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Instituto Nacional de Astrofı́sica,Óptica y Electŕonica,
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Harmonic oscillator squeezed states are states of minimum uncertainty, but unlike coherent states, in which the uncertainty in position and
momentum are equal, squeezed states have the uncertainty reduced, either in position or in momentum, while still minimizing the uncertainty
principle. It seems that this property of squeezed states would allow to obtain the position eigenstates as a limiting case, by doing null the
uncertainty in position and infinite in momentum. However, there are twoequivalentways to define squeezed states, that lead to different
expressions for the limiting states. In this work, we analyze both definitions and show the advantages and disadvantages of using them in
order to find position eigenstates. With this in mind, but leaving aside the definitions of squeezed states, we find an operator that applied to
the vacuum gives position eigenstates. We also analyze some properties of the squeezed states, based on the new expressions obtained for
the eigenstates of the position.
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1. Introduction

Quantum states of the harmonic oscillator are very important
in the study of the quantum theory of the electromagnetic
field because of the fact that they may be used to describe
a quantized field [1–3], each harmonic oscillator represent-
ing a mode of such electromagnetic field. In fact, this was
the concept that Dirac used to build the first quantum theory
of the electromagnetic field [2]. The easiest to understand
and to manipulate, and the most natural states of the quantum
harmonic oscillator are number states|n〉. Number states are
eigenstates of the harmonic oscillator Hamiltonian and, of
course, are also eigenstates of the number operatorn̂ = â†â,
whereâ† andâ are the well known creation and annihilation
operators, respectively. However, for anyn, no matter how
big, the mean field is zero; i.e.,〈n|Êx|n〉 = 0, and we know
that a classical field changes sinusoidally in time in each point
of space; thus, these states can not be associated with classi-
cal fields [3,4].

In the first years of the sixties of the past century,
Glauber [5] and Sudarshan [6] introduced the coherent states,
and it has been shown that these states are the most clas-
sical ones. Coherent states are denoted as|α〉, and one
way to define them is as eigenstates of the annihilation
operator; that is,â|α〉 = α|α〉. An equivalent defini-
tion is obtained applying the Glauber displacement operator
D̂(α) = exp

(
αâ† − α∗â

)
to the vacuum:|α〉 = D̂(α)|0〉;

we see then coherent states as vacuum displaced states. Co-
herent states also have the very important property that they
minimize the uncertainty relation for the two orthogonal field
quadratures with equal uncertainties in each quadrature [3,4].

Since then, other states have been introduced. In partic-
ular, squeezed states [3, 4, 7–9] have attracted a great deal of
attention over the years because their properties allow to re-

duce the uncertainties either of the position or momentum,
while still keeping the uncertainty principle to its minimum.
Because of this, they belong to a special class of states named
minimum uncertainty states. Once produced, for instance as
electromagnetic fields in cavities, they may be monitored via
two level atoms in order to check, or measure, that such states
have been indeed generated [10,11].

Based on the above properties, we can think about eigen-
states of position as limiting cases of squeezed states. As
squeezed states are minimum uncertainty states, we can re-
duce to zero the uncertainty in the position, while the uncer-
tainty in the momentum goes to infinity, so that we keep the
uncertainty principle to its minimum. Of course, there is also
the option to reduce to zero the uncertainty in the momen-
tum, while the position gets completely undefined, obtain-
ing that way the possibility to define momentum eigenstates.
In Secs. 1 and 2, we analyze the possibility of define the
position eigenstates as the limit of extreme squeezing of the
squeezed states. In what follows, we will use a unit system
such that~ = m = ω = 1.

There are two equivalent forms to define the squeezed
states. In the first one, introduced by Yuen [12], squeezed
states are obtained from the vacuum as

|α; r〉 = Ŝ(r)D̂(α)|0〉 = Ŝ(r)|α〉, (1)

where
Ŝ(r) = exp

[(
â2 − â†

2
)

r/2
]

(2)

is the so-called squeeze operator. In this view, squeezed states
are created displacing the vacuum, and after, squeezing it.
Note that when the squeeze parameterr is zero, the squeezed
states reduce to the coherent states. In this work, we will con-
sider only real squeeze parameters, as that is enough for our
intentions.
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In the definition introduced by Caves [13], the vacuum is
squeezed and the resulting state is then displaced; that means,
that in this approach squeezed states are given as

|α′; r′〉 = D̂ (α′) Ŝ (r′) |0〉. (3)

Both definitions of the squeezed states agree when the
squeeze factor is the same,r′ = r, and when the modified
amplitudeα′ of the Caves approach is given by

α′ = µα− να∗, (4)

being
µ = cosh r (5)

and
ν = sinh r. (6)

To analyze the uncertainties in the position and in the
momentum of the squeezed states, we introduce, following
Loudon and Knight [7], the quadrature operators

X̂ =
â + â†

2
=

x̂√
2

(7)

and

Ŷ =
â− â†

2i
=

p̂√
2

(8)

wherex̂ is the position operator and̂p the momentum opera-
tor. Note that the quadrature operators are essentially the po-
sition and momentum operators; this definition just provides
us with two operators that have the same dimensions.

In order to show that really the squeezed states are min-
imum uncertainty states, we need to calculate the expected
values in the squeezed state (1) of the quadrature operators
(7) and (8), and its squares. Using (7) and (1), we get

〈α; r|X̂|α; r〉 =
1
2
〈α|Ŝ†(r) â + â†

2
Ŝ(r)|α〉. (9)

The action of the squeeze operator on the creation and
annihilation operators is obtained using the Hadamard’s
lemma [14,15],

Ŝ†(r)âŜ(r) = µâ− νâ†, Ŝ†(r)â†Ŝ(r) = µâ† − νâ, (10)

such that

Ŝ†(r)
â + â†

2
Ŝ(r) = e−rX̂. (11)

Therefore, aŝa|α〉 = α|α〉 and〈α|â† = 〈α|α∗, it is easy to
see that

〈α; r|X̂|α; r〉 = e−r α + α∗

2
, (12)

and that

〈α; r|X̂2|α; r〉 = e−2r 1 + 2 |α|2 + α2 + α∗
2

4
. (13)

So, we obtain for the uncertainty in the quadrature operator
X̂,

∆ X ≡
√
〈α; r|X̂2|α; r〉 − 〈α; r|X̂|α; r〉2 =

e−r

2
. (14)

Proceeding in exactly the same way for the quadrature oper-
atorŶ , we obtain

∆ Y ≡
√
〈α; r|Ŷ 2|α; r〉 − 〈α; r|Ŷ |α; r〉2 =

er

2
. (15)

As we already said, we can then think in the position eigen-
states and in the momentum eigenstates as limit cases of
squeezed states. Indeed, when the squeeze parameterr goes
to infinity, the uncertainty in the position goes to zero, and the
momentum is completely undetermined. Of course, when the
squeeze parameter goes to minus infinity, we have the inverse
situation, and we can think in define that way the momentum
eigenstates. In the two following sections, we use the Yuen
and the Caves definitions of the squeezed states to test this
hypothesis.

2. A first attempt à la Yuen

From Eq. (14) above, we can see that in the limitr →∞ the
uncertainty for position vanishes and so a position eigenstate
should be obtained (from now on, we considerα real),

lim
r→∞

| x√
2
; r〉 → |x〉p. (16)

We have written a sub indexp in the position eigenstate in
order to emphasis that fact. Following the Yuen definition
|α; r〉 = Ŝ(r)D̂(α)|0〉 = Ŝ(r)|α〉, so

| x√
2
; r〉 = Ŝ(r)D̂

(
x√
2

)
|0〉 = Ŝ(r)| x√

2
〉. (17)

We now write the squeeze operator as [16]

Ŝ(r) =
1√
µ

e−
ν
2µ â†

2 1
µâ†â

e
ν
2µ â2

, (18)

where, as we already said,µ = cosh r andν = sinh r. So,

| x√
2
; r〉 =

1√
µ

e−
ν
2µ â†

2 1
µâ†â

e
ν
2µ â2 | x√

2
〉. (19)

Now, we develop the first operator (from right to left) in
power series, we use the definition of the coherent states,
â|α〉 = α|α〉, and the action of the number operator over
the number states

(
â†â|n〉 = n̂|n〉 = n|n〉), to obtain

| x√
2
; r〉 =

1√
µ

e−
ν
2µ â†

2
(

1
µ

)â†â ∞∑
n=0

(
x√
2

)n 1√
n!
|n〉

=
1√
µ

e−
ν
2µ â†

2 ∞∑
n=0

(
x√
2

)n 1√
n!

(
1
µ

)n

|n〉. (20)

As r →∞, 1
µ = 1

cosh r → 0, which means that the only term
that survives from the sum isn = 0, and then

|x〉p ∝ e−
ν
2µ â†

2

|0〉 (21)

that would give an approximation for how to obtain a po-
sition eigenstate from the vacuum. However, note that the
above expression does not depend onx and therefore can not
be correct. From all this analysis, we must conclude that the
Yuen definition of the squeezed states, whatever representa-
tion used, does not give the correct asymptotic states.
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3. A second attemptà la Caves

We now squeeze the vacuum and after we displace it. Thus,
in this case,

|x〉p = lim
r→∞

| x√
2
; r〉 = lim

r→∞
D̂

(
x√
2

)
Ŝ(r)|0〉. (22)

We use again expression
(
Ŝ(r) = exp

(
− ν

2µ â†
2
)(

1
µ

)n̂+ 1
2

exp
(

ν
2µ â2

))
for the squeeze operator [12], whereµ andν

are defined in (5) and (6), and we write the displacement op-

erator asD̂(α) = exp
( |α|2

2

)
exp (−α∗â) exp

(
αâ†

)
[16],

to obtain

| x√
2
; r〉 = exp

(
x2

4

)
exp

(
− x√

2
â

)
exp

(
x√
2
â†

)

× exp
(
− ν

2µ
â†

2
)(

1
µ

)n̂+ 1
2

exp
(

ν

2µ
a2

)
|0〉. (23)

As â|0〉 = 0 and â†â|0〉 = n̂|0〉 = 0, we cast the previous
formula as

| x√
2
; r〉 =

1√
µ

exp
(

x2

4

)
exp

(
− x√

2
â

)

× exp
(

x√
2
â†

)
exp

(
− ν

2µ
â†

2
)
|0〉. (24)

Inserting twice the identity operator, written as
Î = exp

(
x√
2

â
)

exp
(
− x√

2
â
)

, we obtain

| x√
2
; r〉 =

1√
µ

e
x2
4 e

− x√
2

â
e

x√
2
â†

× e
x√
2

â
e
− x√

2
â
e−

ν
2µ â†

2

e
x√
2

â
e
− x√

2
â|0〉. (25)

It is clear that exp
(
− x√

2
â
)
|0〉 = |0〉, and using the

Hadamard´s lemma [14], it is easy to prove that

exp (−γ â) η
(
â†

)
exp (γ â) = η

(
â† − γ

)
, (26)

for any well behaved functionη
(
â†

)
; thus

| x√
2
; r〉 =

1√
µ

exp
(

x2

4

)
exp

[
x√
2

(
â† − x√

2

)]

× exp

[
− ν

2µ

(
â† − x√

2

)2
]
|0〉. (27)

After some algebra,

| x√
2
; r〉 =

1√
µ

exp
[
−x2

4

(
1 +

ν

µ

)]

× exp
[
− ν

2µ
â†

2
+

x√
2

(
1 +

ν

µ

)
â†

]
|0〉. (28)

We take now the limit whenr →∞, or ν
µ → 1, so

|x〉p ∝ exp
(
−x2

2

)
exp

(
− â†

2

2
+
√

2xâ†
)
|0〉. (29)

We get an expression that gives us the position eigenstates as
an operator applied to the vacuum. Unlike the Yuen case, ex-
pression (21), now we have anx dependence and it looks like
a better candidate to be the position eigenstate. In fact, in the
next Section, we will show that this really is an eigenstate of
the position.

4. Leaving squeezed states aside

We will try now an alternative approach to the eigenstates of
the position. We can write a position eigenstate, simply by
multiplying it by a proper unit operator

|x〉p =
∞∑

n=0

|n〉 〈n|x〉p (30)

Therefore the position eigenstate|x〉p may be written as [17]

|x〉p =
∞∑

n=0

ψn(x)|n〉 (31)

with ψn(x) = 1√
2n
√

πn!
e−x2/2Hn(x); such that|x〉p may

be re-written as

|x〉p =
e−x2/2

π1/4

∞∑
n=0

1
2n/2n!

Hn(x)â†
n |0〉, (32)

that may be added via using the generating function for Her-
mite polynomials [18]

e−t2+2t x =
∞∑

n=0

Hk(x)
tk

k!
, (33)

to give

|x〉p =
e−x2/2

π1/4
e−

â†2
2 +

√
2xâ† |0〉. (34)

The above expression allows us to write the position eigen-
state as an operator applied to the vacuum. Note that this
expression is the same as the one obtained using the Caves
definition for the squeezed states, formula (28). We prove
now that indeed (32) is an eigenvector of the position oper-
ator; for that, we write the position operator asx̂ = â+â†√

2
,

thus

x̂|x〉p =
e−x2/2

π1/4
√

2

(
â + â†

)
e−

â†2
2 +

√
2xâ† |0〉. (35)

Inserting the identity operator in the above expression as

Î = e−
â†2
2 e

√
2xâ†e−

√
2xâ†e

â†2
2 , we get

x̂|x〉p =
e−x2/2

π1/4
√

2
e−

â†2
2 e

√
2xâ†e−

√
2xâ†

× e
â†2
2

(
â + â†

)
e−

â†2
2 e

√
2xâ† |0〉; (36)
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as e
â†2
2

(
â + â†

)
e−

â†2
2 = â − â† + â† = â,

e
â†2
2

(
â + â†

)
e−

â†2
2 = â − â† + â† = â, and â|0〉 = 0,

we obtain

x̂|x〉p = x
e−x2/2

π1/4
e−

â†2
2 e

√
2xâ† |0〉 = x|x〉p, (37)

as we wanted to show.
We can write (32) in terms of coherent states. We have

e
√

2xâ† |0〉 =
∞∑

k=0

1
k!

(√
2x

)k

â†
k |0〉

=
∞∑

k=0

(√
2x

)k

√
k!

|k〉 = ex2 |
√

2x〉, (38)

thus

|x〉p =
ex2/2

π1/4
e−

â†2
2 |
√

2x〉. (39)

With the expressions obtained, it is easy to show that the
squeezed states have the form of a Gaussian wave packet. To
confirm this, we use the above expression to state that

〈α; r|x〉p = 〈α|Ŝ†(r)|x〉p

=
ex2/2

π1/4
〈α|Ŝ†(r)e− â†2

2 |
√

2x〉. (40)

We write Ŝ†(r)e−
â†2
2 ase−

â†2
2 e

â†2
2 Ŝ†(r)e−

â†2
2 , where we

have just inserted the identity operatorÎ = e−
â†2
2 e

â†2
2 , and

we use thate
â†
2 η (â) e−

â†
2 = η

(
â− â†

)
, for any well be-

haved functionη, to obtain

〈α; r|x〉p=
exp

[
1
2

(
x2−r

)]

π1/4
〈α|e− â†2

2 e
r
2 â2−râ†â|

√
2x〉. (41)

As the coherent states|α〉 are eigenfunctions of the
annihilation operatorâ, it is very easy to show that

〈α|e− â†2
2 = 〈α|e−α∗2

2 , so

〈α; r|x〉p =
exp

[
1
2

(
x2 − α∗

2 − r
)]

π1/4

× 〈α|e r
2 â2−râ†â|

√
2x〉. (42)

In the Appendix, we disentangle the operatore
r
2 â2−râ†â as

e−râ†âe
1−e2r

4 â2
, and we get

〈α; r|x〉p =
exp

[
1
2

(
x2 − α∗

2 − r
)]

π1/4

× 〈α|e−râ†âe
1−e2r

4 â2 |
√

2x〉. (43)

It is very easy to see thate
1−e2r

4 â2 |√2x〉 = e
1−e2r

2 x2 |√2x〉,
and thateiγn̂|α〉 =

∣∣eiγα
〉
, thus

〈α; r|x〉p =
1

π1/4
exp

{
1
2

[(
2− e2r

)
x2 − α∗2 − r

]}

×
〈
α|
√

2e−rx
〉

. (44)

Finally, as〈δ|ε〉 = e−
1
2 (|δ|2+|ε|2−2δ∗ε), we have

〈α; r|x〉p =
1

π1/4
exp

{
1
2

[ (
2− e2r − 2e−2r

)
x2

+ 2
√

2α∗e−rx− α∗
2 − |α|2 − r

]}
, (45)

as we wanted to show.

5. The HusimiQ-function

We can now find the wave function of a coherent state as a
function of the position [19]. We use equation (32), that ex-
press the eigenstates of the position as an operator acting on
the vacuum, and get that

〈β|x〉p =
e−x2/2

π1/4

〈
β|e− â†2

2 +
√

2xâ† |0
〉

=
e−

x2
2

4
√

π
e−

β∗2
2 +

√
2β∗x 〈β|0〉

=
e−

x2
2

π1/4
e−

β∗2
2 − |β|22 +

√
2β∗x, (46)

as〈β|â† = β∗〈β| and〈β|n〉 = e−
|β|2

2
β∗

n

√
n!

.

The HusimiQ-function [20] can be calculated from (45)
simply as

Q(β)=
1
π

∣∣∣〈β|x〉p
∣∣∣
2

=
e−x2

e−|β|
2

π3/2

∣∣∣∣e−
β∗2
2 +

√
2β∗x

∣∣∣∣
2

, (47)

that after some algebra, can be re-written as

Q(β)=
1

π3/2

× exp
[
−x2− |β|2−Re(β∗2)+2

√
2Re(β)x

]
. (48)

In the figures, we plot the HusimiQ-function for different
values ofx.
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FIGURE 1. The HusimiQ-function forx = −3.

FIGURE 2. The HusimiQ-function forx = 0.

FIGURE 3. The HusimiQ-function forx = 3

FIGURE 4. The HusimiQ-function forx = 6.

6. Conclusions

We have found an operator that applied to the vacuum gives
us the eigenstates of the position. We did that by two different
ways; first, using the Caves definition of the squeezed states,
we took the limit of extreme squeezing in the position side,
to get the position eigenstate. Second, we used the expansion
of an arbitrary wave function in the base of the harmonic os-
cillator; i.e., we wrote an arbitrary wave function in terms of
Hermite polynomials. The expressions obtained allows us to
show certain properties of squeezed states, and also allow us
to write in a very easy way the HusimiQ-function of the posi-
tion eigenstates. The same procedure can be followed to find
the eigenstates of the momentum, but taken the limit when
the squeeze parameters goes to−∞.

We can also conclude that from the point of view of this
work, the Caves approach to define squeezed states is more
adequate, because it gives the correct eigenstates of the posi-
tion; while the Yuen definition, formula (1), gives an expres-
sion that is incorrect. So, we must first squeeze the vacuum,
and after, displace it.

A Appendix

In this appendix, we show how to disentangle the operator
e−

r
2 â2+râ†â. We define

F̂ (r) ≡ e−
r
2 â2+râ†â, (49)

and we suppose that (48) can be rewritten as

F̂ (r) = exp
[
f(r)â†â

]
exp

[
g(r)â2

]
, (50)

wheref(r) andg(r) are two unknown well behaved func-
tions; asF̂ (0) = Î, being Î the identity operator, these
functions most satisfy the conditionsf(0) = g(0) = 0. At
first sight, one can think that in the proposal (45) should be a
term of the formexp

[
h(r)â†

2
]
; however, this is not the case
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because
[
â2, â†â

]
= 2â2. We differentiate with respect tor,

to find

dF̂

dr
=

df

dr
â†â exp

[
fâ†â

]
exp

[
gâ2

]

+
dg

dr
exp

[
fâ†â

]
â2 exp

[
gâ2

]
, (51)

where for simplicity in the notation, we have dropped allr-
dependency; we writêI = exp

[−fâ†â
]
exp

[
fâ†â

]
for the

identity operator in the second term, to obtain

dF̂

dr
=

df

dr
â†â exp

[
fâ†â

]
exp

[
gâ2

]
+

dg

dr
exp

[
fâ†â

]
â2

× exp
[−fâ†â

]
exp

[
fâ†â

]
exp

[
gâ2

]
. (52)

Using the Hadamard´s lemma [14,15], it is very easy to prove
that

exp
[
fâ†â

]
â2 exp

[−fâ†â
]

= e−2f â2, (53)

so
dF̂

dr
=

(
df

dr
â†â +

dg

dr
e−2f â2

)
F̂ . (54)

Equating this equation to the one obtained differentiating the
original formula forF̂ (r), equation (44), we get the follow-
ing system of first order ordinary differential equations

df

dr
= 1,

dg

dr
e−2f = −1

2
. (55)

The solution of the first equation, that satisfies the initial con-
dition f(0) = 0, is the functionf(r) = r. Substituting this
solution in the second equation and solving it with the initial
conditiong(0) = 0, we obtaing(r) = 1−e2r

4 . Thus, finally
we write

e−
r
2 â2+râ†â = erâ†âe

1−e2r

4 â2
. (56)
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