
A Causal-Based Consistent
Update Approach for

Software-Defined Networks

By

Amine Guidara

Dissertation submitted in partial
fulfillment of the requirements for the degree of

PhD. in Computer Science

Instituto Nacional de Astrof́ısica, Óptica y Electrónica (INAOE)
Tonantzintla, Puebla, México

January, 2021

Advisors:

Dr. Saúl Eduardo Pomares Hernández
Coordination of Computer Science

INAOE, México

Dr. Lil Maŕıa Xibai Rodŕıguez Henŕıquez
Coordination of Computer Science

CONACyT-INAOE, México

Dr. Ahmed Hadj Kacem
ReDCAD Laboratory

University of Sfax, Tunisia

©INAOE 2021.
All rights reserved.

The author hereby grants to INAOE permission to
reproduce and to distribute copies of this thesis

document in whole or in part.

http://www.inaoep.mx
http://www.inaoep.mx
http://http://www.redcad.tn

Agradecimientos

A mis padres Mondher e Ibtissem quienes con su paciencia y esfuerzo me han permitido

llegar a cumplir un sueño más. A mi hermana Yesmine, por su cariño y apoyo incondi-

cional. A mi t́ıa Salwa y mi t́ıo Salim quienes me apoyaron mucho durante todo este

proceso, por estar conmigo en todo momento. A mis abuelos, gracias por sus bendi-

ciones y oraciones. A mi esposa Abir, por ser el apoyo incondicional, que con su amor y

respaldo me ayuda alcanzar mis objetivos. A mi bebé Fedi, que con su nacimiento me

dio los ánimos para seguir adelante. A mi hermano Josué, le agradezco por ser un alma

bondadosa que ayuda sin esperar nada a cambio, por esas palabras de aliento, por ese

tiempo tan preciado que me dedicaste para mejorar mi español. A mi hermano Sami,

te agradezco por tu apoyo y tu amistad. A mis amigos, Alejandro, Laritza, Diana,

Carlos, Hussein y Mariano con quienes he compartido los mejores momentos durante

mi estancia. A mis paisanos en México Riadh y Mokhtar, gracias por estar conmigo en

los momentos más def́ıciles.

A mi asesor el Dr. Saúl E. Pomares Hernández quien me ha transmitido sus

conocimientos y me brindó la orientación para la realisazión de esta tesis. A mi co-

asesora la Dra. Lil Maŕıa X. Rodŕıguez Henŕıquez, por su dedicación que permitió el

logro de este trabajo de investigación. A mi co-asesor el Dr. Ahmed Hadj Kacem, por su

valiosa orientació. Al jurado de este trabajo, Dr. Felipe Orihuela-Espina, Dra. Hayde

Peregrina-Barreto, Dr. René Armando Cumplido Parra y la Dra. Claudia Feregrino-

i

ii

Uribe, por contribuir a que este proyecto de tesis pudiera llegar a un mejor término.

También agradezco al Dr. Salvador Villarreal Reyes, por participar como miembro del

jurado.

Al INAOE, por ser mi casa durante mas de tres años y permitirme obtener nuevos

conocimientos. Al CEPE-Taxco, donde he aprendido el idioma español y he pasado los

mejores momentos de mi vida. Al AMEXCID, por otorgarme los insumos económicos

durante los tres primeros años del programa de doctorado.

A mi páıs Túnez, por enseñarme todo lo que realmente importa en esta vida. A

México, por atendenrme y compartir conmigo su cultura.

Abstract

Software-Defined Network (SDN) is a network paradigm that has been recently in-

troduced. Unlike traditional networks, e.g. IP networks, SDNs separate the network

control logic from forwarding devices, and delegate network management tasks to a

logically-centralized entity called the controller. However, SDN is still a distributed and

asynchronous system. In fact, during forwarding policy updates, any network entity

may trigger update events at any time, e.g. the sending of messages or data packets,

while they are prone to arbitrary and unpredictable transmission delays. Moreover,

the absence of an agreed and common temporal reference results in a broad combi-

natorial range space of event order. An out-of-order execution of events may lead to

invariant violations, e.g. forwarding loops and forwarding blackholes, referred to as

inconsistent updates. Some works tackle the issue of inconsistent updates by imposing

global time references; however, they do not compromise consistency during updates as

clocks of entities cannot be perfectly synchronized. Other solutions lie on performing

updates on different rounds, i.e. steps, while each update step guarantees consistency.

These solutions compromise consistency during updates; however, performing updates

over different steps may congest the communication canals between the controller and

the forwarding devices, leading to bandwidth overhead. In this dissertation, we pro-

pose a causal-based consistent update approach that ensures the connectivity update

properties: transient forwarding loop-free and transient forwarding blackhole-free. This

iii

iv

is achieved by defining a formal model of the two connectivity invariant violations as

a specification of the Happened-Before relation of Lamport. Based on this model,

network update policies are introduced by establishing causal dependencies between

relevant update events. These update policies are reflected by an update mechanism

oriented towards transient connectivity inconsistency-free SDN updates. To prove the

correctness of the update mechanism, it was demonstrated that it is sufficient to ensure

the transient forwarding loop-free and the transient forwarding blackhole-free prop-

erties. In terms of findings, the formal modelisation of the two connectivity update

properties defines the root cause of their triggering and capture the conditions under

which they may occur. Accordingly, the proposed update mechanism is designed to

prevent the triggering of these conditions, without requiring the use of global time ref-

erences. Furthermore, as to the update scheduling, O(1)-step is required to perform

an update. Unlike the other solutions, the mechanism promotes the availability of for-

warding paths for data packets during updates. This is by permitting to packet flows to

traverse both forwarding paths, i.e. the initial one related to the old forwarding policy

and the final one related to the new forwarding policy. Finally, it can be concluded that

connectivity consistency update is achieved by ensuring causal dependencies between

events making end to the initial network policy and events setting the final one. As to

the continuation of this work, the research community of network area may leverage

from this investigation by proving the correctness of their update mechanisms across

the formal definitions of the connectivity inconsistency phenomenons. Also, the pro-

posed update mechanism can be adopted to be emulated in read world SDN update

tasks.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem description . 2

1.2.1 The SDN update problem . 2

1.2.2 The difficulty in solving inconsistent connectivity update problems 4

1.3 Research questions and Hypothesis . 5

1.4 Objectives . 6

1.4.1 General objective . 6

1.4.2 Specific objectives . 7

1.5 Proposed solution . 7

1.6 Associated publications . 8

1.7 Thesis organisation . 8

2 Background and Definitions 9

2.1 Software-Defined Network paradigm . 9

2.1.1 Architecture and terminology 10

2.2 Network update in Software-Defined Networks 11

2.2.1 Network traffic handling in an OpenFlow-based SDN 12

2.2.2 Network traffic handling based on others SDN Southbound APIs 14

2.2.3 Routing models . 15

2.2.4 Consistent updates . 16

2.3 Distributed system and causal ordering 17

2.3.1 Distributed systems model . 17

2.3.2 Partial and total order relations 18

2.3.3 Logical Time and causal ordering 20

2.3.4 Causal order delivery . 21

v

Contents vi

2.4 Chapter summary . 22

3 Related work 23

3.1 Consistent Network update . 23

3.2 Consistent Network update approaches in SDNs 24

3.2.1 A taxonomy of consistent updating techniques 25

3.2.2 Performance oriented-objective updating 32

3.3 Chapter summary . 35

4 The formalisation of the inconsistency connectivity update problem

in Software-Defined Networks 37

4.1 Network model . 37

4.2 Inconsistent connectivity update in Software-Defined Networks: Problem

formulation . 41

4.2.1 Transient forwarding loop . 42

4.2.2 Forwarding blackhole . 47

5 Causal-based consistent connectivity update approach 55

5.1 Transient forwarding loop-free update policy 55

5.2 Forwarding blackhole-free update policies 58

5.2.1 Transient forwarding blackhole-free update policy 58

5.2.2 Permanent forwarding blackhole-free update policy on forgotten

nodes . 61

5.3 Update mechanism free from transient connectivity inconsistencies . . 63

5.3.1 Algorithm overview . 63

5.3.2 Algorithm description . 65

5.3.3 Proof of correctness . 71

5.4 Scope and limitations . 75

5.5 Chapter summary . 75

6 Discussion 77

7 Conclusion and future work 87

7.1 Conclusion . 87

7.2 Future work . 90

Bibliography 92

List of Figures

1.1 Packet flow forwarding policy changes: an example 3

2.1 The general architecture of SDN. 11

2.2 An example illustrating the flow-based traffic management in SDNs. . . 13

3.1 Taxonomy of consistent update techniques 25

3.2 Forwarding policy changes example . 27

4.1 Triggering of a transient forwarding loop due to an out-of-order execution

of update events [GHH+20]. 42

4.2 The communication diagram related to Figure 4.1 [GHH+20]. 43

4.3 Transient forwarding loop: generic scenario [GHH+20]. 45

4.4 The communication diagram corresponding to Figure 4.3 [GHH+20]. . . 46

4.5 A per-node categorisation of forwarding blackhole occurrences during

SDN updates [GHH+19]. 48

4.6 Communication diagram related to the triggering of a transient forward-

ing blackhole on a rpi ∈ fpathinitial
l ∩ fpathfinal

l [GHH+19]. 50

4.7 Communication diagram related to the triggering of a transient forward-

ing blackhole on a rpi ∈ fpathfinal
l [GHH+19]. 51

4.8 Communication diagram related to the triggering of a permanent for-

warding blackhole on a rpi ∈ fpathinitial
l [GHH+19]. 53

vii

List of Tables

2.1 Flow table of switch4 . 14

2.2 Flow table of switch5 . 14

3.1 Overview of consistent update approaches 34

6.1 A qualitative comparison of our approach with the-state-of-the-art . . . 85

ix

List of Acronyms

SDN Software-Defined Network

REST REpresentational State Transfer

ForCES FORwarding and Control Element Separation

OVSDB Open vSwitch Database

POF Protocol Oblivious Forwarding

ROFL Revised Open-Flow Library

FIS Flow Instruction Set

ONF Open Networking Foundation

HBR Happened-Before Relation

IDR Immediate Dependency Relation

ENOS Existing nodes

INOS Inserted nodes

FNOS Forgotten nodes

xi

List of Notations

src A source forwarding device

s1,..., sn Intermediates forwarding device

dst A destination forwarding device

cp The controller process

rp1, ..., rpn The routing processes related to the forwarding devices

m1, ..., mn The messages exchanged between the different processes

pkt1, ..., pktn The data packets

mp1, ..., mpn Messages or data packets

fpath1, ..., fpath2 Forwarding paths between sources and destinations forwarding devices

fpathinitial
1 , ..., fpathfinal

n Initial forwarding paths between sources and destinations

fpathfinal
1 , ..., fpathfinal

n Final forwarding paths between sources and destinations

match1, ..., matchn Flag that identify packets, flow packets and forwarding paths

SdM(m) The sending event of a message

FwdP (pkt) The forwarding of a data packet

RecMP (mp) The reception of a message or a data packet

DlvMP (mp) The delivery of a message or a data packet

T (m) A function that returns the transmission time of a message m

PT An instance of the physical time

CIi A control information vector

Deliveryi A matrix of messages/packets delivery related to a process pi

→ Happened-Before Relation

↓ Immediate Dependency Relation

xiii

Chapter 1
Introduction

1.1 Motivation

Nowadays, Software-Defined Networks (SDNs) have became the spine of daily and

critical used services, e.g. data management of banking platforms. Supporting such

applications and services requires frequently SDN updates. Reasons behind performing

updates became manifold, among them, security policy changes, traffic engineering,

maintenance work, adding or removal of services, etc. [FSV16].

Applications sensitive to disruption, such as data delay or loss, cannot tolerate such

errors, affecting network quality of service (QoS). To ensure a better QoS, it is impor-

tant that networks obey correctness criteria during transition phases, i.e. throughout

updating networks. For this, network operators have to guarantee that some desirable

properties are preserved, ensuring consistent network updates. Preserving connectiv-

ity consistency on updating SDNs, which includes preserving forwarding loop-free and

forwarding blackhole-free properties, is one of the network consistency categories. In

fact, connectivity consistency concerns the delivery of data packets to their respective

destinations, and therefore prevents data loss.

Different approaches have been proposed to deal with inconsistent connectivity up-

date problems in SDNs. Recent results show that preserving connectivity consistency

may be achieved based on different methods and techniques. However, an optimal

trade-off between ensuring consistent connectivity updates and optimizing their perfor-

mance remain a challenge. One network update performance criteria is the number of

rounds required, i.e. the number of steps required to execute an update, while guar-

1

Chapter 1. Introduction 2

anteeing consistency. Ensuring consistent connectivity updates while minimizing the

number of rounds is commonly considered in the state-of-the-art. For instance, results

provided by [FLMS18] prove that, in the worst case, Ø(n)-rounds loop-free update

schedules always exist where n is the number of network entities. Indeed, this reflects

that performing consistent updates require incrementally installing intermediate net-

work configurations. This qualifies updates as bandwidth-consuming tasks as more an

update requires to install intermediate configuration more it requires communication

between network entities.

On reviewing the state-of-the-art, and as yet, we have not found any work that has

studied and formally specified the root cause(s) behind the triggering of inconsistent

connectivity update problems during updates. Such studies are important as they allow

to identify and describe the problem clearly, referring to define how a SDN passes from

a connectivity consistent network state to a connectivity inconsistent network state.

Understanding the latter mentioned allows distinguishing between the root cause of the

problem and other causal factors, clarifying the view over the triggering of inconsistent

connectivity behaviours and helping to design better update consistent methods in

terms of performance.

1.2 Problem description

1.2.1 The SDN update problem

A SDN offers a new level of abstraction, reducing the complexity of network update

tasks. This is through its single point of control named the control plane or the con-

troller. Unlike the IP networks, updates in SDNs are no longer the responsibility of the

forwarding devices, entitled the data plane in a SDN context. The SDN control plane is

the entity responsible for supporting the different network management requirements,

Chapter 1. Introduction 3

including the update of forwarding policies. Therefore, no distributed computations are

needed anymore on forwarding devices, e.g. switches, to perform updates. Instead, the

controller has to compute a sequence of operations that changes the packet-processing

rules installed on forwarding devices, and then communicate the rules to them via mes-

sage exchanges. Given an initial and final forwarding policies, an update consists in

moving from the initial policy to the final one by applying the computed sequence of

operations on the underlying switches. For instance, in Figure 1.1, the initial forwarding

policy forces the outgoing packets from the source switch src to reach the destination

switch dst along the forwarding path (src, intermediate switches (...), si, sinter, ..., sj,

..., sk, dst). The network update problem consists in replacing the initial forwarding

rules with new ones to consider the new policy forwarding packets to dst along the path

(src, ..., sk, ..., sj, ..., sinter, ..., si, dst).

Figure 1.1: Packet flow forwarding policy changes: an example

Chapter 1. Introduction 4

1.2.2 The difficulty in solving inconsistent connectivity update
problems

The SDN inconsistent connectivity update problem consists in avoiding two inconsistent

phenomenons during updates, i.e. during the interval of time when moving from one

forwarding policy to another. These two phenomenons are the forwarding loop and the

forwarding blackhole. Informally, we can define them as follows:

• Forwarding loop. It occurs when a data packet is forwarded along a loop back

during an arbitrary time interval to a forwarding device in the network where it

was previously processed.

• Forwarding blackhole. It occurs during an update when a data packet ar-

rives at a forwarding device and there is no a matching forwarding rule into the

forwarding device table to forward them to its next hop.

Avoiding the triggering of these inconsistency connectivity phenomena during up-

dates depends on :

1. The order in which operations appear in the computed sequence of update oper-

ation.

For example, if the controller calculates that the intermediate switch sinter should

update its new forwarding rule before si, then this operational sequence triggers

a forwarding loop between si and sinter. Even worst, if the controller considers

that all intermediate switches situated between sj and si should update their new

forwarding rules to forward all ingoing packets from sj to si before deleting the

initial ones that forward the ingoing packets from si to sj, then this operational

sequence gives rises to a forwarding loop between si and sj passing by all the

intermediate switches between them.

Chapter 1. Introduction 5

As to forwarding blackholes, for example, if the controller calculates that si has

to update its forwarding rules by deleting the initial rule that forwards the in-

going packets before that src updates their forwarding rules by deleting the rule

forwarding packets to si, then this operational sequence results that packets for-

warded from src to si enter in forwarding blackhole as the rule responsible to

forwarding the packet in question is already deleted.

2. The order of execution of the operational sequence by forwarding devices.

Even if the controller is able to calculate the correct operation update sequences,

e.g. updating sinter’s rule after si’s one in the first previous example. However,

the order in which the underlying switches execute update operations is not nec-

essarily the same order calculated by the controller. Indeed, the controller may

start by sending a message instructing si to update, and then sending another

messages to sinter instructing it to update, ending by updating sinter’rule before

si one. This is can be explained due to the asynchronous communication between

the controller and switches. The communicated update messages by the controller

and in-fly data packets are prone to arbitrary and unpredictable transmission de-

lays. Moreover, the absence of a global temporal reference in SDNs results in a

broad combinatorial range space of order of which update operations may take

place.

1.3 Research questions and Hypothesis

The described problem raises the following research question:

• How can we ensure consistent connectivity updates in SDNs to enforce the cor-

rectness of data plane when network policies change, maintaining an asynchronous

communication between network entities?

Chapter 1. Introduction 6

This research question evokes further questions, which help us to lead the research.

In a first instance, a question about how a SDN can be modeled to achieve connectivity

consistency during updates. Thus, we formulate the following question:

• How can we model a consistent execution view of a SDN while facing an incon-

sistent network view from the control plane?

Furthermore, specific questions about how to achieve the connectivity consistency

in SDNs are evoked. Thus, we formulate the following questions:

• How can we model SDN’s events to identify patterns of events orderings that can

give rise invariant violations in SDNs?

• How can we ensure an update order, needed to support consistent connectivity

updates in SDNs when network policies change?

To lead this research, we propose the following hypothesis:

In SDNs, when network policies change, network connectivity consistency can be

achieved by ensuring causal dependencies between events that eliminate the initial

network policies and events that set the final ones.

1.4 Objectives

1.4.1 General objective

The general objective for this research is:

• To design a mechanism to ensure consistent connectivity correctness properties:

forwarding loop free and forwarding blackhole-free, which serves as support to

reach network consistency in SDNs during updates.

Chapter 1. Introduction 7

1.4.2 Specific objectives

• To model SDN updates at the event level according to the distributed and asyn-

chronous nature of SDNs.

• To identify patterns of events order that can give rise inconsistent connectivity

invariant violations in SDN.

• To design a mechanism, based on causal order principles, to support network

consistency when network traffic evolves.

1.5 Proposed solution

In this dissertation we propose as main contribution, a formalization of the inconsistent

connectivity update problem, forwarding loops and forwarding blackholes, during SDNs

updates. Based on this formalization, the network update policies and an associated

update mechanism are provided.

For our proposal, SDN updates are modeled at the event level according to their

distributed and asynchronous nature.

The formal model of the forwarding loop and forwarding blackhole invariant vi-

olations are modeled based on causal dependencies1, capturing the conditions under

which connectivity inconsistency may occur. This formal model is a key contribution

in this work since it defines event-based patterns, defining the root causes behind the

triggering of each invariant violation leading to connectivity inconsistency during SDN

updates.

Update policies establish causal dependencies between relevant update events in

order to break the triggering of the defined connectivity inconsistency event-based pat-

1This is based on the happened-before relation defined by Lamport in [Lam78]

Chapter 1. Introduction 8

terns. Such policies allows us to build an update mechanism that does not require to

synchronise clocks of forwarding devices and/or to use global references.

1.6 Associated publications

The findings of this research work were subject of the following two publications:

1. A study of the forwarding blackhole phenomenon during software-Defined network

updates. [GHH+19]

2. Towards causal consistent updates in Software-Defined Networks. [GHH+20]

1.7 Thesis organisation

This document is organized as follows. In Chapter 2, the main concepts of SDNs and

distributed systems are presented to support the rest of this dissertation. In Chapter

3, a frame and a discussion of related work are presented. In Chapter 4, the problem of

inconsistent connectivity updates in SDNs is formalized. Based on this formalization,

in Chapter 5, network update policies are introduced and an update mechanism is

presented based on these policies. Also, a formal proof that the mechanism is free

from connectivity violations during updates is provided. In Chapter 6, we evaluate

and discuss the proposed approach, comparing it with the state-of-the-art. Finally, the

conclusion and the future work of this research are summarized in Chapter 7.

Chapter 2
Background and Definitions

In this Chapter, we focus on presenting fundamental concepts related to the research

areas: Software-Defined Networks (SDNs) and Distributed Systems, serving the devel-

opment of this thesis.

2.1 Software-Defined Network paradigm

Software-Defined Network (SDN) refers to a new generation of computer networks.

SDN was launched in 2008. It was standardized by the Open Network Foundation

(ONF) [ONF12] and implemented by a number of original equipment manufacturers

(e.g., HP, CISCO, IBM, Juniper, NEC and Ericsson).

This new paradigm of network architecture has reshaped several concepts of the

classical IP network model. First, it breaks the strong coupling between the control

plane and the data plane. By control plane, it refers to entities that decide how to handle

network traffic, and by data plane to entities whose responsibility is to forward traffic

according to the decisions made by the control plane. In IP networks, each entity has its

own operating system. Network handling is a shared responsibility between operating

systems of all entities. In SDNs, however, the control plane represents a logically-

centralized entity representing the operating system of a whole network, named also

a controller. It is important to highlight that a logically-centralized entity does not

force that the controller needs to be implanted in a single entity [JMD14]. However, a

controller can be implanted in physical/virtual distributed entities. Second, the data

plane becomes a set of network entities where their unique responsibility is to forward

9

Chapter 2. Background and Definitions 10

network traffic, then delegating the control logic management to the control plane.

Second, SDN, and as it name says, is a programmable network. The concept of a

programmable network was born by means of the mentioned separation between the two

planes. Indeed, tasks such as the definition of network policies, their implementation in

switching hardware and the forwarding of traffic are now programmable. A well-defined

application programming interfaces (API) are implemented between the network devices

and the controller as well as between the controller and the application plane. The later

is the highest level SDN’s plane that permits network administrators to manage their

networks [KRV+15]. SDN may be defined as follow.

Definition 1 Software-Defined Network (SDN) is a network management approach

that separates the control logic from forwarding devices to be logically-centralized into

a network operating system, enabling programmatically configuring the network using

software interfaces [JMD14, KRV+15].

In the rest of this chapter, an overview of the general architecture of SDN is pre-

sented. Also, network traffic management in SDN is discussed.

2.1.1 Architecture and terminology

As mentioned above, SDN is an emerging paradigm that relies on decoupling the tightly

coupled implantation of the control and data planes, where the control logic is separated

from network devices and it is implanted in a logically centralized controller [JMD14].

Thus, SDN mainly consists of three planes: the application plane, the control plane

and the data plane. Figure 2.1 depicts a simplified view of the SDN architecture.

The application plane is presented as a set of network applications which implement

network control logic (e.g. firewall, traffic engineering, load-balancer, etc.) leveraging

a northbound interface, e.g. Representational state transfer (REST) API [ZLLC14],

Chapter 2. Background and Definitions 11

which offers universal network abstraction data models and functionality to developers

[JMD14, KRV+15]. This set of network applications also either explicitly or directly

notifies the network behaviour to the control plane by means of a northbound interface.

The controller supports the translation of the network requirements and the desired

behaviour of the application plane to the data plane based on a southbound interface,

e.g. OpenFlow [ONF15] (see more details about other southbound APIs in subsection

2.2.2. A southbound interface formalizes the way in which the control plane and the

data plane communicate. Finally, the data plane is presented by the set of network

devices, e.g. switches and routers, which remain a set of simple forwarding devices

[JMD14, KRV+15].

Figure 2.1: The general architecture of SDN.

2.2 Network update in Software-Defined Networks

In this Section, we start by describing how traffic is handled in SDNs. Then, we move

to distinguish between two standards of routing models adopted by SDNs. Finally, we

present the concept of consistent update in SDNs.

Chapter 2. Background and Definitions 12

2.2.1 Network traffic handling in an OpenFlow-based SDN

In SDNs, network traffic is managed by the controller, qualified as the network brain

[KRV+15], which is responsible to make decisions about the traffic. The controller acts

as a translator between the application and data planes. It provides the requirements

communicated by the application plane, via the northbound APIs, by communicating

them as a set of instructions to the data plane, via the southbound APIs, allowing them

to handle traffic.

Definition 2 OpenFlow is a southbound API implementation that provides a message-

based communication protocol defining the way a control plane and data plane commu-

nicate [ONF12].

OpenFlow is the Open Networking Foundation (ONF) [ONF12] southbound stan-

dard API. This standard started with academic studies and then it gained traction in

the industry. Many vendors of commercial forwarding devices (e.g., switches) include

support of the OpenFlow API in their equipment. In this dissertation, the notation of

all defined abstractions is built on an OpenFlow-based SDN.

To establish network traffic, the controller interacts with switches via an OpenFlow

channel interface that connects each switch with the controller, permitting them to

exchange OpenFlow messages based on the OpenFlow protocol. This protocol pro-

vides a reliable message delivery and processing but does not ensure ordered message

processing [ONF15].

The set of OpenFlow messages is classified into different categories [ONF15]. The

controller-to-switch is one of the OpenFlow message categories and is the relevant mes-

sage category for this thesis. It includes the modify-state messages. These messages are

sent by the controller to handle the state of the switches. FlowMod is a controller-to-

switch message that instructs an OpenFlow switch in the network to add/update/delete

Chapter 2. Background and Definitions 13

entries of its flow table. A flow table is a switch table that contains entries, named also

forwarding rules. Based on its table of entries, a switch can perform actions on an

ingoing data packet/packet flow. When receiving a data packet, a switch looks up

into its forwarding table for an entry that matches the data packet/packet flow, and

then performs, as defined in the entry, the action over the matched packet/packet flow

(dropping, forwarding, modifying, etc.).

Figure 2.2: An example illustrating the flow-based traffic management in SDNs.

OpenFlow is considered as a SDN implementation that adopts a flow-based traffic

routing model1 [KRV+15]. A flow is defined as a set of packet field values (flags) acting

as a match (filter) criterion and a set of actions (instructions). Also, it is defined as a

sequence of packets between a source and a destination entities. Hence, each OpenFlow

packet of a specific flow that carries the same flags is identified and equally treated at

the forwarding devices. The example of Figure 2.2 shows a toy example that explains

how an OpenFlow SDN handle packet flows. The example illustrates two packet flows:

flowi where its forwarding path is colored with red, and flowj where its forwarding

path is colored with blue. Imagine that packets of flowi carries ”a.z” and packets of

flowj carries ”b.z” as a match field.

Despite that switch4 and switch5 process packets of flowi and flowj, however, both

1In the next subsection, we distinguish between flow-based and destination-based routing models.

Chapter 2. Background and Definitions 14

Match Action
*.z Fwd to switch5

Table 2.1: Flow table of switch4

Match Action
a.z Fwd to switch6

b.z Fwd to switch7

Table 2.2: Flow table of switch5

switches use different forwarding rules. On the one hand, as shown in Table 2.1, the

flow table of switch4 contains a single rule. This rule corresponds to all packets that

piggyback a match with prefix ”*”, i.e. any prefix, and a suffix ”z”. This rule will match

packets of flow flowi and flowj and it ends by forwarding them to switch5. On the other

hand, the Table 2.2 illustrates the flow table of switch5 containing two forwarding rules:

the first one is to forward all packet piggybacking a match= ”a.z” (packet of flowi)

to switch6. The second one is to forward all packet piggybacking a match= ”b.z”

(packets of flowj) to switch7. Thus, the two flows reach their destinations (switch6

and switch7).

2.2.2 Network traffic handling based on others SDN South-
bound APIs

In the previous subsection, we described how traffic is handled based on an Openflow

southbound API. However, OpenFlow is not the only specification of southbound API

in the SDNs. There are other API proposals such as Forwarding and Control Element

Separation (ForCES) [DSH+10], Protocol Oblivious Forwarding (POF) [Son13], Open

vSwitch Database (OVSDB) [PD13], OpenState [BBCC14] and Revised Open-Flow

Library (ROFL) [SAJ+14].

ForCES [DSH+10] proposes a network management approach without changing the

current architecture of the traditional network. This means that logically centralized

external controller is not needed. The separation of the control and data plane is

implemented but in the same network element.

Chapter 2. Background and Definitions 15

POF [Son13] provides an approach to enhance the current forwarding plane of

OpenFlow-based SDNs. In OpenFlow, switches have to extract the field values of

the ingoing data packets from their headers to be matched with the flow tables entries.

This parsing represents a significant cost for devices. To tackle this, POF proposes a

generic flow instruction set (FIS). With this approach, forwarding devices have not to

be aware about the structure of the matches fields of data packets. However, packet

parsing is the responsibility of the controller that results in generating a key values

table lookup that should be installed in the forwarding devices.

The OVSDB [PD13] is a complementary southbound API protocol to OpenFlow

designed for virtual Open vSwitchs. It offers other networking functions beyond the

capabilities of OpenFlow, e.g, allowing the control elements to create multiple virtual

switch instances and tying interfaces to the virtual switches.

OpenState [BBCC14] and ROFL [SAJ+14] do not propose a FIS to handle the

matching of data packet with entries of forwarding devices. However, on the one hand,

OpenState proposes to extend the OpenFlow matching abstraction by finite machines,

allowing the implementation of several stateful tasks inside forwarding devices. On the

other hand, ROFL implements a new layer as a facade to hide the complexity of the

different OpenFlow packet header versions and then provides an API which simplifies

the application deployment [KRV+15].

2.2.3 Routing models

Forwarding devices support rules that route packet flows based on one of these two

alternative routing models: destination-based and flow-based routing models.

Destination-based routing. Following this routing model, devices forward pack-

ets based only on their destinations. This model permits confluent paths, i.e. two

different packet flows with different sources and a same destination may intersect in an

Chapter 2. Background and Definitions 16

intermediate device in the network, and then continue to their destination based on the

same path. This means that one packet flow may be processed and controlled by more

than one specific service policy when traversing its route from the source to destination.

Flow-based routing. On the other hand, with a flow-based routing model, routes

are not confluent. In fact, rules forward packets based on the flow its belong to. A

flow may be identified based on various criteria, e.g., source, destination, etc. The

benefits of such routing model is that a single flow is processed and controlled based on

one specific service policy. We highlight that a typical SDN network uses a flow-based

routing [KRV+15]. In this thesis, we assume a flow-based routing model. In Chapter 4,

we show how this routing model is a key point that permits us to identify inconsistency

problems.

2.2.4 Consistent updates

Consistent updates mean that the network should meet strict requirements in terms

of correctness and availability when updating from one network policy to another.

The correctness and the availability of network are measured in terms of consistency

properties. These properties are classified by category [FSV16]: connectivity-based,

policy-based and capacity-based.

Connectivity-based. This guarantees the correct delivery of packets to their re-

spective destinations. The properties to be ensured are forwarding loop-free and for-

warding blackhole-free. Informally, on the one hand, forwarding loop-free ensures that

a packet is never forwarded along a loop back during an arbitrary time interval to a

forwarding device in the network where it was previously processed [GHH+20]. On the

other hand, forwarding blackhole-free guarantees that a forwarding device tat receives

a packet is able to forward it to its next hop. This thesis focuses on connectivity-based

consistent updates.

Chapter 2. Background and Definitions 17

Capacity-based. Networks inherently are limited in capacity. The consistency in

this category is defined as not violating any link capacities. The consistency property to

ensure is congestion-free. Migration from one forwarding policy to another should not

bypass the capacity of any link that connects any two forwarding devices in a network.

To locate exactly congestion-free consistency, other properties are taken into account,

e.g., buffer sizes of forwarding devices.

Policy-based. Policy-based refers to applying a set of rules to forward specific

packet flows from their sources to their destinations. In this category, requirements

bypass connectivity-based and capacity-based and are focused on the paths, sub-paths,

or even nodes from which a packet passes at a given time. The consistency property

guarantees that each packet is processed by either the in-prior of update policy or the

configuration in-place after updating. This is was formalized by means of the per-

packet consistency property [RFR+12] as an abstraction that guarantees that every

packet traversing the network is processed by only one specific network policy.

2.3 Distributed system and causal ordering

2.3.1 Distributed systems model

At a high level of abstraction, a distributed system can be described based on the

following sets: P , M , and E, which correspond, respectively, to the set of processes,

the set of messages, and the set of events [GHH+20].

• Processes: programs or instances of programs running simultaneously and com-

municating with other programs or instances of programs. Each process belongs

to the set of processes P = {pi, pj, ...}. and can only communicate with other

processes by message passing over an asynchronous communication network.

Chapter 2. Background and Definitions 18

• Messages: Abstractions which represent either arbitrarily simple or complex data

structures. Each message in the system belongs to the set of messages M =

{mi,mj, ...}.

• Events: An event en represents an instant execution performed by a process p ∈ P .

Each event en in the system belongs to the set E = {ei, ej, ...}. We can distinguish

two types of events: internal and external events. An internal event is an action

that locally occurs at a process, e.g. the computation of the value of a local

variable. An external event is an action that occurs in a process, but it is seen

by other processes and affects the global system state. The external events are

the send, the receive and the delivery events. A send event identifies the emission

event of a message m ∈ M executed by a process. A receive event denotes the

notification of the reception of a message m ∈M by a recipient process, whereas

a delivery event identifies the execution performed or the consumption of m.

2.3.2 Partial and total order relations

In distributed systems, there is two adopted approaches to ordering events: the partial

and the total order relations. As to the partial ordering, only the order of certain events

in E is identified. In other words, one can not be sure of the exact order of all the events

in the system. The partial order relation between every pair of event should satisfy the

following properties: the reflexivity, the antisymmetry and transitivity.

• The reflexivity refers to that a relation R relates each element x of a set X to

itself. Formally, this property can be expressed as follows:

∀x ∈ X : xRx (2.1)

Chapter 2. Background and Definitions 19

• The antisymmetry refers to that a relation R relates only pairs of distinct elements

of a set X. Formally, this property can be written as follows:

∀a, b ∈ X : aRb with a 6= b (2.2)

• The transitivity refers to that if a relation R that relates an element a of X to

another element b of X and also it relates the same element b to another element

c of X, then R also relates a to c. This is formally denoted as follows:

∀a, b, c ∈ X : if (aRb) and (bRc) then (aRc) (2.3)

Partial order relation is qualified as strict when it satisfies the irreflexive property

instead of the reflexive property.

• The irreflexivity refers to that a relation R does not relate any element of a set

X to itself. Formally, this property can be expressed as follows:

∀x ∈ X : x��Rx (2.4)

As to the total order relation, it allows to identify when each of the events of E

occurred and then identifies the total order of all the events in a system. This relation

should satisfy the properties of a partial order as well as the connexity property.

• The connexity refers to that a relation R relates an element a of a set X to another

element b of X or relates b to a and not both. Formally, this property can be

written as follows:

∀a, b ∈ X : aRb or bRa (2.5)

Chapter 2. Background and Definitions 20

2.3.3 Logical Time and causal ordering

In distributed systems, time represents an important theoretical construct allowing

to identify when events are executed . However, in a typical distributed system, it is

difficult to determine whether an event takes place before another one due to the absence

of a global physical time. In this context, the logical time, expressed by means of the

Happened-Before Relation (HBR), establishes an agreed time between all processes

that can establish the execution order relation between any two events in a distributed

system. This order relation was defined by Lamport [Lam78]. The HBR is a strict

partial order, and it establishes precedence dependencies between events. The HBR is

also known as the relation of causal order or causality.

Definition 3 The Happened-Before Relation (HBR) [Lam78] “→”is the smallest rela-

tion on a set of events E satisfying the following conditions:

• If a and b are events that belong to the same process and a occurred before b, then

a→ b.

• If a is the sending of a message by one process and b is the receipt of the same

message by another process, then a→ b.

• If a→ b and b→ c, then a→ c.

Based on Definition 3, the author of [Lam78] defines that a pair of events is concur-

rently related as follows:

Definition 4 Two events, a and b, are concurrent if a 9 b and b 9 a, which is denoted

by a ‖ b.

The use of HBR to maintain the causality is expensive. This is due to the tran-

sitively Happened-before relationships between events (defined in the third condition

Chapter 2. Background and Definitions 21

of the HBR definition) that should be considered between pairs of events. The author

of [PH15] proposed the Immediate Dependency Relation (IDR), the minimal binary

relation of the HBR that has the same transitive closure.

Definition 5 The Immediate Dependency Relation (IDR) [PH15] “↓”is the transitive

reduction of the HBR, and it is defined as follows:

a ↓ b if a→ b ∧ ∀c ∈ E,¬(a→ c→ b)

2.3.4 Causal order delivery

Causal order delivery represents a fundamental property in the field of distributed

systems. This property is useful for synchronizing distributed protocols by inducing the

causal order of events. Informally, this means that if we have two send messages m and

m′ that are causally related and are sent to the same process pi, then pi should ensure

that the delivery is held according to the causal order, i.e., respecting the sending order.

In [PH15], authors demonstrate that to ensure a causal order delivery for a multicast

communication, it suffices to ensure the causal delivery of immediately related send

events where the set of relevant events is determined to be R = {sent(m) : m ∈ M}.

Formally, the message causal delivery based on the IDR-R, “↓R” (see the definition in

[PH15]), was defined as follows:

Definition 6 Causal order delivery

∀((send(m), send(m′)) ∈ R, send(m) ↓R send(m′)⇒

∀p ∈ Dest(m)
⋂

Dest(m′) : delivery(p,m)→ delivery(p,m′)

Chapter 2. Background and Definitions 22

2.4 Chapter summary

This chapter presents the fundamentals concepts and terminologies related to SDNs

and distributed systems. On the one hand, fundamentals of SDNs was presented to

clarify the purpose behind designing such computer network architecture, and to explain

how traffic is handled based on such network architecture, specifically based on the

OpenFlow communication protocol. On the other hand, time and ordering concepts in

distributed systems was formalized to present the theoretical framework in which we

will base to tackle inconsistency connectivity problems in SDNs, including Lampord’

logical time and causal ordering concepts.

Chapter 3
Related work

3.1 Consistent Network update

Since the emergence of IP networks at the beginning of the years 80, consistent update

problems have been faced by network administrators. Generally speaking, a consis-

tent network update consists of defining a set of operations that changes the packet-

processing rules installed on network devices to migrate from one forwarding policy to

another, guaranteeing network consistency through preserving relevant network proper-

ties. In IP networks, the packet-processing updates are computed by routing protocols

that run distributed algorithms. However, distributedly updating network topology

and configurations may give rise to transient and/or permanent inconsistent behaviour,

e.g. packets loops between a set of forwarding devices. Most works were focused

on studying the Interior Gateway Protocol (IGP), a standard used to control packet-

forwarding within a single network. Extensions to IGP are proposed to avoid forwarding

disruptions, among them, the work proposed by Francois and Bonaventure in [FB07]

guaranteeing the absence of forwarding loops and the work introduced by Dube R. et

al in [ARA06] avoiding forwarding blackholes. An overview of these contributions is

presented in [FSV16].

After the emergence of SDNs in 2008, consistent network update has got more

interest in the network community. On the one hand, updates, with the SDNs, are no

longer configurable tasks. However, they are programmable, leading to fast updates.

On the other hand, current network requirements have been changed. For example, in

the context of a traffic engineering application, an administrator may frequently decide

23

Chapter 3. Related work 24

to reroute parts of the traffic along different forwarding paths to guarantee a better load

balancing between links that connect forwarding devices. Such reason multiplies the

purposes by which an administrators need to perform updates. Fastly and frequently

performing network updates in SDNs makes them critical tasks.

In the rest of this chapter, the state-of-the-art of the consistent network update

approaches are presented. To introduce the update techniques, a taxonomy of these

proposed techniques is presented. Then, in a second part, an overview of works that

have focused on studying consistent update techniques oriented to performance objec-

tives is presented.

3.2 Consistent Network update approaches in SDNs

The scope of consistent network updates has been studied intensively in the last years,

resulting in touching many study axes. This includes analytical studying the differ-

ent inconsistent network phenomenons which can occurred [FMW16, FLMS18], updat-

ing techniques [RFR+12, LRFS14, MM16, LSM19], optimizing network-update perfor-

mance [MW13, ALMS16, FW16, LMS15, FLMS18, FLSW18] and simulating update

mechanisms [VC16, FMW16, ME16]. A survey studying the state-of-the-art in this

field is presented in [FSV16]. The mentioned survey introduces a profound review of

the consistent updating approaches in SDNs, generalizes the network updating prob-

lem and proposes a taxonomy of consistent network updating problems. The taxonomy

provides a classification of the update approaches per category of consistency prop-

erties: connectivity-based, policy-based, and capacity-based properties (more details

about these concepts are provided in Section 2.2.4). Furthermore, it presents a per

objective classification : link-based, round-based and cross-flow objectives.

In this section, we introduce a technique-based taxonomy of the proposed solutions.

Chapter 3. Related work 25

This classification presents an overview of the algorithmic techniques proposed in the

literature to solve the specific class of update problems attacked in this thesis: for-

warding loops and forwarding blackholes. This permits to clear up the advantages and

drawbacks of each proposed updating approach, leading to a discussion of the inherent

limitations and trade-off between the achievement of consistent updates and its impact

on network performance. This discussion is presented later in Chapter 6.

3.2.1 A taxonomy of consistent updating techniques

Based on the reviewed literature, works that have been proposed to tackle the consistent

network update problem fall into the following update techniques: the n-phase com-

mit update [RFR+12, VC16, KRW13, NT17, FSYM14], the ordered update [LRFS14,

LwZ+13, FMW16, VC16], the timed update [MM16, ME16], and the causal update

[LSM19] techniques.

Figure 3.1: Taxonomy of consistent update techniques

Figure 3.1 overviews the taxonomy of the technical solutions proposed for the con-

sistency update problem. In the rest of this section, we brevity discuss each proposed

Chapter 3. Related work 26

update technique, discussing some advantages and drawbacks of each one. The Fig-

ure 1.1 of Chapter 1 is reproduced in this Chapter via Figure 3.2 for exemplification

purposes.

N-phase commit update. we distinguish between two N-phase commit update

techniques: 2-phase commit update and 1-commit update.

On the one hand, [RFR+12, KRW13] propose solutions based on the 2-phase commit

approach. Such works are designed based on the packet tag-match mechanism. Initially,

when data packet are ”in the way” to their destinations, forwarding devices tag all in-

fly packets with the current forwarding configuration k. In the example of Figure

3.2, initially, all packets that take the initial forwarding policy path are tagged with

the current configuration version k where they match flow table rules related to the

configuration k of switches that belongs to the initial forwarding path. On starting

the updated policy, the controller (not depicted in Figure 3.2) starts by disseminating

all updating messages of configuration k + 1 to install the new corresponding rules

on forwarding devices, and then waits for their acknowledgements. When all switches

acknowledge the installation of the new rules (referred to as rule addition), the controller

instructs them to tag all incoming packets with k+1 to the match rules of the new policy

to forward packet based on the final forwarding path (see Figure 3.2). Once packets

tagged with k leave the network, the controller instructs the switches to remove rules

of version k [GHH+20].

This update technique provides a strong per-packet consistency guarantee: packets

are forwarded to their destinations based on the initial or the final configuration and

not both. However, during the update transition phase, all switches have to maintain

the forwarding rules of both forwarding policies until all packets tagged with k leave

the network. This is in fact may give rise to switch memory overhead.

Chapter 3. Related work 27

Figure 3.2: Forwarding policy changes example

On the other hand, Canini et al proposed ez-Segway in [NT17], a 1-phase commit

update consistent mechanism. With ez-Segway, the controller computes and sends the

information needed to the switches once per update, qualifying this update approach

as a 1-phase commit. This is based on the basic-update technique: when a switch

incorporates the new path related to the new forwarding policy, a message is sent from

this switch to their successors and until the destination switch in order to inform them

that no packets will be forwarded anymore along the old path. Thus, on receiving this

message, each switch shall remove the old rule which forwards packets on the old path,

ensuring the blackhole-freedom property. This means that when installing the new rule

on the src switch to forward ingoing packets towards sk instead of si, then src sends

messages to all the successors on the initial forwarding path (see Figure 3.2) informing

them that no packet belonging to this particular packet flow will pass in the future.

Thus, this allows switches to safely remove the old rules without risking the violation of

Chapter 3. Related work 28

the blackhole-freedom property. To accelerate the flow update, a segmentation of basic-

update is proposed. It consists on splitting the update of a flow path into sub-paths and

simultaneously perform their updates. For example, to update to the final forwarding

policy of Figure 3.2, the update mechanism may split the update as follows: simul-

taneously update the segment from switch src to sk−1, the segment from sk to sinter

and the segment from si to dst. To tackle the forwarding loop phenomenon, the con-

troller classifies segments into two categories, called InLoop and NotInLoop. Then, it

calculates a dependency mapping that assigns each InLoop segment to a NotInLoop

segment. Taking the segment from switch sk to sinter (see Figure 3.2). This segment is

an Inloop segment as packet can enter into a forwarding loop when the final forwarding

path (depicted in blue) will be installed before the removing of the initial one (depicted

in red). Thus, these switches have to install new rules and remove old entries based

on the information provided by the appropriate dependency mapping calculated by the

controller to establish a NotInLoop segment [GHH+20]. An interesting contribution of

this work is the ability to compute and send the information needed to update switches

once per update. However, consistently update networks with ez-Segway requires mes-

sage exchange between switches themselves which represents a bandwidth overhead into

a typical SDN.

Ordered update. Works like [LRFS14, LwZ+13, FMW16, VC16] design mech-

anisms that calculates a sequence of steps to replace rules installed in flow tables of

switches, where the order of execution ensures that no inconsistent behavior appears

throughout the transition from one forwarding policy to another. For example, updat-

ing src, si and all their intermediate switches (see Figure 3.2) in one step guaranteeing

an update free from forwarding loops. However, this can generate a forwarding black-

hole in src as ingoing packets will not match a rule that forwards them to their next

hope (i.e. switch/node).

Chapter 3. Related work 29

Among the drawbacks of this update technique is that, during the transition at each

step, the controller should wait until all the underlying switches finish their updates

(referred to as rule replacement). Then, they should inform the controller, through

acknowledgement messages, in order to be able to initiate the next step of the updating

sequence. Thus, an update finishes after the achievement of all the updating steps.

Recently, the authors of [VC16] proposed FLIP, an updating approach built on the

dualism between the ordered update and the 2-phase commit update approaches. FLIP

uses rule replacement and rule addition techniques to match the in-fly packets with

their forwarding rules in all devices, guaranteeing the per-packet consistency property.

Technically, this is based on two core procedures: constraint extraction and constraint

swapping. The constraint extraction identifies the constraints on replacing and/or

adding entries, ensuring a safe update. Based on the identified constraints, alternatives

one are also inferred. Once all the constraints are extracted, FLIP calculates a sequence

of update steps that aligns with all the constraints. This is by applying a linear program

where the objective is to minimize the number of update steps. If such solution can be

found, FLIP apply the outputted sequence to perform the update, otherwise it proceeds

with the constraint swapping procedure. The later consists in taking the alternative

constraints to replace active constraints to calculate the operation steps [GHH+20].

Thus, the contribution of this work consists in reducing the number of rule additions

during update phase comparing the 2-phase commit update approaches.

Timed update. The works [MM16, ME16] proposed an update technique based on

synchronizing time references. This approach is based on establishing an accurate time

to trigger network updates, that is synchronizing clocks of switches to simultaneously

perform the executions of controller commands. Backing to the example of Figure 3.2.

This means that all switches will update in the same period of time, and then the final

forwarding policy path will be available once the initial one is removed. An important

Chapter 3. Related work 30

contribution is that timed updates quickly become available for the in-fly packets as

controller commands (adding and removing rules) are executed on the switches at the

same time. Furthermore, it prevents switch congestion during the updates. In terms of

consistency, a timed update achieves the per-packet consistency; however, it does not

compromise the consistency during updates due to the risk that switch clocks may not

effectively be synchronized. Each switch will perform the update at the interval time

[PT−ε, PT +ε] where ε denotes the clock synchronization accuracy. Two interval times

related to two events (e.g. reception of a controller-to-switch message) may overlap and

then, this may result to an inconsistent behaviour in the case when the execution order

is not trivial to ensure consistency.

Causal update. Recently, the authors of [LSM19] proposed a new consistent

update approach based on the suffix causal consistency property. This property implies

that an in-fly packet is forwarded to its next hope only based on a forwarding rule that

is equally or more up-to-date then rules of upstream switches where it was processed.

This allows packets to traverse forwarding path based on a rule set which is related to a

specific network policy, referred to as Epoch in [LSM19]. For example, if the controller

launches the Epochk to update from the initial forwarding policy to the final one (see

Figure 3.2) and a packet pktj reaches the switch sinter through the final path, then pktj

will be forwarded to its next hope based on the same forwarding policy, i.e. pktj will

be forwarded to sinter+1. This prevents sinter to forward pktk back to si based on the

initial forwarding policy, avoiding pktj to enter a forwarding loop between si and sinter.

This approach adopts Lamport timestamp to tag packets reflecting the counter

numbers related to the forwarding rules that have processed them in the last hope (i.e.

switch). When an in-fly packet reach an intermediate switch in the forwarding path, it

is processed with a forwarding rule with a timestamp at least equal to the timestamps

of rules where the same packet has been processed in upstream switches.

Chapter 3. Related work 31

The proposed update algorithm is constituted from four important steps. The first

is backward closure. This step is responsible to include the new forwarding rules that

precede those already included, propagating the installation of new rules backward

along routing paths. For example, this ensures that the installation of the new rule

related to si (see Figure 3.2) is included in the update once the new rule related to

sinter is already installed. This ensures that all packet that pass by si will be stamped

by a sequence number that will permit them to match the new rule already installed

on sinter, forwarding them based on the final forwarding policy. The second step is

forward closure. Similarly to the first step, it is applied to include the new rules that

follow those already included. The third step is responsible to tag the set of the rule to

be installed on switches by the corresponding timestamps. The last step is send-back

rules. This step handles in-fly packets that initially are forwarded from a source switch

based on the initial path and then they hit a switch at which the matched rule that

would continue to forward them via the initial path is already deleted. To manage

this case, the controller install new temporary rules on the corresponding switches

to backtrack these packets to their origin. These packets are buffered until the new

rules that can forward these packets from the new path are installed [GHH+20]. For

example, if a packet pkti is forwarded from switch src (see Figure 3.2) based on rules

installed of the old configuration, i.e. forwarding packets based on the initial forwarding

policy, reaches si where it already update its forwarding table by removing the rule that

forwards pkti to sinter. Then, the controller calculates and installs new temporary rules

on si and the all upstream switches, i.e. between src and si, to backtrack pkti to

src. Once pkti is backtracked to src, it will be buffered until src installs the new rules

forwarding pkti based on the final forwarding policy. The contribution of this work

consists in relaxing the limitation to forwarding in-fly packets during update based

either the initial forwarding policy or the final one, ensuring consistent updates. As

Chapter 3. Related work 32

described in the last update algorithm step, packets, and if the case requires, may reach

their destinations passing by both paths during an update from one forwarding policy

to another.

A summary of the discussed consistent update approaches is presented in Table 3.1.

In the next sub-section, we present works which focused on optimizing the network

update task, guaranteeing consistency updating.

3.2.2 Performance oriented-objective updating

Network updates are costly tasks. Among the reasons behind, updates require many

exchanges of messages between the controllers and switches which can overload network

resources (e.g. memories and buffers of switches, communication canal bandwidth, etc.)

to ensure such tasks. Recently, works like [MW13, ALMS16, FW16, LMS15, FLMS18,

FLSW18] proposed studying techniques oriented towards optimizing updates against

one/some overhead criteria(s), guaranteeing update consistency. [FSV16] distinguished

between three category of performance goals that have been proposed: the link(node)-

based, the round-based and the cross-flow objectives.

Link/node-based objective. This class of network update objective aims to make

new links/nodes available as soon as possible. In other words, the aim is to maximize

the number of switch rules that can be used directly on updating the network, without

violating consistency properties. This is of utmost importance for network applications

that do not tolerate update time overhead. Authors of [MW13] studied the possibility

of updating as many switch as possible at a time in a loop-free manner. Then, in

another related work, [ALMS16] proved that node-based optimization problem is NP-

hard. In the same context, [FW16] demonstrated that scheduling consistent updates is

NP-hard for a sub-linear number of update rounds.

Round-based objective. The second class of network update objective aims to

Chapter 3. Related work 33

minimize the total number of rounds, i.e. the number of steps needed to schedule an

update, where each step is responsible to install a set of new forwarding rules in the

underlying switches that is safe to update simultaneously. In this context, the authors of

[LMS15] presented an approach that minimize the number of steps to update networks

in a loop-free manner. In [FLMS18], authors defined two loop-free level: the strong

loop-freedom and the relaxed loop-free. On the one hand, the strong loop-freedom

requires that forwarding rules stored at the switches be loop-free at all points of time.

On the other hand, the relaxed loop-freedom only requires that the entries stored by

switches along a forwarding path to be loop-free. The problem was shown to be difficult

in the strong loop-freedom case and it was not solved. However, for the relaxed loop-

freedom, in the worst case, Ω(n) rounds may be required, where n is the number of

switch to be updated. On the other hand, O(log n) rounds always exist.

Cross-flow objective. A third class of network update objective where it takes in

consideration the problem of the presence of multiple flows.

The authors of [DLS16] studied how to update multiple policies simultaneously in

a loop-free manner. In this approach, the authors focus on minimizing the number

of touches: the number of interactions of the controller with the switches in terms

of exchanged messages. The idea is to reduce the number of touches if controllers

encapsulate the updates of multiple flows to a given switch into a single message. Then

in another work, authors of [ADSW16] proved that the problem is NP-hard for updating

to independent policies.

Chapter 3. Related work 34

A
p

p
ro

a
ch

e
s

R
e
fe

re
n

ce
s

E
n
su

re
d

co
n
si

st
en

t
p
ro

p
er

ti
es

A
p
p
ro

ac
h

ov
er

v
ie

w

2-
p
h
as

e
co

m
m

it
u
p

d
at

e
[R

F
R

+
12

,
K

R
W

13
,

N
T

17
]

P
er

-p
ac

ke
t

co
n
si

st
en

cy
C

on
n
ec

ti
v
it

y
co

n
si

st
en

cy

P
ac

ke
ts

ar
e

fo
rw

ar
d
ed

ei
th

er
b
as

ed
on

th
e

in
it

ia
l

fo
rw

ar
d
in

g
p

ol
ic

y
or

b
as

ed
on

th
e

fi
n
al

on
e

1-
p
h
as

e
co

m
m

it
u
p

d
at

e
[N

T
17

]
C

on
n
ec

ti
v
it

y
co

n
si

st
en

cy
A

ll
sw

it
ch

es
ar

e
aw

ar
e

ab
ou

t
an

y
p

er
fo

rm
ed

ch
an

ge
on

th
e

fo
rw

ar
d
in

g
p
at

h
th

ey
b

el
on

g
to

.
A

n
y

fo
rw

ar
d
in

g
ru

le
ca

n
b

e
sa

ft
y

re
m

ov
ed

.

O
rd

er
ed

u
p

d
at

e
[L

R
F

S
14

,
L

w
Z
+

13
,

F
M

W
16

,
V

C
16

]
C

on
n
ec

ti
v
it

y
co

n
si

st
en

cy
U

p
d
at

e
ar

e
sc

h
ed

u
le

d
u
n
d
er

d
iff

er
en

t
ca

lc
u
la

te
d

st
ep

s
w

h
er

e
ea

ch
u
p

d
at

e
st

ep
en

su
re

s
co

n
n
ec

ti
v
it

y
co

n
si

st
en

cy
.

T
im

ed
u
p

d
at

e
[M

M
16

,
M

E
16

]
P

er
-p

ac
ke

t
co

n
si

st
en

cy
C

on
n
ec

ti
v
it

y
co

n
si

st
en

cy
U

p
d
at

es
ar

e
si

m
u
lt

an
eo

u
sl

y
ex

ec
u
te

d
in

th
e

u
n
d
el

y
in

g
d
ev

ic
es

C
au

sa
l

u
p

d
at

e
[L

S
M

19
]

C
on

n
ec

ti
v
it

y
co

n
si

st
en

cy
P

ac
ke

ts
ar

e
fo

rw
ar

d
ed

b
as

ed
on

an
en

tr
y

th
at

is
eq

u
al

ly
or

m
or

e
u
p
-t

o-
d
at

e
th

en
en

tr
ie

s
of

u
p
st

re
am

sw
it

ch
es

w
h
er

e
it

w
as

p
ro

ce
ss

ed
.

T
ab

le
3.

1:
O

ve
rv

ie
w

of
co

n
si

st
en

t
u
p

d
at

e
ap

p
ro

ac
h
es

Chapter 3. Related work 35

3.3 Chapter summary

This chapter presents and describes the state-of-the-art of works oriented to solve the

inconsistency update problem, including solutions that were proposed to cover connec-

tivity, congestion and policy update inconsistency problems. The different techniques

used to attack the problem was presented via a taxonomy to provide a classification of

the different approaches ensuring consistency updates in SDNs.

Chapter 4
The formalisation of the
inconsistency connectivity update
problem in Software-Defined
Networks

In this chapter, we analytically study the problem of inconsistent connectivity update

in SDNs. For this purpose, the focus is held on the two update problems: forwarding

loops and forwarding blackholes, which disrupt packet delivery during an update from

one forwarding policy to another. Informally, on the one hand, a forwarding loop

takes place when a data packet is forwarded back from a forwarding device to another

from which the data packet was processed. On the other hand, a forwarding blackhole

happens when a forwarding device is not able to forward an ingoing packet to its next

hop due to the absence of a forwarding rule matching the data packet.

Before formalized the problem of inconsistent connectivity update, an SDN update

model is introduced. Then, the problem of forwarding loop and forwarding blackhole

is analytically analysed and formulated.

4.1 Network model

The SDN model presented in this section is an extension of the typical system model

presented in the Section 2.3 of Chapter 2. The sets P , M , and E, which correspond

respectively, to the set of processes, the set of messages and the set of events, are adapted

to the SDN context. However, the sets MATCH, MP , PFLOW , and FPATH, which

correspond, respectively, to the set of matches, the set of messages and data packets,

37

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 38

the set of packet flows, and the set of forwarding paths, are added and are specific

to the SDN network model [GHH+20].

• Processes: An SDN network is composed of a set of processes P = {p1, p2, . . .}

| P = Pcp ∪ Prp where Pcp = {cp} represents the controller process cp and

Prp = {rp1, rp2, . . .} represents the set of routing processes of OpenFlow switches.

• Matches: A finite set of matches MATCH = {match1,match2, . . .} is considered.

A match is a key attribute for establishing update tasks in SDNs. In fact, each

update is performed based on a specific match value. This is due to that an

update makes reference to a forwarding path fpathl ∈ FPATH, a packet flow

pflowm ∈ PFLOW , taking route to its destination according to fpathl, and to

any OpenFlow message m ∈ M disseminated by the controller to update any

routing process rp ∈ fpathl that shares the same match matchn ∈MATCH.

• Messages and data packets: An SDN network includes a set of messages and data

packets MP = {mp1,mp2, . . .} | MP = M ∪ PKT where M = {m1,m2, . . .}

represents the OpenFlow messages and PKT = {pkt1, pkt2, . . .} represents the

data packets.

Besides the set of messages M , the set of OpenFlow message types Mtype where

fmessage : M 7→ Mtype is considered [ONF15]. Each message m ∈ M corresponds

to a matchn ∈ MATCH, denoted by m =∧ matchn. Furthermore, a matchn

may also correspond to a subset of OpenFlow messages. A message m ∈ M is

denoted as m = (cp, tcp, OpenF low message, rpj) where a controller cp sends an

OpenF low message to a rpj ∈ Prp at tcp (the logical clock of cp). Note that the

tuple (cp, tcp) represents the identifier of a message m ∈M .

As mentioned in Section 2.1 of Chapter 2, controller-to-switch messages are the

considered OpenFlow messages in this thesis due to their relevance to the prob-

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 39

lem at hand, and in particular the FlowMod message. This message allows the

controller to modify the state of OpenFlow switches either by adding, modify-

ing, or deleting entries. The FlowMod message is composed of various structures

and properties (see more details in [ONF15]). However, we only consider match

and command as the relevant FlowMod message structures. In fact, the struc-

ture match specifies the packet/packet flow that correspond to an entry, whereas

command defines the action to be performed on the forwarding rule. In this

thesis, we consider to type of commands: add and delete. We distinguish be-

tween two subsets: the subset of messages of command type add Madd ⊂ M (to

add a new forwarding rule), and the subset of messages of command type delete

Mdelete ⊂ M (to delete an existing forwarding rule). FlowMod is considered as a

relevant message, and command and match represent the “OpenF low message”

structures in the specification of a message m ∈M .

A packet pkt ∈ PKT is a tuple pkt = (rpi, ti, header, data, rpj), where an rpi

forwards at the logical clock ti a data packet, composed of a header and data,

to an rpj such that rpi, rpj ∈ Prp and (rpi 6= rpj). Note that the tuple (rpi, ti)

represents the identifier of a data packet pkti ∈ PKT . The header of each data

packet contains a matchn ∈ MATCH that corresponds to all match of packets

belonging to the same packet flow. The data consist of the payload (the message

content).

• Packet flow: A finite set of packet flows PFLOW = {pflow1, pflow2, . . .} is

considered. A pflowm ∈ PFLOW (also pflowm ⊂ PKT) is a sequence of pack-

ets between a source rpi and a destination rpj, (rpi, rpj ∈ Prp). Furthermore,

we consider the injection fpflowm : PFLOW 7→ MATCH, that is each pflowm

corresponds to a matchn ∈MATCH denoted by pflowm =∧ matchn [GHH+20].

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 40

• Forwarding paths: A finite set of forwarding paths FPATH = {fpath1, fpath2, . . .}

is considered. An fpathl ∈ FPATH is a subset of routing processes Rp =

{rpk, rpk+1, . . . , rpk+n} between an rpsrc source and an rpdst destination, where

rpi, rpj ∈ Prp and Rp ⊂ Prp. Furthermore, we take into consideration the in-

jection ffpathl
: FPATH 7→ MATCH, that is each fpathl corresponds to a

matchn ∈ MATCH denoted by fpathl =∧ matchn [GHH+20]. We denote a for-

warding path fpathl ∈ FPATH before and after an update by fpathinitial
l and

fpathfinal
l , respectively.

• Events: As shown in the Section 2.3 of Chapter 2, there are two types of events:

internal and external ones. In this thesis, the internal events are not relevant.

However, we define them for the completeness of the formal specification. The set

of finite internal events Einternal is the following [GHH+20]:

– PrM(rpi, ti,m, cp) denotes that at ti, an rpi ∈ Prp processes a message

m ∈M sent by the cp.

– PrP (rpi, ti, pkt, rpj) denotes that at ti, an rpi ∈ Prp processes a data packet

pkt ∈ PKT forwarded by an rpj ∈ Prp (rpi 6= rpj).

The external events considered are the send, the receive, and the delivery events.

The set of external events is represented as a finite set Eexternal = Esend∪Ereceive∪

Edelivery. The set of send events Esend is the following [GHH+20]:

– SdM(m) denotes that the cp sends a message m ∈M to an rpj ∈ Prp
1.

– FwdP (pkt): denotes that an rpi ∈ Prp forwards a data packet pkt ∈ PKT

to an rpj ∈ Prp (rpi 6= rpj).

Ereceive is composed of one event:

1In some part of this thesis, we specify the receiver of the message: SdM(m, rpj)

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 41

– RecMP (mp): denotes that an rpj ∈ Prp receives a message or a data packet

mp ∈MP . Such an event only notifies the reception of an mp by rpj.

Furthermore, Edelivery is composed of a unique event:

– DlvMP (mp): denotes that an rpj ∈ Prp delivered a message or a data

packet mp ∈ MP . A delivery event identifies the execution performed or

the consumption of an ingoing mp by rpj.

The set of events associated with MP is the following:

E(MP) = {SdM(m), FwdP (pkt)} ∪ {RecMP (mp)} ∪ {DlvMP (mp)} (4.1)

The whole set of events in the system is the finite set:

E = Einternal ∪ E(MP) (4.2)

The order of occurrence of events can be collected based on the causal dependencies

between them. The representation Ê expresses the causality between events E, using

the happened-before relation (→) (see Definition 3) where:

Ê = {E,→}. (4.3)

4.2 Inconsistent connectivity update in Software-

Defined Networks: Problem formulation

In the rest of this chapter, we separately formalize the problems of forwarding loop and

forwarding blackhole during updates. Firstly, the forwarding loop phenomenon during

updates is formally defined based on i) the physical time and ii) the causal order as

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 42

tools to express the conditions under which the phenomenon can occur during updates.

Secondly, we present an novel study perspective which allows to formally delimits and

define the three pattern defining conditions under which forwarding blackholes occurs

during updates.

4.2.1 Transient forwarding loop

4.2.1.1 Transient forwarding loop from temporal perspective

Returning to the example of Figure 1.1 of Chapter 1 and taking the scenario of updating

si and sinter switches. An in-depth view of this scenario is shown in Figure 4.1.

Figure 4.1: Triggering of a transient forwarding loop due to an out-of-order execution

of update events [GHH+20].

In this scenario, the topology is composed of an OpenFlow controller and two

switches. According to the network model presented in the previous section, the set

of processes for this scenario is P = {cp, rpi, rpinter}, where cp is the OpenFlow con-

troller and rpi, rpinter represent the switches Si and Sinter. Also, the initial forward-

ing path (depicted in red) forwards all matched packet flow from rpi to rpinter (see

Figure 4.1a). During the update, the OpenFlow controller cp sends to rpi a Flow-

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 43

Mod message m1 = (cp, 1, (matchn, delete), rpi) where a pflowm =∧ matchn, and then,

it sends to rpinter a FlowMod message m2 = (cp, 2, (matchn, add), rpinter) where also

pflowm =∧ matchn (see Figure 4.1b). The routing process rpinter receives m2 and in-

stalls the new rule directing all pkti ∈ pflow to rpi (see the final forwarding path

depicted in blue) . Accordingly, rpinter directs pkt1 ∈ pflow to rpi. Subsequently, pkt1

enters rpi before m1 is delivered to rpi due to a delay of the reception. Finally, as pkt1

matches the entry already installed in rpi, the former ends by redirecting pkt1 to rpinter,

generating a transient forwarding loop between rpi and rpinter.

On analysing the communication diagram corresponding to the execution diagram of

Figure 4.2 [GHH+20], it can be observed that the transient forwarding loop between rpi

and rpinter is created due to that the transmission time interval of m1 is greater than the

transmission time interval of m2 plus the packet forwarding time of pkt1 ∈ pflow to rpi.

We note that we have observed the same cause of the triggering of transient forwarding

loops in others example with more complicated network topologies. We formally define

the Transient forwarding loop pattern from a temporal perspective [GHH+20].

Figure 4.2: The communication diagram related to Figure 4.1 [GHH+20].

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 44

Definition 7 Let be a matchn ∈ MATCH and two OpenFlow messages m and m′,

where m = (cp, tcp, (matchn, delete), rpi) and m′ = (cp, t′cp, (matchn, add), rpj), such

that (i) time(m) < time(m′), (ii) (rpi 6= rpj) and (iii) ∃ a forwarding path fpathl =

{rpi, . . . , rpj} from rpi to rpj, such that intermediates rpr may exist where fpathl ∈

FPATH | fpathl =∧ matchn. A Transient Forwarding Loop pattern from rpi to rpj

exists iff there is a data packet flow pflowm = pkt1, pkt2, ..., pktn (n ≥ 1), where

pflowm ∈ PFLOW | pflowm =∧ matchn, such that:

T (m) > T (m′) +
n∑

k=1

T (pktk) (4.4)

where T (mp) is a function that returns the transmission time of an OpenFlow message

or a data packet mp ∈ MP from a pi to a pj with pi, pj ∈ P , and time(m) gives the

local physical time at the moment a message m ∈M is sent.

4.2.1.2 Transient forwarding loop from causal perspective

The same phenomenon is analysed during SDN updates by using the scheme of the

happened-before relation (See Definition 3 of Chapter 2). Figure 4.3 shows the generic

scenario in which an out-of-order execution of messages/packets leads to a transient

forwarding loops during updates.

In this scenario, the topology is composed of an OpenFlow controller cp and n

OpenFlow switches. The set of processes is P = {cp, rpsrc, rp1, rp2, . . . , rpn, rpdst} where

cp is the OpenFlow controller, rpsrc and rpdst represent, respectively, the Source and

the Destination switches, and rp1, rp2, . . . , rpn represent the intermediate switches

S1, S2, . . . , Sn. Initially, each intermediate routing process rpi, except rpn, contains an

forwarding rule r directing a pflowm ∈ PFLOW to its rpi+1 (see the solid lines in

Figure 4.3a). The network policy update consists to redirect pflow from rpn to rp1

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 45

(see the dashed lines in Figure 4.3a). To establish the update, the cp instructs each rpi,

except rpn, to update their forwarding table by deleting the rules directing pflow to its

rpi+1 and then instructs again each rpi, except rp1, to install a rule directing pflowm to

its rpn−1. For brevity, Figure 4.3b illustrates only one message (Message (1) depicted

in the dashed line) to delete the rule from rp1 and all the other messages (from (2) to

(n)) for adding the new forwarding path from rpn to rp1.

To characterize the generic scenario, we based on its corresponding commu-

nication diagram 4.4. As illustrated, the cp starts by sending message m1 =

(cp, 1, (matchn, delete), rp1) to rp1, deleting the initial rule of rp1. Then, it sends the

message m2 = (cp, 2, (matchn, add), rp2), inserting a new rule into rpn to consider for-

warding the matched packet based on the new forwarding policy. The rest of the Open-

Flow messages from mi to mj (represented in Figure 4.3b by Messages (3), . . . , (n)) are

sent to their corresponding rp to add the entries directing pflow from rpn−1 to rp1.

Figure 4.3: Transient forwarding loop: generic scenario [GHH+20].

Due to the asynchronous communication between the controller and all the under-

lying switches, it can be noted that rpn, rpn−1, . . . and rp2 receive their messages and

therefore install their new rules before rp1 besides that m1 was sent to rp1 before them.

The installation of the new rules coincides with the arrival of a packet flow pkti ∈ pflow

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 46

that hits rpn and corresponds to the new installed rule. Thus rpn directs it to rpn−1,

then rpn−2 until reaching rp1. pktn enters rp1 before m1 is delivered to rp1 (see Fig-

ure 4.4). Consequently, pktn matches the forwarding r already installed in rp1 directing

all pkti ∈ pflow to rp2. Finally, rp1 ends by redirecting pktn to rp2 (see the solid line

between S1 and S2 in Figure 4.3b), which generates a transient forwarding rule.

Figure 4.4: The communication diagram corresponding to Figure 4.3 [GHH+20].

We define below an abstraction of the transient forwarding loop in SDN, as a spec-

ification of Lamport’s happened-before relation to express the phenomenon from a

causal perspective [GHH+20].

Definition 8 Let be a matchn ∈ MATCH and two FlowMod messages m,m′ ∈ M

where m = (cp, tcp, (matchn, delete), rpi) and m′ = (cp, t′cp, (matchn, add), rpj),

such that (i) m → m′, (ii) (rpi 6= rpj), and (iii) ∃ a forwarding path fpathl =

{rpi, . . . , rpj} from rpi to rpj, such that intermediates rpr may exist where fpathl ∈

FPATH | fpathl =∧ matchn. A Transient Forwarding Loop from rpi to rpj ex-

ists iff there is a data packet flow pflowm = pkt1, pkt2, ..., pktn (n ≥ 1), where

pflowm ∈ PFLOW | pflowm =∧ matchn, such that:

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 47

1. pkt1 is sent by rpj after the delivery of m′,

2. if pktk (1 ≤ k ≤ n) is delivered by rpr (rpr 6= rpi), then pktk+1 is the next data

packet sent by rpr, and

3. pktn is delivered by rpi before the delivery of m.

The Definition 8 specifies the transient forwarding loop pattern, representing an

abstraction and a generalization of the phenomenon in question. The abstraction lies in

highlighting the relevant preconditions and events that get in on the act and in ignoring

the irrelevant events. On the other hand, the generalization consists of specifying the

three conditions catching the phenomenon in its entirety, no matter how complex the

network architecture is or how much forwarding devices are involved in the update.

4.2.2 Forwarding blackhole

In SDNs, a packet flow is identified by its match value, serving as a filter criterion to

distinguish it from the other packet flows in the network. Indeed, each packet flow can

be controller independently from any other packet flow. Hence, all packets of a specific

flow receive identical service policies in the forwarding devices basing on their match

value. If we want to find out whether an in-fly packet flow can enter in a forwarding

blackhole switch, one analysis perspective is to verify the forwarding tables of the

forwarding devices, which receive service policies related to the same packet flow, with

respect to switches belonging to the initial and the final forwarding paths [GHH+19].

With this in mind, we introduce our analysis perspective of the forwarding blackhole

phenomenon which is based on a per-node categorisation during updates.

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 48

Figure 4.5: A per-node categorisation of forwarding blackhole occurrences during SDN

updates [GHH+19].

In Figure 4.5, a routing updating scenario is depicted. The controller (not depicted

for brevity) has to update the forwarding path of a specific flow from a source switch

S1 to a destination switch S10. Two routing polices are presented. These forwarding

policies are illustrated with two forwarding paths, the initial forwarding path (solid

lines) and the final forwarding path (dashed lines). Based on the mentioned analysis

perspective, we first start by categorizing switches (nodes) while updating the forward-

ing policy regarding the flow forwarding path which they belongs. Thus, and according

to the forwarding path node compositions, there are only three cases of interest:

• Nodes which belong to both the initial and final forwarding path (the blue nodes),

• Nodes which belong only to the final forwarding path (the red node), and

• Nodes which belong only to the initial forwarding path (the black node).

We highlight that the white nodes are not considered, as these nodes do not receive

any update and belong to the initial and the final forwarding path. This classification

of nodes orients us to study the phenomenon from an abstraction allowing to delimit

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 49

and identify, for each node category, the conditions under which the phenomenon may

occur.

In the rest of this section, we provide a case-by-case study of the forwarding blackhole

phenomenon.

4.2.2.1 Forwarding Blackhole

In this subsection, we formalize the first forwarding blackhole pattern: transient for-

warding blackhole. With this nomenclature, we are referring to switches which can

be blackholes for some in-route packet flows only during the establishment of updates.

Once the update is finished, the switch is no longer a blackhole. However, this can per-

turb the connectivity as packets may delay in reaching their destination, or even worst

they can be lost. We distinguish two cases in which a transient forwarding blackhole

may take place.

Transient forwarding blackhole on Existing Node. Transient forwarding black-

hole should be considered on Existing Nodes (ENos) during updates. Nodes which

belong to both the initial and the final forwarding paths. The blue nodes in Fig.4.5 de-

pict these nodes. A transient forwarding blackhole occurs on a ENo when the controller

instructs it by means of two messages; the first message m to add a new rule forwarding

the matched packets to another node into the forwarding path, and a second message

to delete the rule forwarding packets to the a node in the forwarding path where the

order of execution of the message is not respected. Taking as example of the node S2

of Figure 4.5. The communication diagram of message-exchange between the controller

(represented as the controller process cp) and S2 (represented as the routing process

rpi), and the interleaving of messages with in-fly packets pkt1, pkt2, . . . , pktk during the

update is shown in Figure 4.6.

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 50

Figure 4.6: Communication diagram related to the triggering of a transient forwarding
blackhole on a rpi ∈ fpathinitial

l ∩ fpathfinal
l [GHH+19].

In this case, m′ = (cp, 2, (match, delete), rpi) is delivered to rpi before m =

(cp, 2, (match, add), rpi) despite the fact that the later was sent before. This is in-

deed due to the asynchronous communication between both. Therefore, rpi deletes the

old rule that forward the matched packets to their next hop before it adds the new

rule. As a result, rpi is converted to transient blackhole node for all incoming packets

corresponding to the matched flow. We can observe that a sequence of packets emitted

from S1 (represented as rpj) enters rpi while it is receiving update messages. In this

case, only the packet pktk enters into a transient forwarding blackhole as it reaches rpi

after the delivery of m′ and before the delivery of m [GHH+19]. However, this is not the

case for the others packets pkt1, pkt2, . . . , pktk−1 as they reached rpi before the delivery

of m′. Thus, rpi remains a transient forwarding blackhole for pktk until the delivery of

m takes place. We formally define the transient forwarding blackhole pattern occurring

on ENos during an update as follows:

Definition 9 Let us consider a matchn ∈ MATCH and two FlowMod mes-

sages m,m′ ∈ M where m = (cp, tcp, (matchn, add), rpb) and m′ =

(cp, t′cp, (matchn, delete), rpb) such that i) send(m) → send(m′), ii) ∃ a forwarding

path fpathinitial
l ∈ FPATH | fpathinitial

l =∧ matchn from a source rpi to a destina-

tion rpj, iii) rpb ∈ fpathinitial
l and iv) rpb 6= rpj. A transient forwarding black-

hole on an Existing node occurs on rpb if there is a data packet flow pflowm =

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 51

Figure 4.7: Communication diagram related to the triggering of a transient forwarding
blackhole on a rpi ∈ fpathfinal

l [GHH+19].

pkt1, pkt2, . . . , pktn (n ≥ 1) where pflowm ∈ PFLOW | pflowm =∧ matchn, and

pktk ∈ pflowm | pktk = (rpl, trpl, (header(matchn), data), rpb) such that

1. m′ is delivered before pktk (1 ≤ k < n) by rpb

2. m is delivered after pktk (1 ≤ k < n) by rpb

3. rpb ∈ fpathinitial
l ∩ fpathfinal

l | fpathfinal
l =∧ matchn

Transient forwarding blackhole on Inserted Node. The second case in which

transient forwarding blackholes occur is on Inserted Nodes (INos). Nodes which only

belong to the final forwarding path. The red node depicted in Figure 4.5 represents

this category of nodes. In this case, the controller considers adding a new node to

the final forwarding path. To this end, it sends a message instructing a switch, that

belongs to the forwarding path, to add a new rule forwarding the matched packets to

the new INo. We take the case of S8 of Figure 4.5 where the controller cp sends a

message m instructing S8 to install a rule forwarding all the matched packets to S9.

The example is illustrated based on the communication diagram in Figure 4.7. In this

scenario, S2 (represented as rpj) has already updated its forwarding tables, then it

forwards a matched sequence of packets pkt1, . . . , pktk to S8 (represented as rpi). This

sequence of packets enters S8 before it has received the message m. Therefore, S8 is

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 52

not able to forward the packets to its next hope, qualified as a transient forwarding

blackhole for packet of the matched flow. Once S8 receives m, then it is no longer

a transient forwarding blackhole node. We formally define the transient forwarding

blackhole pattern on INos as follows.

Definition 10 Let us consider a matchn ∈ MATCH and a FlowMod message

m ∈ M where m = (cp, tcp, (matchn, add), rpb) such that i) ∃ a forwarding path

fpathinitial
l ∈ FPATH | fpathinitial

l =∧ matchn from a source rpi to a destination

rpj, and ii) rpb 6∈ fpathinitial
l . A transient forwarding blackhole on an In-

serted node occurs on rpb if there is a data packet flow pflowm = pkt1, pkt2, . . . , pktn

(n ≥ 1) where pflowm ∈ PFLOW | pflowm =∧ matchn, and pktk ∈ pflowm | pktk =

(rpl, trpl, (header(matchn), data), rpb) with send(m) ‖ send(pktk) (1 ≤ k ≤ n), such

that

1. pktk (1 ≤ k < n) is delivered before m by rpb, and

2. rpb ∈ fpathfinal
l | fpathfinal

l =∧ matchn

4.2.2.2 Permanent forwarding blackhole

The third forwarding blackhole pattern is qualified as permanent. This pattern of

forwarding blackhole occur on Forgotten Nodes (FNos). Nodes which belong only to

the initial forwarding path. Unlike the transient forwarding blackhole, and as its name

said, if a packet enters a permanent forwarding blackhole switch, this packet will lost

and will never reach its destination. The black node depicted in Figure 4.5 represents

this category of nodes. To eliminate a node from belonging to a forwarding path, the

controller has to send a message instructing the transmitter switch to delete the rule

that forward the matched packet to this node.

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 53

Figure 4.8: Communication diagram related to the triggering of a permanent forwarding
blackhole on a rpi ∈ fpathinitial

l [GHH+19].

Taking the case of the forwarding path between the nodes S4 and S5. To delete it,

the controller has to send a message m instructing S4 to delete the rule forwarding the

matched packets to S5. Figure 4.8 shows the corresponding communication diagram. In

this scenario, S3 (represented as rpj) forwards a sequence of packets pkt1, pkt2, . . . , pktk

to S4 (represented as rpi) while the controller (represented as cp) sends m to S4. Then,

pktk enters S4 after it deletes the rule forwarding all the matched sequence of packets

to the next hope. In this case, S4 will never be able to forward pktk to its next hope,

and then S4 is a permanent FB for pktk [GHH+19]. We formally define the permanent

FB pattern that may occur during SDNs updates.

Definition 11 Let us consider a matchn ∈ MATCH and a FlowMod message

m ∈ M where m = (cp, tcp, (matchn, delete), rpb) such that i) ∃ a forwarding path

fpathinitial
l ∈ FPATH | fpathinitial

l =∧ matchn from a source rpi to a destination rpj,

and ii) rpb ∈ fpathinitial
l . A permanent forwarding blackhole on a Forgot-

ten node occurs on rpb if there is a data packet flow pflowm = pkt1, pkt2, . . . , pktn

(n ≥ 1) where pflowm ∈ PFLOW | pflowm =∧ matchn, and pktk ∈ pflowm | pktk =

(rpl, trpl, (header(matchn), data), rpb) with send(m) ‖ send(pktk) (1 ≤ k ≤ n), such

that

1. m is received before pktk (1 ≤ k < n) by rpb, and

Chapter 4. The formalisation of the inconsistency connectivity update problem in
Software-Defined Networks 54

2. rpb 6∈ fpathfinal
l | fpathfinal

l =∧ matchn

As to the forwarding blackhole phenomenon, a per-node categorisation is proposed

to study the problem. For each node category, preconditions, relevant events and

conditions under which a blackhole occurs during SDN updates were identified and

formally specified by the Definitions 9, 10 and 11. The first two definitions capture

the occurrences of transient forwarding blackholes while the last definition catches the

occurrences of permanent forwarding blackholes. This is regardless of the network ar-

chitecture and the forwarding devices involved in the update. We should highlight that

the introduced perspective study based on the per-node categorisation is not oriented

towards designing a forwarding blackhole-free solution; however, this categorisation was

only used for an analytical purpose of the problem at hand.

In this chapter, an SDN update model was introduced. Based on this model, the

two connectivity invariant violations: forwarding loop and forwarding blackhole, were

analytically studied. Our results consist of defining the patterns of network events

under which each phenomenon may occur during SDN updates, allowing to understand

the root causes behind the occurrence of these phenomenons. This result will be the

key to introduce, in the next chapter, a new consistent connectivity update approach.

Chapter 5
Causal-based consistent
connectivity update approach

In the previous Chapter, a mathematical model of the inconsistent connectivity update

problem is introduced. In this model, two main phenomena giving rise to inconsistent

connectivity updates are defined: the forwarding loop and the forwarding blackhole.

Based on these results, new causal update policies are introduced in this chapter, guar-

anteeing consistent connectivity updates. Also, an algorithm formalizing the proposed

update policies is presented. Finally, proofs that the algorithm is transient forwarding

loop-free and transient forwarding blackhole-free are presented.

5.1 Transient forwarding loop-free update policy

An abstraction of the transient forwarding loop problem during update is introduced

in section 4.2.1 of Chapter 4. By abstraction, we mean that any transient forwarding

loop occurrence during updates can be identified. A first transient forwarding loop ab-

straction is specified by Definition 7. This Definition identifies the pattern under which

the phenomena occurs in function of transmission time of update OpenFlow messages

and in-fly packets (see equation 4.4). Solving the problem at hand based on the last

mentioned requires to break the inequality of the Formula 4.4, i.e. ensuring that the

transmission time of a delete message m is less or equal than the transmission time of an

add message m′ and the sum of the transmission time of all matched packets pktk where

k = {1, 2, ..., n}. Thus, one update policy is to synchronize times at which relevant up-

date events (see Definition 7) occur in order to simultaneously perform them. However,

55

Chapter 5. Causal-based consistent connectivity update approach 56

such a solution is not effective since it is quite difficult to perfectly synchronize clocks

across network entities. In fact, any clock synchronization mechanism (e.g. Network

Time Protocol [Mil91]) presents a clock synchronization accuracy ε. As a result, each

switch will perform the update at the interval time [T − ε, T + ε]. In this case, we will

not be able to find out or to force the execution order of any pair of update events,

harming the update consistency [GHH+20].

On the other hand, Definition 8 introduces an abstraction of the transient for-

warding loop phenomena during updates as a specification of Lamport’s happened-

before relation (see Definition 3 of Chapter 2). The three conditions specified in

Definition 8 covers and identifies any transient forwarding loop during updates from

a causal perspective. On analysing these conditions, these conditions specify an

event-based chain leading to transient forwarding loops between any two or more

routing processes Prp = {rpi, rpj, ...} (i.e. forwarding devices). In fact, the first

condition represents the initialisation of this event-based chain where a packet flow

pflowr = {pkt1, pkt2, ..., pktn} starts taking the route to a first rpi ∈ Prp due to the

installation of a new rule matching pflowr on the delivery of a message m′ ∈M . Then,

pktk will be delivered to a rpr (first case: described by the second condition) or to rpi

(second case: described by the third condition). The first case is when rpr 6= rpi where

rpr represents an intermediate rp in the forwarding path and then it forwards pktk+1

to its next hop. This represents the generalisation of the transient forwarding loop

phenomena, i.e. the case where pflowr holds into a transient forwarding loop between

more than two forwarding devices. The second case is when rpr = rpi. In this case, rpi

is the triggering rp where the triggered event is when rpi delivers pktk before having

delivered a message m ∈ M that deletes the old rule, forwarding pktk back to the rp

from which pktk reaches rpi. This is referred to as a causal violation since the delivery

of pktk occurs before the delivery of the message m where the send of pktk (see the

Chapter 5. Causal-based consistent connectivity update approach 57

first and the second conditions) causally depends from m (transitively as m′ causally

depends from m).

Policy. The proposal is to ensure that all messages of command type delete

Mdelete = {mdel1 ,mdel2 , ...,mdeln} |Mdelete ⊂M are delivered before any incoming packet

flow pflowm = {pkt1, pkt2, ...pktn} | pflowm ∈ PFLOW where pflowm ∧ Mdelete =∧

matchn. To do so, the idea is to i) establish a causal order between Mdelete and pflow,

denoted by Dependency1 = ∀(mdel ∈ Mdelete) ∧ ∀(pkt ∈ pflow) : mdel → pkt. The for-

warding of any packet pkt ∈ pflow causally depends on the sending of a message madd of

type command add where madd ∈Madd |Madd ⊂M . Thus, this is an explicit causal de-

pendency denoted by Dependency2 = ∀(madd ∈ Madd) ∧ ∀(pkt ∈ pflow) : madd → pkt.

Another causal dependency Dependency3 to be established is between the set of mes-

sages Mdelete and the set of messages madd, denoted by Dependency3 = ∀(mdel ∈

Mdelete) ∧ ∀(madd ∈ Madd) : mdel → madd. Having Dependency2 and establishing

Dependency3, the causal dependency dependency1 is transitively established as any

message mdel ∈ Mdelete causally precedes any message madd ∈ Madd, and any mes-

sage madd ∈ Madd causally precedes any packet pkt ∈ pflow. Therefore, any message

mdel ∈Mdelete causally precedes any pkt ∈ pflow. Dependency3 is considered as a first

precondition for the proposed update mechanism. A second part in this update policy

is ii) to ensure the causal order delivery of the established order of i) (see details in

section 5.3.2).

Property 1: Considering the first Precondition and ensuring a causal order de-

livery, transient forwarding loop-free is guaranteed when updating from one update

forwarding policy to another.

We continue with studying update policies, ensuring forwarding blackhole-free.

Chapter 5. Causal-based consistent connectivity update approach 58

5.2 Forwarding blackhole-free update policies

In this subsection, network update policies to preventively guarantee forwarding

blackhole-free updates are introduced. In a first part, we focus on studying update

policies to avoid forwarding blackholes qualified as transient ones. In a second part,

a network update policy to prevent the triggering of permanent forwarding blackholes

during update is introduced. Similarly to the previous section, the study of the update

policies is based on the formalization of the forwarding blackhole phenomena provided

in Section 4.2.2 of Chapter 4. This is based on the Definitions 9 and 10 formaliz-

ing the patterns under which transient forwarding blackholes occur, and Definition 11

specifying how a forwarding device blackholed packet flows permanently.

We should recall that the formalization of the forwarding blackhole phenomena is

based on the categorization of forwarding devices. A forwarding device is classified in

function of the forwarding path that belongs to when updating from one forwarding

policy to another. This results in delimiting the conditions under which a blackhole

occurs based on the following classification: forwarding devices that belongs to both

initial and final forwarding paths (qualified as an existing node), to only the final

forwarding path (qualified as an inserted node), or only to the initial forwarding path

(qualified as a forgotten node).

5.2.1 Transient forwarding blackhole-free update policy

A. Transient forwarding blackhole-free update policy on Existing Nodes.

Based on Definition 9, a transient forwarding blackhole on an Existing Node (ENo)

occurs when an ENo, denoted by rpb, receives from the controller, firstly, a message

mdel ∈ Mdel | Mdel ⊂ M instructing rpb to remove a rule forwarding a packet flow

pflowm = {pkt1, pkt2, ...} | pflowm ∈ PFLOW to its next hop, and secondly, a message

Chapter 5. Causal-based consistent connectivity update approach 59

madd ∈Madd |Madd ⊂M instructing rpb to add a new rule forwarding pflow to its new

next hop.

Policy. As an update policy for the ENos, a message madd ∈ Madd adding a new

forwarding rule and matching a packet pkt ∈ pflow should be sent to rpb before a

message mdel Mdelete deleting a forwarding rule and matching pkt where madd ∧mdel ∧

pkt =∧ matchn. This is considered as a second Precondition for the proposed update

mechanism introduced posteriorly in Section 5.3.2. However, this indeed will not be

sufficient to ensure that rpb delivers madd before mdel as the communication between

the controller and rpb is asynchronous, and thus, messages can be delivered in any order

[GHH+19].

Property 2: Considering the second Precondition and ensuring a FIFO ordering,

transient forwarding blackhole-free on an ENo is guaranteed.

B. Transient FBs-free Update policy on Inserted Nodes Following Definition

10, a transient forwarding blackhole on an Inserted Node (INo), denoted by rpb, occurs,

on the one hand, when its direct predecessor rpb−1 installs a rule forwarding a packet flow

pflow = {pkt1, pkt2, ..., pktn} to rpb. On the other hand, when a packet pkt ∈ pflow

reaches rpb where it has not yet delivered a message madd ∈Madd |Madd ⊂M , installing

a new rule forwarding pkt to its next hope. Then, rpb is a transient forwarding blackhole

for pkt [GHH+19].

Summary. A first part of this update policy consists on i) establishing causal

dependencies between all messages Madd = {madd1 ,madd2 , . . . ,maddn} sent by the con-

troller to all INos and the forwarding of any packet flow pflowm = {pkt1, pkt2, ..., pktn}

| pflowm ∈ PFLOW to INos coming from their respective predecessors where

pflowm ∧Madd =∧ matchn. A second part of the update policy is ii) to ensure that

the delivery of Madd and pflow respect the causal dependencies established in i).

Policy details. To ensure transient forwarding blackhole-free on INos, the delivery

Chapter 5. Causal-based consistent connectivity update approach 60

of all messages Madd adding new rules to the forwarding tables of INos should precede

the delivery of pflow where pflowm ∧Madd =∧ matchn. However, controlling the de-

livery order of a madd ∈ Madd and pkt ∈ pflow is not possible as both are concurrent

events (see Definition 4 in Chapter 2). Following this observation, i) we propose to

create causal dependencies between the sent events of Madd to INOs and the forward

of pflow matching the set of messages Madd, that is, to establish a causal relationship

between these events ensuring that a packet pkt ∈ pflow is delivered by an INo, de-

noted by rpino, if and only if the corresponding madd ∈ Madd, forwarding pkt to its

next hope, is delivered to rpino. We denote this causal dependency Dependency1 =

∀(madd ∈ Madd) ∧ ∀(pkt ∈ pflow) : SdM(madd, rpino) → FwdP (pkt, rpino). To cre-

ate Dependency1, we, firstly, based on explicit causal dependencies between Madd sent

to any direct predecessor of INos, denoted by rppino and the forward of any packet

pkt ∈ pflow to an INo, denoted by Dependency2 = ∀(madd ∈Madd)∧∀(pkt ∈ pflow) :

SdM(madd, rppino) → FwdP (pkt, rpino). This is considered as explicit causal depen-

dencies as the triggering of the forwarding of a packet pkt depends directly on the send

event of the corresponding message madd, adding a new rule to the predecessor node of

an INo and enabling it to forward pkt to an INo. To establish Dependency1, it remains

to create causal dependencies between any madd ∈ Madd, adding new forwarding rules

to any INos, denoted by rpino, and any m′add ∈ Madd, adding new forwarding rules

to any direct predecessors of INos, denoted by rppino. This dependency is expressed

as follows: Dependency3 = ∀(madd ∈ Madd) : SdM(madd, rpino) → SdM(m′add, rppino).

Hence, having Dependency2 and establishing Dependency3, Dependency1 is transitively

set up [GHH+19]. Dependency3 is considered a precondition for the proposed update

mechanism (see Algorithm 1). The second part in this update policy is ii) to ensure

the causal order delivery of the established order of i) (see details in section 5.3.2).

Property 3: Considering the Precondition 3 and ensuring a causal order delivery,

Chapter 5. Causal-based consistent connectivity update approach 61

transient FBs-free on Inserted Nodes is guaranteed.

5.2.2 Permanent forwarding blackhole-free update policy on
forgotten nodes

A permanent forwarding blackhole occurs, based on Definition 11, when a Forgotten

Node (FNo), denoted by rpb, delivers an update message mdel ∈ Mdelete | Mdelete ⊂ M

instructing it to delete a forwarding rule before the delivery of an incoming packet

flow pflow = {pkt1, pkt2, ..., pktn} that matches the removed rule. Thus, pflow is

permanently blackholed by rpb.

Policy. To break any occurrence of the permanent forwarding blackhole pattern,

an update policy should ensure that the delivery of the subset of all messages Mdelete

to all FNos occurs after the delivery of the last packet pktlast ∈ pflow to each FNo.

However, controlling the order of the delivery of these events is not possible as the send

events of the subset Mdelete to FNos and the forwarding events of pktlast ∈ pflowr are

concurrent events. Unlike the previous policy for blackholes on INos, it is not possible

to establish causal dependencies between these events during the update as none of

them are related to other relevant events which can be causally dependent on them

[GHH+19].

We propose a tag/match update policy for permanent forwarding blackholes

[GHH+19]. Tag. The tag operation consists in having the controller send a message

instructing the Decisive Node (DNo) (see Definition 12), denoted by rpb, to tag its final

packet pktn in the buffer with ”final packet” and to clear out its buffer. This operation

should occur before the controller sends to rpb the delete update message instructing

to remove the rule forwarding the matched packet flow via the initial forwarding path.

In fact, this can be guaranteed by applying a FIFO order. This ensures that the last

packet forwarded via the initial forwarding policy is the tagged packet pktlast. In this

Chapter 5. Causal-based consistent connectivity update approach 62

way, we can control the last packet routed following the initial forwarding policy.

Definition 12 A Decisive Node Si (represented as rpi ∈ Prp) is the first Ex-

isting Node that switches the routing of the subset of packet flows pf =

pflow1, pflow2, . . . , pflown | pf =∧ matchn from the initial forwarding path

fpathinitial
l ∈ FPATH to the final forwarding path fpathfinal

l ∈ FPATH where

rpi ∈ [fpathinitial
l ∩ fpathfinal

l] =∧ matchn.

Match. The second part of the update policy is the operation. It consists to deliver

all delete update messages Mdelete by all FNos conditioned by the matching of the final

tagged packet pktlast. Indeed, in addition to the match structure, a message m ∈Mdelete

must correspond to the tagged packet to be subsequently delivered by rpb. Hence, the

delivery of the last packet pktlast forwarded based on the initial forwarding policy will

occur before the delivery of m by rpb.

In the remainder of this Chapter, an algorithm formalizing the proposed update po-

lices supporting consistent connectivity updates is presented. Then, we formally prove

that the presented algorithm is transient forwarding loop-free and transient forwarding

blackhole-free in the causal dependency sense.

Chapter 5. Causal-based consistent connectivity update approach 63

5.3 Update mechanism free from transient connec-

tivity inconsistencies

The update mechanism presented in this section is inspired from the algorithm presented

in [PRS97]. Authors of [PRS97] presented a generic algorithm ensuring the causal

order delivery of messages in a Multicast communication environment. We extend this

algorithm to guarantee transient connectivity inconsistencies-free updates based on the

policies introduced in the previous section [GHH+20].

5.3.1 Algorithm overview

The update mechanism is distributed over the set of processes P , i.e., the controller

process cp and the set of routing processes Prp = {rp1, rp2, ..., rpn}. Throughout an

update, a subset of messages and data packets is exchanged. The update mechanism

can be summarized as follows [GHH+19]:

• Input: It consists of the list of update OpenFlow messages and ingoing data pack-

ets. As described in Section 4.1, updates are match-based performed, i.e., update

messages and in-fly data packets are grouped and processed by match. This al-

lows to separately process messages and data packets of different match values

without worrying about the ordering in which they are executed.

• Preconditions: Let matchn ∈MATCH be a match that corresponds to a subset

MP ′ ⊂MP where (Madd∪Mdelete) ⊆MP ′. Based on the defined update policies

introduced for transient forwarding loops, transient forwarding blackholes on Ex-

isted Nodes (ENos) and transient forwarding blackholes on Inserted Nodes (INos),

the list of the update preconditions, respectively, is:

Chapter 5. Causal-based consistent connectivity update approach 64

– ∀(mdel ∈ Mdelete) ∧ ∀(madd ∈ Madd) : SdM(mdel, rpi) → SdM(madd, rpj) |

rpi 6= rpj

– ∀(madd ∈ Madd) ∧ ∀(mdel ∈ Mdelete) : SdM(madd, rpi) → SdM(mdel, rpj) |

rpi = rpj

– ∀(madd ∈ Madd) : SdM(madd, rpi) → SdM(m′add, rpj) | rpi = INo ∧ rpj =

ENo

• Execution model: The set of messages and data packets MP is asynchronously

exchanged between the set of process P : Clocks of all processes P are not in

synchronization with each other. No upper bound on messages/data packets

transmission delay is required. Also, no acknowledgement message from Prp is

required on the delivery of a message m ∈ MP . Therefore, the execution model

is fully asynchronous.

• Data structures: Each process p ∈ P contains a vector of control information CIi

to store direct dependency information between each subset MP ′ ∈ MP with

respect to a corresponding matchn ∈MATCH.

Also, each rp ∈ Prp maintains a matrix Deliveryi to trace dependency information

when an rp receives an mp ∈MP ′.

• Functionally: The mechanism is focused on i) establishing the sent order of a set

of OpenFlow messages M to their appropriates Prp, basing on the established

update preconditions (see Algorithm 1), ii) encapsulating the set of OpenFlow

messages M and the set of data packets PKT with the necessary control infor-

mation related to the established order of events (see Algorithms 1 and 2), and

iii) ensuring the delivery of MP in function of the piggybacked control informa-

tion (see Algorithm 3). On sending an OpenFlow message m from the the cp,

Chapter 5. Causal-based consistent connectivity update approach 65

the algorithm encapsulates into the message a vector CIcp containing control in-

formation on the send message events that directly depend on it (see Algorithm

1). Similarly, an outgoing packet each pkt ∈ PKT piggybacks a vector CIrp that

carries control information of the OpenFlow message and packet send events that

directly depend on it (see Algorithm 2). At the reception of an mp ∈ MP , a

rp ∈ Prp checks, based on the control information encapsulated into CImp, if the

delivery of mp respect or not the causal order. If yes, then rp delivers mp, else,

rp will wait for the reception of another/other mp′(s) to then be able to deliver

mp (see Algorithm 3).

• Ensured properties: The following properites are ensured:

– Transient forwarding loop-free

– Transient forwarding blackhole-free

5.3.2 Algorithm description

Data Structures. In the update mechanism each process p ∈ P maintains a vector

of control information CIi of length N to store direct dependency information (N

is the number of processes). Each element of CIi is a set of tuples of the form

(processid, logical clock). For example, suppose that CIi is the vector of control

information related to a process pi such that (k, t) ∈ CIi[j] (i 6= j). This means

that any message sent by a process pi should be delivered to pj after the message

or data packet mp ∈ MP of sequence number t sent by pk has been delivered to pj.

Furthermore, each process rpi contains an N × N integer matrix Deliveryi to track

dependency information. This matrix stores the last sequence number of messages

delivered to other processes. For instance, if Deliveryi [j, k] = t, this means that pi is

aware that messages, with sequence numbers that are less than or equal to t, sent by

Chapter 5. Causal-based consistent connectivity update approach 66

process pj to pk have been delivered to pk [GHH+20].

Algorithm 1: Controller-to-switch message sending [GHH+20]

Input: The set of OpenFlow update messages M1

Precondition: for each matchn ∈MATCH2

∀(mdel ∈Mdelete) ∧ ∀(madd ∈Madd) : SdM(mdel, rpi)→ SdM(madd, rpj) |3

rpi 6= rpj

∀(madd ∈Madd) ∧ ∀(mdel ∈Mdelete) : SdM(madd, rpi)→ SdM(mdel, rpj) |4

rpi = rpj

∀(madd ∈Madd) : SdM(madd, rpi)→ SdM(m′add, rpj) | rpi = INo ∧ rpj = ENo5

Variables initialization:6

tcp := 0, CIcp[j] = {} ∀j : 1 . . . N7

Algorithm body:8

for all m ∈M | m =∧ match do9

tcp := tcp + 110

m = (cp, tcp, OpenF low message, rpi)11

SdM(m,CIcp) & CIcp[i] := (cp, tcp)12

Controller-to-switch message sending. Algorithm 1 handles sent events of

update OpenFlow messages. As input, it takes all update messages calculated by the

controller that should be communicated to the routing processes. As preconditions, the

algorithm starts grouping the set of update messages M by match and preparing the

order of disseminating of messages following the update policies introduced previously

in Sections 5.1 and 5.2 (see lines 2-5). Then, it proceeds with sending per-match

messages to the corresponding subset of routing processes (see lines 8-13). For each

message send event, the logical clock of cp (denoted by tcp) is incremented (see

line 10), associating a timestamp to m (see line 11). Each message m is augmented by

Chapter 5. Causal-based consistent connectivity update approach 67

encapsulating CIcp. It contains information about the direct predecessors of m with

respect to messages sent to the set Prp. After sending a message m, CIcp[i] is updated

by adding (cp, tcp) as a potential direct predecessor of future messages sent to rpi after

m (see line 13) [GHH+20] (see line 12).

Algorithm 2: Switch-to-switch packet forwarding [GHH+20]

Input: Ingoing data packets PKT1

Variables initialization:2

trpi := 0, CIrpi [j] = {} ∀j : 1 . . . N3

Algorithm body:4

trpi := trpi + 15

pkt = (rpi, trpi, header, data, rpj)6

FwdP (pkt, CIrpi) & CIrpi [j] := (rpi, trpi)7

Switch-to-switch packet forwarding. This algorithm (see Algorithm 2) is

responsible of forwarding the set of ingoing packets PKT . It takes PKT as input.

Before forwarding a packet pkt ∈ PKT to an rpj, the logical clock of the sender rpi

(denoted by trpi) is incremented (see line 5) to associate a timestamp with pkt (see line

6). On forwarding a pkt to its next hop, the algorithm encapsulates pkt with the vector

of control information CIrpi . It contains information about the direct predecessors of pkt

with respect to OpenFlow messages/packets sent to rpj. After forwarding pkt, CIrpi [j]

is updated by adding (rpi, trpi) as a potential direct predecessor of future packets sent

Chapter 5. Causal-based consistent connectivity update approach 68

to rpj after pkt [GHH+20] (see line 7).

Algorithm 3: Switch message/packet reception [GHH+20]

Input: OpenFlow messages sent from the controller and in-fly data packets MP1

Variables initialization:2

Deliveryrpj [i, k] = 0 ∀i, k : 1 . . . N , CIrpj [i] = {} ∀i : 1 . . . N3

Algorithm body:4

RecMP (mp = (pi, ti, content, pj, CImp)) % the content may be an OpenFlow5

message or a packet %

wait (∀k (k, x) ∈ CImp[j] | Deliveryj[k, j] ≥ x) % the delivery condition of a6

mp ∈MP %

DlvMP (mp) % the delivery of an mp ∈MP %7

Deliveryj[i, j] := tmp % Actualization of the delivery matrix after the delivery of8

mp %

∀k | (k, y) ∈ CImp[i] Deliveryj[k, i] := max(Deliveryj[k, i], y) % Actualisation of9

the delivery matrix with respect to control information piggybacked with mp %

CIj[j] := (CIj[j] ∪max {(i, tmp)}) −max CImp[j] % updating the vector of control10

information of rpj with new delivery constraint for future messages sent from

rpj. %

∀pk ∈ P | k 6= i, j: CIj[k] := CIj[k] ∪max CImp[k] % updating the vector of11

control information of rpj with delivery constraints related to other rps

6= rpi ∧ rpj for future messages sent from rpj. %

∀pk ∈ P | k 6= j: % garbage collection %12

∀(l, x) ∈ CIj[k]13

if Deliveryj[l, k] ≥ x then14

delete (l, x) from CIj[k]15

Switch message/packet reception. The purpose of this Algorithm 3 is to

ensure the delivery of the set of MP following the update policies established in the

previous Section, guaranteeing updates free from connectivity inconsistencies, i.e tran-

sient forwarding loop-free and blackhole-free updates. As input, the algorithm takes

Chapter 5. Causal-based consistent connectivity update approach 69

the set of MP [GHH+20].

An mp ∈MP piggybacks delivery constraints encapsulated into CImp. The receiver

rpj ∈ Prp lookups into CImp if there is an other/others mp′(s) that have to be delivered

before mp. Recalling that there is a distinction between the reception of a message mp

(see line 3) and its delivery (see Line 5). On the one hand, the reception is the fact

that a pj ∈ P is notified about the reception event, i.e. such event has no influence on

the global state of the network. On the other hand, the delivery of an mp to a process

pj ∈ P implies that the mp in question is received and all previous delivery constraints

on pj were satisfied (see Line 6). Therefore, once the delivery constraints are satisfied,

mp is delivered to rpj (see Line 7). The following is to update control information

saved into the data structures, i.e. the delivery matrix (see line 8-9) and the vector

of control information (see lines 9-15), of rpj. The delivery matrix Deliveryj of rpj is

updated indicating that the message sent from pi with sequence number is equal to tmp,

is already delivered to rpj (see line 8). Furthermore, Deliveryj matrix is also updated

with respect to messages/packets mps delivered to process pi (see line 9). Respecting

the vector of control information CIj, the algorithm updates it based on the control

information piggybacked from CImp. This is, firstly, by updating it with new delivery

constraints for future messages sent from rpj: CIj[j] is updated by adding (i, tmp),

the control information related to the last delivered mp. This is ensured by using the

∪max operator1 (see Algorithm 4). Also, already satisfied and transitive dependencies

are deleted from CIj[j] using the −max
2. operator (see Algorithm 5) (see line 10).

Secondly, CIj[k], where k represents all processes pk except the sender and receiver

process, are updated basing on CImp[k]. This is in order to maintain the causal order

delivery of messages sent from rpj and whose are causally dependent on messages sent

1The operator ∪max (see Algorithm 4) ensures that if there are multiple constraints corresponding
to a sender process, the most recent constraint is selected [PRS97].

2The −max operator deletes the delivery constraints already known to be satisfied (TP2) from the
current set of message delivery constraints (TP1) [PRS97]

Chapter 5. Causal-based consistent connectivity update approach 70

by pi to pj. Therefore, CIi[k] is updated by adding the delivery constraints piggybacked

by CImp (see Line 11). Finally, garbage collection on CIj is applied, and this to reduce

the communication overhead when ensuring the causal ordering of messages. Hence,

based on the Deliveryj matrix, CIj is updated to only contain only recent delivery

constraints needed for the delivery of future messages (see lines 12-15) [GHH+20].

Algorithm 4: : The operator ∪max: (TP1 ∪max TP2).

Input: set of tuples TP1, set of tuples TP2, set of tuples TP1

change := true2

TP := TP1 ∪ TP2 (TP1 and TP2 contain the delivery constraints)3

while (change) {4

change := false5

if (i, x) ∈ TP and (i, y) ∈ TP and (x < y)6

{ TP := TP − {(i, x)}7

change := true } }8

return(TP)9

Algorithm 5: : The operator −max: (TP1−max TP2).

Input: set of tuples TP1, set of tuples TP2, set of tuples TP1

change := true2

TP := TP13

while (change) {4

change := false5

if (i, x) ∈ TP and (i, y) ∈ TP2 and (x ≤ y)6

{ TP := TP − {(i, x)}7

change := true } }8

return(TP)9

Chapter 5. Causal-based consistent connectivity update approach 71

5.3.3 Proof of correctness

In the previous subsection, we introduced an update mechanism as a solution for

the connectivity inconsistency problems formalized in the previous Chapter. We now

demonstrate that the proposed mechanism is transient forwarding loop-free as well as

transient forwarding blackhole-free.

The update mechanism is transient forwarding loop-free. Based on the Def-

inition 8, a transient forwarding loop occurs due to the violation of the causal order

delivery of the relevant OpenFlow update messages. Consequently, a packet or a flow

of packets enters into a loop between the underlying switches. To prove that the mech-

anism is transient forwarding loop-free, it is sufficient to demonstrate that there is no

data packet flow that holds with the conditions specified in Definition 8. To accom-

plish the proof, we focus on the packet pkt that triggers the transient forwarding loop

pattern. The following theorem proves this observation [GHH+20].

Theorem 1 The update mechanism guarantees that @ a data packet pktk ∈ pflowm | pflowm =∧

matchn, such that (i) SdM(m′) → FwdP (pktk) and (ii) DlvMP (pktk, ti)→ DlvMP (m, t′i)

where m,m′ =∧ matchn and SdM(m) → SdM(m′).

Assuming that the Algorithm 1 and the Algorithm 2 store knowledge of the latest

message/packet mp ∈ MP sent from a process pi ∈ P to another process, through

a local matrix named ForDeliveredi that has the same structure as the delivery ma-

trix (for more details about the structure, see the structure description subsection).

For this proof, we consider this additional instruction in both mentioned algorithms:

ForDeliveredi[i, j] = t. This hypothetical instruction builds a matrix that consid-

ers the message(s)/packet(s) that belong(s) to the causal history of a message/packet

mp and that has (have) to be delivered before mp to a process pj [GHH+20]. Thus,

Chapter 5. Causal-based consistent connectivity update approach 72

if ForDeliveryi[i, j] is less than or equal to Deliveryj[i, j], this means that all mes-

sage(s)/packet(s) that causally depend(s) on mp has (have) already been delivered to

pj. On the other hand, if ForDeliveryi[i, j] is greater than Deliveryj[i, j], this means

that some of the message(s)/packet(s) that causally depend(s) on mp has (have) not

been delivered to pj.

Proof 1 This is proven by contradiction. Let us assume that there is a packet pktk ∈

pflowm, such that:

1. SdM(m) → FwdP (pktk)

According to Definition 8, this is by transitivity since SdM(m) → SdM(m′)

and SdM(m′) → FwdP (pktk), such that m and pktk have rpi as a common

destination.

2. DlvMP (pktk, ti) → DlvMP (m, t′i)

The existence of a pktk under the mentioned Conditions 1 and 2 implies that

ForDeliverycp[cp, rpi] > Deliveryrpi [cp, rpi] when rpi receives pktk. However, and based

on the proof of [PRS97], this cannot occur as the algorithm allows the delivery of pktk

to rpi only when ForDeliverycp[cp, rpi] <= Deliveryrpi [cp, rpi], which contradicts the

initial assumption.

The update mechanism is transient forwarding blackhole-free on Existing

nodes. Following Definition 9, a transient forwarding blackhole on an Existing node

(ENo) occurs due to a violation of FIFO order on the delivery of relevant update

messages. Thus, a pktk ∈ PKT enters into a transient forwarding blackhole on a ENo.

The update mechanism presented in the previous Section prevents that pktk to match

the conditions 1 and 2 (specified in Definition 9), giving raise the violation of the FIFO

order. The following theorem provides this observation.

Chapter 5. Causal-based consistent connectivity update approach 73

Theorem 2 The update mechanism guarantees that @ a data packet pktk ∈ pflowm | pflowm =∧

matchn, such that (i) SdM(m)→ SdM(m′) and (ii) DelMP (m′, rpb)→ DelMP (m, rpb)

| DelMP (m′, rpb)→ DelMP (pkt, rpb) and DelMP (pktk, rpb)→ DelMP (m, rpb) where

m,m′ =∧ matchn.

A FIFO order ensures that messages by the same sender, in our case the controller

cp ∈ Pcp, are delivered in the order that they were sent to a routing process receiver

rp ∈ Prp. That is, if cp sends a message m ∈M before it sends a message m′ ∈M , then

rp delivers m′ until it has previously received m. Therefore, to prove that the update

mechanism is transient forwarding blackhole-free on ENos, it is sufficient to prove that

ensuring the causal order of update events implies ensuring the FIFO order of the same.

In other words, we should prove that the FIFO order is a particular case of causal order,

ensured by the proposed update mechanism.

Proof 2 Let p be the the first statement of this proof: m,m′ ∈ M are two update

messages such that SdM(m, cp) → SdM(m′, cp) where the routing process receiver of

both m and m′ is an ENo denoted by rpb ∈ Prp, and q to be the second statement: the

delivery of both messages on rpb is as following DelMP (m, rpb) → DelMP (m′, rpb).

Assuming that the FIFO order expressed in this case by p =⇒ q is a specific case of

the causal order.

p is true as it is considered as precondition when triggering the update mechanism

(see Algorithm 1). It was be proven in [PRS97] that a causal ordering algorithm guar-

antees q when p is true following these two cases:

1. m→ m′ where p ∈ P is the sender process of both, denoted by p′.

2. m → m′ where the sender processes are respectively p ∈ P and p′ ∈ P | p 6= p′,

and there is a finite sequence of message M ′ = {m1,m2, ...,mn−1,mn}, mn = m′

with n >= 2 that causally relate m and m′.

Chapter 5. Causal-based consistent connectivity update approach 74

Hence, the first case p′ correspond to the statement p guaranteeing q. Therefore,

p′ =⇒ q, meaning that FIFO order is a particular case of causal order.

The update mechanism is transient forwarding blackhole-free on Inserted

nodes. During an update, a transient forwarding blackhole on an Inserted node (INo)

denoted by rpb ∈ Prp, occurs, following the Definition 10, when rpb delivers a packet

pkt ∈ PKT from its direct predecessor before delivering the corresponding update

message, installing a new rule to forward pkt to its next hope. Thus, pkt enters into a

transient forwarding blackhole on rpb. The proposed update policy for this forwarding

blackhole pattern is to i) establish a causal dependencies between (see Section 5.2.1) the

subset of messages Madd = {madd1 ,madd2 , ...,maddn} sent to all INos, and any pflowm =

{pkt1, pkt2, ..., pktn} that enters to rpb and matches Madd. ii) To ensure the causal order

delivery of the update events based on the update mechanism proposed in the previous

Section. Therefore, no pkt enters into a transient forwarding blackhole on an INo. The

following theorem formalizes the latter mentioned.

Theorem 3 The update mechanism guarantees that @ a data packet pktk ∈ pflowm | pflowm =∧

matchn, such that (i) SdM(m, rpr)→ FwdP (pktk, rpr) and (ii) DelMP (pktk, rpb)→

DelMP (m, rpb) | m ∈Madd where m =∧ matchn.

Proof 3 This is proven by contradiction. Let us assume that there is a packet pktk ∈

pflowm, such that:

1. SdM(m, rpb) → FwdP (pktk, rpb)

This causal dependency is accorded based on the update policy on INos.

2. DlvMP (pktk) → DlvMP (m)

Following the condition 1 and 2, ForDeliverycp[cp, rpb] > Deliveryrpb [cp, rpb] when

rpb receives pktk. However, and based on the proof of [PRS97], this cannot occur as

Chapter 5. Causal-based consistent connectivity update approach 75

the algorithm allows the delivery of pktk to rpb only when ForDeliverycp[cp, rpi] <=

Deliveryrpb [cp, rpb], which contradicts the initial assumption.

5.4 Scope and limitations

Scope of this work. The aspects that were covered are summarized through the

following points.

• Updates in SDNs are modeled at the event level according to the distributed and

asynchronous nature of SDNs.

• Inconsistency connectivity invariant violations are identified and formally defined

• A mechanism to support connectivity consistency update for SDNs are designed.

Limitations of our approach. The limitations of our update approach are summa-

rized through the following points.

• To bound the scope of this research, our network update was modeled to support

a non-finite delay and no loss of messages and packets.

• The proposed update mechanism does not prevent the triggering of permanent

forwarding blackholes. The mechanism should be extended to cover the network

update policy defined in Section 5.2.2.

5.5 Chapter summary

This chapter introduced asynchronous SDN update policies, supporting connectivity

consistency during SDN updates which includes transient forwarding loop-free and for-

warding blackhole. These policies are based on establishing causal dependencies be-

tween relevant update events defined in the previous chapter. An update mechanism

Chapter 5. Causal-based consistent connectivity update approach 76

that ensures these causal dependencies was presented. Finally, it was demonstrated

that creates causal dependencies between relevant events is sufficient to ensure tran-

sient forwarding loop and transient forwarding blackhole. However, it is not the case

for the permanent forwarding blackhole.

Chapter 6
Discussion

The problem of inconsistent connectivity updates was intensively attacked using differ-

ent methods and techniques. The different solutions, as presented in Chapter 3, can

be grouped based on four approaches: ordered update, n-phase commit update, timed

update, and causal update approaches. In this Chapter, we analytically discuss our

approach comparing it with the proposed approaches. Qualitative evaluation and com-

parison are led based on the following criteria: the execution model adopted to perform

updates, the prior knowledge to consider when updating, the degree of the flexibility of

updates and the computation costs. The execution update model consists of the system

properties in which one attempts to design SDN updates – whether asynchronous or

synchronous. Prior knowledge on updating consists of the pre-required information a

control plane needs to launch a consistent update. The degree of flexibility of updates

concerns whether an update mechanism permits that in-fly packets may be forwarded

based on both initial forwarding policy and the final one, and not only one of them.

As to metrics of update computation cost, amount of resources required to perform

updates is measured and compared based on memory requirement and update rounds.

The Table 6.1 summarizes the qualitative evaluation based on the mentioned metrics.

Execution update model. All previous related work established synchronous ex-

ecution models to perform updates. Taking the timed update approach [MM16, ME16].

In this approach, updates on forwarding devices are synchronized to be processed si-

multaneously. To achieve the last mentioned, two synchronous system properties are

assumed: i) clocks of forwarding devices are synchronized , and ii) upper bound on

message delivery is defined. Actually, each forwarding device receives messages/packet

77

Chapter 6. Discussion 78

flows at an interval time [PT − ε, PT + ε] where ε represents the clock synchronization

error. Two delivery time intervals of events may overlap, knowing that the execution

order of update events is not trivial to ensure update consistency. Hence, one cannot

find out or force the execution order of events by using mechanisms for synchroniz-

ing physical time. Therefore, this is why such approach may result to an inconsistent

update during the transition update phase, i.e. during updates.

On the other hand, system properties, based on which an SDN update is modeled

in this work, represents a major difference compared to the state-of-the-art. Indeed,

and as a fist system property, we assume that i) forwarding devices’ clocks may not be

accurate and can be out of synchronization. Furthermore, as a second system property,

we assume that ii) update messages can be delayed for arbitrary period of times. Thus,

there is no known upper limit on update message transmission delay between network

devices. Forwarding devices receive messages/packet flows without any constraints

on transmission time, which is a natural characteristic of a typical distributed system.

However, the order of the delivery of relevant update events is constrained to be a causal

order based on the established network policies (see Chapter 5). As a result, unlike

the timed update, our asynchronous update approach permits to ensure connectivity

consistent updates including during the transition update phase.

The factor behind this result is that we provide an asynchronous-based solution for

an inherently asynchronous system. This is important because how SDN updates are

modeled in this work is more suitable for real-world scenarios since it relaxes strong

assumptions about forwarding devices clocks synchronization and upper bound on mes-

sage delivery. On the other hand, the timed update approach provides a synchronous-

based solution for an inherently asynchronous system. Such approach does not prevent

unpredictable variations of command execution time on network switches caused by a

delay of an update message.

Chapter 6. Discussion 79

Prior knowledge. The control plane is the brain of an SDN network and is respon-

sible to calculate sequences of update operations. In some of the proposed solutions,

the control plane needs to collect and maintain information about the network as an

input to perform consistent updates.

In regards to the ordered update approach proposed by [FMW16], algorithms cal-

culating sequences of update operations are centralized into the controller side. An

update is performed based on different rounds, i.e. steps. Incrementally, and during

each round, algorithms perform a per-round consistent update by executing a subset of

operation on a subset of forwarding devices. To do so, the update mechanism extracts

some constraints/rules and then verifies that their update rounds match the extracted

constraints in the network forwarding graphs. In such approach, the complete network

forwarding graph is considered as a prior knowledge to set up updates. Also, it should

always be up-to-date after performing each update in order to ensure the consistency

of future updates.

Concerning the timed update approach [MM16, ME16], and as discussed previously,

the controller requires that clocks of forwarding devices should always be perfectly

synchronized to be able to simultaneously perform update on the underlying forwarding

devices.

As to the two-phase commit update approach [RFR+12, KRW13], the proposed

update algorithm needs the network topology as a pre-requirement. In fact, the al-

gorithm should distinguish between the forwarding devices that belongs to initial and

final forwarding paths. We should highlight that our formalization of the forwarding

blackhole problem is based on a per-forwarding devices classification only for analysis

purpose, and our proposed solution does not need such classification as input to the

update mechanism.

In our approach, the only prior knowledge is to be aware of the list of network

Chapter 6. Discussion 80

devices involved in an update. This is to be able to sort update messages by their

match fields and to arrange the dissemination of messages from the controller following

some predefined order (see Algorithm 1).

Degree of flexibility of updates. Previous approaches that designed consistent

update mechanisms are considered rigid. This is because, during updates, in-fly packets

either traverse the initial forwarding path or the final one, but never both. This is may

delay updates as the execution of updates over forwarding devices is variable from one

to another in term of the timing of message execution. Thus, an involved forwarding

device that cannot update, due to the delay of an update message, prevents packets

from continuing traversing the final forwarding path until the reception of the delayed

message.

On the contrary there are only two works that propose flexible consistent updates

which are the causal update approach [LSM19] that proposed Suffix Causal Consistency

(SCC) and our approach. On the one hand, SCC introduces update algorithms based on

Lamport timestamp. Note that SCC and our approach are quite different. In fact, SCC

uses timestamps to tag packets reflecting the rules that correspond to each forwarding

device. On the other hand, our approach uses timestamps to establish causal order

between relevant update messages and in-fly packets. The idea behind SCC is to ensure

that an in-fly packet is routed based on its recently installed forwarding path, ensuring

consistent updates. However, SCC allows that an in-fly packet pkt starts flying based

on the initial forwarding path. Then, if pkt reaches a forwarding devices which has

already updated its forwarding table, then pkt will be redirected to traverse the final

forwarding path to reach its destination. As described in Chapter 3, the fourth step of

the proposed algorithm treats this case. In fact, the controller calculates and installs

extra temporarily forwarding rules, redirecting such packets to the recent forwarding

path to reach their destination. The question here is how many extra rules would be

Chapter 6. Discussion 81

required per policy update? Indeed, this generates extra overhead related to controller

and forwarding device memories, as well bandwidth as this requires message exchange

between the controller and switches.

On the other hand, based on our proposal, a packet may start flying from the initial

path and then be forwarded to the destination based on the final path without the need

to install extra rules to direct it to the final path. Thus, only the rules calculated to

perform updates are required. An example scenario of execution of updates is presented

in [GHH+20] (see Figure 6 in Section 8). Taking the forwarding path which corresponds

to match1. A packet pkt ∈ PKT may start flying from S1 to S2 based on the initial

forwarding policy. Then, pkt reaches S2 after it updates. Hence, S2 re-forwards pkt

to S1. Following our updates mechanism, S1 delivers pkt only after the delivery of the

update message that delete the rule r forwarding packet from S1 to S2, preventing the

trigger of a forwarding loop. Also, our update mechanism ensures that the delivery of

r is ensured only after the delivery of the message installing the rule r′ forwarding pkt

from S1 to Sn, preventing the occurrence of a forwarding blackhole. Finally, Sn ends

by forwarding pkt to the Destination node.

Computational costs. Despite all the advantage provided by the different update

approaches, they do not prevent extra resources required to set up their consistent

update algorithms.

Regarding the solutions based on the two-phase commit update [RFR+12, KRW13],

during updates, involved forwarding devices should be able to maintain rules of both

forwarding policies (the initial and the final ones). In fact, if a switch maintains n

forwarding rules, thus, and at the transition phase of update, the same switch should

be able to store up to n2 rules. This may end by congesting the memories of switches.

Even worse, this approach may not be applicable when the number of rules bypasses

the memory limit size of a switch. On the other hand, update number round is constant

Chapter 6. Discussion 82

as each update needs two rounds.

As to ordered update approaches [LRFS14, LwZ+13, FMW16], they calculate up-

dates based on complete network forwarding graphs. In fact, the algorithms take for-

warding graph properties as input to validate if each i-round matches or not the cal-

culated update constraints. Computationally, the cost lies on the number of flows F ,

switches V , links E, requiring O(FV E) which is costly in a large scale network. Con-

cerning the round number, in the worst case, the algorithms require O(n)-rounds where

n is the number of new edge to be added. This augments the number of interactions be-

tween the controller and forwarding devices, and therefore incurs a bandwidth overhead:

in each round, forwarding devices should acknowledge once the new forwarding rules

are installed to allow the controller to initiate the next update round. Furthermore,

extra computation time overhead is generated as the controller should stop working

while the switches acknowledge the achievement of each round.

As to the timed update approaches [MM16, ME16], and to simultaneously perform

network updates among involved forwarding devices, authors based on ReversePTP

[MM14], a clock synchronization protocol for SDNs. To synchronous the update oper-

ations, each forwarding device should periodically send a synchronous message to the

controller containing its local timestamp. Thus, O(n) messages should be sent peri-

odically to the controller. Also, the later should maintain O(n) timestamps related to

the different forwarding devices. This serves to calculate the timestamp conversion be-

tween the controller’s clock time and the forwarding devices’ clock time, implementing

a time-based protocol that allows forwarding devices to be synchronized [MM14]. The

process of synchronizing switch’ clocks is not transient during updates; however, it is

permanent. Thus, the bandwidth and memory overhead generated are permanent too.

Concerning the work based on SCC [LSM19], the algorithm parts Backward closure

and Send-back rules are calculated in function of the forwarding paths taken by the two

Chapter 6. Discussion 83

flow equivalence classes, i.e. the old and the new forwarding paths of flows. Assuming

that cold and cnew be the number of the old and the new equivalence classes, respectively,

and then, iteratively, Backward closure algorithm should compare every old forwarding

rule, belonging to the set of the old rules Rold, against every new forwarding rule,

belonging to the set of new rules Rnew. Thus, Backward closure cost O(coldcnew ×

|Rold| × |Rnew|) steps. In the same manner, Send-back algorithm compares every pairs

of the set Rold. Thus, it costs O(coldcnew × |Rold|2). Hence, the running time of the

whole algorithm is O(coldcnew× (|Rold|× |Rnew|+ |Rold|2))-steps [LSM19].

Our approach establish a causal order-based policies to guarantee transient connec-

tivity consistency during updates. Our update mechanism requires piggybacking and

store control information on forwarding devices, resulting in memory and bandwidth

overhead. However, the causal order message/packet algorithm was designed based

on the IDR (see Definition 5). Based on IDR, only direct dependency information

between messages/packets with respect to the destination process(es) is needed to be

piggybacked with them. In the worst case, each component of a CIcp[j] (vector of the

control information of the controller process) could have at most one tuple for each

process. This is because there is no concurrent message sent from the controller to a

forwarding device [GHH+20]. Furthermore, each message only piggybacked control in-

formation which only correspond to its match field. An example scenario of execution of

updates of two distinct forwarding paths where each one correspond to different match

match is presented in [GHH+20] (see Section 8). In Table A1, presented in Appendix

A in [GHH+20], showing control information vector CIcp of the controller process, we

can observe that messages of match2 do not piggyback control information related to

messages of match1. As to control information of vectors of forwarding devices, in fact,

a component of a CIrpi [j] can have at most n tuples for each process, i.e., for each

vector component. This occurs when a forwarding device should, for example, flood a

Chapter 6. Discussion 84

data packet to all outgoing links. Therefore, O(n2) control information is required to

be piggybacked with each message/packet [GHH+20].

Concerning memory overhead, a routing process rpi needs to store a vector CIrpi [j]

and a matrix Deliveryi of N x N , which then requires O(n2) integers to be stored.

Chapter 6. Discussion 85

A
p

p
r
o
a
c
h

e
s

E
x
e
c
u

ti
o
n

m
o
d

e
l

P
r
io

r
k
n

o
w

le
d

g
e

D
e
g
r
e
e

o
f

fl
e
x
ib

il
it

y
o
f

u
p

d
a
te

s
C

o
m

p
u

ta
ti

o
n

a
l

c
o
st

s

N
-p
h
a
se

co
m
m
it

u
p
d
a
te

[R
F
R

+
1
2
,
K
R
W

1
3
]

S
y
n
ch

ro
n
o
u
s

N
et
w
o
rk

to
p
o
lo
g
y

R
ig
id

F
o
r
th

e
2
-p
h
a
se

u
p
d
a
te
,
ea

ch
sw

it
ch

sh
o
u
ld

st
o
re

n
2
ru

le
s

d
u
ri
n
g
th

e
tr
a
n
si
ti
o
n
p
h
a
se
.

O
(1
)-
ro
u
n
d

O
rd

re
d
u
p
d
a
te

[L
R
F
S
1
4
,
L
w
Z
+
1
3
]

[F
M
W

1
6
]

S
y
n
ch

ro
n
o
u
s

C
o
m
p
le
te

n
et
w
o
rk

fo
rw

a
rd

in
g
g
ra
p
h

R
ig
id

O
(F

V
E
)
is

n
ee
d
ed

to
ca

lc
u
la
te

a
n
u
p
d
a
te
.

O
(n

)-
ro
u
n
d
s
w
h
er
e
n
is

th
e
n
u
m
b
er

o
f
in
v
o
lv
ed

sw
it
ch

es
.

T
im

ed
u
p
d
a
te

[M
M
1
6
,
M
E
1
6
]

S
y
n
ch

ro
n
o
u
s

P
er
fe
ct

cl
o
ck

sy
n
ch

ro
n
iz
a
ti
o
n

o
f
sw

it
ch

es
R
ig
id

O
(n

)
m
es
sa
g
es

sh
o
u
ld

b
e
d
is
se
m
in
a
te
d

p
er
io
d
ic
a
ll
y
to

th
e
co

n
tr
o
ll
er
,
a
n
d

it
sh

o
u
ld

m
a
in
ta
in

O
(n

)
ti
m
es
ta
m
p
s.

O
(1
)-
ro
u
n
d
.

C
a
u
sa
l
u
p
d
a
te

[L
S
M
1
9
]

S
y
n
ch

ro
n
o
u
s

T
h
e
se
ts

o
f
fo
rw

a
rd

in
g
ru

le
s

to
k
ee
p
,
to

d
el
et
e

a
n
d
to

a
d
d

F
le
x
ib
le

T
h
e
a
lg
o
ri
th

m
n
ee
d
s

O
(c

o
ld
cn

e
w
×

(|
R

o
ld
|×
|R

n
e
w
|+
|R

o
ld
|2
))
-s
te
p
s

O
u
r
a
p
p
ro
a
ch

[G
H
H

+
1
9
,
G
H
H

+
2
0
]

A
sy
n
ch

ro
n
o
u
s

S
et

o
f
in
v
o
lv
ed

sw
it
ch

es
a
n
d
m
es
sa
g
es

F
le
x
ib
le

O
(n

2
)
co

n
tr
o
l
in
fo
rm

a
ti
o
n

to
b
e
p
ig
g
y
b
a
ck
ed

w
it
h
ea

ch
m
es
sa
g
e/

p
a
ck
et
.

O
(n

2
)
in
te
g
er
s

to
b
e
st
o
re
d
in

ea
ch

sw
it
ch

.
O
(1
)$
-r
o
u
n
d

T
ab

le
6.

1:
A

q
u
al

it
at

iv
e

co
m

p
ar

is
on

of
ou

r
ap

p
ro

ac
h

w
it

h
th

e-
st

at
e-

of
-t

h
e-

ar
t

Chapter 7
Conclusion and future work

7.1 Conclusion

This research aimed to design a consistent connectivity update mechanism for Software-

Defined Networks (SDNs) in order to enforce the correctness of data plane when network

policies change, maintaining an asynchronous communication between network entities.

To conduct our approach, the following two methodological steps were the key to achieve

our investigation results.

1. A formal model of SDN updates. The system is modeled to support updates

at the event level assuming the following system properties which align with the

distributed and asynchronous nature of SDNs:

• Clocks of network entities are not accurate and then they are out of synchro-

nization.

• Communication between network entities is asynchronous. Thus, update

messages and data packets may be transmitted and received by entities at

any time intervals.

• No global time reference is required to perform updates.

• Update messages and data packets can be delayed for arbitrary period of

times. Thus, there is no known upper limit on messages and data packets

transmission delay between network entities.

2. Formally defining patterns of invariant violation leading to inconsis-

tency connectivity. The two invariant violations, forwarding loops and forward-

87

Chapter 7. Conclusion and future work 88

ing blackhole, leading to inconsistency connectivity are characterized by defining

the patterns under which these phenomenons may occur during updates. Each

defined pattern represents an abstraction and a generalization of the phenomenon

in question. On the one hand, the introduced abstractions reduce the complexity

to understand the phenomenon by highlighting the relevant cause behind its trig-

gering and by hiding the irrelevant details. On the other hand, the generalizations

allows to catch any occurrence of these phenomenons.

Work findings. The findings of this work can be briefly summarized by the fol-

lowing points.

• The provided network modelization represents an asset of the presented update

mechanism as it neither needs to synchronous clocks of network entities nor needs

to define upper bound on the delivery of messages and data packets to perform

updates guaranteeing transient connectivity consistency.

• Definitions of the invariant violations forwarding loop and forwarding blackhole,

leading to inconsistent connectivity updates, are introduced capturing any of their

occurrence during updates.

• To solve the problem from an asynchronous point of view, an update mechanism

is proposed to break any occurrences of transient forwarding loop and transient

forwarding blackhole.

• An important founding is that our update mechanism, and to ensure transient

forwarding loop-free updates, takes in input the set of update messages and the

set of the involved network entities to be updated. However, in [FMW16], which is

one of the most recent works studying how to update SDN in a loop-free manner,

requires the complete forwarding graph to calculate update constraints and the

Chapter 7. Conclusion and future work 89

operation steps in which update can be performed. Furthermore, in the worst case,

the update mechanism of [FMW16] requires O(n)-steps where n is the number of

network forwarding entities whereas our update mechanism requires O(1)-step,

that is, a constant number of steps.

• Another important founding is that our consistent update mechanism permits

that packet flows, which interleave with the set up of update messages, traverse

both forwarding paths, i.e. the initial one (before updating) and the final one

(after updating). This promotes the availability of the existence of a forwarding

path for these data packets which should traverse both of forwarding paths during

updates. However, the related work in the field permits that these packet flows

traverse only the initial or the final forwarding path to preserve consistency. This

may reduce the availability of a forwarding path for these packet flows during

updates, and therefore, it may perturb their delivery to their destinations.

It is important to highlight that the case of permanent forwarding blackhole needs

further an in-depth study. As it was discussed in Chapter 4 and 5, it cannot establish

causal dependencies between the relevant updates events to guarantee their causal order

delivery.

Thesis impact. Network community may refer to this work to leverage from two

outputs:

• The already existed and future update mechanisms could verify the connectivity

consistency correctness of their algorithms against the provided formal definitions

of the phenomenon.

• The update mechanism is ready to be extended to support other consistency

properties. The system model, based on which the algorithm is designed, does

not make hard assumptions like e.g. upper bound on message/packet delivery

Chapter 7. Conclusion and future work 90

or notation of shared and globally synchronous clock between participant nodes.

This is give support to the designer because he will feel free from such system

constraints.

7.2 Future work

During the progress of this research work, it was noticed that the proposed theory

can be extended to resolve other problems in the distributed systems research area.

Furthermore, and to better understand the implications of our results, future studies

could address the implementation of our mechanism to consider other performance

metrics. Thereby, the future directions of this work may include:

• The establishment of delivery order for concurrent events. It was defined

in this work that a permanent forwarding blackhole occurs, during updates, due

to a concurrent access of two identified type of events to a Forgotten node, defined

in our work to be a node that belong only to the initial forwarding path. Then,

we showed that establishing causal dependencies between the underlying events

is not possible for this invariant violation pattern.

In this sense, a future research could be focused on the study of extending tempo-

ral causal dependencies between events to consider other domains of relationship

between events like the degree of closeness of events in terms of distance [CH14].

The accent could be made on how to combine temporal/logical and distance do-

mains to identify when each relevant event is created. How ancient one event is

compared to another could be a conditional metric to decide about the delivery

of concurrent events within the permanent forwarding blackhole pattern.

• The extension of the scope of this investigation to consider a finite

delay and/or the loss of messages and packets. To delimit the scope of

Chapter 7. Conclusion and future work 91

this research work, it was assumed infinite delay and no loss of update messages

and packets. Indeed, ensuring temporal constraints is out of scope in the present

work.

The proposed solution of this work can be extended to support limited delay and

message/packet loss by including the principle of Delta-Causal. In Delta-Causal

[HDGF09], each message/packet has associated a delta lifetime that determines

the maximal possible delay of messages/packets. Thus, a future work direction

could be on studying the extension of the SDN model and the update mechanism

of this work to support these assumptions.

• The study of other inconsistency update problems. In this work, we

demonstrate that establishing causal dependencies is sufficient to cover transient

connectivity problems. Another future direction of this investigation could be to

continue studying and defining other network invariant violation patterns related

to policy and capacity inconsistency. Such study will allow to answer whether

ensuring causal dependencies will be sufficient to cover other consistent network

update properties in SDNs.

• The implementation of the update mechanism to consider other per-

formance metrics. To evaluate the performance of the update mechanism, eval-

uation metric, on the one hand, were measured based on space complexity. On

the other hand, time complexity was calculated based on the required round per

update, i.e. order of update steps. As yet, Mininet, which is one of the most to-

day’s used SDN emulator, does not offer performance fidelity to measure the time

needed to implement updates. In this context, authors of [YJ17] have proposed a

container-based virtual time system for software-defined network emulation. This

system has enhanced the fidelity of the Mininet environment to bridge the gap

Chapter 7. Conclusion and future work 92

between research ideas and real-world network applications in terms of time. In

this sense, future directions of this work can be focused on the implementation of

the proposed update mechanism with such emulator.

Bibliography

[ADSW16] Saeed Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.

Congestion free rerouting of flows on dags. CoRR, pages 1–13, 2016.

[ALMS16] Saeed Amiri, Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. Tran-

siently consistent sdn updates: Being greedy is hard. In In International

Colloquium on Structural Information and Communication Complexity, vol-

ume 9988, pages 391–406, 2016.

[ARA06] Shaikh Aman, Dube Rohit, and Varma Anuja. Avoiding instability dur-

ing graceful shutdown of multiple ospf routers. IEEE/ACM Trans.Netw.,

3(14):532–542, 2006.

[BBCC14] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone.

Openstate: programming platform-independent stateful openflow applica-

tions inside the switch. ACM SIGCOMM Computer Communication Re-

view, 44(2), 2014.

[CH14] Jose Roberto Perez Cruz and Saúl E. Pomares Hernández. Temporal data

alignment and association for event-streaming in ubiquitous environments

based on fuzzy-causal dependencies. In 24th International Conference on

Electronics, Communications and Computing, pages 127–134, 2014.

93

Bibliography 94

[DLS16] Szymon Dudycz, Arne Ludwig, and Stefan Schmid. Can’t touch this: Con-

sistent network updates for multiple policies. Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN), 1:133–143,

2016.

[DSH+10] A. Doria, J. Hadi Salim, R. Haas, W. Wang, L. Dong, and R. Gopal. For-

warding and control element separation (forces) protocol specification, 2010.

[FB07] Pierre Francois and Olivier Bonaventure. Avoiding transient loops during

the convergence of link-state routing protocols. IEEE/ACM Transactions

on Networking, 15(6):1280–1932, 2007.

[FLMS18] Klaus-Tycho Foerster, Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

Loop-free route updates for software-defined networks. IEEE/ACM Trans-

actions on Networking, 26(1):328–341, 2018.

[FLSW18] Klaus-Tycho Foerster, Thomas Luedi, Jochen Seidel, and Roger Watten-

hofer. Local checkability, no strings attached: (a)cyclicity,reachability, loop

free updates in SDNs. Theoretical Computer Science, 709:48–63, 2018.

[FMW16] Klaus-Tycho Foerster, Ratul Mahajan, and Roger Wattenhofer. Consistent

updates in software defined networks: On dependencies, loop freedom, and

blackholes. In IFIP Networking Conference, pages 1–9, 2016.

[FSV16] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. Survey of

consistent network updates. IEEE Communications Surveys & Tutorials,

21(2):1435–1461, 2016.

[FSYM14] Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey Mogul. En-

forcing network-wide policies in thepresence of dynamic middlebox actions

Bibliography 95

using flowtags. In USENIX Conference onNetworked Systems Design and

Implementation, pages 533–546, 2014.

[FW16] Klaus-Tycho Forster and Roger Wattenhofer. The power of two in consistent

network updates: Hard loop freedom, easyflow migration. In Proceedings

of the 2016 25th International Conference on Computer Communication

andNetworks (ICCCN), pages 1–9, 2016.

[GHH+19] Amine Guidara, Saúl E. Pomares Hetnandez, Lil Maŕıa X. Rodŕıguez

Henŕıquez, Hatem Hadj Kacem, and Ahmed Hadj Kacem. A study of

the forwarding blackhole phenomenon during software-defined network up-

dates. In 2019 Sixth International Conference on Software Defined Systems

(SDS), pages 186–193, 2019.

[GHH+20] Amine Guidara, Saúl E. Pomares Hetnandez, Lil Maŕıa X. Rodŕıguez

Henŕıquez, Hatem Hadj Kacem, and Ahmed Hadj Kacem. Towards causal

consistent updates in software-defined networks. Appl. Sci., 10(6), 2020.

[HDGF09] Saúl E. Pomares Hernández, L. Dominguez, E. Rodriguez Gomez, and

J. Fanchon. An efficient delta-causal algorithm for real-time distributed

systems. Appl. Sci., pages 1711–1718, 2009.

[JMD14] Yosr Jarraya, Taous Madi, and Mourad Debbabi. A survey and a layered

taxonomy of software-defined networking. Communications Surveys Tuto-

rials, IEEE, 16(4):1955–1980, 2014.

[KRV+15] Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo, Christian Esteve

Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined net-

working: A comprehensive survey. In Proceedings of the IEEE, number 1,

pages 14–76, 2015.

Bibliography 96

[KRW13] Naga Praveen Katta, Jennifer Rexford, and David Walker. Incremental con-

sistent updates. In The Second ACMSIGCOMM Workshop on Hot Topics

in Software Defined Networking, volume 49–54, 2013.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Magazine Communications of the ACM, pages 558–565, 1978.

[LMS15] Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. Scheduling loop-free

network updates: It’s good to relax! In In Proceedings of the 2015 ACM

Symposium on Principles of Distributed Computing, pages 13–22, 2015.

[LRFS14] Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

Good network updates for bad packets: Waypoint enforcement beyond

destination-based routing policies. In Proceedings of the 13th ACM Work-

shop on Hot Topics in Networks, HotNets-XIII, pages 15:1–15:7, New York,

NY, USA, 2014. ACM.

[LSM19] T.A. Liu S., Benson and Reiter M.K. Efficient and safe network updates

with suffix causal consistency. In In Proceedings of the Fourteenth EuroSys

Conference 2019, pages 1–15, 2019.

[LwZ+13] Hongqiang Harry Liu, Xin wu, Ming Zhang, Lihua Yuan, Roger Watten-

hofer, and David A. Maltz. zupdate: Updating data center networkswith

zero loss. ACM SIGCOMM Computer Communication Review, 43:411–422,

2013.

[ME16] Moses Y. Mizrahi E.S.T. Timed consistent network updates in software-

defined networks. IEEE/ACM Trans. Netw., pages 1–14, 2016.

[Mil91] David L. Mills. Internet time synchronization: the network time protocol.

IEEE Transactions on Communications, 39:1482–1493, 1991.

Bibliography 97

[MM14] Tal Mizrahi and Yoram Moses. Using ReversePTP to distribute timein

software defined networks. International IEEE Symposium on Precision

Clock Synchronization for Measurement, Control and Communication, IS-

PCS, 2014.

[MM16] Tal Mizrahi and Yoram Moses. Software defined networks: It’s about time.

In Proceedings of the 35th Annual IEEEInternational Conference on Com-

puter Communications, 2016.

[MW13] Ratul Mahajan and Roger Wattenhofer. On consistent updates in soft-

ware defined networks. In In Proceedings of the12th ACMWorkshop on Hot

Topics in Networks, number 20, pages 1–7, 2013.

[NT17] Canini M. Nguyen T.D., Chiesa M. Decentralized consistent updates in

SDN. In The Symposium on SDN Research, pages 21–33, 2017.

[ONF12] ONF. Software-defined networking: The new norm for networks. Technical

report, Open Networking Foundation, 2012.

[ONF15] ONF. Openflow switch specification, version 1.5.1. Technical report, Open

Networking Foundation, 2015.

[PD13] Ben Pfaff and Bruce Davie. The Open vSwitch Database Management

Protocol. RFC 7047, December 2013.

[PH15] Saúl Eduardo Pomares Hernández. The Minimal Dependency Relation for

Causal Event Ordering in Distributed Computing. Applied Mathematics &

Information Sciences, 9(1):pp.57–61, January 2015.

Bibliography 98

[PRS97] Ravi Prakash, Michel Raynal, and Mukesh Singhal. An adaptive causal

ordering algorithm suited to mobile computing environments. J. Parallel

Distrib. Comput., 41(2):190–204, March 1997.

[RFR+12] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David

Walker. Abstractions for network update. In Proceedings of the ACM

SIGCOMM 2012 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication, SIGCOMM ’12, pages 323–

334, New York, NY, USA, 2012. ACM.

[SAJ+14] Marc Suñé, Victor Alvarez, Tobias Jungel, Umar Toseef, and Kostas Pen-

tikousis. An openflow implementation for network processors. Proceedings

of the 2014 Third European Workshop on Software Defined Networks, pages

123–124, 2014.

[Son13] Haoyu Song. Protocol-oblivious forwarding: unleash the power of sdn

through a future-proof forwarding plane. HotSDN ’13: Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined net-

working, pages 127–132, 2013.

[VC16] Stefano Vissicchio and Luca Cittadini. Flip the (flow) table: Fast

lightweight policy-preserving sdn updates. In IEEE INFOCOM, pages 1–9,

2016.

[YJ17] Jiaqi Yan and Dong Jin. A lightweight container-based virtual time system

for software-defined network emulation. Journal of Simulation, 11(3):253–

266, 2017.

[ZLLC14] Wei Zhou, Li Li, Min Luo, and Wu Chou. REST API design patterns for

SDN northbound API. In Proceedings of the 2014 28th International Con-

Bibliography 99

ference on Advanced Information Networking and Applications Workshops,

2014.

	Introduction
	Motivation
	Problem description
	The SDN update problem
	The difficulty in solving inconsistent connectivity update problems

	Research questions and Hypothesis
	Objectives
	General objective
	Specific objectives

	Proposed solution
	Associated publications
	Thesis organisation

	Background and Definitions
	Software-Defined Network paradigm
	Architecture and terminology

	Network update in Software-Defined Networks
	Network traffic handling in an OpenFlow-based SDN
	Network traffic handling based on others SDN Southbound APIs
	Routing models
	Consistent updates

	Distributed system and causal ordering
	Distributed systems model
	Partial and total order relations
	Logical Time and causal ordering
	Causal order delivery

	Chapter summary

	Related work
	Consistent Network update
	Consistent Network update approaches in SDNs
	A taxonomy of consistent updating techniques
	Performance oriented-objective updating

	Chapter summary

	The formalisation of the inconsistency connectivity update problem in Software-Defined Networks
	Network model
	Inconsistent connectivity update in Software-Defined Networks: Problem formulation
	Transient forwarding loop
	Forwarding blackhole

	Causal-based consistent connectivity update approach
	Transient forwarding loop-free update policy
	Forwarding blackhole-free update policies
	Transient forwarding blackhole-free update policy
	Permanent forwarding blackhole-free update policy on forgotten nodes

	Update mechanism free from transient connectivity inconsistencies
	Algorithm overview
	Algorithm description
	Proof of correctness

	Scope and limitations
	Chapter summary

	Discussion
	Conclusion and future work
	Conclusion
	Future work

	Bibliography

