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An alternative approach to the tomographic
reconstruction of smooth refractive index distributions
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E. Gonzalez-Ramirez
gonzalez_efren@hotmail.com
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Continuous, mathematically smooth Phase Objects with radial symmetry are reconstructed from cross sections of their refractive index
distribution by a novel method, consisting of a linear combination of Gaussian basis functions, whose technical details are discussed. As
an application example, this approach is used to get a fast and accurate estimation of the temperature distribution of an actual soldering
tip. [DOI: http://dx.doi.org/10.2971/jeos.2013.13036]
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1 INTRODUCTION

Optical tomography is a well known nondestructive and non-
invasive technique for obtaining the distribution of refractive
index gradients in a cross section of a Phase-Object (PO), in the
non-refractive limit, from one or more projections. In the case
of a radially-symmetrical PO, only one projection is necessary
[1]. This projection is formed by a set of parallel rays known
as summa rays (Figure 1). For reconstructing a cross-section
of a PO from their projections, back projections methods or
Algebraic Reconstruction Technique (ART) [2]–[5] is normally
employed.

Some other authors propose, alternatively, a reconstruction
method by using Gaussian basis functions, solved by a reg-
ularization process [6]. In algebraic methods, the diagram of
projections is a linear transformation of the cross section of the
object to be reconstructed, i.e. a linear system given by the ma-
trix of projections. Thus, the unknown vector consists of the
image of the cross section and the solution vector of the dia-
gram of projections [2]–[5]. From a technological standpoint,
however, one of the main practical limitations of this other-
wise powerful optical technique is the required computing

time to be able to extract meaningful information for on-line
applications and a great effort has been then dedicated to that
purpose. Accordingly, in this work we present a fast numeric
estimation of refractive smooth index from an interferogram
without the need of a carrier, by using non-local Gaussian ba-
sis functions. A comparison of our method and a traditional
procedure is also included, as well as an actual example of the
application of this technology to the optical determination of
the temperature distributions around a soldering tip.

2 THEORETICAL BACKGROUND

Interferometric techniques are routinely used to measure a
number of physical quantities [1, 7], such as temperature,
pressure or strain, provided they can be associated to the dis-
tribution of the refractive index. The general idea is to produce
a fringe pattern modulated by the variations in refractive in-
dex. Mathematically, the intensity of an interferogram can be

Received September 21, 2012; revised ms. received April 04, 2013; published June 04, 2013 ISSN 1990-2573

http://dx.doi.org/10.2971/jeos.2013.13036


J. Europ. Opt. Soc. Rap. Public. 8, 13036 (2013) E. De la Rosa-Miranda et al.

FIG. 1 Graphical description of a projection of a phase object section.

represented as:

I(x, y) = a(x, y) + b(x, y) cos[2π f0x + φ(x, y)]⊗ η(x, y) , (1)

Where (x, y) are the spatial coordinates, a(x, y) represents the
background light, b(x, y) is the modulation in amplitude and
φ(x, y) the phase of the wavefront associated to the refractive
index; f0 is the frequency of the carrier [8] and η(x, y) rep-
resents the noise. The symbol ⊗ indicates that noise can be
either additive or multiplicative since, in the case of Speckle
Pattern Interferometry (SPI) [5] or single path interferometry
[1], noise is multiplicative. When the level of noise is significa-
tive, it is necessary to employ some filtering method. In many
practical cases, and for the purposes of this work, both a and
b vary slowly. If the interferogram does not have a carrier, i.e.,
( f0 = 0), as that from a single path interferometer and from
the holographic ones [1] the fringe pattern can be described
by:

I(x, y) = cos[φ(x, y)] η(x, y) . (2)

As for the tomographic reconstruction, let us consider that
the optical path length δ of a single ray, across a transparent
medium, is represented as:

δ =
∫

C
nds, (3)

which is the integral of the refractive index n along the path
of the ray C . When the refraction is not intense, the path of
the ray can be approximated by a straight line. If the ray prop-
agates along the z axis, as illustrated in Figure 2, the optical
path can be thus expressed as:

δ(ξ, η) =
∫

C
n(ξ, η) dz, (4)

and the optical path difference (OPD) ∆(ξ, η) is given as

∆(ξ, η) =
∫

[n(ξ, η)− n0] dz, (5)

where n0 is the refractive index of the surrounding medium
and ∆(x, y) is related to the phase of φ(x, y), in Eq. (2), as:

φ(x, y) =
2π

λ
∆(ξ, η) . (6)

FIG. 2 The Abel Transform applied on a section of a phase object.

In the particular case of a radially-symmetrical PO and by
considering a section of it (as illustrated in Figure 2), Eq. (3)
can be expressed in terms of the Abel transform, A {·} [1], as:

∆(ξ) = ∆(ξ, η = cte) = A {n(r)} = 2
+∞∫
ξ

n(r) r√
r2 − ξ2

dr, (7)

where r is the radial coordinate given by
√

ξ2 + η2.

3 ALTERNATIVE RECONSTRUCTION
METHOD

As it is well known, in the ART methods, the cross section
of the object is superimposed onto a logic grid of M × N el-
ements [3]. Each of these elements or pixels is an unknown
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[2]–[5], [9, 10]. To describe each pixel, different definitions are
used, e. g. rectangles or some other local function that can
overlap with neighboring elements [9, 10]. To reconstruct the
section, at least, M× N equations should be set. The methods
available in the specialized literature are rather general and
not oriented to a specific distribution. For radially symmetri-
cal objects, the generator function is divided into M elements.
To reconstruct the section, at least M equations are necessary
in order to know these elements of the generator function. For-
tunately, it is possible to simplify the problem by considering
only smooth radially symmetric PO [6]. This assumption al-
lows for a rapid reconstruction of the cross section, consid-
ering only representative points of the interferogram. These
points are obtained from the contour curves built from the in-
terferogram, without a carrier.

Indeed, provided the PO is mathematically smooth and con-
tinuous, it is assumed that the profile of a section, n(r) , can be
approximated by a linear combination of k non-local Gaussian
basis functions fi(r), i.e.

n(r) ≈
k

∑
i=1

wi fi(r) , (8)

here wi are weighting factors. From Eqs. (6), (7) and (8) the
optical path difference is

N(x) λ = A

{
k

∑
i=1

wi fi(r)

}
=

k

∑
i=1

wiA { fi(r)}

=
k

∑
i=1

wiFi(x) , (9)

where N(x) is the optical path difference in magnitude and
Fi(x) is the Abel transform of the basis function fi(r). If x lies
within the range 0 ≤ x ≤ xm, where xm is the maximum value
of x, then Eq. (9) can be expressed in matrix form as

F1(x1) F2(x1) · · · Fk(x1)

F1(x2) F2(x2) · · · Fk(x2)
...

...
...

F1(xn) F2(xn) · · · Fk(xn)

F1(xm) F2(xm) · · · Fk(xm)




w1
w2
...

wk

 =

λ


N1
N2
...

Nn
Nm = 0

 , (10)

where x1, x2, . . . , xn are the central positions of the orders
N1, N2, . . . , Nn for a given value of y. Position xm is assigned
to the mth (Nm), which corresponds to the surrounding. Then,
the Eq. (10) can be expressed as

ϕ = λN = Fw (11)

with N being the vector that contains the orders of interfer-
ogram, w as the vector of weights of the contributions of
the functions Fi(x) and F is the projection matrix. The mean
square error (MSE) is given by

MSE =
1

MN
ETE =

1
MN

(ϕ− Fw)T (ϕ− Fw) . (12)

By differentiating the last expression with respect to w and
making it equal to zero, one obtains,

w =
(

FTF
)−1

FTϕ, (13)

where the matrix
(
FTF

)−1 FT is the pseudo inverse of F.
Therefore, to obtain an estimate n(r) it is only required to cal-
culate the weights wi, from Eq. (9). For the pseudo inverse
of F the methods described in the literature [11, 12] can be
used. The pseudo inverse can also be calculated using com-
mercial software such as MATLABr or MathCadr. In sum-
mary, given a set of non-local Gaussian basis functions, the al-
ternative method proposed consists in finding the linear com-
bination of this set that best fits the vector N.

The specific steps for the application of this method can be
described in the next sequence:

1. Eliminate the noise.

2. Obtain the central positions of the orders (x1, x2, . . . , xn).

3. Acquire the contour curves (N1, N2, . . . , Nn).

4. Set the refractive index of PO.

5. Associate the refractive index with a physical quantity.

4 RESULTS AND DISCUSSION

The simplest approach for tomographic reconstruction of a PO
section consists in a linear approximation of rings of width ∆r
of such section [1]. Given this approximation Eq. (9) can be
expressed as

Niλ = 2
I−1

∑
k=1

fk

rk+1∫
rk

r(
r2 − r2

i
)1/2 dr, (14)

By solving the integral we obtain

I−1

∑
k=i

Aik fk =

(
λ

2∆r

)
Ni, (15)

where Aik =

{[
(k + 1)2 − i2

]1/2
−
(
k2 − i2

)1/2
}

.

Finally, Eq. (15) can be expressed as
A11 A12 · · · A1k
0 A22 · · · A2k
...

...
...

0 0 · · · Aik




f1
f2
...
fk

 =
λ

2∆r


N1
N2
...

Ni

 . (16)

In order to find the vector f, a total of (I − 1)2 operations are
required, where I is the number of rings. For the reconstruc-
tion of PO an overall of (I − 1)2 × ns operations are required,
with ns is the number of sections.

On the other hand, to find the weights of the basis functions
in the proposed method, 3n3

pn f operations are required, where
np is the number of points corresponding to the orders of the
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interferogram, and n f is the number of basis functions. For the
PO reconstruction 2npn f ns operations are required. Therefore,
the total number of operations is 3n3

pn f + 2npn f ns

To assess the quality of the reconstruction, a numerical sim-
ulation was performed as follows. A wavefront is projected
through a radial symmetrical PO nt(r, n), given by the equa-
tion

nt(r, η) = −10.5× 10−5
[

exp
(
−5x2

)
+ exp

(
−5

9
x2
)]

, (17)

where r =
√

ξ2 + η2 is given in cm. Figure 3 shows one pro-
jection section of PO (OPD in λ) and the corresponding inter-
ferogram (for λ = 632.8 nm, HeNe laser). From each order’s
centers, the level points shown as the neighbor of the OPD
are obtained. The total set of level points, 23 points, are used
to obtain an approximation of the PO section. Figure 4 shows
the reconstructions obtained using five and seven uniformly

distributed gaussians, in two intervals, with a separation be-
tween centers of σ units.

For the reconstruction, rings with a Gaussian profile are used

gauss(r− r0, σ) = exp

[
− (r− r0)

2

2σ2

]
, (18)

where σ is given by

σ =
xm(

ng − 1
)

d
. (19)

being ng the number of Gaussians used in the reconstruction
and d the distance between their centers, measured in σ.

From the points shown in Figure 3, the reconstruction is
shown in Figure 4, with 5 Gaussian functions and separation
between their centers σ.

FIG. 3 Interferogram and OPD from PO.

(a) (b)

(c) (d)

FIG. 4 Reconstruction of a section of the object, using our proposed technique. (a) five Gaussians, [0, 2.85]. (b) five Gaussians, [0, 2]. (c) seven Gaussians, [0, 2.85]. (d) seven

Gaussians, [0, 2].
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(a) The complete interferogram

(b) The region of interest of in the Figure 5a.

FIG. 5 Interferograms from hot tip

As an actual real example of our approach, Figure 5(a) shows
the experimental interferogram for the hot tip obtained by
means of an in-axis interferometer in a non-linear medium.
The experimental details were published separately [13]. Fig-
ure 5(b) corresponds to a selected region of the original in-
terferogram, filtered to eliminate the noise (a Wiener filter
[1, 5] with a window of 3 × 41 was employed). By using
λ = 632.8 nm, a distance between two adjacent elements of
∆ξ = ξi − ξi−1 = 0.0333 cm and a linear combination of four
rings of a gaussian profile, the curves of Figure 6(a) are ob-
tained. The Gaussians are uniformly distributed in [0, L(3)]
(where L(3) is the maximum value of the third order, from
right to left from each PO section).

The latter are associated with temperature gradients through
the Gladstone-Dale equation [1].

n− 1 =
0.292015× 10−3

1 + 0.368184× 10−2T
, (20)

where n is the refractive index and T is temperature in ◦C.
In Figure 6(b) a longitudinal slice is shown. Figure 6(c) shows
three transversal slices of the PO’s temperatures. As summary,
Figure 6(d) shows a 3D view.
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FIG. 6 (a) Level fringes of the PO. (b) Longitudinal slice, (c) transversal slices, and (d)

3D view, of the PO’s temperature.

5 CONCLUSION
The proposed method is a simple algebraic, fast and accurate
non-iterative algorithm. It is fast because the number of un-
knowns (the weights of basis functions) is small. And it is ac-
curate because the reconstruction can be done on represen-
tative points from the orders of the detected interferogram.
Moreover, this approach can be improved further by using an
interpolation according to the symmetry and the type of ob-
ject, resulting in a more accurate reconstruction, at will.
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