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1 Introduction

The Gardens2 algorithm [Grande-Barreto and Gémez-Gil, 2020] was developed to improve the
co-registration output of a generic brain atlas tissue templates to a specific brain target. As
a secondary task, the Gardens2 algorithm also can perform hard segmentation. The Gardens2
algorithm was implemented on MATLAB, and all the MRI (brain and atlas) inputs are in NII
format. Make sure that the proper packaging for handling NII files is in your MATLAB software.
Here! is the link to download a package to manipulate NII files. The brain atlases were downloaded
from the McConnell Brain Imaging Center [Fonov et al., 2009, Fonov et al., 2011]. The link is here?.
The 3D slicer software [Fedorov et al., 2012] required to perform the initial co-registration process.
Here is the link®. It is recommended to use a field bias correction on MRI volume to improve
subsequent algorithms’ output. For the implementation described in this document, the N4ITK
MRI Bias correction algorithm was used (included in the 3D slicer software). For the algorithm
parameters, it is recommended to use a full width at half maximum of 0.20.

2 The Gardens2 algorithm

The Gardens2 algorithm requires five NII and one MAT input files. The NII files consist in
the brain MRI, brain mask, and three brain tissue templates named cerebrospinal fluid (csf), gray
matter (gm), and white matter (wm). The MAT file contains the feature representation of the brain
MRI volume. The brain MRI volume used for the implementation was taken from the Internet Brain
Segmentation Repository (IBSR) [IBSR, 2007]. The implementation of the Gardens2 algorithm is
divided into two parts, hard segmentation and partial maps. But first, it is necessary to perform
co-registration and feature extraction.

2.1 Atlas co-registration

It is necessary to carry out an initial co-registration process to align the scans of each of the tissue
templates with the brain MRI volume. The BRAINS algorithm [Johnson et al., 2007], included in
the 3D Slicer platform, was used to perform the initial co-registration process. This procedure
requires three inputs (tissue templates). For the implementation described by this manuscript
the files used were mmni_icbm152_csf_tal_nlin_asym_09a, mmni_icbm152_gm_tal_nlin_asym_09a, and
mni_tcbm152_wm_tal_nlin_asym_09a. The outputs are csf template, gm_template, and wm_template.
the co-registration process is also required to generate the brain mask. For the implementation
described here, the file IBSR_01_ana_brainmask (provided by the dataset) was co-registered to
generate the brain mask. Look the Figure 1 to learn the proper parameter settings.

2.2 Feature extraction

The feature representation procedure is composed by two functions cooc3d [Carl, 2021] and
GLCMFeatures [Brynolfsson, 2021]. Execute the script Feat_represent.mat to compute feature rep-
resentation. This process requires the use of parallel computing, make sure you have this package
installed. For the implementation described by this manuscript the files required are brain mask
and IBSR_01_ana_strip (mri volume).

"https://la.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image
*http://wuw.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
3https://download.slicer.org/
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Figure 1. Brain MRI scan.

2.3 Hard segmentation

This implementation performs a hard partition of the voxels for each scan of the brain MRI
volume. Open theGardens2_hard_seg.mat script and execute lines 1 to 57 to initialize the internal
parameters of the Gardens2 algorithm. Load the required input files using the following lines

atlas_csf = load_nii('Gardens2 prol\csf_template.nii');
atlas_gm = load_nii('Gardens2 pro\gm_template.nii');
atlas_wm = load_nii('Gardens2 pro\wm_template.nii');
GT = load_nii('Gardens2 pro\brain_gt.nii');

brain_msk = load_nii('Gardens2 pro\brainmask.nii');

load ('Gardens2 pro\feats_Subject_x.mat','feat_all_ibsr')

Transform the fuzzy labels of the brain tissue templates to a hard label format

[Atlas_parcial, Atlas_crisp] = Atlas_ref (mri,atlas_csf,atlas_gm,atlas_wm);

Next, it is necessary to calculate some indices to match the tissue templates’ information with
the feature representation

[col,row,dip] = size(mri.img);

midd = round ((rt(2)-rt(1))/2)+rt(1);
slix = midd- 20 : midd + 29;

point = rt(1) : rt(2);

scan_length = length(slix);

Inside the main for loop (for scan =1 : scan_length), the tissue templates’ information and the

feature representation are matched. The images are oriented in the axial plane. If the matching is
correct, for the first iteration, the image depicted in Figure 2 will show up.



Figure 2. Brain MRI scan.

data = zeros(row*col,b35);

sliceg = slix(scan);

xslice = find(point == sliceg);

Atlas_crisp_n = imrotate(Atlas_crisp(:,:,sliceg) ,90);
Atlas_parcial_n = imrotate(Atlas_parcial(:,:,sliceg) ,90);

mask = double(imrotate(round(abs(brain_msk.img(:,:,sliceg))) ,90));
xs = find(mask) ;
data(xs,:) = feat_all_ibsr(l:length(xs),:,xslice);

lnnan = isnan(data);
data(lnnan) = eps;
1d = 16:35;

data(:,1d) = [];

BI = reshape(data(:,13) ,row,col);

aux = normalize(data(xs,:));

data(xs,:) = aux;

imshow (BI,[],'InitialMagnification','fit"')

In digital image processing, the over-segmentation is an undesired result. However, in the Gar-
dens2 pipeline, the over-segmentation is an intermediate output used to identify homogeneous
regions in the image. The following lines perform the over-segmentation using the watershed trans-
formation. The image depicted in Figure 3 will show up if the over-segmentation was successfully
executed.

[J3,7"] = imgradient (BI, 'sobel');
L=watershed(J3); ) Watershed transformation
LIO=logical(L); %
subregion=max(L(:)); % # de subregiones
subRs=zeros (subregion,size(data,2));
for k=1:subregion

index=find (L==k) ;

subRs (k, :)=mean (data(index,:) ,1);

end
subRs (1,:) = []1;
subregion = size(subRs,1);

La= double (L) ;
La = La - 1;

lnan = L == 1;
1n0 = L == 0;
La(lnan) = 0;



La(1ln0) = O0;

g0 = LI0==0;

AA = BI; AA(gO) = 0;

imshow (AA,[],'InitialMagnification','fit"')

The Gardens2 algorithm is machine learning-based; therefore, it requires the computation of
centroids for each tissue class to later perform the voxel clustering. The following lines execute
these procedures. If the code compiles correctly, the image depicted in Figure 4(a) will show.

%% Centroid computation

[idx, Ci, tsamp] = refsubRs(subRs,LI0,La,data,Atlas_crisp_n,...
subreg_cent ,tissues) ;
[suger ,Sub_inx ,Cin_o,Gardened] = suggestedsubregion(subRs,percent_inclu,Ci,...

Atlas_parcial_n,La,tissues,data);

%% Clustering subregions

Dis_n = zeros(subregion,tissues+2);
RN = 1 : subregion;

Cin_old = Cin_o;

for k = 1: subregion

while true
r = randi ([min (RN) ,max (RN)]) ;
ri = find (RN==r);
if “isempty(ri)
RN(ri) = [];
break
end
end
B = subRs(r,:);
12 = find(La == r);
A = Cin_old;
Dis_n(r,1:tissues) = sum(A."2 - 2%xA.%*B,2)"';
[“,1r] = min(Dis_n(r,1:tissues));
Dis_n(r,end) = 1r;
Sub_inx (r) =1r;
Gardened (12) = 1r;
imshow (Gardened,[], 'InitialMagnification','fit"')
end

Figure 3. Result of the watershed transformation for the Brain MRI scan.
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Figure 4. Hard segmentation result of the Gardens2 algorithm.

The watershed borders voxels are clustered using euclidean distance. The final result for the first

scan of the brain MRI volume is depicted in Figure 4(b). Repeat the process for the remaining
images of the volume.

%% Clustering of isolated voxels (Watershed borders voxels)

isolated_vox = mask & “La;
1f = find(isolated_vox);
A = Cin_o;

for g = 1 : length(1lf)

B data(lf(q),:);
srd = sum(A."2 - 2%A.xB,2);
[“,srm] = min(srd);
Gardened (1f(q)) = srm;
end
imshow (Gardened,[], 'InitialMagnification','fit"')

2.4 Partial tissue maps

This implementation performs an atlas adjustment for the tissue templates. Before starting, it
is necessary to execute the Gardens2_hard_seg.mat script; some parameters computed in that script



are required for this part of the code. Open the Gardens2_partial_maps.mat script and execute the
lines 1 to 45 to load the required input scripts and set internal parameters of the algorithm. Partial
tissue maps are calculated using a novel fuzzy function composed by the Euclidean distance and a
regularization term. The centroids for each class are calculated with the following lines

%% Compute general centroids for the whole MRI volume
for qp = 1 : zli

ci(gqp,:) = CI(1,:,qp);

c2(qp,:) = CI(2,:,q9p);

c3(gp,:) = CI(3,:,q9p);

end

K(1,:) = mean(cl,1,'omitnan');
K(2,:) = mean(c2,1, 'omitnan');
K(3,:) = mean(c3,1, 'omitnan');

The core of the code is the functionstepfcm2, which computes the tissue maps adjustment. This
function first computes the euclidean distance for the analyzed voxels

%% Euclidean distance
% Voxels to analyze
xs = find (IM);
dist = zeros(size(Cil, 1), size(aux, 1));
for k = 1:size(Cil, 1)
dist(k, :) = sqrt(sum(((aux-ones(size(aux,1) ,1)*Cil1(k,:))."2),2));
end

The regularization process consists of adding a compensation factor, taken from the neighbor
voxels on the partial maps, to the estimated euclidean distance. The regularization factor is large
when the membership degree of neighboring voxels is large to tissue classes different from the
analyzed. Therefore, a voxel’s membership degree to a particular tissue class is large when the
euclidean distance and the membership degree of neighboring voxels to other tissue classes are low.
The following lines execute the outlined process

%% Regularization

dist3 = zeros(size(Cil, 1), size(aux, 1));
for k = 1 : size(aux, 1)
[xa,yal = ind2sub([row+(2*d3),col+(2%d3)],xs(k));
x3 = xa;
y3 = ya;
Ia = (tempA(x3-d3:x3+d3,y3-d3:y3+d3,:));
for g = 1 : tissues
g = ones(1,3);
g(q) = 0;
p2 = gamma*sum(sum((Ia.*w). expo));
p2 = p2(:);
p2 = g*p2;

dist3(q,k) = dist(q,k) + p2;
end
end
tmp3 = dist3.7(-2/(expo-1));
U_new3 = tmp3./(ones(tissues , 1)*sum(tmp3)); %
U_new3 = round(U_new3,2);



Finally, the adjusted membership degrees of each tissue class are sorted to be displayed in image
format. If the code compiles correctly, the image depicted in Figure 5 will show.

%% Sorting and visualization
for qgp =1 : 3

temp4 = zeros(row,col);
temp4 (xs) = U_new3(gp,:);
tempa(:,:,qp) = temp4;
end
csf_u(:,:,scan) = tempa(:,:,1);
gm_u(:,:,scan) = tempa(:,:,2);
wn_u(:,:,scan) = tempa(:,:,3);

subplot (2,2,1)
imshow (BI,[],'InitialMagnification','fit"')
title ('MRI')
subplot(2,2,2)
imshow (tempa(:,:,1) ,[], 'InitialMagnification','fit"')
title ('CSF partial map')
subplot (2,2,3)
imshow (tempa(:,:,2),[], 'InitialMagnification','fit"')
title ('GM partial map')
subplot (2,2,4)
imshow (tempa(:,:,3),[], 'InitialMagnification','fit"')
title ('WM partial map')

MRI CSF partial map

GM partial map WM partial map

Figure 5. Partial maps for the brain MRI scan.
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