facts
through a set of detailed experiments over our proposed method.

In this work we use SIFT features to recognize object classes
(e.g., books, cameras) in order to provide robustness to changes
in scale, rotation, illumination and partial occlusion. The proposed
method, in the training phase, also performs clustering on the fea-
tures extracted from the training set. Each feature in each cluster is
labeled with its corresponding class in order to characterize the
appearance of object classes. In the classification step, for a new
image, the SIFT features are extracted, and for each feature the
cluster from the learned model to which it belongs is identified.
Information from the identified clusters is then used to find the
most probable class. To represent this idea, we introduce the use
of a three layer Bayesian network. Three experiments were con-

ducted to test the performance of the proposed method. These
experiments showed quantitatively that the use of SIFT local fea-
tures, clustering and Bayesian networks are suitable to represent
and recognize object classes, and that the proposed method signif-
icantly outperforms the direct use of SIFT features for object clas-
sification. They also showed the invariance of the method in the
presence of changes in illumination, scale, rotation and partial
occlusion.

The main contributions of this paper are the following. Firstly,
we introduce a Bayesian network approach in the classification
step to improve performance on this stage. Secondly, we show that
clustering over local features provides robustness to changes in
illumination, scale, rotation and partial occlusion. We also show
that this kind of approach outperforms a straightforward classifica-
tion method using SIFT features. These last two issues are men-
tioned in the literature but there is no detailed experimental
evidence to support them.

The rest of the paper is organized as follows. Section 2 briefly
presents some existing approaches for recognizing object classes
using local features. Section 3 describes SIFT local features that
are used by our proposed method. The proposed method for learn-
ing classes appearance based on clustering, and, a description of
the clustering method used are presented in Section 4. In Section 5,
the proposed method for recognizing the class of an unseen sample
image is explained.. Results and discussion for the three conducted
experiments are given in Section 6. Section 7 concludes the paper
with a summary of our proposed method, main contributions, and
future work.

2. Learning and recognition methods

2.1. Learning object classes

As mentioned in the previous section, matching of SIFT features
has shown good results in finding a particular object in different
views of a scene. However, the aim and specifications for object
class recognition are not the same. In order to recognize object
classes, a model that is able to generalize beyond each object in
the training set and that allows us to learn a general structure of
each class is desired. Moreover, learning should be possible from
a small number of samples. With this aim and in accordance with
several studies reported in the literature (mentioned in Section 1),
clustering is performed on feature descriptors extracted from the
training images.

Clusters are expected to have high accuracy i.e., each cluster is
representative of only one class. In practice, this does not always
occur so there could be clusters that are shared by several classes.
Additional methods will be needed in the classification stage to
solve these ambiguities.

Fig. 1 shows a high level diagram of the class learning method
proposed, which is summarized as follows:

1. For each training image, SIFT local features are extracted.
2. Then, clustering is performed over the features descriptors.
3. Finally, each descriptor in each cluster is labeled with its corre-

sponding class.

2.2. Recognizing object classes

Given a new sample image, classification is performed by first
extracting the SIFT features from the input image. Then, for each
of these features, a cluster is associated from the learned model
and finally, from this instantiation of the model, the class of the in-
put object is determined. Fig. 2 shows a layout of the proposed
method.
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This idea can be represented as a three layer Bayesian network
(BN). Bayesian networks provide a means of expressing joint prob-
ability distributions over many interrelated hypotheses (Jensen,
1996). A Bayesian network consists of a directed acyclic graph
and a set of local distributions. Each node in the graph represents
a random variable. A random variable denotes an attribute, feature,
or hypothesis about which we may be uncertain. Each random var-
iable has a set of mutually exclusive and collectively exhaustive
possible values. That is, exactly one of the possible values is or will
be the actual value, and we are uncertain about which one it is. The
graph represents direct qualitative dependence relationships; the
local distributions represent quantitative information about the
strength of those dependencies. The graph and the local distribu-
tions together represent a joint distribution over the random vari-
ables denoted by the nodes of the graph.

The graphical representation of this BN is shown in Fig. 3. In the
first layer we have the trained object classes represented by
c1, c2, . . . , cC, where C is the number of classes. In the second layer,
clusters obtained in the training phase are represented by

k1, k2, . . . , kK, where K is the number of obtained clusters. Finally,
the third layer represents the features extracted from the new ob-
ject, and are represented by the nodes f1, f2, . . . , fF, where F is the
number of features extracted from the image.

Usually, the parameters of a Bayesian network are previously
estimated. In this work, only the probabilities for a class given
each cluster are previously estimated (this probability is calcu-
lated from the clusters obtained in the training phase). The prob-
ability for each feature in a cluster is calculated online, as
described below in steps 1 and 2 of the classification process.
Therefore, the parameters of this Bayesian network change for
each test image.

Using this model, the classification of a new image I is per-
formed as follows:

1. SIFT features are extracted from the input image I.
2. For each feature f extracted from I, cluster kf to which it belongs

is obtained. The cluster with the highest membership probabil-
ity of the feature f is selected. This probability is a function of

Fig. 1. SIFT local features are extracted from the training set formed by several sample images per class. Later, features descriptors are clustered (the elements inside each
circle represents a cluster). Each feature in each cluster is labeled with its corresponding class (represented in the figure by the subscripted number on every element of a
cluster). Note that features from different classes could be in the same cluster.

Fig. 2. Classification scheme for a new image. SIFT features are extracted from this image and for each feature the cluster from the learned model to which it belongs is
identified. The object class is the majority class in these clusters.
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the distance between the cluster and the feature, which is nor-
malized by the distance between the two most distant clusters.
The same distance D defined in Eq. (4) is used:

kf ¼ arg max
i

Pðf jkiÞPðkiÞ; where ð1Þ

Pðf jkiÞ ¼ 1$ Dðf ; kiÞ
maxk;lDðkk; klÞ

: ð2Þ

3. For each cluster kf1 ; kf2 ; . . . ; kfF selected in the previous step
(note that more than one feature could be in the same cluster),
the probability of each class given this evidence is obtained, this
probability is extracted from the trained model, propagating
further the probability obtained in step 2.

4. Finally, the object class is the one whose sum of occurrence
probabilities given each cluster selected in step 2 is the highest:

c% ¼ arg max
i

X

f

PðCijkf ÞPðkf Þ: ð3Þ

3. Obtaining and clustering local features

3.1. SIFT local features

Methods based on comparisons of entire images or windows
within them, are suitable for learning and describing the global
structure of objects, but cannot deal with partial occlusion prob-
lems, large viewpoint changes, or with non-rigid objects.

In the past decade, there were significant advances in solving
these problems with the development of local invariant features.
The use of these features allows us to find local structures that
are present in different views of the image. It also allows a descrip-
tion of these structures invariant to image transformations such as
translation, rotation, scale and viewpoint.

SIFT is one the most widely used local approaches. It finds local
structures (grids in Fig. 4) that are present in different views of the
image. It also provides a description of these structures reasonably
invariant to image variations such as translation, rotation, scale,
illumination and affine transformations. Moreover, several studies
have shown that the SIFT descriptor performs better than others
(Mikolajczyk & Schmid, 2005).

The first stages of the SIFT algorithm find the scale-invariant
keypoints in a certain scale and assign an orientation to each
one. For each keypoint, scale and orientation are represented in

Fig. 4 by the size and orientation of the grid, respectively. The re-
sults of these steps guarantee invariance to image location, scale
and rotation. The keypoints detected by SIFT have a high repeat-
ability, i.e., given two images of the same object or scene, taken un-
der different viewing conditions, a high percentage of the features
detected on the scene should be found in both images. Then, a
descriptor is computed for each keypoint. This descriptor must
be highly distinctive and partially robust to other variations such
as illumination and 3D viewpoint.

To create the descriptor, Lowe proposed an array of 4 & 4 histo-
grams of 8 bins (Lowe, 2004). These histograms are calculated from
the values of orientation and magnitude of the gradient in a region
of 16 & 16 pixels around the point so that each histogram is formed
from a subregion of 4 & 4. Fig. 5 shows on its left side the gradient
magnitude and orientation in a region around a keypoint, these
values are weighted by a Gaussian window, indicated by the over-
laid circle. The orientation histograms for each 4 & 4 region are
shown on the right. Arrows longitude represent the accumulated
gradient magnitude in each orientation. The descriptor vector is
the result of the concatenation of these histograms. Since there
are 4 & 4 = 16 histograms of 8 bins each, the resulting vector is of
size 128. This vector is normalized in order to achieve invariance
to illumination changes.

The distinctiveness of these descriptors allows us to use a sim-
ple algorithm to compare the collected set of feature vectors from
one image to another in order to find correspondences between
feature points in each image. These correspondences are adequate
to identify particular objects in the image, but not to identify object
classes. With this purpose in mind, in this paper SIFT feature
descriptors are clustered to characterize object classes and are
incorporated in a Bayesian network classifier.

3.2. SIFT features clustering

To build clusters of SIFT descriptors, the agglomerative hierar-
chical clustering method proposed by Johnson (1967) is used. Un-
like K-means or EM-clustering, this algorithm does not depend on
initialization. Furthermore, it has been reported to be superior to
K-means (Jain & Dubes, 1998).

Given F features descriptors extracted from all the images in the
training set, the clustering is initialized with F clusters, each one
containing one descriptor only. In each iteration, the two clusters
with the highest cohesion are merged.

Fig. 3. Graphical representation of the three layer Bayesian network used to classify
a new object. In the first layer we have the classes for which the model was trained.
The nodes in the second layer represent the clusters obtained in the training phase.
Finally, the third layer represents the features extracted from the new object.

Fig. 4. Examples of local features found on a graffiti image. The center of the grids
indicates the keypoint location. Size and orientation of the grids represents scale
and orientation for each keypoint, respectively.
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The similarity between any two clusters can be measured in
several ways; the most common are single linkage, complete link-
age and average linkage. In this paper, average linkage is used,
which is defined as the average distance of every element in a clus-
ter to every other element in the other cluster:

Dðk; lÞ ¼ 1
MN

XM

m¼1

XN

n¼1

dðkm; lnÞ; ð4Þ

where M and N are the number of descriptors in the clusters k and l,
respectively.

Agglomerative clustering produces a hierarchy of associations
of clusters until the cut off criterion halts the process. Therefore,
after each iteration, a new cluster is obtained from the pair of clus-
ters with the highest similarity above a given value. This value is
used as the cut off criterion and, ideally, should be the one that en-
sures that the resulting clusters are those that best characterize ob-
jects classes. In this work the cut off value is selected in the
training phase. The cut off value that maximizes the accuracy in
the classification for a given training set is selected. Therefore,
there will be two training sets, one for obtaining the classes
appearance models and another to obtain the cut off parameter.

The time complexity of the agglomerative hierarchical cluster-
ing algorithm is O(n4) (Olson, 1995), where n is the number of ob-
jects (i.e. n = F). In order to optimize the process of updating the
similarities matrix, the Lance–Williams formulas (Lance & Wil-
liams, 1967), allow us to calculate the similarity between groups
based on similarities among clusters of the previous level. Using
this technique a complexity of O(n3) is achieved.

Day–Edelsbrunner algorithm (Day & Edelsbrunner, 1984) is a
variation of a hierarchical clustering algorithm that uses the
Lance–Williams formulas. This algorithm uses one priority queue
per cluster to find the more similar pairs of clusters. Each queue
has the remaining clusters ordered by similarity. At each iteration,
update of the priority queue of each cluster is required. Using this
structure, finding the more similar pairs of clusters is done in O(n),
therefore, the algorithm achieves a time complexity of O(n2 log n).

Moreover, since the average linkage satisfies the principle of
reducibility (Murtagh, 1983), the reciprocal nearest neighbors
(RNNs) can be joined without having to find the more similar pairs
of clusters. Two clusters are RNNs if one of them is most similar to
the other and vice versa. In order to find the RNNs, a queue where
each cluster is most similar to the one preceding it is created. The
obtained clusters are ordered by the same similarity value that
joined them in order to obtain the same dendrogram than the ori-
ginal hierarchical clustering algorithm. This mechanism achieved a
time complexity of O(n2).

4. Evaluation

In this section the evaluations and tests performed to the pro-
posed method are presented. The data collection used and the
measurement of variables are also described.

For the conducted experiments, images from the CalTech101
collection3 (Li & Perona, 2005) were used. This database contains
101 different classes of objects and different numbers of images
per class, the compression format is JPG and the average size is
300 & 300 pixels. Each image contains only one object centered in
the image.

In order to test the performance of the proposed method, a sys-
tem was trained to recognize four classes of objects (i.e., camera,
dollar bill, motorcycle, and wristwatch), which were randomly se-
lected. For training the classes appearance models, 20 images per
class were used. Another 20 images per class were selected in order
to train the clustering cutoff parameter, the resulting value of this
parameter was 0.91. All the images in both training sets were
also randomly selected. Example images for camera, dollar bills,

3 Available online at: ‘‘http://www.vision.caltech.edu/Image_Datasets/Caltech101/
n#Download’’.

Fig. 6. Example images from the training set. The training set is composed of 20
images for each of the four classes. These images were randomly selected from the
database. At top left: cameras, top right: motorcycles, bottom left: dollar bills, and
bottom right: wristwatches.

Fig. 5. This figure, for purposes of explanation, shows a descriptor of 2 & 2 regions calculated from a region of 8 & 8 pixels, but Lowe proposes to use descriptors of 4 & 4
regions in neighborhood of 16 & 16 pixels around the point.
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motorcycle, and wristwatch from Caltech101 database are shown
in Fig. 6.

Three experiments were conducted to evaluate the proposed
method. The goal of the first experiment is to measure the perfor-
mance of the proposed method in normal conditions (i.e., illumina-
tion, occlusion, rotation and scale problems-free images). The
second experiment compares the method proposed in this paper
with a straightforward classification method also using SIFT fea-
tures. Finally, the third experiment measures how the performance
of the proposed method behaves in the presence of partial occlu-
sion and variation in illumination, scale and rotation in the test set.

The performance indicators used were recall, precision, true
negative rate and accuracy. The recall rate measures the proportion
of actual positives which are correctly identified as such:

recall ¼ tp
tpþ fn

: ð5Þ

Precision is defined as the proportion of the true positives
against all the positive results:

precision ¼ tp
tpþ fp

: ð6Þ

The true negative rate (TNR) measures the proportion of nega-
tives which are correctly identified:

TNR ¼ tn
fpþ tn

: ð7Þ

The accuracy is the proportion of true results, both true posi-
tives and true negative, in the population:

accuracy ¼ tpþ tn
tpþ tnþ fpþ fn

; ð8Þ

where tp, tn, fp, fn refer to the number of true positives, true nega-
tives, false positives and false negatives, respectively.

5. Results and discussion

This section presents a quantitative evaluation of the proposed
method and discusses the main results obtained.

5.1. Experiment 1

In Experiment 1, results were obtained for 100 test images per
class. The goal of this experiment is to measure the performance of
the proposed method in normal conditions. These images have
small variations in occlusion, scale, illumination and rotation.
Images from the training set were not in the test set.

Table 1 shows the results obtained in Experiment 1.
As could be seen in Table 1, all the measures averages were over

90%, which indicates the high performance of the proposed
method.

5.2. Experiment 2

In order to evaluate the improvement introduced by the cluster-
ing of SIFT descriptors on the representation of object classes and
the use of a Bayesian network in the classification phase, in this
section we compare the method proposed in this paper with a
straightforward classification method also using SIFT features,

Table 1
Performance indicators for Experiment 1.

Measures Camera Dollar
bill

Motorcycle Wristwatch Average

Recall (%) 84.0 100 99.0 89.0 90.7
Precision (%) 94.6 89.2 90.5 98.9 93.3
True negative

rate (%)
98.3 96.0 96.7 99.7 97.6

Accuracy (%) 93.5 95.0 95.0 94.5 94.5

Fig. 7. Comparison between the Baseline method and the results obtained by our proposed method in Experiment 1.
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which is taken as the baseline. This method is summarized as
follows:

1. Extract SIFT features of each image from the training set.
2. For a new image I extract its SIFT features.
3. This image is matched with each of the images of the training

set. The matching method used is the one proposed by Lowe
(2004).

4. The class of the input image will be the one that receives the
highest number of correspondences with image I.

To perform this experiment, the same training and test sets that
were used in Experiment 1 were used. A comparison between the
Baseline method and the results obtained by our proposed method
in Experiment 1 are shown in Fig. 7. Each group of bars represents

the values of recall, precision, true negative rate, and accuracy ob-
tained for each class. On the left are the values for the baseline
method and those of Experiment 1 on the right. We can see that
the proposed method outperforms the baseline method. Our meth-
od performance measures are above 90%, while for the baseline
method values are around 80%.

Table 2 summarizes the above comparison between the Base-
line method and our method. The values in this table correspond
to the average of each of these measures for all trained classes.

As could be noticed in Fig. 7 and Table 2, the proposed method
outperforms the baseline method by a wide margin. This result
gives evidence of the improvement introduced by the clustering
of SIFT descriptors on the representation of object classes and the
use of a Bayesian network in the classification phase.

5.3. Experiment 3

The aim of Experiment 3 is to test the robustness of the pro-
posed method to changes in illumination, occlusion, scale and rota-
tion. For Experiment 3, the same model obtained in Experiment 1 is
used to classify. To build the test set, 10 images that were correctly
classified in Experiment 1 were randomly selected for each class.
Variations in occlusion, scale, illumination and rotation were arti-
ficially introduced to each of these images, resulting in 40 images

Table 2
Comparison of baseline and Experiment 1.

Measures Baseline Proposed method

Recall (%) 68.0 90.7
Precision (%) 80.9 93.3
True negative rate (%) 89.3 97.6
Accuracy (%) 84.0 94.5

Fig. 8. Example images from the test set used for the Experiment 3. These images present partial occlusion and changes in illumination, rotation and scale.
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per class. Example images from the test set used in this experiment
are shown in Fig. 8.

Table 3 shows the performance results obtained in Experiment
3. As it could be seen, the average values of performance are main-
tained above 95%, showing the robustness of the proposed method
to variations in illumination, occlusion, scale and rotation.

The recall and precision measures obtained for each kind of var-
iation introduced to the test set are shown in Table 4. It could be
noticed that there were no major falls in recall and precision rates,
showing the largest variations (30%) in the precision on the camera
class with illumination changes.

6. Conclusions

As a result of this work, a method for recognizing object classes
using SIFT features have been developed. The proposed method
performs clustering on the descriptors of the detected points to
characterize the appearance of object classes. It also introduces
the use of a three layer Bayesian network in the classification stage
to improve classification rates. Three experiments were conducted
to evaluate the proposed method. They showed that SIFT features
are suitable to represent object classes, and evidenced the
improvement achieved by clustering SIFT descriptors and using a
Bayesian network for classification. These experiments also
showed quantitatively the invariance of the method to illumina-
tion changes, scale, rotation and occlusion. It also provided exper-
imental evidence that supports that a method based on clustering
of SIFT features outperforms a straightforward object recognition
method based on SIFT features to identify object classes.

As future work, the localization of objects in the image will be
investigated, trying to learn the spatial relationships between the
local features and clusters that describe an object class.
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Table 3
Performance indicators for Experiment 3.

Measure Camera Dollar bill Motorcycle Wristwatch

Recall (%) 94.8 95.3 92.5 100
Precision (%) 92.0 98.0 94.0 96.0
True negative rate (%) 97.5 99.3 97.9 98.7
Accuracy (%) 96.5 98.0 96.5 99.0

Table 4
Recall and precision measures (%) for each type of image alteration in Experiment 3.

Variation Measure Camera Dollar bill Motorcycle Wristwatch

Occlusion Recall 100 100 90.9 100
Precision 90.0 100 100 100

Illumination Recall 100 76.9 81.8 100
Precision 70.0 100 90.0 90.0

Scale 2& Recall 90.9 100 100 100
Precision 100 100 90.0 100

Scale 0.5& Recall 100 100 100 100
Precision 100 100 100 100

Rotation Recall 83.3 100 90.0 100
Precision 100 90.0 90.0 90.0
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