
Measuring of temperatures of a candle
flame using four multidirectional point-
diffraction interferometers

Juan C. Aguilar
Luis Raul Berriel-Valdos
Jose Felix Aguilar

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 11/14/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Measuring of temperatures of a candle flame using four
multidirectional point-diffraction interferometers

Juan C. Aguilar
Luis Raul Berriel-Valdos
Jose Felix Aguilar
Instituto Nacional de Astrofísica Óptica y

Electrónica
Luis E. Erro No. 1, Tonantzintla
Puebla, C. P. 72840 México
E-mail: juandspcf@gmail.com

Abstract. An optical system formed by four point-diffraction interferom-
eters is used for measuring the temperature distribution of a candle flame.
It is assumed that the phase can be expressed in terms of the Radon trans-
form, and it is processed with a tomographic iterative algorithm to obtain
the temperatures. The interferograms show the asymmetry of the candle
flame, justifying the use of a tomographic iterative algorithm instead of the
Abel inversion. The resulting temperature distribution verifies the useful-
ness of the proposed method. © 2013 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.OE.52.10.104103]
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1 Introduction
Most of the optical setups for measuring the temperatures of
flames are based on holographic systems or on standard inter-
ferometers like Mach-Zehnder and Twyman-Green.1

Goldmeer et al.2 presented an implementation with a point-
diffraction interferometer (PDI),but themeasurementwas lim-
ited by the characteristics of the commercial system they
used (Smartt Interferometer, Coherent Inc., Santa Clara,
California). One of the constraints, among others, was, for
example, the extension in diameter of the analyzed flame,
which was ∼0.5 cm. Despite the simplicity of the PDI, to
our knowledge, further works have not been reported yet.
The other issue is the lack of symmetry of the flame; most
of the works deal with symmetric flames, where temperatures
canbeeasilycomputedbyAbel inversion technique.However,
in a candle flame, thewick, the quality of thewax, and theway
the heat melts the top of the massive solid fuel determines
the distribution of temperatures and this can be asymmetric.
So it is advisable to take more projections for a better estima-
tion of the temperatures. Wei et al.3 used three lateral shearing
interferometers and recovered the temperatures of a diffused
ethylene flame with two tomographic algorithms, filtered
back projection (FBP) and Abel inversion. If the number of
projections of an asymmetric object is dense, the best algo-
rithm is FBP, but when the number of projections is small,
the tomographic iterative algorithms work better than FBP
as it has been shown by Ko and Kihm.4

In this work, we present an optical system that is easy to
implement and formed by four PDIs, for measuring the tem-
peratures distribution of a candle flame. Due to the small
number of projections and the asymmetry present in the
interferograms of the flame, the computation of temperature
is performed by a tomographic iterative algebraic algorithm
(Kaczmarz). The recovery of the phase is made numerically
with the method of Kreis.5 This uses the Fourier transform
and it is adequate for interferograms with few fringes. In
Sec. 2, we present the theory on which our proposed tech-
nique is based; then in Sec. 3, the experiment is described,

and the results are presented in Sec. 4. Finally, remarks and
conclusions are in Sec. 5.

2 Theory
One of the most common ways to measure the temperatures
of phase objects like gases, deduced from the refractive
index, is to use the Gladstone-Dale equation,

n − 1

ρ
¼ KðλÞ; (1)

where n is the refraction index of the object, ρ is the density,
and K is known as the Gladstone-Dale constant, which is
a property of the gas and slightly dependent on the wave-
length (λ).1 From Eq. (1), the relation between the temper-
atures and the refraction index is given by

T ¼
�
1

T0

−
ðn0 − nÞR
KðλÞMP

�
−1
; (2)

where n0 is the refractive index of the environment, M is the
molecular weight of the gas, P and T are the gas-phase pres-
sure and temperature, respectively, R is the universal gas
constant, and T0 is the reference temperature. The quantity
(n − n0) in Eq. (2), which is also represented by Δn, is found
by the integral expressing the optical path difference Δϕ
between the refractive index of the environment and that cor-
responding to the phase object.

Δϕ ¼
Z

½n0 − nðx; y; zÞ�ds ¼
Z

Δn ds: (3)

But if the refraction on the rays through the phase object is
assumed small, Eq. (3) can be expressed as

Δϕ ¼ Nλ ¼
Z

½n0 − nðx; zÞ�dz ¼
Z

Δn dz; (4)

where N is the order of interference and z is the axial coor-
dinate. Equation (4) means that when a plane wave has0091-3286/2013/$25.00 © 2013 SPIE
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passed through, for example, a flame, its refraction is neg-
ligible, and we can assume rays traveling in a direction par-
allel to the axis as is shown in Fig. 1.

The wave front Δϕ under this approximation is easily
measured with a PDI.6 The layout of a PDI system is shown
in Fig. 2. The wave front associated with the object beam is
focused on a pinhole in the semiabsorbing thin film depos-
ited on the glass plate. The object beam passes through the
plate and diverges, while a reference wave front beam is
generated from the pinhole. These two beams interfere in
the far field. The number of fringes in the corresponding
interferogram can be increased as the PDI plate is tilted;
however, an inconvenient reduction of contrast comes as
well. Equation (4) has another meaning, as is shown by
Deans;7 it can be interpreted as the Radon transform of
Δn at the angle θ ¼ 0 deg. The general expression for the
Radon transform of Δn is given by

Rðt; θÞ ¼
Z∞

−∞

Z∞

−∞

½n0 − nðx; zÞ�δðt − z cos θ − x sin θÞdxdz;

(5)

whereℜðt; θÞ denotes the optical path difference, taken from
the interferogram on a given θ angle and a height y, with t as
its axis and δ as the Dirac delta function. In the case of many
views, Δn can be recovered by the use of the FBP algorithm.
Otherwise, if we have only a small number of views, iterative
algorithms will work better.

In iterative algorithms, the quantity f (Δn for the experi-
ment) that we try to recover is approximated by a function
fa, which, at the same time, is formed as a sum of basis func-
tions B in the following form:

fa ¼
XM
k¼1

ckBkðx; zÞ: (6)

Here, B can be an interpolating basis function as the bicu-
bic function or a noninterpolating one as the cubic spline
function, and we decided to use the bicubic basis function,
as its approximation quality is enough for getting a good rep-
resentation of Δn. When B is interpolating, the coefficients
ck correspond to discrete values of f within a square array of
size Λ × Λ ¼ M elements. The Radon transform of fa is the
sum of the Radon transforms for each Bk, without any
change on the coefficients ck. The Radon transform can
be envisioned as a ray that integrates to fa only at points
(x; z) that fulfills the line equation ti − z cos θj − x sin θj ¼
0 as is shown in Fig. 3. In Fig. 3(a), we show an example of

some basis functions that form fa, and in Fig. 3(b) is shown a
ray that integrates some of the basis functions according to a
line equation. For any duple (ti; θj), we have an equation
given by

c1w1fti;θjgþc2w2fti;θjgþc3w3fti;θjgþ:::þcMwMfti;θjg
¼pfti;θjg; (7)

where wkfti; θjg represents the contribution of the Radon
transforms of Bk performed for the ray Ri and pfti; θjg is
the sum of all those contributions. All the resulting equations
are arranged in a matrix equation as follows:

WC ¼ P: (8)

Here, W is the matrix of L ×M formed by all the con-
tributions wkfti; θjg, C is the vector with components
fc1; c2; c3; : : : ; cMg, and the vector P of L × 1 elements con-
tains all ray integrals values, i.e., P is the experimental data.
If the basis function Bðx; zÞ is separable and even, its Radon
transform can be expressed as

pθðtÞ ¼ pθ;tfBðx; zÞg

¼
Z Z

BðxÞBðzÞδðt − z cos θ − x sin θÞdzdx; (9)

¼ 1

j sin θjj cos θj
Z

B

�
α

j sin θj
�
B

�
t− α

j cos θj
�
dα; (10)

Fig. 1 One of the planes defining the projections.

Fig. 2 Schematic diagram of the point-diffraction interferometer,
describing the work of the coated plate with a pinhole in the center
for generating two wave fronts.

Fig. 3 Radon transform space. (a) Representation of f a by a set of
basis functions. (b) Coordinates of integration of the Radon.
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¼ 1

j sin θjj cos θjB
�

t
j sin θj

�
� B

�
t

j cos θj
�
;

for every angle; except θ ¼ ½0;180;90;270�
(11)

where * denotes a convolution operation and α ¼ xj sin θj.
Equation (11) means that the Radon transform of a separable
basis function can be easily computed with a fast Fourier
transform algorithm or have an exact representation of the
Radon transform if the basis function is polynomial, as is
in our case. We use an algebraic reconstruction technique
to solve Eq. (8), the Kaczmarz iterative algorithm, which
is expressed in the following form:8,9

Cn ¼ Cn−1 þ ξ
ðPn −Wn;�Cn−1Þ
ðWn;�ÞðWn;�ÞT

ðWn;�ÞT; (12)

where ξ is a relaxing parameter with 0 < ξ < 2, n letter is the
iteration number, and Wn,* denotes the n’th row of matrix
W. If the equations system (8) has a unique solution, then Cn

will converge to this solution. If the system of equations has
many solutions, then Cn will converge to the solution that is
closest to the point C0, which is a solution of minimum
2-norm. If we start with C0 ¼ 0, we will obtain a mini-
mum-length solution. If there is no exact solution of the sys-
tem of equations, then Eq. (10) will fail to converge, but it
will typically bounce around near an approximate solution.8,9

Fig. 4 Experimental setup presenting the four interferometers.

Fig. 5 Resulting interferograms from the optical setup in Fig. 4.
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However, even though Eq. (8) has an exact solution, if the
vector P includes the noise, there will be a behavior called
semiconvergence.9 At the beginning, Cn converges to the
exact solution, but after certain number of iterations, Cn

begins to capture information of the noise in P. So, in

order to control the noise level, it is necessary to apply a fil-
tering in each iteration. The parameter ξ also controls the
semiconvergence; for values about ξ ≥ 1, the convergence
will grow quickly but the noise also is amplified fast.
When ξ ≤ 0.1, the convergence is slow and the noise is

Fig. 6 Fourier transform of IðxÞ. (a) Normalized magnitude distribution. (b) Filtering region.

Fig. 7 Phase determination of an interferogram of a candle flame. (a) Interferogram used. (b) Phase with sign changed. (c) Wrong reversed point.
(d) Correct reversed point.
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not so amplified.9 In this work, ξ ¼ 0.01 is selected at the
expenses of a very slow convergence; still, in the final iter-
ations, we will find a solution without many effects of
the noise.

3 Description of the Experiment
In order to measure the refractive index, we have chosen the
directions of the four PDIs distributed at 0, 90, 26.5, and
116.5 deg, as is shown in Fig. 4. The limited size of the opti-
cal bench, where the optical setup was located, imposes the
selection of these particular angles. Lenses L1 and L2 in each
interferometer are 30 cm of focal length with diameter
D ¼ 4.6 cm. The illumination is a collimated laser beam
of 35 mW power and a wavelength of 532 nm. The phase
object is placed at the intersection of all the four plane
waves to perform the tomography. The detected interfero-
grams for a candle flame of ∼2.4 cm of width are shown
in Fig. 5 wherein we can observe they have a suitable con-
trast for processing, and also, the aberrations of the lenses do
not perturb the interferograms significantly. One can suppose
a radial symmetry of the candle flame from the interferogram
at 26.5 deg, but the other interferograms showed the oppo-
site; therefore, it is not recommendable to use the Abel inver-
sion algorithm.

The phase retrieval for interferograms in infinite mode
with few fringes, is usually made with the fitting of a func-
tion over the order numbers N.1 The Fourier transform is tra-
ditionally applicable when the interferogram has an enough
density of fringes, but with the method of Kreis,5 this can be
made with fewer fringes. We computed the discrete Fourier
transform of the interferogram at a given height. That part of
the interferogram can be described with three components.

IðxÞ ¼ aðxÞ þ bðxÞ cos½ϕðxÞ�;
¼ aðxÞ þ cðxÞ þ c�ðxÞ;

cðxÞ ¼ 1

2
bðxÞejϕðxÞ; (13)

where aðxÞ is the irradiance sum of the object and reference
beams, bðxÞ are multiplicative effects over the interferogram,
and ϕðxÞ is the phase change. The Fourier transform of IðxÞ
will be even-symmetric. This is shown in Fig. 6(a). If the
Fourier transform is filtered in Eq. (11), as is shown in
Fig. 6(b), the recovered phase unwrapped ϕðrÞðxÞ has the
property to present a region where the original phase ϕðxÞ
is reversed; this is shown in Fig. 7(b). However, that feature
can be overcome inverting the wrapped phase after of a
determined point η. This process is illustrated in Fig. 7.
Figure 7(a) shows the selected interferogram, and the phase
is estimated over the line A. If we select a wrong η, the
unwrapped phase will have a kind of discontinuity as
shown in Fig. 7(c). However, the phase associated with
the flame is a smooth function, so we must not have discon-
tinuities after the unwrapping process; therefore, we can set a
criterion of continuity: the approximate reversing point that

Fig. 8 Tomographic reconstruction at y ¼ 21 mm related to C0 ¼ 0, unconstrained Cn , and ξ ¼ 0.01. (a) Surface representation of the temper-
atures distribution. (b) Level curves representation of the temperatures distribution.

Fig. 9 Temperature distribution based on Abel inversion.
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produces the smoothest phase function will be chosen as the
point of inversion. Figure 7(c) shows a wrong reversing
point, and Fig. 7(d) shows a reversing point that provides
a smoother phase function ϕðrÞðxÞ.

We used CCD cameras of 4592 × 3056 pixels for the cap-
ture of the interferograms. However, its Fourier transform
will be undersampled because of the property that a big sup-
port at the spatial domain corresponds to a small support in
the frequency domain. The chosen cut-off frequency also
determines how ϕðrÞðxÞ resembles the original phase func-
tion ϕðxÞ. If the cut-off frequency is a high value in any
direction with respect to the origin, we lose information
about ϕðxÞ, so it is recommendable to select the cut-off
frequency near to the origin, as, for example, that shown
in Fig. 6(b). In order to realize the process described
above, another recommendation is to reduce the size of

the interferogram and make padding with zeros in the rest
of the field; this is called the zero-padding technique. The
Fourier transform will have a better sampling, and conse-
quently, it is possible to choose a cut-off frequency with
finer steps.

4 Results
We tested two different possibilities of inputs for the
Kaczmarz algorithm as it will be seen later. Once Cn is com-
puted, a low-pass filtering is applied on it, so the noise in
high frequencies is diminished. However, the result is not
used as an update of Eq. (10), but is used for computing the
temperatures distribution. The reason underlying that pro-
cedure is that we do not want to make a strong modification
of Cn in each iteration. Since the pass-band region of the
applied filter is not uniform, there would be the possibility

Fig. 10 Tomographic reconstruction at y ¼ 21 mm related to C0 ¼ Abel solution, Cn < 0, and ξ ¼ 0.01. (a) Surface representation of the temper-
atures distribution. (b) Level curves representation of the temperatures distribution.

Fig. 11 Noise effects and converge of the temperatures related to Cn . (a) The noise destroys the shape of the temperature distribution. (b) The
shape of the temperatures converging after the iterative process.

Optical Engineering 104103-6 October 2013/Vol. 52(10)

Aguilar, Berriel-Valdos, and Aguilar: Measuring of temperatures of a candle flame using four multidirectional. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 11/14/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



of modifying important information in Cn. Therefore, for
each updated Cn, we might wrongly change its convergence.
The iterations are stopped when the corresponding temper-
atures of the filtered Cn seem to reach a fixed value. We use
the data coming from the interferograms at a height of 21 mm
for the following results. The first try is with C0 ¼ 0, uncon-
strained Cn, and ξ ¼ 0.01, and the results are shown in
Fig. 8. The maximum temperature using Eq. (2) is 711°K,
but it does not represent a realistic distribution of tempera-
tures because that means that the flame is not hot. For the
case of C0 different than zero, Cn < 0, and ξ ¼ 0.01, we
choose the Abel inversion solution CA as the starting
point C0. CA is taken from the interferogram at 116.5 deg
at a height of 21 mm [Fig. 7(a)]. The phase of the interfero-
gram is computed at 116.5 deg due to its corresponding
radial symmetric temperature distributions, which closely
resemble the measure reported in other works.10 The temper-
ature distribution taking CA is shown in Fig. 9.

According to the foregoing, we show the temperature dis-
tribution in Fig. 10, wherein the maximum value is 1454°K.
The maximal possible temperature of a candle flame is
1673°K.11,12 Of course, the possibility of reaching this value
in our measurements depends on the manufacturing process
of the wax and wick. Therefore, the solution shown in Fig. 10
seems physically reliable unlike the result shown in Fig. 8.
If the filtering is not applied for Cn, the reconstructed distri-
bution of temperatures is shown in Fig. 11(a), where the
severe effects of the noise can be seen. However, using filter-
ing, the computed temperatures reach a limit shape as shown
in Fig. 11(b).

5 Remarks and Conclusions
From our results, we can remark that the interferogram so
obtained from the PDIs have enough quality to be considered
as projections of the candle flame. They are comparable to
those obtained with other techniques, such as digital holog-
raphy, but, in this case, with less complexity required for the
optical system.

Since the interferograms are on infinite mode and in order
that the projected fringes are those of the flame only, the
lenses in the setup have to be well corrected of aberrations.

Since this kind of interferogram has a low density of
fringes, we have used the method of Kreis for recovering
the phase.

The interferograms show the asymmetry of the candle
flame; hence it is not recommendable to use the inverse
Abel transform as is commonly done. If we use the Abel sol-
ution for each interferogram, the results become different
because each interferogram has a different shape. Never-
theless, the Abel solution can be useful as an initial solution
to the iterative algorithm, giving an estimate with less error.

The Kaczmarz algorithm shows its usefulness in the
recovering of information with few projections, but we
must apply a filtering due to the amplification of the noise
in each iteration. We also have to use an initial condition dif-
ferent than zero and constrain the iterations to be less than
zero. This is with the purpose of having realistic solutions.

So, we can conclude that this is a very simple and accurate
technique to measure the temperatures distribution in a can-
dle flame, which can also be applied to other objects with
similar geometric and material characteristics.
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