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Proposed is the necessary and sufficient condition, which depends on
the group delay evaluated at v ¼ 0, for the stability of maximally
flat group delay Thiran filters. This interesting result complements
the condition originally proposed by Thiran.

Introduction: Thiran proposed the design of the allpole filter with maxi-
mally flat group delay response at the frequency v = 0 in [1]. Solving
the derived set of linear equations, closed form equations for the compu-
tation of the filter coefficients were proposed. Thiran also showed that
the allpole filter is stable if the group delay evaluated at v = 0 is
larger than zero. To be specific, the Thiran allpole filter D(z) is given
by [1]

D(z) =
∑N

n=0 dn∑N
n=0 dnz−n

(1)

where N is the filter order and

dn = (−1)n N
n

( )
(2t)n

(2t+ N + 1)n
(2)

where t represents the group delay evaluated at v = 0. The binomial
coefficient is defined by

N
n

( )
= N !

n!(N − n)! (3)

while the Pochhammer symbol (x)n can be expressed by

(x)n =
∏n−1

k=0 (x + k), n . 0
1, n = 0

{
(4)

The allpole filter satisfies

G(v)|v=0 = t,
dk G(v)

dvk

∣∣∣∣
v=0

= 0, k = 1, . . . ,K (5)

where G(v) stands for the group delay response and K is the degree of
flatness and is related to the filter order N as K = 2(N − 1).

The Thiran allpole filter has been used in many applications. The
design of maximally flat fractional delay filters is addressed in [2, 3].
The method applies the Thiran allpole filter to design a desired allpass
filter since their corresponding group delays are linearly related.
Additionally, in this approach, the value of t ranges from −1/2 to 0.
In [4], the design of IIR wavelet filters based on maximally flat
allpole filters was proposed. In a similar way, the design of an IIR
wavelet filter with the desired degree of flatness is described in [5, 6].
The Thiran allpole filter is successfully applied to design IIR filters
with specified degrees of flatness and constant group delay character-
istics in [7]. The design of FIR Hilbert transform pairs of wavelet
bases based on the Thiran allpole filter is formulated in [8, 9].

Thiran expresses the stability condition of the allpole filter as t . 0
[1]. On the other hand, using numerical results in [2] it was pointed
out that Thiran filters were also stable if −1/2 , t , 0. These results
give us the motivation to reformulate the stability condition of the
allpole filter. Therefore, this Letter gives the necessary and sufficient
condition to solve the stability problem.

Necessary and sufficient condition: This Section reformulates the stab-
ility of the Thiran filter. At first, we give some interesting properties of
the filter coefficients. These properties play a key role to determine the
necessary and sufficient condition for the stability of the Thiran filter.
Thus, we establish the algebraic stability test presented in [10, 11].

We introduce some properties of the coefficients dn, n = 1, . . . ,N .
Observe that for t = −(N + k)/2, k = 1, . . . , n no solution exists
since the denominator in (2) vanishes. Additionally, from the numerator
in (2), the values t = −k/2, k = 0, . . . , n − 1 make the filter coefficient
dn zero. Additionally, evaluating t at −n/2, dn equals 1. Finally, if t

approaches to infinity dn tends to (−1)n N
n

( )
. In summary, it follows
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that

dn =

0, ift = −k/2 for k = 0, . . . , n − 1
1, if t = −n/2
1, ift = −(N + k)/2 for k = 1, . . . , n,

(−1)n N
n

( )
, if t � +1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(6)

As a next step, we define the following recursive equation, which helps
us to derive the new stability condition,

dN−m−1,n = dN−m,n − dN−m,N−m−ndN−m,N−m

1 − d2
N−m,N−m

(7)

where N ≥ 2, m = 0, . . . ,N − 2, and n = 0, . . . ,N − m − 1. The
initial value in (7) is dN ,n = dn. We illustrate an interesting behaviour
of dN−m−1,n when t = −k/2 for k = 0, . . . ,N − m − 1 and
m = 0, . . . ,N − 2.

Accordingly, for m = 0, (7) becomes

dN−1,n = dn − dN−ndN

1 − d2
N

(8)

Here we are interested in the values of dN−1,n at t = −k/2, for
k = 0, . . . ,N − 1. From (6), the value dN vanishes at those points
and, therefore, dN−1,n equals dn. Now consider the case where t

approaches to infinity. In this case, dN−1,n has an indeterminate form.
However, in order to overcome this problem, we use

dn = (−1)n N
n

( )
and 1 approaches 1. Consequently, we obtain

lim
t�1

dN−1,n = lim
1�1

(−1)n N
n

( )
(−1)n − (−1)2N−n

1 − 12N
(9)

Applying the L’Hopital rule, we finally arrive at

lim
t�1

dN−1,n = (−1)n N − 1
n

( )
(10)

In a similar fashion, for m = 1, it follows that

dN−2,n = dN−1,n − dN−1,N−1−ndN−1,N−1

1 − d2
N−1,N−1

(11)

Here we are interested in the values of dN−2,n at the points t = −k/2, for
k = 0, . . . ,N − 2. Considering dN−1,N−1 = dN−1 = 0 at those points
[see (6)], we obtain dN−2,n = dN−1,n = dn and

lim
t�1

dN−2,n = (−1)n N − 2
n

( )
(12)

Generally, the coefficients defined in (7) satisfy

dN−m−1,n =
dn ift=−k/2 for k = 0, . . . ,N −m− 1

(−1)n N −m− 1
n

( )
t�1

⎧⎨
⎩

(13)

To introduce the necessary and sufficient stability condition, we recall
the algebraic stability test proposed in [10, 11], i.e. the poles of D(z)
are strictly inside the unit circle if and only if

d2
N−i,N−i , 1, i = 0, . . . ,N − 1 (14)

Note that the stability problem involves N conditions, which will be
solved in the following.

The first condition that should be satisfied is

d2
N , 1 (15)

Our goal is to find the values t such that (15) is fulfilled. Accordingly,
using (6), we arrive at

dN =

0, if t = −k/2 for k = 0, . . . ,N − 1
1, if t = −N/2
1, if t = −(N + k)/2 for k = 1, . . . ,N
(−1)N if t � +1

⎧⎪⎪⎨
⎪⎪⎩

(16)

Fig. 1 illustrates the plot of d2
N as a function of t. Observe that d2

N . 1
for t , −N/2 because the points t = −(N + k)/2, for k = 1, . . . ,N ,
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make d2
N unbounded and d2

N approaches 1 when t � −1. Furthermore,
because of the zeros of dN , the square magnitude of dN is less that 1 in
−N/2 , t , 0. Finally, note that d2

N is an increasing function for t . 0
and bounded by 1. Consequently, condition (15) is satisfied if
t . −N/2.
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Fig. 1 Square value of dN against t
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Fig. 2 Root locus of 13th-order Thiran filter for −1/2 ≤ t

The second stability condition is

d2
N−1,N−1 , 1 (17)

From (13), we observe that d2
N−1,N−1 = d2

N−1 = 1 at t = −(N − 1)/2.
Similarly, the coefficient d2

N−1,N−1 is less than 1 for
−(N − 1)/2 , t , 0 because of the zeros of dN−1. Finally, from
(10), we note that d2

N−1,N−1 is an increasing function and bounded by
1 for 0 , t. Consequently, condition (17) is satisfied when
−(N − 1)/2 , t. In a similar way, we found that d2

N−i,,N−i , 1 if
−(N − i)/2 , t, for i = 0, . . . ,N − 1.

This interesting result verifies the simulation results in [2] and gives
the necessary and sufficient condition for the stability of the Thiran
filter. The above results are summarised in the following theorem.

Theorem: Let D(z) be an N-order maximally flat group delay allpole
filter defined in (1). The filter D(z) is stable if and only if t . −1/2.

As an illustrative example, Fig. 2 shows the root locus of the 13th-
order Thiran filter. Observe that at t = −1/2 the allpole filter reduces
ELECTRONI
to a first-order filter with the pole at z = −1. Similarly, when t

approaches to infinity, the poles tend to z = 1. It is worth mentioning
that the root locus for −1/2 , t , 0 is the small lobes around the
origin and the line from z = −1 to z = 0.

Conclusion: This Letter introduces the necessary and sufficient con-
dition for the Thiran filters to be stable and complements the condition
originally proposed by Thiran. The proposed result can be useful for
other interesting applications, e.g. the design of casual cardinal orthog-
onal scaling functions [12].
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