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Maximally Flat CIC Compensation Filter: Design
and Multiplierless Implementation
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Abstract—This brief introduces a design and implementation
of maximally flat cascaded integrator comb compensation filters.
In particular, we consider second- and fourth-order linear phase
filters for narrow-band and wideband compensation. Closed-form
equations for the computation of the filter coefficients are given.
The multiplierless implementation is also considered. The number
of adders is a function of the decimation factor D and the number
of stages N . The implementation complexity is discussed, and
comparisons with some methods reported in the literature are
provided.

Index Terms—Cascaded integrator comb filters, decimation,
finite impulse response filters, linear phase.

I. INTRODUCTION

THE cascaded integrator comb (CIC) filters are an econom-
ical class of linear phase finite-impulse response (FIR) fil-

ters [1]; they are used for decimation and interpolation because
of their simple multiplierless structure. The transfer function of
the CIC filter is defined by

H(z) =
(

1
D

1 − z−D

1 − z−1

)N

(1)

where D and N are the decimation factor and the number of
stages, respectively.

The resulting CIC magnitude response characteristic has a
low attenuation in the alias bands and a droop in the passband
region, which consequently introduce distortion in the signal af-
ter decimation. The simplest method to improve alias rejection
is to increase the number of the CIC stages. It is common in
many applications to use N = 5 stages. Increasing the number
of the stages causes an increase in the passband droop. Alter-
native methods improve the stopband alias rejection, e.g., [2].
Similarly to [3]–[8], in this brief, we only consider the problem
of the passband droop compensation.

A second-order FIR compensation filter is proposed in [4].
The method is based on the minimization of the error func-
tion in the least-square sense. In a similar way, a generalized
approach that includes least-square, minimax, and maximally
flat designs is given in [6]. An extension to include the new L1
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optimization technique is described in [7]. This design results
in less peak error ripple in the region of interest compared with
the least-square and minimax optimizations. Additionally, the
resulting implementation structures of the methods in [4], [6],
and [7] require at least one multiplier.

The method proposed in [3] describes the multiplierless
design of a second-order compensation filter. The filter co-
efficients expressed as a sum of power of two (SOPOT) are
computed using a random search algorithm [3]. Similarly, in
[5] and [8], the authors proposed simple second-order compen-
sation filters for the narrow-band and wideband compensation,
respectively, with low computational complexity.

The main goal of this brief is to extend the results given in [6]
to include the wideband compensation as well as to efficiently
implement the compensator filters. The novelties of this brief
are new maximally flat compensators for the narrow-band and
wideband, where the closed-form equations are proposed for
computing the filter coefficients. Additionally, the multiplier-
less implementation is proposed.

The rest of this brief is organized as follows. In Section II,
we propose a set of linear equations to design a linear phase
maximally flat compensation filter of even order. In particular,
narrow-band design uses the second-order filter, whereas the
fourth-order filter is used for wideband design. Closed-form
equations to compute the filter coefficients for narrow-band
and wideband designs are also given. Section III deals with
the multiplierless implementation of the proposed maximally
flat compensators. The implementation complexity in terms of
the number of adders is also provided. Finally, discussions of
results are given in Section IV.

II. MAXIMALLY FLAT COMPENSATORS

This section deals with the design of a linear phase FIR com-
pensation filter, with the maximally flat magnitude response.
The proposed compensated CIC filter is expressed as

G(z) = H(z)P (zD) (2)

where H(z) is the CIC filter defined in (1), and P (z) is a linear
phase filter. In general, there are four cases of linear phase filters
that should be considered, i.e., Type I–IV FIR filters. However,
the Type II–IV FIR filters imply at least one zero on unit circle
[9], which is inconvenient for the expanded filter design P (zD).
Accordingly, we consider the Type I linear phase FIR filter.

Usually, the CIC decimator filter is followed by a second
decimator stage. The decimator factor ν of the second stage de-
termines the passband edge frequency ωp, where the worst pass-
band droop occurs, ωp = π/(Dν) [2]. Depending on the value
ν, we have narrow-band and wideband designs, that is, narrow-
band results if ν ≥ 4; otherwise, wideband is considered.

From (1), the frequency response of the CIC filter is given by

H(e jω) = e−j(D−1)Nω/2HR(ω) (3)
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where HR(ω) is a real-valued function given by

HR(ω) =
(

1
D

sin(Dω/2)
sin(ω/2)

)N

. (4)

We define the Type I linear phase FIR compensation filter
P (z) as

P (z) =
L∑

n=0

anz−n (5)

where L is an even integer and is the order of P (z), an, n =
0, . . . , L, are the filter coefficients, and an satisfies an = aL−n.
The corresponding frequency response is [9]

P (e jω) = e−jLω/2PR(ω) (6)

where the real-valued function PR(ω) is expressed as [9]

PR(ω) = aL/2 + 2
L/2−1∑
n=0

an cos (ω(L/2 − n)) . (7)

Consequently, the corresponding frequency response of G(z)
can be written as

G(e jω) = e−jω((D−1)N+LD)/2HR(ω)PR(Dω). (8)

From (8), it is clear that the overall filter G(ejω) has a linear
phase, which avoids phase distortion of the input signal in the
passband. We now impose the maximally flat condition onto the
magnitude response.

In order to design the compensation filter P (z), we define the
error function as [6]

E(ω) = PR(Dω)HR(ω) − 1. (9)

The condition that the error function E(ω) is maximally flat
at ω = 0 is that it has as many derivatives as possible that
are vanishing at ω = 0 [10]. Since the error function is an
even function of ω, its odd indexed derivatives evaluated at
ω = 0 are automatically zero [10]. Therefore, the maximally
flat conditions are

E(0) = 0 (10a)
dpE(ω)

dωp

∣∣∣∣
ω=0

= 0 (10b)

where p is even and positive integer, i.e., p = 2q for q =
1, . . . , L/2.

Using (9), (10a) implies

PR(0) = 1. (11)

Now, substituting (9) into (10b) and using the general Leibniz
rule for the pth derivative of a product, we arrive at

dpHR(ω)
dωp

+
p∑

�=1

(
p

�

)[
d�PR(Dω)

dω�

dp−�HR(ω)
dωp−�

]
ω=0

=0 (12)

where the binomial coefficient is given by(
p

�

)
=

p!
�!(p − �)!

. (13)

The odd indexed derivatives of PR(Dω) evaluated at ω = 0
are zero. Therefore, from (7), we obtain

d�PR(Dω)
dω�

∣∣∣∣
ω=0

=
{

2(−1)�/2D�
∑L/2−1

n=0 (L/2 − n)�an, � even
0, � odd.

(14)

Substituting (14) into (12), (10b) can be rewritten as

2
q∑

�=1

(
2q

2�

)
(−1)�D2�

×
L/2−1∑
n=0

(L/2 − n)2�an

[
d2(q−�)HR(ω)

dω2(q−�)

]
ω=0

= −d2qHR(ω)
dω2q

(15)

for q = 1, . . . , L/2. The coefficients of the linear phase maxi-
mally flat compensation filter P (z) of the order L are obtained
by solving the set of linear equations (15). In particular, we
consider the second-order filter for narrow-band design and the
fourth-order filter for wideband design as they are described in
the following subsections.

A. Narrow-Band Compensator

This section focuses on the design of the narrow-band com-
pensator filter based on the second-order linear phase filter,
which is equivalent to that of [6]. The resulting magnitude char-
acteristics of the compensated CIC filter exhibits a maximally
flat characteristic at ω = 0. The multiplierless implementation
of the narrow-band compensator is discussed in Section III.

Using (5) with L=2, the transfer function of P (z) is given by

P (z) = a0 + a1z
−1 + a0z

−2. (16)

Accordingly, the maximally flat conditions given by (11) and
(15) are equivalent to

a1 + 2a0 = 1 (17a)

a0 =
1

2D2

d2HR(ω)
dω2

∣∣∣∣
ω=0

(17b)

where

d2HR(ω)
dω2

∣∣∣∣
ω=0

= −N(D2 − 1)
12

. (18)

Solving the set of linear equations (17), we arrive at

a0 = −N

32
1 − D−2

1 − 2−2
, a1 = 1 − 2a0. (19)

We define the following constant:

A =
1 − D−2

1 − 2−2
. (20)

Consequently, the filter coefficient a0 can be rewritten as

a0 = −2−5N · A. (21)

The proposed filter structure for the second-order compen-
sator is given in Fig. 1. Observe that the structure has one
multiplier since the multiplier of value N can be expressed
using canonic signed digit (CSD) representation [11].
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Fig. 1. Second-order compensation filter structure.

Fig. 2. Magnitude responses of the CIC, compensated CIC, and compensation
filters in Example 1.

Example 1: Consider the following design parameters: the
decimator factor D is equal to 32, the number of stages N is 5,
and ν is 4.

Using the values D, N , and ν, the resulting passband fre-
quency ωp is 0.0078π rad. Fig. 2(a) illustrates the magnitude
responses of both CIC and compensated CIC filters. Passband
details of CIC, compensated CIC, and compensation filters are
shown in Fig. 2(b). Note that the gains of CIC and compensated
CIC filters at ωp are −1.12 and −0.12 dB, respectively. Fur-
thermore, the compensated CIC filter has the same attenuation
in the alias bands as the CIC filter. Therefore, for practical
purposes, the compensation does not deteriorate the attenuation
in the alias bands of the CIC filter.

B. Wideband Compensator

Now, we turn our attention to the design of the wideband
compensator using the fourth-order linear phase FIR filter. For
L = 4, the transfer function P (z) is

P (z) = a0 + a1z
−1 + a2z

−2 + a1z
−3 + a0z

−4. (22)

Consequently, the maximally flat conditions (11) and (15) are
rewritten as

2a0+2a1+a2 = 1 (23a)

4a0+a1 =
1

2D2

d2HR(ω)
dω2

∣∣∣∣
ω=0

(23b)

16a0+a1 =
1

2D4

(
6
[
d2HR(ω)

dω2

]2

ω=0

− d4HR(ω)
dω4

∣∣∣∣
ω=0

)

(23c)

where

d4HR(ω)
dω4

∣∣∣∣
ω=0

=
N(D2 − 1)

(
D2(5N − 2) − 5N − 2

)
240

.

(24)

Fig. 3. Fourth-order compensation filter structure.

Fig. 4. Magnitude responses of the CIC and compensated CIC filters in
Example 2.

Solving the set of linear equations (23), we obtain

a0 = 2−8N · B(2−3N · B + 1 − 2−2C) (25)
a1 = − 2−6N · B(2−3N · B + 3 − 2−2C) (26)
a2 = 1 − 2a0 − 2a1 (27)

where

B =
1 − D−2

1 − 2−2
C =

1 − (2D)−2

1 − 2−4
. (28)

Observe that the filters coefficients a0 and a1 are related as

a1 = −22a0 − 2−5N · B. (29)

Consequently, the compensator can be implemented as shown
in Fig. 3. Fig. 3(a) shows the implementation using a multiple
constant multiplier block, which is described in Fig. 3(b). The
resulting filter structure involves three multipliers, that is, two
multipliers B and one multiplier C. The following example
illustrates the design of the wideband compensator filter.

Example 2: Consider the following design parameters: D =
32, N = 5, and ν = 2.

The passband edge frequency ωp is 0.0156π. Fig. 4(a) shows
the magnitude responses of compensated CIC and CIC filters.
The gains of CIC and compensated CIC filters at ωp are
−4.54 and −0.58 dB as is shown in Fig. 4(b). Similarly, as
in Example 1, the decrease in attenuation occurs only in the
don’t care bands and does not affect the alias bands, as shown
in Fig. 4(a).

The closed-form equations for the computation of the filter
coefficients are valid for any value of the decimation factor D
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Fig. 5. Multiplierless implementation of coefficient A. The structure exhibits
the hierarchical property.

and the number of stages N . In general, the implementation of
the compensation filter requires multipliers. However, for some
values of D, multiplierless implementation is possible.

The next section discusses the multiplierless implementation
of the second- and fourth-order compensation filters, for the
case in which the decimation factor is a power of two.

III. MULTIPLIERLESS IMPLEMENTATION

A. Narrow-Band Compensator

This subsection describes how coefficient A can be imple-
mented without multipliers for the values of D expressed as
a power of two. Accordingly, using D = 2K , for K > 0, the
value A becomes

A =
1 − 2−2K

1 − 2−2
. (30)

We can recognize that A can be rewritten using a geometric
series

A =
K−1∑
�=0

2−2�. (31)

The multiplierless implementation of coefficient A is obtained
by using the following identity:

K−1∑
�=0

2−2� = 1 + 2−2
K−2∑
�=0

2−2�. (32)

Applying (32), recursively, we get the structure shown in Fig. 5,
which exhibits an important property, i.e., the hierarchical
property. This means that the resulting structure has a basic
building block (see Fig. 5), which is highlighted using dashed
lines. The structure has K − 1 stages for the decimation factor
2K . Increasing the decimation factor D to 2K+1, the new value
of A is obtained just by adding a new stage to the previous
structure. Additionally, all coefficients have value 2−2. This
favorable hierarchical property is important, for example, in a
direct silicon compilation.

B. Wideband Compensator

This subsection introduces the multiplierless implementation
of the fourth-order compensator. Similar to the case of the
second-order compensator, we consider the case when the
decimation factor D is a power of two, particularly the case
D = 22M−1 where M is a positive integer. Consequently, from
(28), coefficients B and C are rewritten as

B =
2M−2∑
m=0

2−2m C =
M−1∑
m=0

2−4m. (33)

From (33), it is straightforward to develop multiplierless struc-
tures with hierarchical property.

Fig. 6. Optimal structures based on the optimal approach [12]. (a) S = 4.
(b) S = 5. (c) S = 6. (d) S = 7. (e) S = 8. (f) S = 9.

Fig. 7. Number of adders for the hierarchical and the optimal structure.

C. Optimal Structures

Observe that the SOPOT for A, B, and C given in (31) and
(33) are in CSD representation, i.e., these satisfy the condition
that the product of the coefficient for 2−�, � ≥ 0, and of the
coefficient for 2−�−1 is zero [11]. The CSD representation is
unique and contains the minimum possible number of nonzero
digits. Consequently, structures based on CSD representation
result in a minimum number of adders. It is possible to restate
all these coefficients using subexpressions to get fewer adders
and optimal structures [12]. Therefore, using the approach from
[12], this subsection provides optimal structures for coefficients
A, B, and C.

First note that the relationships (31) and (33) have the fol-
lowing general form:

k =
S−1∑
�=0

x� (34)

where the values (x, S) are (2−2,K), (2−2, 2M − 1), and
(2−4,M) for A, B, and C, respectively. The main goal is to
implement coefficient k given in (34) using a minimum number
of adders. Based on the optimal approach proposed in [12], we
develop optimal structures shown in Fig. 6 for S = 4, . . . , 9.
Fig. 7 compares the number of adders of the hierarchical and
the optimal structure with the lower bound proposed in [13].
Notice that the hierarchical structure is optimal for S = 1, 2, 3.
Moreover, the optimal structure achieves the lower bound ex-
cept for S = 7.

D. Compensation Filter Complexity

The optimal implementation for the second-order compen-
sator requires Na adders, that is

Na = 3 + NA
a + NN

a (35)

where NA
a and NN

a denote the number of adders of A and N ,
respectively. Similarly, the optimal fourth-order compensator
involves

Na = 5 + 2NB
a + NC

a + 2NN
a (36)

where NB
a and NC

a stand for the number of adders of B
and C, respectively. To estimate NA

a , NB
a , and NC

a , we first
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Fig. 8. Compensated CIC filters.

decompose the number S in terms of prime factors f
(S)
i , i.e.,

S =
∏ΩS

i=1 f
(S)
i , where ΩS represents the total number of prime

factors.1 Consequently, combining the prime factorization and
results [13], we have

NA
a =

ΩK∑
i=1

⌈
log2

(
f

(K)
i

)⌉

NB
a =

Ω(2M−1)∑
i=1

⌈
log2

(
f

(2M−1)
i

)⌉
(37)

NC
a =

ΩM∑
i=1

⌈
log2

(
f

(M)
i

)⌉
(38)

where �·� stands for the ceiling function. Additionally, the
complexity of N is based on the CSD representation.

Example 3: We compute the implementation complexity for
Examples 1 and 2. Considering that N needs one adder, and
using K = 5, the optimal second-order compensation filter re-
quires seven adders. Similarly, with M = 3, the optimal fourth-
order compensator needs 15 adders.

IV. DISCUSSIONS

The proposed maximally flat compensated CIC filter is com-
pared with some methods recently proposed in the literature.
We first compare the performance of the proposed compen-
sation filter with the method [3] for narrow-band compensa-
tion. That method presented a second-order compensation filter
where the filter coefficients expressed as a SOPOT are com-
puted using a random search algorithm [3]. Fig. 8(a) compares
the proposed approach and the method [3] using the design
parameters given in Example 1. Observe that the proposed
compensator provides better compensation in the passband
region, i.e., 0 ≤ ω ≤ ωp. Additionally, our compensator offers
improved frequency response and implementation complexity.
The implementation of the compensator [3] involves three
adders and two delays. Unfortunately, the compensator [3] does
not provide optimal magnitude response.

For the wideband compensator, we compare the performance
of the compensation filter with the method in [8]. In [8], the au-
thor proposed a multiplierless compensator filter as a cascade of
second-order linear phase FIR filters. The filter coefficients of

1The authors thank the Associate Editor for this suggestion.

the second-order filter are computed by the minimization of the
squared error in the passband. Fig. 8(b) illustrates the magni-
tude responses of the proposed compensator filter and the com-
pensator [8] using the design parameters given in Example 2.
Notice that both methods approximately offer the same com-
pensation in the passband region. However, our design provides
flat magnitude response in the first half of the passband and
optimal implementation complexity. The complexity of the
compensator [8] is 12 adders and 12 delays.

V. CONCLUDING REMARKS

This brief introduces a design of maximally flat CIC pass-
band compensator filters. The filter coefficients are obtained
by solving a set of linear equations. We described in detail
two special cases, i.e., second- and fourth-order filters for the
narrow-band and wideband compensations, respectively. The
corresponding filter coefficients have closed-form equations.
The multiplierless implementation complexity of the proposed
filters depends on the decimation factor D and the number
of stages N . However, there is a restriction on the values of
the decimation factor: for the narrow-band design, decimation
factor D must be a power of two, whereas for the wideband
design, it must be in the form 22M−1, for M > 0. In the
stopband region, the compensation filter does not deteriorate
the attenuation in the alias bands of the CIC filter.
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