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Abstract

Parallel schemes in Evolutionary Algorithms (EAs) and, in particular, �ne-grained or cel-
lular Evolutionary Algorithms to tackle constrained multiobjective optimization problems
have been barely investigated. Structural properties of cellular evolutionary algorithms
balance exploration and exploitation stages during the search to avoid stagnation and
possible premature convergence. Two new algorithms cMOGA/D (Cellular Multiobjec-
tive Genetic Algorithm based on Decomposition) and cMODE/D (Cellular Multiobjective
Di�erential Evolution Algorithm based on Decomposition) in this thesis are proposed.
Which take advantage of the structural properties of cellular evolutionary algorithms
as well as Genetic Algorithms and Di�erential Evolution by combining them with well-
established concepts of MOEA/D, such as, targeting multiobjective problems via multiple
subproblems by Tchebyche� decomposition, its neighboring conceptual basis; and also
combining a constrained multiobjective problem with Constraint Handling Technique
(CHT) called push and pull search (PPS) and Improved Epsilon (IE). Three updating mech-
anisms were implemented: Synchronous, Line Sweep, and Asynchronous. These provide
di�erent behaviors when solutions are evolved throughout the mesh. Results obtained and
validated through statistical analysis show that both proposals developed are competitive
in terms of performance metrics and runtime. Moreover, in EAs based complexity analysis,
cMOGA/D and cMODE/D are faster algorithms when comparing to MOEA/D-PPS.

[i]



ii Abstract

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica



Resumen

El uso de los esquemas paralelos en los algoritmos evolutivos (EA) y, en particular, los de
grano �no o celulares para abordar problemas de optimización multiobjetivo restringidos
han sido muy poco investigados. Las propiedades estructurales de los algoritmos evolu-
tivos celulares equilibran las etapas de exploración y explotación durante la búsqueda
para evitar el estancamiento y la posible convergencia prematura. Esta tesis propone dos
nuevos algoritmos cMOGA/D (Cellular Multiobjective Genetic Algorithm based on De-
composition) y cMODE/D (Cellular Multiobjective Di�erential Evolution Algorithm based
on Decomposition), que aprovechan las propiedades estructurales de los algoritmos evo-
lutivos celulares, así como de los algoritmos genéticos y de la evolución diferencial, com-
binándolos con conceptos bien establecidos de MOEA/D, como, por ejemplo, la búsqueda
de problemas multiobjetivos a través de múltiples subproblemas utilizando la descom-
posición de Tchebyche�, así como el concepto de vecindario; también combinando téc-
nicas de manejo de restricciones como Push and Pull Search (PPS) e Improved Epsilon
(IE). Se implementaron tres mecanismos de actualización: Síncrona, Line Sweep y Asín-
crona. Estos proporcionan diferentes comportamientos cuando las soluciones se esparcen
a través de la malla. Los resultados obtenidos y validados por medio del análisis estadístico
muestran que ambas propuestas desarrolladas son competitivas en términos de métricas
de rendimiento y tiempo de ejecución. Además, en el análisis empírico de complejidad
para algoritmos evolutivos, cMOGA/D y cMODE/D son algoritmos más rápidos cuando
se comparan con MOEA/D-PPS.

[iii]
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Chapter 1

Introduction

Evolutionary algorithms (EAs) have been widely used as optimization techniques to tackle
multiobjective problems (MOPs) not only theoretical academic problems but also real-
world problems within engineering and other application areas [1]. EAs are stochastic
searching techniques that do not require derivatives and can deal with complex discontin-
uous and constrained landscapes. However, EAs do not guarantee to �nd the global opti-
mal solution, instead they deliver a set of optimal solutions from which the user can deter-
mine an appropriate one according to his/her requirements. Thus, EAs are well-developed
and tested and allow them to obtain accurate results.

EAs are population-based algorithmic techniques that rely on solutions’ diversity to
successfully target multiobjective optimization problems. Promoting diversity during the
searching process is a very important task if the population’s diversity is lost prema-
turely, tracking rich solutions regions throughout a problem’s landscape becomes more
di�cult. Main evolutionary operations, recombination and mutation, implicitly balance
exploration and exploitation stages during the search as well as induce diversity among
solutions. Yet, EAs may su�er from premature convergence and therefore many mech-
anisms to promote and to balance diversity have been developed [1]. Decentralizing a
population has been a natural way in EAs for maintaining and improving diversity. De-
centralized EAs are classi�ed by their population’s grain in �ne or cellular and coarse or
distributed EAs. In decentralized populations either coarse or �ne grain implicitly lead
to a more loose evolutionary process in which a number of subpopulations evolve inde-
pendently with prede�ned criteria for solutions exchange among them or a population
topology (commonly a toroidally connected grid) induces a global exploration and a lo-
cal exploitation trade-o�. Decentralizing populations enable higher genetic di�erentiation
and provide better search space sampling thus improving achieved solutions quality while
maintaining computational cost equivalent to a standard EA [2].

[1]



2 1. Introduction

1.1 Problem statement

In real-world applications, optimization problems usually have a considerable degree of
complexity, and this complexity may be based on the presence of multiple-con�icting ob-
jectives and a number of constraints. Therefore, real-world optimization problems in areas
such as design, distribution, and engineering are constrained multiobjective optimization
problems (CMOPs) [3, 4, 5, 6, 7]. This has led to the development of multiple tools that
try to solve them, from the classic mathematical models to the newest metaheuristics,
in recent years, multiobjective evolutionary algorithms have had a good performance in
this type of problems, since they achieve highly reliable solutions in a much shorter time.
Therefore, evolutionary algorithmic techniques to tackle MOPs are constantly renewed,
together with essential mechanisms to deal with constraints such as designing more ca-
pable constraint handling techniques (CHTs) and their interaction with canonical EAs
components among others.

1.2 Justi�cation

Using parallel schemes has improved the performance of bio-inspired algorithms partic-
ularly evolutionary ones and good results have also been obtained when tackling single
and multiobjective optimization problems(MOPs) [8]. For example, a combination of the
cellular model with a multiobjective evolutionary algorithm (MOEA) achieves good con-
vergence and improve metrics such as hypervolume [9]. On the other hand, swarm-based
algorithms have also been combined with a cellular model making these behave with very
good results [10]. Using islands and hybrid models have also shown better results than
non-decentralized base algorithms [11, 8].

The proposed research aims at developing a parallel MOEA to tackle constrained
multi-objective optimization problems (CMOPs). In general, MOPs have been targeted
while taking advantage of their independence of solutions via decentralized algorithmic
schemes. However, there is a lack of research in terms of targeting constrained multi-
objective optimization problems through parallel schemes by decentralizing the popula-
tion in �ne or coarse grain subpopulations.
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1.3 Hypothesis 3

1.3 Hypothesis

Decentralized population schemes in multiobjective evolutionary algorithms help improve
the performance of most recent approaches and reduce their computational cost.

1.4 General objective

To design, to develop, and to evaluate a parallel multiobjective evolutionary algorithm that
handles constraints to achieve competitive performance in comparison to the state of the art
solutions.

1.4.1 Speci�c objectives

• To study the state of the art regarding constrained MOEAs and parallel schemes
to analyze their mechanisms, advantages, and disadvantages. The aim is to identify
possible improvements that lead to the design of a new parallel constrained MOEA.

• To advance the knowledge within parallel constrained multiobjective optimiza-
tion by developing an e�cient constrained multiobjective parallel evolutionary al-
gorithm which combines the advantages of constrained MOEAs and parallel ap-
proaches. This algorithm must comply with desirable features (e�ciency, fast con-
vergence and diversity control).

• To de�ne the test functions that will be used to measure the performance of the
algorithm that will be developed.

• To evaluate and validate the performance of the proposed algorithm with respect
to other popular state-of-the-art constrained MOEAs. This validation will be done
with a set of test problems and performance metrics representative of the multi-
objective optimization community.

• To understand and analyze the role that the parallel mechanism plays in the perfor-
mance of the proposed approach.

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems



4 1. Introduction

1.5 Methodology

The proposed methodology is shown in Figure 1.1. As a �rst step, the state of the art re-
garding constrained MOEAs and parallel constrained MOEAs will be studied. After that,
a study of di�erent parallel schemes and constraint handling techniques (CHTs) will be
conducted. Having all the evidence on the performance of those two areas, a new algo-
rithmic approach to tackle constrained multiobjetive problems considering parallel pop-
ulation dynamics is developed. To evaluate the performance of the proposed approach,
some popular state of the art algorithms will be chosen to perform a comparative study.
In addition, classical test problems and di�erent performance metrics will be chosen to
measure the performance of the new parallel constrained MOEA.

Study the state of the 
art of the C-MOEAs 

and pMOEAs

Study the different 
Parallel schemes and 

CHTs 

Design the new 
C-pMOEA

Select a set of 
benchmark  functions

Select a set of state of 
the art C-pMOEAs for 
comparison proposes

Carry out a set of 
experiments to test 
the new algorithm

Perform comparison 
with other algorithms

Statistical validation

 NSGA-II
 MOEA/D

 GDE3
 MOPSO
 MOCell

 NSGA-III
 PSOCell

 DNSGA-II

 Master-Slave
 Cellular

 Distributed
 Hybrids

 CDP
 Penalty Methods

  Stochastic ranking
     -Constrained

Constraint Handling 
Techniques Parallel Schemes

Start

Algorithms

 GD
 IGD
 HV

 Spread

Metrics

 CF-Problems
 DTLZ1

 OZY
 SRN

Benchmark Functions

CHTs
Parallel
Scheme

MOEA

 Wilcoxon Rank-Sum
 Mean

 Average
 Variance

 Standard Deviation
 Kruskal-Wallis

Statistical Analysis

Figure 1.1: Proposed methodology.
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1.6 Expected outcomes

• A new parallel constrained MOEA which combines di�erent mechanisms to deal
with constraints and has better performance than most recent approaches in the
literature.

• A detailed empirical study of the proposed approach. This study is thoroughly val-
idated by statistical testing and analysis considering standard parallel constrained
MOEAs and standard benchmark problems.

1.6.1 Publications

Cosijopii Garcia-Garcia, María-Guadalupe Martínez-Peñaloza, Alicia Morales-
Reyes. 2020. cMOGA/D: a novel cellular GA based on decomposition to tackle con-
strained multiobjetive problems. In Genetic and Evolutionary Computation Confer-
ence Companion (GECCO ’20 Companion), July 8,12,2020, Cancún, Mexico. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3377929.3398137

1.7 Thesis organization

This thesis document is organized in 6 chapters. The �rst three (including this one) des-
cribe the basic concepts required to make this document as self-contained as possible.

Chapter 2 describes the background of the multiobjective optimization problems as
well as an analysis of the di�erent MOEAs operators, to �nish with an analysis of the
parallel schemes applied to evolutionary algorithms and the assessment metrics for mul-
tiobjective optimization. In chapter 3 the state of the art regarding MOEAs as well as
parallel MOEAs and parallel constrained MOEAs are described. Chapters 4 and 5, focus
on explaining in detail the two proposed algorithms cMOGA/D and cMODE/D. Finally, in
Chapter 6 the general conclusions, as well as future work, are given.

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems
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Chapter 2

Background

This chapter provides an overview of the main topics involved in this research. Algorith-
mic techniques from the Evolutionary Computation area considering its main operations.
After, an introduction to multiobjective optimization together with principal associated
multiobjective evolutionary algorithms are described. Parallel approaches of evolutionary
algorithms will be explained as well as constraint handling techniques. Finally, a detailed
description of the mainly used performance metrics in the area is also included.

2.1 Evolutionary algorithms

Evolutionary algorithms (EAs) are a subset of algorithmic techniques within the Evo-
lutionary Computation (EC) area which has been roughly considered as a scope within
Arti�cial Intelligence (AI), and more accurately as a Soft Computing �eld of study. EAs
are inspired in the process of natural evolution as they try to simulate the main behavior
of Darwin’s theory of evolution, and are commonly applied in search and optimization
processes [12]. There are di�erent application contexts for evolutionary algorithms, but
the main ones are focused on optimization, in this area, three di�erent kinds of problems
can be tackled: single, multi, and many objectives optimization.

Most evolutionary algorithms share the same general stages, they fall in the cate-
gory of generate and test algorithms, where the search is guided by stochastic variations
through di�erent operators [12]. Evolutionary algorithms are based on a set of solutions
or a population, these solutions interact through recombination and mutation (main ge-
netic operations), by mixing information from two or more candidates to create a new one
and inducing small changes within solutions and thus introducing diversity. In Figure 2.1
a general scheme of an evolutionary algorithm is drawn.

[7]



8 2. Background

Initialization 

Population

Parents

OffspringTermination

Parent selection

Survivor selection

Recombination

Mutation

Figure 2.1: General scheme of Evolutionary algorithms.

In the following subsections, principal components and stages (selection, recombina-
tion, mutation, and replacement) of evolutionary algorithms will be explained. Then, two
principal techniques related to this thesis will be detailed.

2.1.1 Solutions representation

The �rst step in the design of some evolutionary algorithms is to decide the representation
that will be used by the candidates for solutions, this involves two terms, the genotype
and its mapping to the phenotype. There are di�erent ways to represent the problems,
depending on the type of representation that is used the evolutionary operators, the mu-
tation and recombination or crossover can vary [12, 13]. The following is a review of the
di�erent types of representations most commonly used.

Binary representation

This representation was the �rst to be used, and historically many genetic algorithms
(GA), used this representation regardless of the context of the problem to be solved, this
representation is based on strings of bits that represent the genotype (010101 . . . 1). In this
type of representation, it is de�ned how long the bit string will be, and how it will be
mapped to the phenotype, this depends on the type of problem, the bit strings can easily
be used to represent real and integer values. For some problems where Boolean decision
variables are needed, genotype-phenotype mapping is done naturally, an example of this
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is the famous knapsack problem [12, 14]. An alternative coding that has been used in some
GAs has been the Gray coding, in this coding, it is not required multiple changes in the
bits to generate an integer value, this means that close solutions in the space of integer
search, requires fewer operations to guide the search since this coding the strings of bits al-
ways have as a distance of Hamming one [12, 13]. For the binary representation, multiple
recombination schemes are proposed, these start with the use of two parents to gener-
ate two o�spring as the One-Point Crossover, =-Point Crossover, and Uniform Crossover.
There are schemes to be used with multiple parents [15], also there are situations where
only one o�spring is considered, on the other hand, for the mutation operator, the most
used scheme is to perform a bitwise in the string-bit with a certain probability %< [12],
in Figure 2.2 it can be seen an example of One-Point crossover and Bitwise mutation.

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1

1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1

One-Point Crossover

Bitwise Mutation

Figure 2.2: Example of One-Point Crossover and Bitwise Mutation.

Integer representation

In this type of representation, it is mostly used when it is required to �nd optimal values
for a set of variables in the domain of integer values. These values can be unrestricted
or restricted to some �nite set. For example, if we try to �nd a route in a square grid,
and we are restricted to the set {0, 1, 2, 3} which represents { North, East, South, West },
in this case using an integer coding, is better than a binary, another example of this can
be the representation of networks. For the recombination of this type of representation,
it is normal to use the same set of operations that the binary representation, since when
applying these operations the solutions are not outside the space of genotypes. Otherwise,

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems
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there are two main types of forms exist to make the mutation in integer representations
the �rst one is called Random Resetting, where a change of a gene of the string of integers,
by some number of random of a set of permissible values is made, this is made with a Pm
probability, on the other hand, the second scheme of mutation is called Creep Mutation, in
this scheme small values are added (positive or negative) to the gene that will be mutated,
this with a p probability, these values are generated randomly and it is designed for ordinal
attributes [12].

Real-valued representation

For many problems, genotype representation with real-valued is the most natural way
of representation and current optimization applications use real-valued coding [13]. This
occurs when variables values come from a continuous distribution rather than a discrete
distribution. An example of this consists of physical quantities representation as length,
width, height, or weight, some of these components can be real number values. Another
example can be using an EA to evolve weights of connections of an arti�cial neural net-
work. Considering limitations of precision that computers have, real values can be lim-
ited, therefore it is better to refer to them as �oating-point numbers [12]. This genotype
representation with : genes is a vector 〈G1, . . . , G:〉 with G8 ∈ R. In the literature, �rst
evolutionary algorithms that dealt with this type of representation naturally were evolu-
tionary strategies and evolutionary programming, which operated directly on real-valued
vectors, although later genetic algorithms adapted recombination and mutation operators
to this domain [14]. The following sections will give a more in-depth explanation of the
crossing and mutation methods for real-valued representations.

Other representations

Di�erent from representations already described above, there is a diversity of ways to rep-
resent a genotype. These types of representations, as well as those described above, are
linked to the problem or area where the algorithm is developed. Permutation representa-
tion is given when there is a �xed set of values, which according to an order in which they
are arranged represent an event, an example of this is the famous TSP (traveling salesman
problem) in which vector’s order represents the cities to travel thus the route to take. Nor-
mally, this set of values is represented with integers values, unlike other representations
where numbers can be repeated in genotypes here is not allowed. This leads to a greater
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complexity when performing operations of mutation and crossover, thus new methods
have been developed such as PMX (Partially Mapped Crossover), Edge Crossover, Order
Crossover, and Cycle crossover. On the other hand for mutation, Swap Mutation, Insert
Mutation, and Scramble Mutation methods have been created [12, 14].

There are other types of representations such as mixed, where integer values are com-
bined with real values. They are used in fuzzy logic systems or neural networks to opti-
mize parameters that combine di�erent types of values. [14]. Another not so traditional
approach is using Introns, this approach is based on non-coding regions in vectors, and
a last approach is Diploid representation which can include multiple values in alleles for
one position in the genome [14].

2.1.2 Selection methods

Selection is one of the main operators used in evolutionary algorithms. Its main objective
is to �nd the best solutions in a population. Identifying good or bad candidates depends
on quality of solutions concerning their �tness or other value that describes their quality
[14]. The essential idea is that if a solution has good �tness it is more likely to be selected.
Selection criteria determine selection pressure, which is the degree to which good �tness
solutions are selected. If selection pressure is too low, information from good parents will
be spread too slowly throughout the population, and this is a very ine�cient process. If
selection pressure is too high, population will be stuck in a local optima. Good selection
strategies allow exploitation of high �tness individuals in the population without losing
diversity too quickly [13]. According to [16, 13], selection techniques can be classi�ed in
two categories Fitness proportionate and Ordinal selection.

Fitness proportionate

it includes methods such as roulette-wheel selection and universal stochastic selection.
Each individual in the population is assigned a slot in the roulette wheel. This value is
proportional to the �tness (or other measures that estimates how good a solution is for
cases with multiple objectives). Therefore, in the roulette-wheel method good solutions
have larger slots than bad solution. This means that good solutions most of the time will
be selected and solutions with low �tness will be very little or not selected at all [16, 12].

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems
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Ordinal selection

Ordinal selection includes methods such as tournament selection and truncation selection.
In tournament selection, ? solutions are selected and enter into a tournament against each
other. An individual with higher �tness in a group of ? solutions wins the tournament and
is selected as a parent. The most used tournament size is ? = 2. Using this scheme, = tour-
naments are required for = individuals. In truncation selection, individuals are ordered
according to their �tness value and top (1/?) best ones are chosen to perform recombi-
nation [16, 12].

2.1.3 Recombination for real-valued representation

Recombination is the process by which a new solution is created using information
from two or more parents. It is considered one of the most important characteristics in
evolutionary algorithms. A traditional way in which recombination operators perform
"crossover" is by marking sub-segments in parents genomes to later assemble into a new
individual [12]. An example of this is Figure 2.2 where single-point crossover is illustrated.
The term recombination is more general, usually, crossover term is used more often, this
is motivated by the biological analogy of meiosis [14]. Recombination can be applied in
various ways, many of these are derived from studies conducted in the community of
evolutionary strategies as these are more related to continuous optimization problems.
Taking as an analogy recombination operator for binary solutions, in which combina-
tions of existing values are made to create o�spring is called discrete recombination. In
addition, there are other types like arithmetic recombination or blend recombination. All of
them try to deal with new genetic material creation from selected parents [12]. Currently,
Simulated Binary Crossover [17] operator is widely used for parent’s recombination in
continuous domain problems, as it has proven to have superior performance than other
types of recombination [17]. In addition to being widely used in multiobjective domain
[18, 19, 9, 20, 21, 22, 23]. The following is a review of di�erent methods for real-valued
recombination.

Simple arithmetic recombination

In simple arithmetic recombination, a point : is chosen. Then, for o�spring 1, the �rst :
�oat numbers in the solution are taken from parent 1 and placed in an o�spring, while the
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rest of the o�spring is calculated by using arithmetic average from parent 1 and 2 [12].

O�spring 1: 〈G1, . . . , G: , U ·~:+1+(1−U) ·G:+1, . . . , U ·~=+(1−U) ·G=〉 with U ∈ [0, 1] (2.1.1)

For o�spring 2, procedure occurs with G and ~ reversed. An example is show in Figure
2.3.

Single arithmetic recombination

In single arithmetic recombination a random : allele is chosen. At its position, arithmetic
average of the two parents is calculated (U · ~: + (1 − U) · G: ), the other alleles are not
modi�ed. [12].

O�spring 1: 〈G1, . . . , G:−1, U · ~: + (1 − U) · G: , G:+1, . . . , G=〉 with U ∈ [0, 1] (2.1.2)

For o�spring 2, procedure happens with G and ~ reversed. An example is show in Figure
2.3.

Whole arithmetic recombination

Whole arithmetic recombination averages both parents, using the following expressions
for each allele 8 in the o�spring [14, 12].

O�spring 1: U · G8 + (1 − U) · ~8, O�spring 2: U · ~8 + (1 − U) · G8 (2.1.3)

An example is show in Figure 2.3.

Blend Crossover

Blend Crossover (BLX-U) was introduced as a way to create o�spring in regions larger
than those generated by individual parents. This extra space is proportional to the distance
between the parents [12]. To create descendants, a random numberD is chosen from [0, 1]
and then calculate W = (1 − 2U)D − U and set in:

I8 = (1 − W)G8 + W~8 (2.1.4)

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems
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Single arithmetic 
Recombination

Whole arithmetic 
Recombination

Figure 2.3: Simple, Single and Whole arithmetic recombination example, with U = 1
2 .

Authors report that the best results are obtained with U = 0.5. This gives the same prob-
ability for generating values within and outside ranges established by parents. Thus a
balance between exploitation and exploration is obtained [12].

Simulated Binary Crossover

Simulated Binary Crossover (SBX) operator as its name implies tries to simulate single
point binary recombination for real numbers solutions representation. This operator was
created by Deb and Agrawal [17] and currently is the most used both in single objective
and multiobjective problems. SBX works as follows:

1.- Choose a random number D8 ∈ [0, 1]

2.- V@8 is calculated, using :

V@8 =


(2D8)

1
[+1 if D8 < 0.5(

1
2(1−D8 )

) 1
[+1 otherwise

(2.1.5)

where [ is the distribution index which should be a non-negative number. Large [
values increase the probability of creating near-parent solutions and small values
allow to select distant values to generate the o�spring.
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3.- Finally, o�spring are calculated using the following equations:

G
(1,C+1)
8

= 0.5
[ (
1 + V@8

)
G
(1,C)
8
+

(
1 − V@8

)
G
(2,C)
8

]
(2.1.6)

G
(2,C+1)
8

= 0.5
[ (
1 + V@8

)
G
(1,C)
8
+

(
1 − V@8

)
G
(2,C)
8

]
(2.1.7)

SBX has two main properties. First, the di�erence between the o�spring is proportion
to parents solutions and second, solutions close to their parents are monotonically more
likely to be chosen as o�spring than solutions located far from their parents. Therefore,
parents who share genes are more likely to inherit these to the children [17, 24, 25].

2.1.4 Mutation for real-valued representation

Mutation is a mechanism in which only one solution is involved. Solutions selected as
parents or o�spring solutions are mutated by slightly modifying their genetic informa-
tion [26, 14]. About For real-valued representation, where each individual in a popula-
tion is a n-dimensional vector G ∈ R. There are di�erent methods to create new descen-
dants using the mutation operator or to modify those recombined solutions. The most
common way is to change the value of an allele for a random value generated within a
lower bound !8 and an upper bound *8 . There are many ways to perform mutation in
continuous domains, from simple approaches such as uniform or nonuniform mutation
to self-adaptive methods [12], but more recently the use of polynomial mutation [24] has
been widely used in single and multiobjective optimization and most often when com-
bined with SBX operator which has overcome other recombination operators to this day.
[18, 19, 9, 20, 21, 22, 23, 27, 28, 29].

Uniform mutation

For this operator G8 values are shifted by uniformly generated random values of [!8,*8].
This is the simplest mutation approach, analogous to bit wise mutation in binary encoding
and random resetting for integer representations [12].

Nonuniform mutation

Nonuniform mutation introduces small changes in a solution’s vector. This changed value
is randomly generated form a Gaussian distribution, see Equation 2.1.8. In this equation
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probability for generating a random number with any given magnitude tends to decrease
rapidly as a function of the standard deviation f . Changes tend to be small in most cases,
but there is a probability that large changes are generated. This probability is de�ned with
a f parameter that determines which G8 values will be disturbed by the mutation operator.
This criterion is commonly called mutation step size. An alternative to the Gaussian dis-
tribution is to use a Cauchy distribution since the probability of generating large values
is slightly higher while using the same standard deviation [12].

? (ΔG8) =
1

f
√
2c
· 4−

(ΔG8−b)2
2f2 (2.1.8)

Polynomial mutation

Similar to SBX recombination operator, in polynomial mutation the probability distribu-
tion can be a polynomial function instead of a normal distribution. In [24, 30], it was
concluded that ([<) parameter induces a $ ((1 − 0)/[<) perturbation e�ect in the solu-
tion. 0 and 1 are upper and lower limits of the problem, where [< ∈ [20, 100] is a common
value or default value for [< is when [< = 20. For a ? solution, ?′ is a mutated solution
created as follows:

1.- First, choose a random number D ∈ [0, 1].

2.- Finally, the following equation applies:

?′ =


? + X!

(
% − G (!)

8

)
for D ≤ 0.5

? + X'
(
G
(* )
8
− %

)
for D > 0.5

(2.1.9)

where X! and X' are calculated as follow:

X! = (2D)
1

(1+[< ) − 1, for D ≤ 0.5 (2.1.10)

X' = 1 − (2(1 − D)) 1
1 + [<

, for D > 0.5 (2.1.11)
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2.1.5 Replacement criterion

Survivors selection mechanism is responsible for managing a reduction process in a EA’s
population from a set of ` parents and _ o�spring to a set of ` individuals that form the
next generation. There are many ways to do this, but a main one is to decide based on
individuals �tness. Another technique is based on population’s age, this method is used in
the simple genetic algorithm, where each individual exists only one cycle and parents are
discarded to be replaced by o�spring. This criterion is known as a generational population
model [12, 16]. There are a number of �tness based strategies, considering ` parents +_
o�spring that will be passed on to the next generation, these are explained next.

Replace the worst

In this replacement scheme ` worst parents are replaced. This can lead to a premature
convergence, when solutions get stuck in a limited search space zone. Thus diversity is
reduced among solutions and therefore no major changes occur in the population. How-
ever, it is possible that poor �tness solutions can improve solutions quality by providing
genetic diversity to the population [12, 16].

Elitism

Elitism is used to maintain the best solution(s) in the population. Thus if the best solution
is chosen to be replaced, and any o�spring is worse or equal. The o�spring is discarded and
the best individual is kept. This scheme can be combined with the approach of replacing
the worst solution [16, 12].

(` + _) Selection

(` + _) selection comes from evolutionary strategies. It refers to the case in which both
sets of parents and o�spring are ranked in a same set. Then top ` solutions are kept for
the next generation. This strategy can be seen as a generalization of replacing the worst
criterion [12].

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems



18 2. Background

2.2 Genetic algorithms

The genetic algorithm (GA) is one of the most popular evolutionary algorithms. Its re-
search methodology is based on natural evolution, and was initially conceived by Hol-
land as a way to study adaptive behavior. The canonical or simple genetic algorithm,
has a binary representation, �tness proportionate selection, and low mutation probabil-
ity. [16, 12]. Over the years, new characteristics were developed, one of the most impor-
tant is elitism, as well as di�erent types of recombination and mutation operators [12].
According to [16] the genetic algorithm follows six stages, which are listed below:

1.- Initialization: The initial population of solutions is randomly generated across the
search space, as well as it can be generated using knowledge of the problem domain
or with previously gathered information.

2.- Evaluation: Once the population is created, the �tness value of every solution in
the population is calculated.

3.- Selection: At the selection stage solutions chosen according to their �tness value.
There are several forms of selection procedures, among them are roulette-wheel
selection, stochastic selection, ranking selection, and tournament selection.

4.- Recombination: Information from two or more parents are combined to create a
new possible better solution. There are many ways to achieve this depending on
solutions representation.

5.- Mutation: Locally and randomly modi�es a solution. It involves one or more ways
of adding small perturbations to an individual.

6.- Replacement: O�spring created by selection, recombination, and mutation re-
places the original population by some criterion. Among replacement techniques
are elitist replacement, generation-wise replacement, and steady-state replacement.

These steps are repeated (2-6) until a stopping criterion is reached. It can be until
a maximum number of evaluations, generations, or the desired solution is reached. In
algorithm 1 a pseudo-code of a canonical or simple GA is shown.
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Algorithm 1: Simple or Canonical GA
1 t = 0;
2 Initialize Population(t);
3 Evaluate Population(t);
4 while Termination condition not satis�ed do
5 t = t + 1;
6 Select m(t) Parents from Population(t − 1);
7 Recombine and mutate solutions in m(t);
8 Create o�spring population m′(t);
9 Evaluate m′(t);

10 Select individuals for next generation;

2.3 Di�erential evolution

The di�erential evolution (DE) algorithm is one of the most popular evolutionary algo-
rithms. It was proposed in 1997 [31, 12]. Since DE will be the basis for one of the algorith-
mic proposals, it will be explained in detail. DE di�ers from GA in the reproduction mech-
anism and shares most stages of evolutionary algorithms. DE uses information of a current
population to guide the search process, it also applies mutation operator �rst, di�erent to
other EAs [32]. There are di�erent DE variants,these are classi�ed with DE/a/b/c nota-
tion; a represents selection type for the base vector, b is the number of di�erent vectors
used and c de�nes the mutation scheme. The canonical version of di�erential evolution is
DE/rand/1/bin where the base vector selection is random, only one vector is occupied as
a mutant vector and crossover scheme is binomial although this also has its exponential
variant DE/rand/1/exp.

There are other variants such as DE/best/1/bin. In this scheme, the base vector is a
solution with the highest �tness in a current population. On the other hand, DE/rand/2/bin
variant, di�erence operation is performed twice over 2 pairs of vectors with the idea of
increasing diversity of the generated trial vector [13, 12].

DE follows the same steps in the evolutionary process explained in diagram 2.1, with a
di�erence on mutation which is applied before recombination. It also adds a new operator,
called di�erential mutation [31, 12]. In this work, di�erential operators o�ered by DE are
used. They have been widely used in multiobjective optimization in combination with
MOEA/D algorithm (section 2.5.2) [19, 28, 27].

At �rst, a candidate population G8,� , 8 = 1, 2, . . . , #% is created, where G8,� is the target
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Figure 2.4: DE/rand/1/bin graphical example.

vector 8 at generation � . A mutant vector is created for each vector G8,� , this is done by
adding a perturbation to the existing vector using the following equation:

E8,�+1 = GA1,� + � ·
(
GA2,� − GA3,�

)
(2.3.1)

Equation 2.3.1 shows E8,�+1 as the mutant vector. Indexes A1, A2, A3 are chosen ran-
domly from the population and are di�erent from the current vector 8 . � is a real and
constant number ∈ [0, 2], this parameter controls the di�erence ampli�cation created by(
GA2,� − GA3,�

)
.

In Figure 2.4, mutation operation in DE is graphically explained. Individuals (green,
yellow and red) represents three chosen vectors. Di�erence between GA2,� and GA3,� is
shown as a vector between green and yellow points. This di�erence is multiplied by a
scalar � , adding this value to vector GA1,� , the mutant vector in blue is obtained.

Recombination or crossover increases diversity in perturbed vectors obtaining as a
�nal result a trial vector:

D8,�+1 = G
(
D18 ,�+1, D28 ,�+1, . . . , D�8 ,�+1

)
(2.3.2)
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It is calculated by Equation 2.3.3, in a way it performs recombination uniformly [12].

D 98,�+1 =


E 98,�+1 if (A0=31 ( 9) ≤ �') or 9 = A=1A (8)

G 98,� if (A0=31 ( 9) > �') or 9 ≠ A=1A (8)
(2.3.3)

In Equation 2.3.3 A0=31 function is a random number ∈ [0, 1].�' (crossover constant),
this parameter is determined by the user, it can be seen as the crossover probability. Finally,
A=1A chooses randomly an index ∈ 1, 2, . . . , � , which ensures that G8,�+1 will have at least
one E8,�+1 allele. In Figure 2.4, a red box is shown, this is where the new solutions can be
placed already recombined using the mutant vector E8,� and the target vector G8,� .

Finally, to decide which vector become a member of a new generation � + 1, trial
vector D8,�+1 is compared to the target vector G8,� . A simple criterion can be used, if D8,�+1
has lower �tness value that G8,� , then target vector is set toD8,�+1; otherwise, the old value
is retained [31]. The canonical version of DE is shown in Algorithm 2.

Algorithm 2: Di�erential Evolution Algorithm
1 Create initial population G8,� , 8 = 1, 2, . . . , #% ;
2 Evaluate �tness of each solution;
3 while Termination condition not satis�ed do
4 for each vector G8,� do
5 Select GA1,� , GA2,� , GA3,� from population where A1, A2, A3 ≠ 8 ;
6 Apply GA1,� + � ·

(
GA2,� − GA3,�

)
and create mutant vector E8,�+1;

7 Combine target vector G8,� and mutant vector E8,�+1 to produce trial vector
D8,�+1;

8 Trial vector �tness evaluation;
9 if trial vector has higher �tness than target vector then
10 Replace target vector with trial vector;

2.4 Multiobjective Optimization

In previous section, main evolutionary algorithmic operations were explained considered
a single objective optimization scenario. In this section, multiobjective optimization is
introduced. In multiobjective problems (MOPs), solutions quality is given by the relation-
ship between several objectives that are in con�ict [12, 24]. Solving MOPs implies �nding
trade-o�s among all the objective functions. In this kind of problems, a set of optimal
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solutions is obtained instead of a single one as in the case of single-objective problems.
This is because in multiobjective optimization it is not possible to �nd a single optimal so-
lution which optimizes all the objective functions simultaneously. There are alternatives
to avoid this problem, for example, combining �tness of each function and thus obtain
a single measure, normally each function will be weighted with some �xed value, this
approach is called weight sum method [12, 33, 24]. There are also other classic methods
such as n-Constraint method which only takes one function of a multiobjective problem
and the others in con�ict are taken as constraints [24, 33]. A classic method is goal pro-
gramming, where the main idea is to �nd solutions close to prede�ned objectives for each
target, if these solutions are not reached the task is to derive such objectives and attempt
minimization [24]. Regarding to multiobjective evolutionary algorithms have the advan-
tage of obtaining a set of Pareto-optimal solutions, and that no previous knowledge of the
problem like weight vectors are not required. Finally, classic methods cannot �nd some
Pareto optimal solutions when MOPs are not convex. This relates to the Pareto front’s
complexity and associated di�culty to �nd such solutions [24].

2.4.1 Basic concepts

This section explains basic concepts of multiobjective optimization.

• Decision variables are represented by a vector x with = decision variables repre-
sented by Equation 2.4.1 [33].

x = [G1, G2, . . . , x=] (2.4.1)

• Constraints are imposed by environment characteristics or resources and occur
in most optimization problems. They are expressed in the form of mathematical
equalities or inequalities, represented in Equations 2.4.2 and 2.4.3. If the number of
equality constraints is greater than the number of decision variables, the problem is
over constrained so there are not enough degrees of freedom for optimization [33].

ℎ 9 = 0 , 9 = 1, 2, . . . , ? (2.4.2)

68 ≤ 0 , 8 = 1, 2, . . . ,< (2.4.3)

• Objective function, in multiobjective optimization, a set of objective functions are
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used to evaluate the decision variables vector: 51(x), 52(x), . . . , 5: (x) where : is the
number of objective functions in a multiobjective problem. The vector of objective
functions f (x) is de�ned as [33] :

f (x) = [51(x), 52(x), . . . , 5: (x)] (2.4.4)

• Decision variable and objective function space are de�ned by a =-dimensional
space in which each coordinate axis corresponds to a component of a decision vari-
ables vector x; and the objective function space is de�ned by a :-dimensional space
in which each coordinate axis corresponds to a vector component f: (x). Each point
in the decision variable space represents a solution, when this vector is evaluated in
the objective function, the obtained value represents a point in the objective func-
tion space which determines solution’s quality. Therefore, a � : R= → R: function
maps the space of decision variables to the objective function space [33]. Figure 2.5
shows this process.

2.4.2 Multiobjective optimization problem

A multiobjective optimization problem involves multiple con�icting objective functions,
which must be minimized or maximized simultaneously, those functions could be subject
to a number of constraints and variable bounds. Mathematically, a Multiobjective Opti-
mization Problem (MOP) is de�ned as:

De�nition 2.4.1. General MOP [34]:

Minimize/Maximize f< (x),< = 1, 2, . . . , : ;

subject to 6 9 (x) ≥ 0, 9 = 1, 2, . . . ,<;

ℎ: (x) = 0, : = 1, 2, . . . , ? ;

G
(!)
8
≤ G8 ≤ G (* )8

, 8 = 1, 2, . . . , C ;


(2.4.5)

with : objectives, < and ? are the number of inequality and equality constraints. A
solution x ∈ R= is a vector of = decision variables: x = [G1, G2, . . . , G=], which satisfy all
constraints and variable bounds [34, 33, 24]. The last set of constraints is called variable
bounds, which restrict each upper and lower decision variable G8 . These limits are the
decision variable space size. If a solution x satis�es all restrictions and variable bounds,
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it is known as a feasible solution. The set of all feasible solutions is called the feasible
region [24]. It can be seen in Figure 2.5 that solutions within the blue area are feasible
solutions, and their set determines a feasible area.

2.4.3 Dominance and Pareto optimality

In multiobjective optimization problems, several objectives con�ict, this means that more
than one optimal solution exists. These solutions are known as Pareto-optimal solutions.
De�nition of a Pareto-optimal solution is related to the domination concept as follows:

De�nition 2.4.2. Pareto dominance [33]: A vector u = (D1, D2, . . . , D:) is said to dominate
another vector v = (E1, E2, . . . , E:) (denoted by u � v) if and only if u is partially less than
v, this is speci�ed as follows: ∀8 ∈ {1, . . . :}, D8 ≤ E8 and ∃8 ∈ {1, . . . :} : D8) < E8 .

The set of all non-dominated solutions is known as the Pareto Optimal Set (POS) and
is de�ned as:

De�nition 2.4.3. Pareto Optimal Set [33]: For a given MOP and � (G), the POS P∗ is
determined by:

P∗ = {x ∈ Ω | ¬∃x′ ∈ Ω � (x′) � � (x)} (2.4.6)

These solutions are represented in the decision variable space. Non-dominated solu-
tions represented in the Pareto optimal set represent the best solutions in which there
is a trade-o� among objectives. When mapping these solutions to the objective function
space, a set called Pareto front (PF ∗) is formed, and it is de�ned as:

De�nition 2.4.4. Pareto Front [33]:

For a given MOP, � (- ) and POS, P∗, the Pareto Front PF ∗ can be expressed as:

PF ∗ = {u = � (x) | x ∈ P∗} (2.4.7)

In Figure 2.5, a mapping example of solutions from the Pareto optimal set to the ob-
jective function space is shown, therefore creating the Pareto front with solutions where
there is a trade-o� among objectives.
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Figure 2.5: Mapping of decision variables space to the objective function space. Feasible
solutions and zone are marked in blue. In the decision variable space, the Pareto optimal
set is marked with red solutions and its mapping to the objective function space creates
the Pareto front.

2.4.4 Special solutions

Three types of special solutions widely used in multiobjective optimization algorithms
are explained. These are ideal, utopian, and nadir objective vectors, see Figure 2.6.

Ideal objective vector

For each con�icting objective exists one di�erent optimal solution. The ideal objective
vector is a vector composed by these optimal objective values [24].

De�nition 2.4.5. The m-th component of the ideal objective vector / ∗ is a constrained
minimum solution of [24]:

Minimeze5< (G)
subject to G ∈ (

}
(2.4.8)

Thus, if the minimum solution for the m-th objective solution is the decision vector
G∗(<) with function value 5 ∗< , the ideal vector is determined as [24]:

/ ∗ = (/ ∗1 , . . . , / ∗<) where / ∗8 = min 58 (x) |x ∈ %>?. (2.4.9)

The ideal objective vector corresponds to a non-existent solution, this is because so-
lutions of Equation 2.4.8 for each objective function need not be the same solution; More-
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Figure 2.6: Representation of an objective function space with ideal (/ ∗), utopian (/ ∗∗),
and nadir (/=03) objective vectors.

over, many algorithms require knowledge of lower bounds on each objective function to
normalize objective values in a common range, in this case, the ideal vector is taken as
the solution with the lowest value of solutions in the current population [24].

Utopian objective vector

The ideal objective vector is an array of all objectives functions at lower bounds. This
means that for each objective function exists at least one feasible solution in the solution
space, that shares an identical value with its corresponding elements in the ideal solu-
tion. Some algorithms require a solution where the objective value is strictly better not
only another solution in the search space for this purpose the Utopian objective vector is
de�ned [24]:
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De�nition 2.4.6. In a Utopian objective vector / ∗∗ each component is sightly smaller
than the ideal objective vector, or / ∗∗8 = / ∗8 − n8 with n > 0 for all 8 = 1, 2, . . . , "

Similar to the ideal objective vector, the Utopian objective vector also represents a
non-existent solution [24].

Nadir objective vector

Refers to the vector opposite the ideal objective vector which represents the lower limit of
each objective in the entire search space. The Nadir objective vector represents an upper
limit of each objective vector in the Pareto optimal set, but not throughout the search space
[24]. In some algorithms, such as MOEA/D, the nadir point is represented as the solution
which is the upper limit [28], the maximum solution in a population and is de�ned as:

/=03 = (I∗1, . . . , I∗<) where =∗8 = max 58 (x) |x ∈ % . (2.4.10)

2.5 Multiobjective evolutionary algorithms

The multiobjective evolutionary algorithms in comparison with the classic mathematical
programming methods mentioned brie�y in Section 2.4, have certain characteristics and
advantages that make them applicable to solve MOPs [24], therefore, in this section di�er-
ent evolutionary algorithms approaches to target multiobjective problems are reviewed.
These algorithms can be divided into three main paradigms [35], Pareto based MOEAs,
decomposition based MOEAs and indicator based MOEAs. In this thesis, Pareto based
MOEAs and decomposition based MOEAs are explained in detail.

2.5.1 Pareto-based MOEAs

Pareto-based MOEAs use a dominance based ranking scheme and combine elitist strate-
gies such those that converge to a global optimal in some problems [12]. Pareto and eli-
tist strategies lead the way or set the basis for one of the most important algorithmic
approaches in the area: NSGA-II algorithm proposed by Deb et. al. [21]. Pareto based
MOEAs have in common the use of Pareto dominance with some diversity criteria based
on secondary ranking, some algorithms of this class are Multiobjective Genetic Algorithm
(MOGA) [36], which was the �rst MOEA, Pareto Archived Evolutionary Strategy (PAES)
[37] uses a mesh in the objective function space to ensure that all regions are visited,

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems



28 2. Background

Strength Pareto Evolutionary Algorithm (SPEA) [38] which uses a di�erent criteria based
on dominance, it also ranks individuals depending on how many individuals dominate
and by how many other individuals dominate it, as well as it makes use of clustering, in
its second version (SPEA-2) [39] this algorithm improves both criteria already described.

NSGA-II

Non-dominated sorting Genetic Algorithm (NSGA-II) was proposed by Deb et. al. in 2002
[21], among its main characteristics is the use of elitism, as well as the use of a mechanism
of diversity and focus on non-dominated solutions. This is the improved NSGA version
[40] that focuses on reduction of complexity of non-dominated sorting, more e�cient use
of elitism, and parameters reduction. NSGA-II starts with a random population, each o�-
spring is created using two parents selected through binary tournament method, parents
are recombined using SBX operator and mutated using polynomial mutation [21]. At this
point ofspring set & is combined with current population % ∪ & . The best ` individuals
are selected from % ∪& concerning the front to which it belongs, this ranking is obtained
with non-dominated sorting (See Algorithm 4) which ranks solutions by corresponding
fronts, thus obtaining a measure of quality to evaluate di�erent solutions. If the set of
` solutions is greater than the population size, then a ranking process called crowding
distance (see Algorithm 3) is applied. The larger distance this metric is better ranked the
solution, because it maintains the diversity in the population. Crowding distance is cal-
culated as the distances average of neighboring solutions, thus generating a cuboid in the
objective function space. Finally, ` solutions are passed on to the next generation, repeat-
ing the process mentioned above, NSGA-II is described in Algorithm 5. Recently NSGA-II
has been modi�ed to address many objectives in its NSGA-III [4] version, which combines
NSGA-II ideas with decomposition approaches.

Algorithm 3: Crowding Distance [21]
1 ; = |� |;
2 � [8]38BC0=24 = 0;
3 for each objective< do
4 � = B>AC (� ,<);
5 � [1]38BC0=24 = � [;]38BC0=24 = ∞;
6 8 = 2 to (; − 1) I[i]38BC0=24 = � [8]38BC0=24 + (� [8 + 1] .< − � [8 − 1] .<)/(5<0G< − 5<8=< );
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Algorithm 4: Non-dominated sorting [21]
1 for each ? ∈ %>?D;0C8>= % do
2 (? = ∅, =? = 0;
3 for each @ ∈ % do
4 if ? ≺ @ then
5 (? = (? ∪ {@};
6 else
7 if @ ≺ ? then
8 =? = =? + 1;

9 if =? = 0 then
10 ?A0=: = 1;
11 �1 = �1 ∪ {?};

12 while �8 ≠ ∅ do
13 & = ∅;
14 for each ? ∈ �8 do
15 for each @ ∈ (? do
16 =@ = =@ − 1;
17 if =@ = 0 then
18 @A0=: = 8 + 1;
19 & = & ∪ {@};

20 8 = 8 + 1;
21 �8 = & ;

Algorithm 5: NSGA-II [21]
1 Create initial population %C ;
2 Evaluate �tness of each solution;
3 Apply non-dominated sorting to rank the solutions;
4 while Termination condition not satis�ed do
5 O�spring population &C = ∅;
6 for each solution in %C do
7 Select two parents using binary tournament;
8 Recombine the parents using SBX and generate a child A ;
9 Apply mutation on A generating @;

10 &C = &C ∪ @;
11 Apply Algorithm 4 to rank %C ∪&C population obtaining � fronts;
12 if |�1 | + |�2 |, . . . , |�8 | = |%C | then
13 Copy the solutions of these fronts to the new population %C+1;
14 %C+1 =

⋃
8 �8 ;

15 else
16 Determine the front � of �8 that is greater than |%C |, to this last front apply Crowding

Distance (Algorithm 3) and add to %C the solutions with the higher Distance;
17 %C+1 = (

⋃
8 �8 ) ∪ � ;
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MOCell

Cellular genetic algorithm for multiobjective optimization MOCell [9] was proposed by
Nebro et al. in 2009, this approach uses as base the cellular genetic algorithm and adding
di�erent improvements to work in the multiobjective �eld, this begins generating a
toroidal mesh in which the solutions are put, later, it follows the normal steps of a ge-
netic algorithm (Selection, crossing, mutation and evaluation), when replacing the worst
solutions, it is based on the NSGA-II algorithm. If the solutions are non-dominated, then
the Crowding Distance is used. as �nal steps it takes an external �le which saves the best
solutions these are the non-dominated solutions, as �nal step MOCell makes use of a feed-
back mechanism which is to take from the external �le and re-insert again the population,
this feedback mechanism is one of the most important of the algorithm as it promotes di-
versity over generations [2]. The pseudocode of MOCell algorithm is shown in Algorithm
6, and a general diagram of the evolutionary process in Figure 2.7.

In Section 2.7 it is extended the background about the parallel evolutionary algorithms,
their di�erent structures, properties, and update mechanisms.

Algorithm 6: MOCell
1 Create initial population % ;
2 while Termination condition not satis�ed do
3 for each individual 8 in % do
4 # is the neighborhood of individual 8;
5 Select two parents from # using binary tournament;
6 Recombine the two parents using SBX and create an o�spring ~;
7 mutate the o�spring ~ using polynomial mutation to obtain ~′;
8 Insert solution ~′ in an auxiliary population only if it is non dominated;
9 Insert solution ~′ to an external archive only if is non dominated.

10 updates the population using the auxiliary population;
11 Applies feedback mechanism using the external archive;
12 if External archive size > population size then
13 Remove the worst solutions based on crowding distance criteria;
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2. Crossover, 
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3. Add to external 
archive if it is 

non-dominated

5. Feedback

Figure 2.7: Scheme of evolutionary process of MOCell algorithm.

Generalized Di�erential Evolution 3

Generalized Di�erential Evolution (GDE3) is the third version of the algorithm pro-
posed by Kukkonen and Lampinen [41] in 2005, as a version of the di�erential evolu-
tion algorithm to solve multiobjective problems with constraints, GDE3 makes use of the
DE/rand/1/bin scheme, to be used with problems with " objectives and  constraints, in
this version as well as in the second one it makes use of the crowding distance, GDE3 is
ahead of its two previous versions which were very sensitive to the chosen parameters
in addition to the use of the non-dominated sorting. GDE3 modi�es the basic selection
rules of di�erential evolution which have their base in Deb’s rules or Constraint domi-
nance principle (see Section 2.6 ) that are used to de�ne the comparison between trial and
target vectors (see line 9 of Algorithm 7) , in the same way, that NSGA-II when the pop-
ulation grows, is necessary to truncate, GDE3 makes use of the Crowding distance and
non-dominance (see line 13 of Algorithm 7, CD means Crowding Distance), which allows
an elitist e�ect by selecting the best solutions in the population and discarding the worst
ones [41, 33], the pseudocode of GDE3 is shown in Algorithm 7.
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Algorithm 7: GDE3
1 Create initial population of size #% ;
2 while Termination condition not satis�ed do
3 for each target vector G8 in population do
4 Mutate and recombine using Di�erential Evolution operator obtaining the trial vector D8 ;
5 if trial vector D8 � target vector G8 then
6 G8,�+1 = D8 ;
7 else
8 G8,�+1 = G8 ;
9 if ∀9 : 6 9 (D8 ) ≤ 0 ∧ (G8,�+1 == G8,� ) ∧ G8,� � D8 then
10 < =< + 1;
11 G#%+<,�+1 = D8

12 while< > 0 do

13 select G ∈ {G1,�+1, G2,�+1, . . . , G#%+<,�+1} :


∀8G � G8,�+1
∧
∀(G8,�+1 : G8,�+1: � G) �� (G) ≤ �� (G8,�+1)

14 remove G from population;
15 < =< − 1;

2.5.2 MOEAs based on Decomposition

An inevitable problem when dealing with MOPs of more than 3 objectives, is that dom-
inance begins to be ine�ective, therefore, the idea of rank Pareto’s front is not useful.
Therefore, decomposition-based methods have been adapted to MOEAs, these methods
can deal with problems of three or many objectives, but also work with MOPs, giving a
reliable and powerful alternative for this kind of problems, one of the most important al-
gorithms of this approach is MOEA/D (Multiobjective Evolutionary Algorithm based on
Decomposition) developed by Zhang and Li [18, 12, 19].

MOEA/D

Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D) is an algo-
rithm which shares some characteristics of the weighted-sum approach and population-
based algorithms. MOEA/D starts by distributing a set of _ weight vectors in the objective
function space, then creates an array of the) closest vectors using the Euclidean distance
between vectors, thus creating neighborhoods. MOEA/D and its variants demonstrate a
performance equivalent to the Pareto based algorithms in problems with few objectives
and better performance in problems with 5 or more objectives [12, 18]. The Canonical
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MOEA/D algorithm use Tchebyche� decomposition de�ned as follows:

min6C4 (x|_ 9 , I∗) = max
1≤8≤<

1
_
9

8

|58 (x) − I∗8 | (2.5.1)

MOEA/D algorithm is shown in Algorithm 8, in the �rst lines (1-4) _ reference vectors
are established and neighborhoods are created using as a criteria nearest ) vectors, and
ideal point / is calculated. The main cycle iterates over all individuals within the popu-
lation. In line 7 two parents are chosen, these are taken from the neighborhoods created
and stored in �(8). �(8) is iterated and two random parents are chosen from this struc-
ture, then SBX operator and polynomial mutation are used to generate the o�spring, it
is worth mentioning that here only one child is generated not two, in the �nal parts of
the algorithm, the value of / is updated again and the aggregation values of the two par-
ents are calculated using the _ reference vectors, likewise aggregation value of child ~8 is
calculated, �nally, it is replaced with a simple criterion, if the o�spring ~8 has a smaller
aggregation value of one of the parents this is replaced otherwise the parent remains and
the population is not modi�ed.

Algorithm 8: MOEA/D
1 _8 = (_81, . . . , _8<)) , 8 = 1, . . . , #? ;
2 �(8) = {81, . . . , 8C }, where _81 , . . . , _8) are the ) closest weight vectors to _8 .;
3 % = {x1, . . . , x#? } ;
4 Set / using equation 2.4.9;
5 while : ≤ )<0G do
6 for 8 = 1 to B8I4 (%) do
7 % = �(8, A0=3?4A<(�)) ;
8 Generate ~ from P(1) and P(2) by GA operator;
9 Polynomial mutation on ~ to new solution ~8 ;

10 Update / using equation 2.4.9;
11 6?>? = 6C4 (% |_% , I∗);
12 6~ = 6C4 (~8 |_% , I∗);
13 %>?D;0C8>=(% (6?>? ≥ 6~)) = ~8 ;

There are many variants of MOEA/D, one of the most popular and widely used as a
basis for new algorithms based on decomposition is MOEA/D-DE [19], this is a modi�ed
version that uses di�erential evolution operations. MOEA/D-DE uses Di�erential Evolu-
tion such as crossover operator. Also, they add other parameters to the original MOEA/D
algorithm, these parameters are^ and =A . The �rst parameter^ is the probability of select-
ing from two sets, from neighborhood �(8) or from the whole population, the selection of
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parents is done randomly in either set, this parameter is commonly 0.9, this means that
the probability of choosing parents from neighborhood is much larger than the entire
population, this to increase the exploration probability of the algorithm. The =A param-
eter is �xed as the number of replacements in the updating solution step, in the original
algorithm, the number of replacements is commonly set to 2. MOEA/D-DE uses Equation
2.5.2 as the crossover operator.

~: =


G
A1
:
+ � × (GA2

:
− GA3

:
) with probability �'

G
A1
:

with probability 1 −�'
(2.5.2)

Equation 2.5.2 is a variation of the original equation in Di�erential Evolution Algorithm.
As a mutation operator, MOEA/D-DE algorithm uses polynomial mutation 2.1.9. in Algo-
rithm 9 MOEA/D-DE is shown.

Algorithm 9:"$��/� − ��
1 _8 = (_81, . . . , _8<)) , 8 = 1, . . . , #? ;
2 �(8) = {81, . . . , 8C }, where _81 , . . . , _8) are the ) closest weight vectors to _8 ;
3 % = {x1, . . . , x#? };
4 Set / using equation 2.4.9;
5 while : ≤ )<0G do
6 for 8 = 1 to B8I4 (%) do
7 if A0=3 < ^ then
8 %B = �(8, A0=3?4A<(�));
9 else
10 %B = % (A0=3?4A<(%)) ;
11 Generate ~ from Ps (1), Ps (2)C and Ps (3) by DE operator using equation 2.5.2;
12 Polynomial mutation on ~ to new solution ~8 ;
13 Update / using equation 2.4.9;
14 6?>? = 6C4 (% |_% , I∗);
15 6~ = 6C4 (~8 |_% , I∗);
16 while %B ≠ ∅ or 2 ≠ =A do
17 9 = random number in %B ;
18 if 6. ≤ 6?>? then
19 % (%B ( 9)) = ~8 ;
20 2 = 2 + 1;
21 %B ( 9), 6~ ( 9), 6?>? ( 9) = ∅;
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2.6 Constraint Handling techniques

Handling constraints in MOEAs is an important issue that requires special attention,
mostly when dealing with real world problems, constraint Handling techniques (CHTs)
must be incorporated into the search process in evolutionary algorithms. [33]. A common
way to deal with constraints is converting inequality constraints to equality constraints,
as follows:

ℎ 9 (x)′ ≡ X − |ℎ 9 (x) | ≥ 0 (2.6.1)

Moreover, a number of CHTs use constraint violation sum criterion, de�ned next [28]:

q (x) =
@∑
8=1
|<8=(68 ((x), 0) | +

?∑
9=1
|<8=(ℎ8 ((x)′, 0) | (2.6.2)

Deb proposed a CHT based only on the sum of constraint violations. In NSGA-II [21]
this is extended to multiobjective problems, this CHT is called Constraint Dominance
Principle (CDP) this compares two solutions (G and ~) based on the follow rules [42].

1.- G is feasible and ~ is infeasible

2.- both G and ~ are infeasible and G has a less sum of constraint violation than ~.

3.- both G and ~ are feasible and G dominates ~

Another method commonly used is Stochastic Ranking (SR), in this CHT, a prede�ned
probability is used to balance dominance comparison of two solutions according to its
objective function or sum of constraint violation value [43]. Other method is known as
n-constrained which is similar to CDP, the only di�erence is that a solution is treated as
a feasible solution if its constraint violation sum is less than a given threshold n ; in other
words, this CHT transforms the constrained problem into an unconstrained one. When n
is equals to zero, epsilon CHT is equivalent to CDP. Finally, another widely used method to
penalize the objective function which involves weights the sum of constraints violations
[34]. There are several di�erent types of penalty functions, which includes death penalty,
static penalty, dynamic penalty, and adaptive penalty.

The main issue with penalty functions for constraint handling is that ideal penalty
factors can not be known in advance for an arbitrary Constraint MOP, therefore, tuning
these penalty factors requires prior knowledge of the problem [43]. Constraint handling
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methods described here can be adapted to any type of MOEAs as they only require small
modi�cations within the algorithm.

2.6.1 Push and Pull Search

The Pull and Push Search (PPS) was developed to target CMOPs [29]. PPS follows two
stages: �rst, a CMOP is approached without constraints trying to reach the unconstrained
Pareto front (See Figure 2.8a, 2.8b, and 2.8c where the problem is taken without con-
straints, the solutions approach the unconstrained Pareto front), and secondly stage, it
implements a CHT which assures a better close approach to the constrained Pareto front
because solutions are already close, this is seen in Figure 2.8d, where the problem be-
comes constrained and the solutions are already closer to the constrained Pareto front. A
strategy for switching between both stages follows the next condition:

A: ≡ max{AI: , A=:} ≤ d (2.6.3)

where A: represents the maximum change rate between ideal and nadir points, see
Equations 2.4.9 and 2.4.10, in ; generations, AI: and A=: are de�ned next:

AI: = max
8=1,...,<

{
|I:8 − I:−;8 |

max{|I:−;
8
|,Δ}
} (2.6.4)

A=: = max
8=1,...,<

{
|=:8 − =:−;8 |

max{|=:−;
8
|,Δ}
} (2.6.5)

where I: and =: are ideal and nadir points in :−th generation, AI: and A=: are two points
within [0, 1], Δ is a very small positive number to avoid denominators equal zero, thus Δ
is set to 14 − 6.
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Figure 2.8: In the �rst three sub�gures, the process of pushing towards the unconstrained
Pareto front is observed, in sub�gure (d) the process of pulling towards the constrained
Pareto front observed.
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2.6.2 Improved Epsilon

Improved Epsilon [27] de�nes a �exible n parameter which is dynamically reduced as
generations elapse until reaching a zero value. It allows a looseness value of the total sum
of constraints violation for considering o�spring as feasible solutions or not. This dynamic
n is updated every generation according to Equation 2.6.6 and its value decreases to zero
as it is considered that, in �nal generations, solutions had reached feasible regions within
the landscape.

n =


(1 − g)n (: − 1) if A 5: < U

(1 + g)q<0G if A 5: ≥ U
(2.6.6)

where A 5 : is the population’s feasibility ratio in generation : , g is within [0, 1] range and
controls constraints speed relaxation by multiplying the maximum sum of constraints
violations in a population. An U parameter controls the searching preference between
feasible and infeasible zones, q<0G is a solution with the maximum overall constraints
violations sum in all elapsed generations and is updated every generation by Equation
2.6.7.

q<0G = max(q (%)) (2.6.7)

2.7 Parallel evolutionary algorithms

The term parallel and distributed EAs has been used indistinctly in Evolutionary Com-
putation. A parallel EA tries to �nd better solutions while reducing the number of eval-
uations and therefore processing time, di�erent to traditional EAs. An EA is parallelized
either by distributing the objective function calculation or by dividing the entire popu-
lation in sub-populations among processing units while de�ning migration policies for
their interaction [44, 45, 46].

Parallel EAs can be assessed at an algorithmic level without necessarily deploying a
number of processing units. In this scenario, parallel EAs performance is di�erent to a
standard panmictic EAs. At an implementation level there are di�erent architectures that
have been used for assessment [47, 48] such as Single-Instruction Multiple-Data (SIMD)
or Multiple Instruction, Multiple Data (MIMD). Moreover, interconnected computers has
taken relevance in addition to powerful tools such as Message Passing Interface (MPI),
Java-Remote Method Invocation (RMI), Common Object Request Broker Architecture
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(CORBA), as well as the use of the internet for communication among dedicated machines.
Currently the use of large clusters of computers and technologies such as Hadoop with
programming languages such as MapReduce make the task easier at an implementation
level [49].

Master

Master

Slaves Slaves Slaves

a) b) c)

d) e) f)

Figure 2.9: a) Master-slave model , b) Distributed or island model, c) Di�usion or cellular,
and d), e), f) Multiple type of hybridization models.

The most common models for parallel EAs are master-slave, islands, di�usion or cellu-
lar, and the hybrid model which can be seen as a combination of the previous three, see Fig.
2.9. The master-slave model or global parallelization is a scheme with a central process-
ing unit which executes selection among solutions and associates those to evolve within
a slave processing unit. Thus, evolutionary operations such as recombination, mutation
and objective function evaluation are executed in parallel. This model is fast, especially for
the time consumed in calculating the objective function [50]. However, other EAs models
use structured populations, an example of those are distributed and cellular models.

Distributed scheme divides the population into islands and these are executed in paral-
lel. These islands exchange information during the search in order to promote population
diversity among sub-populations. In cellular schemes, sub-populations are typically com-
posed by a single individual which interacts with the rest of the population through a grid
topology and prede�ned neighbourhoods. Neighborhoods are overlapped which implic-
itly de�nes a migration policy and allows a smoother di�usion of solutions throughout
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Figure 2.10: Distributed model also called island model.

the entire population which is decentralized on a toroidal grid. Cellular schemes are com-
patible in an ideal scenario with massively parallel machines, but sequential execution is
possible on CPUs or in parallel processors such as graphics units (GPUs) [8, 50, 44, 46].
All these ideas can be used in single and multi objectives approaches, because structures
can be adapted to a di�erent type of algorithms commonly EAs and MOEAs own the same
structure. An example can be cMOGA algorithm [51], this algorithm is a canonical version
of a cellular GA in the multiobjective Domain.

2.8 Distributed evolutionary algorithms

In distributed EAs, the population is structured in subpopulations, relatively isolated from
each other, this type of paradigm is known in di�erent ways: island model, coarse-grain
model or multi-deme model. Those subpopulations or islands evolve independently, and
occasionally certain solutions migrate from one island to another [48, 2, 45], this is exem-
pli�ed in Figure 2.10. Di�erent criteria can modify a distributed model, they are focused
on migration policies [52, 45]:

• Migration gap decides how often a change is made among islands. It can be activated
in each subpopulation periodically or using some migration probability to decide
when migration take or does not take place. Migration frequency implies slower
or faster information spreading. Slower migration increases exploitation of speci�c
regions in the landscape while faster migration promotes exploration throughout
the search space.
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• Emigration policy decides what actions are taken when migrants are sent to another
island. Multiple actions can be taken, such as removal from the sending island, to
make a copy of an immigrant. Also, there are several ways of selecting migrants,
such as selecting the best, the worst, or at random.

• Immigration policy determines immigrants actions. They can replace the worst in-
dividuals in the receiving population. They can also be replaced at random or ac-
cording to some condition such as replacing the most similar one.

• Migration rate speci�es the number of migrants that will be sent to a di�erent island.

• Migration topology de�nes the type of topology used. It can be a directed or undi-
rected graph. The most common topologies are one-way rings or two-way rings,
toroids or hypercubes.

2.9 Cellular evolutionary algorithms

Cellular evolutionary algorithms (cEAs) are a special case of the islands model with a more
�ne grained form of parallelization, This model is also called the di�usion model. The
main feature in cEAs is that each island holds a single individual [46, 45]. An individual
position is called a cell and it is allowed to recombine with its neighbors. Neighborhoods
are de�ned by a mesh structure which is commonly squared, see Sub�gure 2.11b, but
other structures can also be used. Neighborhoods are overlapped which makes solutions
to spread throughout grid [52, 46]. To replace individuals two general strategies are used.
Cells can be updated synchronously or asynchronously. Special cases of asynchronous
update are de�ned as follows [2, 52, 45]:

• Uniform choice: the cell to be updated is chosen at random.

• Fixed-line sweep or Line sweep: the cells are updated sequentially line by line.

• Fixed random sweep: the cells are updated sequentially according to a �xed order,
this order is established by an exchange of the cells.

• New random sweep: this strategy is such as a �xed random sweep only after each
update a new random swap is generated.
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(a)

(b) (c)

Figure 2.11: Three di�erent types of mesh topologies: (a) Narrow, (b) Square, and (c) Rect-
angular. The individuals in the �gure are represented by circles.

In this thesis, three updating types are used: synchronous, line sweep and asyn-
chronous. Last type updates cells immediately after being evaluated. It could be said that
it is the highest level of asynchronism, see Section 2.9.1 for more details.

Rectangular and narrower topologies have been implemented with a di�erent im-
pact on solutions spreading throughout the mesh and therefore in the searching pro-
cess. [52, 45, 2]. Figure 2.11 shows di�erent mesh topologies. Each point in the mesh
has a neighborhood that is overlapped by nearer neighborhoods. All neighborhoods have
the same size and the same form, in Figure 2.12, four types of neighborhoods commonly
used in cEAs are shown. These neighborhoods are divided in two types L= (linear) that is
formed by = nearer neighborhoods in an axial direction (North,East,West,South); whereas
C= (compact) is used to design neighborhoods that contain = − 1 nearest individuals con-
sidering diagonal directions; two of the most used are L5 also called Von Neumann or
NEWS neighborhood and C9 also known as Moore neighborhood [2, 48].

Concerning selection methods designed speci�cally for cellular schemes, two variants
applying tournament selection were proposed, the �rst called Anisotropic selection [53],
which was developed in conjunction with the Von Neumann Fuzzy neighborhood. It de-
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(a) (b) (c) (d)

Figure 2.12: Sub�gure (a) shows the neighborhood L5 or Von Neumann, (b) shows the
neighborhood C9 or Moore, (c) and (d) show two variants, the neighborhood L9 and the
neighborhood C13.

�nes a set of probabilities for : cells, then applies a : tournament and the winner replaces
the individual with a probability of 0.5 if it is equal. Besides, Centric selection [54] was
developed, it introduces a probability that selects the center of a neighborhood. This type
of selection can be used in self-adaptive algorithms, with the advantage of modifying the
exploration and exploitation trade-o� by changing the probability of selecting only the
center of each neighborhood [54]. Focusing on cellular schemes, solutions replacement
can vary, in multiobjective scenarios, since the ’best solution’ concept changes accord-
ing to how a solution is measured i.e Pareto or decomposition. For example, MOCell [9]
occupies a replacement scheme for the non-dominated solutions (this can be seen as a
modi�cation of the replacement worst scheme) and an elitist approach, which is used
most of the time in this type of algorithms, these are carried out at the neighborhood
level.

2.9.1 Updating criteria Cellular EAs

In cellular EAs in speci�c cellular genetic algorithms, there are several ways for population
updating. In this research, three of those approaches are explored: synchronous (SY), line
sweep (LS) and asynchronous (AS) updating [2]. Each updating mechanism has an e�ect
on how new individuals interact with the rest of the population throughout the toroidal
grid,

SY: this criterion expects all solutions are evolved before updating is carried out. Thus,
solutions are temporarily stored and will be replaced throughout the grid at the end of
every generation. In this case,l variable contains all the indexes and individuals that will
be updated and % is the Population which will be updated.
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Algorithm 10:*?30C4(~=2ℎA>=>DB (%,l)
1 for i=1 to size(l) do
2 {~, 8=34G} = l (8);
3 % (8=34G) = ~;

Result: %

LS and AS versions are in the main cycle because solutions are updated in a constant
way in contrast with SY criterion that waits until all solutions are evolved and updates
the entire grid at the end of each generation. More details on these criteria are provided
next.

LS: having an # × # population’s grid, after �rst # individuals in a row are evolved,
updating is carried out. This criterion stores temporarily new solutions for every row.
Di�erent from synchronous updating, LS introduces new solutions after evolving every
grid’s row which necessarily impacts the whole searching process, in Algorithm 11, the
variable 8 represents the current individual in the mesh.

Algorithm 11:*?30C4!8=4(F44? (%,l, 8, # )
1 if <>3 (8, B8I4 (# )) == 0 then
2 for 8 = 1 to B8I4 (l) do
3 {~, 8=34G} = l (8);
4 % (8=34G) = ~;
5 l = ∅;
Result: %

AS: after every individual in the grid is evolved, updating takes place. Thus, new so-
lutions are introduced immediately after replacement decision is made, therefore, it is not
necessary to temporarily store information. AS updating strongly impacts the evolution-
ary process because it constantly introduces new solutions.

Algorithm 12:*?30C4�B~=2ℎA>=>DB (%,l)
1 if l ≠ ∅ then
2 {~, 8=34G} = l ;
3 % (8=34G) = ~;
4 l = ∅;
Result: %
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2.10 Performance assessment of MOEAs

Di�erent from single-objective optimization, where the quality of a solution can be de-
�ned using the objective function values: the smaller (to minimize) or the larger (to maxi-
mize) value corresponds to a better solution, in multiobjective optimization, other aspects
should be considered to evaluate the performance of MOEAs

To evaluate the performance of di�erent MOEAs on a given problem, the algorithm is
executed a number of times, and resulting solutions known as Pareto front approximations
(PF :=>F=), are compared in two aspects: (i) Solution accuracy determines how similar
an evolved solution is to the true Pareto front (PF CAD4 ) and (ii) Solution diversity, e.g.
to evaluate how well the solution is distributed in the solution space [6, 9]. Therefore, to
assess the performance of the MOEAs, several performance measures have been proposed
which considered the two above issues.

• Generational Distance. This metric (GD) reports how far, on average thePF :=>F=
is from PF CAD4 . It is de�ned as

�� =

√∑=
8=13

2
8

=
(2.10.1)

where= is the number of elements in thePF :=>F= and3 is the Euclidean phenotypic
distance between each member [33, 6].

• Inverted Generational Distance. This metric (IGD) evaluates the performance
related to convergence and diversity simultaneously, this metric represents the av-
erage distance from PF CAD4 to PF :=>F= [10]. It is de�ned as:

��� =

∑
~∗∈PF CAD4 3 (~∗,PF CAD4)

=

3 (~∗,PF CAD4) =<8=~∈PF CAD4

√√
<∑
8=1
(~∗ − ~8)2

(2.10.2)

• Hypervolume. This metric (HV) re�ects the closeness between PF :=>F= and
PF CAD4 . A large HV means that the PF :=>F= set is closer to the PF CAD4 . HV corre-
sponds to the non-overlapping volume of all hypercubes formed by reference point
I and every vector in the PF :=>F= . HV with a larger value represents better per-
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formance with respect to both diversity and convergence. It is de�ned as follows:

�+ =

&⋃
8=1
{E>;8 |E428 ∈ PF CAD4} (2.10.3)

where E428 is a non-dominated vector from PF :=>F= , & is a set of PF :=>F= so-
lutions and E>;8 is the hypercube’s volume formed by the reference point and the
non-dominated vector E428 [10].

2.11 Summary

In this chapter evolutionary algorithms basis were described, including main concepts of
widely known Genetic Algorithms and Di�erential Evolution, see Sections 2.2 and 2.3. In
Section 2.4, formal concepts of multiobjective optimization was speci�ed as well as di�er-
ences between classical and evolutionary methods. In Section 2.5, di�erent multiobjective
evolutionary algorithms such as NSGA-II and MOEA/D were addressed. This research
is focused on solving constrained multiobjective problems, Section 2.6 describes di�erent
classical constraint-handling techniques as well as new proposals such PPS and IE. In Sec-
tions 2.7, 2.8 and, 2.9 theoretical basis for parallel evolutionary algorithms are speci�ed
with emphasis on distributed and cellular models. Finally, in Section 2.10 a number of
metrics to assess evolutionary multiobjective algorithms are described. In the following
chapter, state of the art for constrained multiobjective evolutionary algorithms is analyzed
in detail.
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Chapter 3

State of the art

The proposed evolutionary algorithmic approach to tackle constrained multiobjective
problems involves a number of concepts from related �elds of study. Thus, the state of
the art reviews previously proposed EAs approaches to solve constrained multiobjective
optimization problems. After, it discusses previous parallel evolutionary approaches to
tackle optimization problems either single objective or multiobjective as well as consid-
ering constraints or not. Finally, most closely related work, parallel evolutionary schemes
previously proposed to solve constrained multiobjective optimization are analyzed in de-
tail.

3.1 Constrained multiobjective evolutionary algo-
rithms

Constrained MOEAs are a very active topic in the area of evolutionary computing, and
the following is a review of the most recent proposals in this area. Beginning with the
proposal of Xu et. al. [55]. Which develops a variant of DE algorithm, this proposal called
IMDE (Infeasible-guiding Mutation Di�erential Evolution) adds a mechanism to deal with
infeasible areas. It adds di�erent variants of the mutation operator to generate mutant
vectors in DE, these are the canonical version DE/ran/1/bin, DE/current-2-best/1/bin,
and DE/best/1/bin. IMDE modi�es GDE3 algorithm [41] using its structure with di�er-
ent changes as the one already mentioned. It makes use of an external set where the most
promising infeasible solutions are saved. These solutions are used together with muta-
tion methods to generate more diversity. IMDE was tested with three di�erent benchmark
groups, a group with classic functions such as TNK and OSY, another group called CTP,
and a last group called NCTP, all of them are constrained nature. Seven MOEAs were used

[47]
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to make the comparison: MODE-ECHT [56] , SADE-CD [57], NSGA-III [58], MOEA/DD
[59], ARMOEA [60], MOEA/D-IEpsilon [27], and ICMOEA [61]. IMDE shows good per-
formance over the other MOEAS, having acceptable results in most benchmarks. Finally,
it concludes that the IMDE algorithm has a higher complexity since it handles an addi-
tional population, furthermore, the parameters used are sensitive to the type of problems
and need to be adapted.

Fan et. al. [28] proposed a new constraint handling technique called PPS (Push and
pull search, explained in Section 2.6.1) in conjunction with MOEA/D-DE developed the
MOEA/D-PPS proposal. This algorithm is focused on problems that have large infeasible
regions. PPS divides the evolutionary process in two phases, at the beginning a problem is
approached without constraints, when solutions are reaching faster a constrained Pareto
front, after in a second phase, the algorithm starts using Improved Epsilon as a CHT and
target the problem with constraints, once solutions are near to the constrained Pareto
front. Changing from phase one to phase two is determined by calculating the change
rate during last ; generations. It calculates changes in values of ideal and nadir points;
when changes are less than an epsilon value, it switches to the next phase. MOEA/D-DE
algorithm was used as a basis to adapt this CHT, as well as the use of an external archive
for saving the best solutions. Solutions in this archive, are updated in each generation
according to their non dominance and their crowding distance. For comparison analysis,
six other MOEAs were used: MOEA/D-IEpsilon [27] , MOEA/D-Epsilon [62], MOEA/D-
SR [42], MOEA/D-CDP [42], C-MOEA/D [63], and NSGA-II-CDP [21]. These were tested
on Large Infeasible Regions (LIRCMOP) benchmark. Results showed that this algorithm
outperformed the others in most problems in both IGD and HV metrics. The same au-
thor on that paper [27] also proposed a CHT called Improved Epsilon, which is adapted to
MOEA/D-DE, and its main focus is to solve CMOPs with large infeasible regions. That pro-
posal is called MOEA/D-IEpsilon and its main feature is to dynamically adjust the epsilon
parameter according to population feasibility ratio in any current generation, more details
on Section 2.6. MOEA/D-IEpsilon was tested on LIRCMOP benchmark against CMOEA/D,
MOEA/D-CDP, MOEA/D-SR and MOEA/D-Epsilon algorithms using two common met-
rics in the area which are IGD and HV. Tests were also performed on a real-world problem
which is to optimize grip parameters of a robotic hand. Results on LIRCMOP benchmark
and robot grip problem were signi�cantly better than other MOEAs. Authors point out
that MOEA/D-IEpsilon is able to explore feasible and infeasible regions simultaneously.
Moreover, using population feasibility ratio dynamically balances exploration between
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feasible and infeasible areas, thus maintaining a good balance between them.

In [29], Fan et. al. propose a modi�cation to MOEA/D-DE algorithm attaching a CDP
variant as a CHT, see Section 2.6. This modi�cation considers an angle between solutions
for decisions making. A similarity function de�ned in Equation 3.1.1 is used. It inputs
two vector solutions, normally those for comparison, also the ideal point in current gen-
eration is used. It outputs a value to adapt to CDP rules. Thus, its CHT is called ACDP
and consequently, the algorithm is known as MOEA/D-ACDP. For evaluation, LIRCMOP
benchmark [27] was used and compared against C-MOEA/D, MOEA/D-CDP, MOEA/D-
Epsilon [42], MOEA/D-SR [42], NSGA-II-CDP [21], and SP [64] algorithms, results showed
better performance in IGD and HV metrics in comparison to the other proposals.

0=6;4 (x1, x2, / ∗) = 0A2>B
(
(F(x1) − / ∗)) · (F(x2) − / ∗)
| |F(x1) − / ∗ | | · | |F(x2) − / ∗ | |

)
(3.1.1)

A new algorithm based on DE and an improved epsilon CHT called MODE-SaE was
proposed by Yang et. al. [65]. Such approach is based on a self-adaptive epsilon level set-
ting considering maximum and minimum values of individuals constraints violation val-
ues. MODE-SaE algorithm is compared against �ve other modi�ed algorithms to deal with
CMOPs such as NSGA-II [21] ,RVEA [66], MOEA/DD [59], GDE3 [41], and CTAEA [67].
Experimental results indicate that MODE-SaE is signi�cantly better than the other �ve
constrained MOEAs in most benchmark problems and a real-world problem with a low
feasible ratio. This means that problems have a very small space for feasible solutions.
Furthermore, MODE-SaE is not sensitive to a feasible ratio. Its weakness is needing more
generations to �nd feasible solutions for CMOPs where the Pareto front is away from
unconstrained PF.

Ning et. al. [68] proposed a parameter-free CHT, called constrained non dominated
sorting (CNS) and is adapted to the cMOEA/H algorithm, which is based on MOEA/D-
DE [19] and MOEA/D-M2M [69]. CNS works �rst by ranking the population using non-
dominated sorting, then calculates the constraint violation sum per individual. Next, it
calculates maximum and minimum sum in the population and proceeds to divide the en-
tire population by its degree of a constraint violation. It creates 10 levels, level 1 represents
the solutions that did not violate constraints or with the lowest constraint sum up to level
10. Finally, it proceeds to generate a set where solutions are already ordered according to
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their Pareto rank (PR) and constraints ranking (CR), using the Equation 3.1.2.

�#'(C8) =<0G{%'(C8),�'(C8)}, C8 ∈ ), 8 = 1, 2, . . . , |) | (3.1.2)

where ) is the population size. cMOEA/H splits a population into K-size subpopula-
tions. It uses the ideal point / to guide the search and to assign solutions among sub-
populations. To test cMOEA/H-CNS a comparison against cMOEA/H-CD, NSGA-II and
MOEA/D with di�erent CHTs, such as CDP, SR, penalty methods and e-constrained was
carried out. These algorithms were tested over 10 constrained MOPs from the Congress
on Evolutionary Computation 2009, results showed that cMOEA/H surpassed NSGA-II
algorithm and is competitive with MOEA/D variants.

3.2 Parallel MOEAs and Constrained Parallel MOEAs

This thesis approaches CMOPs through decentralized or cellular evolutionary techniques.
There is a lack of research in cellular MOEAs, thus in this thesis, algorithmic character-
istics involved in cellular models are explored to obtain better results in CMOPs. From
reviewed literature, master-slave and island models have been more commonly used in
comparison to few works reported on decentralized, cellular or �ne grained model [8].
This section discusses the most recent related work in both areas.

Arias et al. [70] proposed an e�ective and e�cient parallel Di�erential Evolution algo-
rithm for multiobjective Optimization called pMODE-LD+SS based on the island model.
The serial algorithm on which this approach is based uses DE operators as a searching
engine and includes two mechanisms for improving its convergence properties. First, it
uses a structure to de�ne # closest solutions, for this purpose the euclidean distance
between each solution in the objective functions space is measured. Thus, a subset of
non-dominated solutions is used as the initial population. A second mechanism is using
Tchebyche�’s decomposition method for environmental selection, to �nd solutions that
minimize a set of vectors, this idea is similar in MOEA/D algorithm, but in pMODE-LD+SS
a �xed size �le is maintained. Also, it is necessary to eliminate worst solutions through a
metric given by decomposition. For parallelism, islands model is applied with a pollina-
tion scheme and bidirectional migration. Migrants selection is random and replacement
policy occurs through environmental selection. For comparison NSGA-II, MOEA/D and
MOEA/D-DE algorithms were compared while targeting ZDT and DTLZ benchmarks.
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For performance metrics hypervolume and Two Set Coverage (C-Metric), results obtained
show superior performance in most problems.

Durillo et al. [71] proposed a cellular algorithm based on MOCell and GDE3, thus
CellDE algorithm focused on three-objective problems was introduced. This algorithm
uses canonical DE/rand/1/bin version used in GDE3. This algorithm implements and asyn-
chronous updating mechanism, in contrast to MOCell that is synchronous [9]. Therefore,
immediately after solutions are evolved, these are evaluated and compared. If o�spring
dominates a current solution it is replaced. If both solutions are non-dominated, then the
worst solution within a neighborhood is replaced. Finally, a new solution is saved in an
external archive only if it is non-dominated. A feedback mechanism replaces a random so-
lution in the current population with random solutions from the external archive. CellDE
was tested against NSGA-II, SPEA2, GDE3, and MOCell algorithms on DTLZ and WFG
benchmark. Two metrics HV and additive epsilon indicator (� 1n+) were used [72]. From
results obtained, CellDE algorithm obtains better performance in both metrics having a
similar performance to GDE3 in certain problems.

In [73] a novel parallel MOEA which is based on GAs and the island model with het-
erogeneous nodes is proposed called MRMOGA. This algorithm is characterized by en-
coding solutions with di�erent resolution per island. This algorithm maintains an external
archive to save the best solutions which are then selected at random for migration. For
replacement, all solutions are �rst ranked and then replace worst = solutions, MRMOGA
uses CDP as a CHT. Empirical testing on ZDT benchmark against a parallel island-based
version of NSGA-II with ring topology, using HV metric for comparison is carried out.
Results show higher performance than the parallel NSGA-II version.

In [9] authors proposed a multiobjective cellular algorithm called MOCell, see Sec-
tion 17) for details. This approach uses an external �le to store non-dominated solutions
(Pareto front) and a feedback mechanism which randomly replaces existing solutions with
solutions stored in the external �le im every iteration. Authors assess its performance
while targeting two types of problems, with and without constraints and compare against
NSGA-II and SPEA2 algorithms. CDP is used as CHT, the same used in the NSGA-II al-
gorithm. Results obtained indicate that MOCell algorithm has a superior performance in
terms of convergence and HV.

In [10] a multiobjective cellular Particle Swarm Optimization algorithm (MOCPSO)
is applied to the problem of the wellbore trajectory design. Con�icting objectives in this
problem are to minimize trajectory length, torque, and energy simultaneously. MOCPSO
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algorithm uses neighborhoods that adapt according to the number of iterations, thus
changing between di�erent neighborhoods schemes (Von Neumann, Moore, Extended
Von Neumann). To measure algorithmic performance, the proposed approach is compared
against MOPSO, MOEA/D, and NSGA-II. The problem of designing the wellbore trajectory
is constrained, the type of constraints used in this problem is a value limitation of certain
variables to a speci�c range. This type of constraints are not so di�cult thus CDP is used
as CHT. Results showed MOCPSO as statistically superior when compared to MOPSO,
MOEA/D, and NSGA-II with a level of signi�cance of 0.05.

In [11] a modi�cation to NSGA-II algorithm by adding a distributed or island scheme
is proposed. Every island is divided into a multicore environment, and through migration
Pareto Extreme solutions (a subset of non-dominated solutions in the Pareto front) are
exchanged. Those solutions migrate to all islands. Authors used the constrained knapsack
problem with two and three objectives and ZDT benchmark. HV metric was determined
for evaluation while using CDP as a CHT. This algorithm demonstrated that the scheme
used is e�ective and improves solutions diversity, reducing searching time and increasing
precision for real and discrete problems according to the results obtained.

Regarding parallel models, Luna et al [50] conducted a wide literature review that cov-
ers from 1993 to 2005 and Nebro et al. [8], which covers from 2008 to 2011. In the reviewed
work, parallel multiobjective evolutionary algorithms scienti�c community focuses on
three main parallel models: master-Slave, distributed, and cellular. For its simplicity, the
master-slave model appears almost in half of the reported approaches, occupying 43%
(from 1993 to 2005) and has shown a small increase with respect to what was reported by
[8] which is 45% (from 2008 to 2011). On the other hand, the distributed model in related
work reported from 1993 to 2005 was 55% and shown a decrease of 10% in publications
according to [8]. Finally, [50] reported that cellular models were approached by 2% of re-
lated articles between the years 1993 and 2005, this percentage increased in recent years
to 8%.

Table 3.1 shows summarized various algorithms related to Constrained Parallel
MOEAs work as well as the more recent work related to Constrained MOEAs.
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Table 3.1: Summary of the most important works of the state of the art and their most
important characteristics.

Author Algorithmic approach CHT MOEA Parallel
Scheme

Jaimes
and

Coello Coello, 2005 [73]

MRMOGA: Parallel Evolutionary
Multiobjective
Optimization

using Multiple Resolutions.

CDP GA Island

Nebro et al., 2007 [9] MOCell: A Cellular Genetic Algorithm
for Multiobjective Optimization CDP GA Cellular

Durillo et al., 2008 [71]
CellDE: Solving Three-Objective

Optimization Problems Using
a New Hybrid Cellular Genetic Algorithm

- DE Cellular

Arias et al., 2010 [70]
pMODE-LD+SS: An E�ective and E�cient
Parallel Di�erential Evolution Algorithm

for for Multi-Objective Optimization
- DE Island

Zheng et al., 2019 [10]
MOCPSO: Multiobjective cellular

particle swarm optimization
for wellbore trajectory design

CDP PSO Cellular

Ning et al., 2017 [68]

cMOEA/H Constrained multi-objective
optimization using constrained non-dominated sorting

combined with an improved hybrid
multi-objective evolutionary algorithm

CNS MOEA/D-M2M -

Sato et al., 2018 [11]

Distributed NSGA-II Sharing
Extreme Non-Dominated\
Solutions for Constrained

Knapsack Problems

CDP NSGA-II Island

Yang et al., 2019 [65]

MODE-SaE: A multi-objective di�erential
evolutionary algorithm for constrained

multi-objective optimization
foproblems with low feasible ratio

Adaptive IE DE -

Fan et al., 2019a [27]

An improved epsilon
constraint-handling method in

MOEA/D for CMOPs
with large infeasible regions

IEpsilon MOEA/D -

Fan et al., 2019b [28]
Push and pull search

for solving constrained multiobjective
optimization problems

PPS+IE MOEA/D-DE -

Fan et al., 2019c [29]

MOEA/D with angle-based
constrained dominance

principle for constrained
multiobjective optimization problems

ACDP MOEA/D-DE -

Xu et al., 2020 [55]
IMDE: Di�erential evolution with

infeasible-guiding mutation operators
for constrained multi-objective optimization

Infeasible-Guiding Mutation GDE3 -

Garcia-Garcia et al., 2020 [20]
cMOGA/D: a novel cellular GA

based on decomposition to tackle
constrained multiobjetive problems

PPS+IE MOEA/D+MOCell Cellular
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3.3 Summary

In this chapter the state-of-the-art in constrained MOEAs as well as most relevant par-
allel MOEAs and constrained parallel MOEAs was discussed. From the literature review
presented in this chapter. It is observed that MOEA/D algorithm has served as the basis
for a number of proposed algorithms, many of them using di�erential evolution operator.
Adapting di�erent CHTs to MOEA/D has led to powerful algorithms that can success-
fully solve constrained MOPs. Moreover, in the second half of this chapter, di�erent par-
allel evolutionary algorithms to tackle MOPs and constrained MOPs were analyzed where
MOCell and CellDE stand out. From this analysis, it is concluded that parallel MOEAs have
been scarcely applied to constrained MOPs, and there is a opportunity niche for research
in combination with new CHTs and di�erent approaches such as Pareto or decomposi-
tion. In the following chapter, a new algorithm called cMOGA/D is presented, which is
inspired by cellular genetic algorithms and well-established MOEA/D principles.
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Chapter 4

Cellular Multiobjective Genetic
Algorithm based on Decomposition

This chapter describes all components in the algorithmic proposal based on structural
properties in cellular GAs which directly impacts the searching process and basic concepts
of the MOEA/D algorithm. A general description of MOEA/D basic concepts was provided
in Section 2.5.2.

4.1 cMOGA/D algorithm

The proposed algorithm is inspired by structural properties in cellular GAs to tackle Con-
strained MOPs joined with core principles of MOEA/D. It is called cMOGA/D for short
identi�cation. cMOGA/D inherits MOEA/D’s neighboring principle due to its structured
nature, however, in cMOGA/D neighboring is local and responds only to the population’s
topology based on a toroidally connected mesh (see Figure 4.1). cMOGA/D uses Push and
Pull Search (PPS) as CHT [29]. Figure 4.2 shows all phases of the evolutionary process of
the cMOGA/D algorithm, as well as cMOGA/D, is detailed in Algorithm 13. The following
subsections explain the phases of the cMOGA/D algorithm.

Figure 4.1: Toroidal mesh with a 3 × 3 neighborhood or Moore.

[55]
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Algorithm 13: cMOGA/D
1 %DBℎ(C064 = 1;
2 _8 = (_81, . . . , _8<)) , 8 = 1, . . . , #? ;
3 �(8) = {81, . . . , 8C }, where _81 , . . . , _8) are the ) closest weight vectors to _8 ;
4 Calculate I∗ and =∗ points;
5 % = {x1, . . . , x#? } ;
6 0A2ℎ8E4 = ∅;
7 while : ≤ )<0G do
8 if : >= ; then
9 Set A: using equation 2.6.3;

10 if k<Tc then
11 if A: < d and %DBℎ(C064 == 1 then
12 %DBℎ(C064 == 0;
13 n (: − 1) =<0G+8>;0C8>=;
14 if %DBℎ(C064 == 0 then
15 Set n (:) using equation 2.6.6;

16 else
17 n (:)=0;
18 l = ∅;
19 �A>=C = #�( (%), �A>F = �A>F (%);
20 for 8 = 1 to B8I4 (%) do
21 # = #486ℎ1>A (8);
22 (% = )>DA=0<4=C (�A>=C (% (# )),�A>F (% (# )));
23 Generate ~ from xSP(1) and xSP(2) by GA operator;
24 Polynomial mutation on ~ to new solution ~8 ;
25 Set<0G+8>;0C8>= using equation 2.6.7;
26 6. = 6C4 (~8 |_� (8) , I∗);
27 6# = 6C4 (# |_� (8) , I∗);
28 if PushStage==1 then
29 U = *?30C4(>;DC8>=(~8 , # , 6.,6#, 8);
30 l = l ∪ {U};
31 else
32 U = �<?A>E4�?B8;>=(~8 , %, # ,6.,6#, n (:), 8);
33 l = l ∪ {U};
34 if Type Update==!( | |�( then
35 Update Population using l ;

36 if Type Update==(. then
37 Update Population using l ;
38 0A2ℎ8E4 = 0A2ℎ8E4 ∪ ~;
39 Update external archive;
40 Feedback Mechanics;
41 Update I∗ and =∗ points;
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1. Calculate 
PPS

3. Crossover, 
Mutation

4. Add to external 
archive if it is 

non-dominated

6. Feedback

Figure 4.2: Evolutionary process of cMOGA/D algorithm.

4.1.1 Initialization

Cellular MOGA/D needs certain important variables such as _ reference vectors and to
generate a structure �(8) where ) vectors closest to _8 vector are stored. cMOGA/D uses
PPS and IE as a CHTs, see Section 2.6 for details. Initialization process is written in lines
1 to 6.

cMOGA/D always starts by approaching a CMOP as an unconstrained problem. After
in every generation, nadir and ideal points are calculated to switch to stage two where
problem’s constraints are taken into account. In this stage epsilon (n (:)) value is calcu-
lated. This value is used after at replacement stage, all this process is observed in lines 8
to 17 of the Algorithms 13.

4.1.2 Selection, Recombination and Mutation

cMOGA/D algorithm uses a binary tournament for local solutions selection within neigh-
borhoods determined by a toroidally connected mesh. Local Moore neighborhood (square
shape) has been deployed, see Figure 4.1. It is formed by 9 solutions directly connected to
any current solution.

Binary tournament uses Non-dominated sorting (NDS) and Crowding distance as met-
rics (lines 19 and 22). NDS speci�es a dominance level to all solutions, according to this
it de�nes which solution is better. Moreover, larger crowding distances imply those so-
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lution have more chances for selection. Both NDS and crowding distance are calculated
in every generation, outside the reproductive cycle. Two best solutions are selected, and
they undergo recombination and mutation operations.

Those locally selected solutions are recombined by Simulated Binary Crossing (SBX),
and o�spring are �nally mutated by polynomial mutation, see Sections 2.1.3 and 2.1.4.
Lines 21 to 24 in Algorithm 13 show this operation.

4.1.3 Replacement

In cMOGA/D, lambda reference vectors are used to obtain each individual aggregation
value and are calculated within neighborhoods using Tchebyche� decomposition (Equa-
tion 2.5.1). Initial stage in Algorithm 13 approaches a constraint MOP as an unconstrained
problem; this is calculated by PPS as CHT. Thus, solutions within neighborhoods are eval-
uated in function*?30C4(>;DC8>=, see Algorithm 14. According to their aggregation val-
ues, these are calculated in lines 26 and 27 of Algorithm 13.

In Algorithm 14, 6. is the o�spring aggregation vector ~8 , and 6# is the neighbor-
hood aggregation vector # with respect to _ vectors. 9 indexes central individuals within
neighborhoods and compares aggregation values; if the o�spring value is smaller than
central’s one, this o�spring is stored in a temporary vector.

Algorithm 14:*?30C4(>;DC8>=(~8 , # , 6. , 6# , 8)
1 9 = central individual within # neighbourhood;
2 A = ∅;
3 if 6. ( 9) ≤ 6# ( 9) then
4 A = {~8 , # 9 }
Result: A

For the second stage, cMOGA/D uses Improved Epsilon as a CHT [27]. Improved Ep-
silon CHT de�nes a �exible n parameter which is dynamically reduced as generations
elapse until reaching a zero value. It allows a looseness value of the total sum of con-
straints violation for considering o�spring as feasible solutions or not. This dynamic n is
updated every generation according to Equation 2.6.6 and its value decreases to zero as it
is considered that, in �nal generations, solutions had reached feasible regions within the
landscape. In new versions of MOEA/D, such as MOEA/D-DE [19], =A parameter de�nes
the number of replacements within a neighborhood; however, in the cMOGA/D algo-
rithm, no multiple replacements are applied, so there is a reduction in the comparisons

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica



4.1 cMOGA/D algorithm 59
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Figure 4.3: Replacement mechanism.

made. The Improved Epsilon algorithm, see Algorithm 15, uses overall constraints viola-
tion sum (q ()) for solutions comparison. In this case, o�spring and solution for 9 index,
in the �rst two conditions of the Algorithm 15. Overall constraints violation sum and ep-
silon value are compared, based on these conditions an extra comparison is made between
aggregation values of each solution. If o�spring has lower aggregation value this is saved
to replace the solution; in the same way, in a second condition aggregation value is taken
as a priority. Finally, if neither the �rst two conditions are satis�ed, solution feasibility
is taken as a priority. If the solution has a lower overall constraints violation sum, it is
chosen to replace the neighborhood solution. Normally, in MOEA/D-DE variants [58], 9
variable is chosen at random; in cMOGA/D, the index with the highest aggregation value
is used to ensure those o�spring remain in the next generation. Figure 4.3 shows in detail
internal functioning of the replacement mechanism, and also shows how Algorithms 14
and 15 take di�erent paths depending on PPS.

The use of a cellular structure brings the bene�t of using di�erent approaches to up-
date the grid; it is at this point that solutions are replaced, here all the solutions stored in
l are used. In cMOGA/D three types of updating were de�ned: Synchronous, Line sweep,
and Asynchronous. Depending on the update type, the algorithm will have di�erent be-
havior, increasing or decreasing the spread of the solutions in the grid. In Algorithm 11,
synchronous update type is taken out of the reproductive cycle, while asynchronous and
line sweep are taken into the cycle; this di�erence makes asynchronous and line sweep
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Algorithm 15: �<?A>E43�?B8;>=(~8, %, # ,6.,6#, n (:), 8)
1 A = ∅;
2 9 =<0G (6# );
3 if q (~8) ≤ n (:) and q (% (# 9 )) ≤ n (:) then
4 if 6. ( 9) ≤ 6# ( 9) then
5 A = {~8 , # 9 }
6 else if q (~8) == q (% (# 9 )) then
7 if 6. ( 9) ≤ 6# ( 9) then
8 A = {~8 , # 9 }
9 else if q (~8) < q (% (# 9 )) then
10 A = {~8 , # 9 }

Result: A

versions more aggressive at introducing new solutions, unlike synchronous version; In
Section 2.9.1, details on di�erent updating criteria are provided. Algorithms 10, 11 and 12
are the same ones used by cMOGA/D in lines 35 and 37 of Algorithm 13.

4.1.4 Feedback mechanism

Lines 39 and 40 in Algorithm 13 de�ne an updating mechanism through an external
archive. Thus, an external archive is used to store the best solutions in every genera-
tion to feedback the population as a good diversity source. This mechanism is inherited
from the MOCell algorithm [9] and corresponding procedures are shown in Algorithms
16 and 17.

Algorithm 16:*?30C4�GC4A=0;�A2ℎ8E4 (0A2ℎ8E4, %)
1 0A2ℎ8E4 = #�( (0A2ℎ8E4, 1);
2 if B8I4 (�A2ℎ8E4) > B8I4 (%) then
3 Use crowding distance to rank the archive.
Result: 0A2ℎ8E4

Algorithm 16 shows how an external archive is �lled, only o�spring evolved in every
generation are used and they are �ltered by using non-dominated sorting to obtain those
at the �rst front. If an archive exceeds the population’s size, crowding distance is used to
truncate the archive removing solutions with worse distance. This archive is later used
(see Algorithm 17) as the population’s feedback considering a maximum X value for re-
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placements. ='4? is the number of replacements chosen at random. These solutions are
placed back aiming at improving diversity and therefore the searching process.

Algorithm 17: �44310: (0A2ℎ8E4, %)
1 ='4? =<8=(<8=(X, B8I4 (%)), B8I4 (0A2ℎ8E4));
2 for i=1 to nRep do
3 0, 1 = A0=3 ;
4 % (0) = 0A2ℎ8E4 (1);
Result: %

4.2 Experimental Design

For a thorough empirical assessment, the proposed cMOGA/D is compared against two
popular algorithmic approaches: MOEA/D and MOCell using the Push and Pull Search
as CHT. For experimental deployment, a multiobjective optimization platform called
PlatEmo, [74] has been used. It is fully developed in MatLab and provides several di�er-
ent algorithms and benchmark functions as well as a friendly testing environment with
widely accepted performance metrics in the area.

Following parameters con�gured for each algorithmic approach including the pro-
posed cMOGA/D are shown in Table 4.1. MOEA/D-PPS parameters are the same Authors
used in their proposal [28]. cMOGA/D and MOCellPPS use default parameters of most
MOEAs that use the genetic operator. The only change is in the d variable, this variable
decides switching between stage one and two for PPS. This parameter is adjusted since
cMOGA/D takes more generations to make this change. Moreover, X parameter is set to
30 since it is 10% of the population.

4.2.1 Benchmark functions

For empirical validation, a benchmark proposed in [75] is tackled. It has fourteen con-
strained functions classi�ed in 4 di�erent types:

• Type I: Constrained and unconstrained PF are the same.

• Type II: Constrained Pareto front is a part of unconstrained PF since constraints
make a portion of unconstrained PF infeasible.
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Table 4.1: Parameters con�guration for MOEA/D-PPS, MOCELLPPS and cMOGA/D.

MOEA/D-PPS cMOGA/D MOCELLPPS
Population size # = 300

Population ?< = 1
=

, where = is the decision vector dimension
Distribution index is set to 20.

DE parameters
�' = 1.0, � = 0.5

GA parameters
Crossover ratio %2 = 1,

Distribution index for SBX �B2 = 20.
Neighborhood size T=30 Neighborhood size T=9

CHT parameters
)2 = 400, U = 0.95,

g = 0.1, 2? = 2, ; = 20,
=A = 2, d = 14 − 3

CHT parameters
)2 = 400, U = 0.95,
g = 0.1, ; = 20,
d = 14 − 2, X = 30

CHT parameters
)2 = 800, ; = 20, d = 14 − 3, X = 20

Stopping condition: each algorithm is executed 30 independent runs
and stops when 150,000 function evaluations are reached.

• Type III: Constrained PF is a part of unconstrained PF and a part of a feasible region
boundary.

• Type IV: Unconstrained PF is entirely located outside the feasible region. Thus, con-
strained PF is composed of a part of the feasible region boundary.

This benchmark proposes a more general scheme in constrained multiobjective prob-
lems because it o�ers several features extracted from real-world problems (Figure 4.4
graphically shows the characteristics of the 4 types of problems de�ned in the MW bench-
mark). Each type of problem speci�ed above is intended to generalize some real-world
problems since if the algorithms were tested on speci�c problems would require prior
knowledge. The authors decided to extract the characteristics of several studies conducted
on real-world problems: Low feasibility ratios, su�cient constraints non linearity, more
than two constraints, high dimensional decision vectors, convergence di�culty, and di-
verse geometric PFs [75].

4.3 Results Analysis

Tables 4.2 and 4.3 show overall performance results in terms of Inverted Generational
Distance (IGD) and Hypervolume (HV) metrics, these are drawn as average and standard
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Figure 4.4: Constrained multiobjective problems classi�cation of the MW benchmark.
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deviation (in parentheses). The proposed approach is empirically compared to two pre-
viously proposed approaches known as MOCell and MOEA/D-PPS. cMOGA/D is con�g-
ured to execute three updating mechanisms: synchronous (SY), line Swipe (LS), and asyn-
chronous (AS). Moreover, Wilcoxon statistical test considering cMOGA/D-SY, its Syn-
chronous version, as reference. In Table 4.2, cMOGA/D shows a signi�cantly better per-
formance to previously proposed approaches MOEA/D-PPS and MOCellPPS in 12 out of
14 problems regarding IGD metric. On the other hand, HV metric in Table 4.3, shows
similar results were achieved by cMOGA/D also in 12 out of 14 problems. Both IGD and
HV tables show that cMOGA/D-SY, its synchronous version, achieved signi�cantly better
results.

Regarding updating mechanisms in cMOGA/D: synchronous, line sweep and asyn-
chronous, results demonstrate that synchronous updating performs better, followed by
line swipe and �nally asynchronous updating. It can be observed in both tables that
cMOGA/D in its synchronous version has di�culties to solve type III problems. In those
problems, the constrained Pareto front is part of the unconstrained Pareto front. It is ap-
preciated that algorithmic approaches with an asynchronous updating mechanism, in-
cluding the well established MOEA/D, achieve better solutions in these type III prob-
lems. Moreover, problem’s types I, II, and IV are successfully tackled by cMOGA/D-SY,
and good results are in general achieved. For an overall perspective of cMOGA/D per-
formance, Figure 4.5 shows obtained results in terms of the average �nal PFs achieved
by the proposed and previous algorithmic approaches for the 14 problems, each one be-
longs to one problem type mentioned before in Subsection 4.2.1, it can be observed that
in most of the Figures 4.5 cMOGA/D-SY (in red) algorithm obtains a better distribution
than MOCellPPS (in green) and MOEA/D-PPS (in blue), the di�erence is more notable
against MOCellPPS algorithm, on the other hand, in some Pareto fronts there is almost no
di�erence between cMOGA/D-SY and MOEA/D-PPS, taking as reference MW7 (Figure
4.5g) problem, in which MOEA/D-PPS algorithm according to HV metric is superior to
cMOGA/D-SY, it can be seen that di�erence is very small. Another similar case is MW3
(Figure 4.5c) problem in which according to IGD metric MOEA/D-PPS algorithm is supe-
rior. Likewise di�erence between fronts is minimal, when targeting two objectives prob-
lems; in problems MW4, MW8, MW14 ( Figures 4.5d, 4.5h, 4.5n), Pareto fronts are in three
dimensions, clearly it is more di�cult to analyze them because there is not a single general
view of the front. However, according to IGD and HV metrics cMOGA/D-SY algorithm is
superior to the others, and this is clearly visible in the �gures already mentioned, where
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cMOGA/D-SY establishes solutions within feasible zones.

Table 4.2: IGD metric results for cMOGA/D vs MOCell and MOEA/D-PPS on MW bench-
mark functions. cMOGA/D updating mechanisms: synchronous (SY), line Swipe (LS) and
asynchronous (AS). Columns " and � correspond to the number of objectives and vec-
tor’s dimension, respectively. Wilcoxon statistical test with cMOGA/D-SY as reference
is applied, the results marked in grey, are the best results obtained from each function,
"+/−/≈" means corresponding algorithm is signi�cantly better, worst or not signi�cantly
di�erent to cMOGA/D-SY.

Problem Type " � MOEA/D-PPS MOCellPPS cMOGA/D-LS cMOGA/D-AS cMOGA/D-SY
MW1 II 2 15 1.7255e-3 (2.22e-3) − 1.6580e-3 (1.01e-3) − 7.8363e-4 (7.19e-5) ≈ 7.9553e-4 (6.67e-5) ≈ 7.6049e-4 (5.86e-5)
MW2 I 2 15 1.3095e-1 (5.79e-2) − 1.4683e-2 (5.92e-3) − 1.4040e-2 (6.16e-3) − 1.0074e-2 (5.86e-3) − 7.9668e-3 (4.98e-3)
MW3 III 2 15 2.4055e-3 (3.11e-4) + 4.8579e-2 (8.16e-4) − 3.0580e-3 (4.26e-4) ≈ 3.1124e-3 (3.20e-4) − 2.8842e-3 (3.37e-4)
MW4 I 3 15 4.4447e-2 (2.85e-2) ≈ 4.4850e-2 (1.50e-3) − 3.7178e-2 (1.34e-3) ≈ 3.6996e-2 (1.12e-3) ≈ 3.6800e-2 (1.28e-3)
MW5 II 2 15 3.3501e-2 (1.34e-1) − 3.7009e-1 (1.68e-1) − 2.1140e-3 (2.47e-3) ≈ 1.9583e-3 (1.68e-3) ≈ 1.8314e-3 (2.22e-3)
MW6 II 2 15 5.0829e-1 (2.49e-1) − 1.1672e-2 (7.70e-3) − 4.4656e-3 (4.58e-3) ≈ 8.0826e-3 (6.62e-3) ≈ 6.9728e-3 (5.67e-3)
MW7 III 2 15 3.0890e-3 (3.33e-4) − 2.0169e-1 (8.16e-4) − 2.6288e-3 (3.04e-4) ≈ 2.6708e-3 (2.74e-4) ≈ 2.7359e-3 (3.65e-4)
MW8 II 3 15 1.3458e-1 (4.78e-2) − 4.0319e-2 (3.18e-3) − 3.2238e-2 (2.41e-3) ≈ 3.2734e-2 (3.54e-3) ≈ 3.2754e-2 (2.95e-3)
MW9 IV 2 15 4.6264e-1 (6.00e-1) − 6.3139e-1 (1.40e-4) − 2.9315e-3 (2.20e-4) − 2.9368e-3 (2.19e-4) ≈ 2.8337e-3 (2.15e-4)
MW10 III 2 15 3.9197e-1 (1.98e-1) − 3.0459e-2 (2.19e-2) − 9.8878e-3 (9.73e-3) ≈ 7.8977e-3 (7.48e-3) ≈ 8.4577e-3 (1.06e-2)
MW11 IV 2 15 5.3170e-3 (3.59e-4) − NaN (NaN) 3.3982e-3 (4.23e-4) − 3.7239e-3 (6.07e-4) − 2.9818e-3 (1.96e-4)
MW12 IV 2 15 9.0947e-2 (1.90e-1) − NaN (NaN) 2.7820e-2 (1.39e-1) ≈ 2.5434e-3 (1.43e-4) − 2.4455e-3 (1.41e-4)
MW13 III 2 15 3.4373e-1 (2.44e-1) − 1.4007e-1 (3.10e-2) − 2.6674e-2 (2.49e-2) ≈ 3.0510e-2 (2.48e-2) − 1.6437e-2 (1.39e-2)
MW14 I 3 15 1.7968e-1 (1.63e-2) − 2.1555e-1 (1.15e-1) − 1.1787e-1 (8.23e-2) ≈ 1.1417e-1 (6.51e-2) ≈ 1.0211e-1 (5.01e-2)

+/−/≈ 1/12/1 0/12/0 0/3/11 0/5/9
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Table 4.3: HV metric results for cMOGA/D vs MOcell and MOEA/D-PPS on MW bench-
mark functions. cMOGA/D updating mechanisms: synchronous (SY), line Swipe (LS) and
asynchronous (AS). Columns " and � correspond to the number of objectives and vec-
tor’s dimension, respectively. Wilcoxon statistical test with cMOGA/D-SY as reference
is applied, the results marked in grey are the best results obtained from each function,
"+/−/≈" means corresponding algorithm is signi�cantly better, worst or not signi�cantly
di�erent to cMOGA/D-SY.

Problem Type " � MOEA/D-PPS MOCellPPS cMOGA/D-LS cMOGA/D-AS cMOGA/D-SY
MW1 II 2 15 4.8846e-1 (4.45e-3) − 4.8803e-1 (1.98e-3) − 4.9000e-1 (1.81e-4) ≈ 4.8994e-1 (1.94e-4) − 4.9008e-1 (1.49e-4)
MW2 I 2 15 4.0965e-1 (6.82e-2) − 5.6379e-1 (1.06e-2) − 5.6477e-1 (1.05e-2) − 5.7162e-1 (9.89e-3) − 5.7510e-1 (8.29e-3)
MW3 III 2 15 5.4788e-1 (6.96e-5) + 5.3642e-1 (7.73e-4) − 5.4554e-1 (7.40e-4) − 5.4549e-1 (6.92e-4) − 5.4587e-1 (6.53e-4)
MW4 I 3 15 8.1742e-1 (4.44e-2) − 8.3252e-1 (1.87e-3) − 8.3994e-1 (2.18e-3) ≈ 8.3971e-1 (1.86e-3) ≈ 8.4023e-1 (1.90e-3)
MW5 II 2 15 3.1117e-1 (4.17e-2) − 2.0176e-1 (3.72e-2) − 3.2369e-1 (8.96e-4) ≈ 3.2376e-1 (6.12e-4) ≈ 3.2367e-1 (1.51e-3)
MW6 II 2 15 1.0947e-1 (6.40e-2) − 3.1269e-1 (1.05e-2) − 3.2419e-1 (6.55e-3) ≈ 3.1910e-1 (9.17e-3) ≈ 3.2062e-1 (7.94e-3)
MW7 III 2 15 4.1367e-1 (1.69e-4) + 3.4376e-1 (8.16e-4) − 4.1331e-1 (4.15e-4) ≈ 4.1320e-1 (3.23e-4) ≈ 4.1322e-1 (5.72e-4)
MW8 II 3 15 3.5429e-1 (7.61e-2) − 5.3260e-1 (8.56e-3) − 5.4476e-1 (7.98e-3) ≈ 5.4328e-1 (1.04e-2) ≈ 5.4343e-1 (1.02e-2)
MW9 IV 2 15 1.9664e-1 (1.66e-1) − 9.0533e-2 (2.70e-4) − 4.0137e-1 (1.32e-3) ≈ 4.0130e-1 (1.44e-3) ≈ 4.0117e-1 (1.15e-3)
MW10 III 2 15 2.2899e-1 (9.06e-2) − 4.2707e-1 (1.95e-2) − 4.4471e-1 (1.15e-2) ≈ 4.4686e-1 (9.61e-3) ≈ 4.4663e-1 (1.17e-2)
MW11 IV 2 15 4.4752e-1 (2.15e-4) − NaN (NaN) 4.4753e-1 (3.54e-4) − 4.4670e-1 (8.87e-4) − 4.4807e-1 (3.16e-4)
MW12 IV 2 15 5.2279e-1 (1.67e-1) − NaN (NaN) 5.8643e-1 (1.11e-1) ≈ 6.0653e-1 (2.67e-4) ≈ 6.0670e-1 (2.77e-4)
MW13 III 2 15 2.9622e-1 (9.32e-2) − 4.3635e-1 (1.57e-2) − 4.6616e-1 (1.14e-2) ≈ 4.6339e-1 (1.07e-2) − 4.7000e-1 (7.54e-3)
MW14 I 3 15 4.4427e-1 (6.44e-3) − 4.1241e-1 (4.95e-2) − 4.5689e-1 (2.31e-2) ≈ 4.5714e-1 (2.03e-2) ≈ 4.6195e-1 (1.40e-2)

+/−/≈ 2/12/0 0/12/0 0/3/11 0/5/9
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Figure 4.5: Average PFs for MOCell, MOEA/D-PPS and the proposed algorithm
cMOGA/D-SY on the 14 test problems of MW benchmark.
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4.3.1 Time Analysis

Experimental assessment was carried out on a processor Intel Core I5 2.30 GHz, in 64 bits
Windows 10 operating system, with 8GB RAM. Code was written in MATLAB R2019a, all
tests were performed on the PlatEMO platform [74] fully developed in MATLAB [76]. For
time analysis, the total time for the algorithm to run was calculated. After the algorithm
was executed 30 times independently. In the same way as IGD and HV metrics; Table 4.4
shows the average in seconds that an algorithm takes to complete the 150,000 assigned
evaluations for every problem.

Results show that MOEA/D-PPS had the slowest processing times, this is due to the
size of the neighborhoods used by MOEA/D-PPS which are proportional to the popu-
lation’s size. Therefore, as the population size increases, neighborhoods tend to become
larger. It was mentioned in previous sections that MOEA/D-PPS neighborhoods are based
on reference points that are uniformly distributed in the solution space. MOEA/D-PPS
takes longer to calculate and perform a solution replacement; because in �rst instance
MOEA/D-PPS takes random indexes to compare between o�spring and parents. Later
this process is made =A number of times until any of the two conditions are satis�ed. First
condition if all solutions are evaluated against o�spring, if any of them is worst there
is not replacement. On contrary, if o�spring is better, this process is carried out =A num-
ber of times until the maximum number of replacements is ful�lled, making the algorithm
computationally more expensive. Unlike MOEA/D-PPS, neighborhoods used in cellular al-
gorithms are not related to population size; therefore, in cMOGA/D and MOCellPPS with
Moore neighborhoods, the number of comparisons is reduced. Moreover, in cMOGA/D,
there are not multiple replacements, this is re�ected in Table 4.4 with shorter times than
MOEA/D-PPS.

It can be noted that MOCellPPS algorithm takes less time to evaluate than the other
algorithms; this is because MOCellPPS algorithm is based entirely on non-dominance
and all comparisons are made using the hierarchy given by that scheme. cMOGA/D and
MOEA/D-PPS use non-dominance as well as the decomposition approach. This adds more
complexity to the algorithm because it takes more steps to calculate it. Nevertheless, the
di�erence that exists in terms of time between both algorithms is small. Considering IGD
and HV metrics for overall performance, cMOGA/D achieves much better performance
both in time and algorithmic performance metrics obtained.
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Table 4.4: Runtime results for cMOGA/D vs MOCell and MOEA/D-PPS on MW bench-
mark functions. cMOGA/D updating mechanisms: synchronous (SY), line Swipe (LS) and
asynchronous (AS). Columns " and � correspond to the number of objectives and vec-
tor’s dimension, respectively. Wilcoxon statistical test with cMOGA/D-SY as reference
is applied, the results marked in grey are the best results obtained from each function,
"+/−/≈" means corresponding algorithm is signi�cantly better, worst or not signi�cantly
di�erent to cMOGA/D-SY.

Problem " � MOEA/D-PPS MOCellPPS cMOGA/D-LS cMOGA/D-AS cMOGA/D-SY
MW1 2 15 1.8461e+2 (1.77e+1) 6.4010e+1 (5.44e+0) + 6.4575e+1 (4.11e+0) + 5.8516e+1 (4.30e+0) + 7.0383e+1 (5.69e+0) +
MW2 2 15 1.8774e+2 (1.55e+1) 4.9164e+1 (3.67e+0) + 6.1964e+1 (5.10e+0) + 5.3287e+1 (3.78e+0) + 6.4259e+1 (4.54e+0) +
MW3 2 15 1.8493e+2 (1.94e+1) 5.0877e+1 (4.34e+0) + 6.1651e+1 (4.01e+0) + 5.4801e+1 (3.25e+0) + 6.7733e+1 (6.31e+0) +
MW4 3 15 1.4730e+2 (1.28e+1) 6.8132e+1 (7.47e+0) + 6.5284e+1 (4.15e+0) + 5.6738e+1 (3.55e+0) + 6.6713e+1 (4.36e+0) +
MW5 2 15 1.9289e+2 (1.40e+1) 5.8431e+1 (4.23e+0) + 6.7023e+1 (4.10e+0) + 5.8043e+1 (4.97e+0) + 6.5348e+1 (4.48e+0) +
MW6 2 15 1.7618e+2 (1.69e+1) 5.1913e+1 (3.07e+0) + 6.1763e+1 (3.86e+0) + 5.2858e+1 (3.44e+0) + 6.2979e+1 (4.50e+0) +
MW7 2 15 1.5707e+2 (9.99e+0) 5.4559e+1 (4.93e+0) + 6.3900e+1 (3.84e+0) + 5.8170e+1 (3.80e+0) + 6.9309e+1 (4.15e+0) +
MW8 3 15 1.4182e+2 (1.09e+1) 6.5574e+1 (6.41e+0) + 6.5040e+1 (3.92e+0) + 5.6733e+1 (3.70e+0) + 6.6136e+1 (4.21e+0) +
MW9 2 15 1.3689e+2 (9.37e+0) 5.6032e+1 (5.04e+0) + 6.3391e+1 (4.09e+0) + 5.3801e+1 (3.24e+0) + 6.3916e+1 (4.01e+0) +
MW10 2 15 1.7341e+2 (1.89e+1) 4.8288e+1 (3.73e+0) + 6.3023e+1 (4.03e+0) + 5.4540e+1 (3.35e+0) + 6.4364e+1 (4.01e+0) +
MW11 2 15 1.5335e+2 (9.12e+0) 4.8219e+1 (3.67e+0) + 6.7583e+1 (3.75e+0) + 6.1350e+1 (4.35e+0) + 7.1164e+1 (4.34e+0) +
MW12 2 15 1.5889e+2 (9.95e+0) 5.0345e+1 (3.34e+0) + 6.5601e+1 (4.32e+0) + 5.6265e+1 (3.90e+0) + 6.6987e+1 (5.07e+0) +
MW13 2 15 1.3785e+2 (8.67e+0) 4.8626e+1 (4.63e+0) + 7.1252e+1 (6.66e+0) + 5.8563e+1 (4.91e+0) + 6.6167e+1 (4.66e+0) +
MW14 3 15 1.2624e+2 (7.79e+0) 5.4054e+1 (6.20e+0) + 6.9968e+1 (5.16e+0) + 6.0669e+1 (3.89e+0) + 7.1636e+1 (4.80e+0) +
+/−/≈ 14/0/0 14/0/0 14/0/0 14/0/0

4.3.2 Algorithm complexity for evolutionary algorithms

For an in-depth analysis, a complexity analysis for evolutionary algorithm that have been
used on competitions at the Congress on Evolutionary Computation, one of the top con-
ferences in the area, is carried out [77, 78, 79, 80, 81]. In the evolutionary computing
community, the term complexity algorithm was assigned to this procedure although it is
not closely related to formal mathematical analysis. The main idea behind this analysis
is to de�ne what is the exact time that algorithm takes without counting the evaluation
process of objective functions. Finally, this measure is divided by a value that is de�ned
by the time it takes for the processing platform to make a de�ned number of calculations
to normalize the �nal result. Three variables are involved in this process, they are de�ned
as follows:

• A) ) 0 is obtained by evaluating the machine time to perform the following evalua-
tions:
5 >A 8 = 1 : 100000
G = 0.55 + 8;
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G = G + G ;G = G/2;G = G ∗ G ;G = B@AC (G);G = ;>6(G);G = 4G? (G);G = G/(G + 2);
4=3

• B) ) 1 is obtained by evaluating the time it takes to evaluate a chosen function =
number of times. In this case, 150,000 evaluations were used and the MW3 problem
of the MW benchmark was chosen.

• (c) ) 2 is the time for the algorithm to solve a function with a maximum number of
evaluations, from this value, )̂ 2 value is calculated. )̂ 2 is the average running time
for 30 executions targeting the MW3 benchmark problem.

Once these three values are calculated the following calculation is carried out ()̂ 2 −
) 1)/) 0. The value obtained from this operation re�ects the total time it takes for the algo-
rithm to perform all evolutionary stages (selection, crossover, mutation, and replacement)
while removing the time it takes to evaluate the target function, which is normally the
bottleneck calculation in most evolutionary optimization algorithms. In Table 4.5, it can
be seen the values obtained.

Table 4.5: Results of the operation ()̂ 2 −) 1)/) 0.

Algorithm ()̂ 2 −) 1)/) 0
MOEA/D-PPS 2.127085858842389e+03
MOCellPPS 4.103302217426470e+02

cMOGA/D-SY 5.973353766180987e+02
cMOGA/D-LS 5.689036554893037e+02
cMOGA/D-AS 4.614082113783865e+02

From Table 4.5, it can be seen that these results e�ectively con�rm results shown
in Table 4.4, with MOEA/D-PPS being the slowest-running algorithm. For MOCellPPS
algorithm, as explained in Section 4.3.1, since it is based on non-dominance and is simpler
than cMOGA/D, it is faster, but its performance is worst in IGD and HV metrics.

On the other hand, it can be noticed how depending on the updating criteria that
cMOGA/D uses, it increases the time that it takes to complete all evaluations. Asyn-
chronous updating is the fastest from the three, following Line Sweep and �nally Syn-
chronous criterion. This behavior is given by how the grid is updated, synchronous updat-
ing keeps in a temporary variable all solutions to replace, and wait to �nish the generation
for updating. In contrast, asynchronous updating does not use this temporary variable. As
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a middle case, Line Sweep criterion uses the temporary variable but a current generation
does not need to �nish for updating.

4.4 Summary

Combining cellular genetic algorithms and MOEA/D decomposition principles lead the
way to cMOGA/D algorithm to tackle constrained MOPs. It uses Push and Pull search
and Improved Epsilon as CHTs. cMOGA/D implements three update types: Synchronous,
Line Sweep, and Asynchronous, which have di�erent e�ects on how solutions are spread
throughout the mesh. From a thorough empirical assessment on the MW benchmark, it
is observed that cMOGA/D in its synchronous version obtains a superior performance in
comparison to MOEA/D-PPS and MOCellPPS algorithms on IGD and HV metrics. A time
analysis was also conducted, concluding that cMOGA/D is faster than MOEA/D-PPS.

The next chapter extends the proposed algorithmic approach to apply di�erential evo-
lution operators in combination with decomposition concepts to solve constrained mul-
tiobjective problems with large unfeasible areas from LIR-CMOPs benchmark.
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Chapter 5

Cellular Multiobjective Di�erential
Evolution Algorithm based on

Decomposition

Benchmark problems for constrained optimization present landscapes with challenging
characteristics such as large zones of infeasibility, complex-shaped Pareto fronts, as well
as concave and convex Pareto fronts. In order to further demonstrate robustness of the
proposed approach based on cellular EAs to tackle constrained multiobjective problems.
In this chapter, LIRCMOP problems, which present large infeasible regions, are tackled
through a cellular evolutionary model while using Di�erential Evolution operations to
drive the search.

5.1 cMODE/D Algorithm

The proposed cMODE/D algorithm uses the di�erential evolution operator to tackle Large
Infeasible Regions-Constrained Multiobjective Problems (LIRCMOP) [27]. The main fea-
ture of this benchmark is that constraints generate large infeasible regions, this makes the
evolutionary process much more di�cult because it must be able to get through these re-
gions to reach the Pareto front. cMODE/D is based on properties of cellular evolutionary
algorithms in combination with MOEA/D principles. In this case, di�erential evolution
operators are used, speci�cally DE/rand/1/bin version, since it has been widely used to
deal with constrained problems [43, 29, 28, 27, 68]. cMODE/D is based on a fully con-
nected toroidal grid, cMODE/D uses PPS and IE as CHT. Figure 5.1, shows all phases of
the evolutionary process for cMODE/D algorithm, and it is detailed in Algorithm 18.

[75]
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Algorithm 18: cMODE/D
1 %DBℎ(C064 = 1;
2 _8 = (_81, . . . , _8<)) , 8 = 1, . . . , #? ;
3 �(8) = {81, . . . , 8C }, where _81 , . . . , _8) are the ) closest weight vectors to _8 .;
4 Calculate I∗ and =∗ points;
5 % = {x1, . . . , x#? } ;
6 0A2ℎ8E4 = ∅;
7 while : ≤ )<0G do
8 if : >= ; then
9 Set A: using equation 2.6.3;

10 ? 5 =
q (G)
B8I4 (% ) feasibility rate;

11 if k<Tc then
12 if A: < d and %DBℎ(C064 == 1 then
13 %DBℎ(C064 == 0;
14 n (: − 1) =<0G+8>;0C8>=;
15 if %DBℎ(C064 == 0 then
16 Set n (:) using equation 2.6.6;

17 else
18 n (:)=0;
19 l = ∅;
20 �A>=C = #�( (%), �A>F = �A>F (%);
21 for 8 = 1 to B8I4 (%) do
22 # = #486ℎ1>A (8);
23 (% = )>DA=0<4=C (�A>=C (% (# )),�A>F (% (# )));
24 Generate ~ from xSP(1) , xSP(2) and xSP(3) by DE operator;
25 Polynomial mutation on ~ to new solution ~8 ;
26 Set<0G+8>;0C8>= using equation 2.6.7;
27 6. = 6C4 (~8 |_� (8) , I∗);
28 6# = 6C4 (# |_� (8) , I∗);
29 if PushStage==1 then
30 U = *?30C4(>;DC8>=(~8 , %, # ,6.,6#, 8, =A );
31 l = l ∪ {U};
32 else
33 U = �<?A>E4�?B8;>=(~8 , %, # ,6.,6#, n (:), 8, =A );
34 l = l ∪ {U};
35 if Type Update==!( | |�( then
36 Update Population using l ;

37 if Type Update==(. then
38 Update Population using l ;
39 0A2ℎ8E4 = 0A2ℎ8E4 ∪ ~;
40 Update external archive;
41 if ?5 ≤ 0.5 then
42 Feedback Mechanics;
43 else
44 Replace Worst Feedback Mechanics;
45 Update I∗ and =∗ points;
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Figure 5.1: Evolutionary process of cMODE/D algorithm, % 5 is the population feasibility.

5.1.1 Initialization

Before parents’ selection, cMODE/D needs to de�ne certain important variables such as _
reference vectors and to generate a structure �(8) where) vectors closest to _8 vector are
stored. Later on, as already mentioned, cMODE/D uses PPS as a CHT as well as IE (see
Section 2.6). Initialization process is observed in lines 1 to 6.

cMODE/D always starts in stage one approaching the problem without constrains,
later on in each generation, nadir and ideal points are calculated to switch to stage two
where and target the problem with constraints. In stage two, epsilon (n (:)) value is cal-
culated, it is used later in the replacement stage. This process is observed in lines 8 to 18
of Algorithm 18.

5.1.2 Selection, recombination and mutation

cMODE/D algorithm uses a binary tournament for local solutions selection within neigh-
borhoods determined by a toroidally connected mesh such as cMOGA/D, local Moore
neighborhood (square shape) has been deployed, it is formed by 9 solutions directly con-
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nected to any current solution. Binary tournament uses Non-dominated sorting (NDS)
and Crowding distance as metrics (lines 19 and 22 in Algorithm 18). NDS speci�es a dom-
inance level to all solutions, depending on it de�nes which solution is better. A larger
crowding distance for a solution means, it has higher probability to be selected. It should
be speci�ed that both NDS and crowding distance are calculated every generation, out-
side the reproductive cycle. Thus, three best solutions are selected, and these will go into
the recombination and mutation phase. Those locally selected solutions are recombined
by Di�erential Evolution operator using Equation 2.5.2. O�spring are �nally mutated by
polynomial mutation, see Sections 2.3,2.5.2 and 2.1.4. Recombination and mutation are
detailed in lines 20 to 25 of Algorithm 18.

5.1.3 Replacement

In cMODE/D, lambda reference vectors are used to obtain each individual aggregation
value and are calculated within neighborhoods using Tchebyche� decomposition (Equa-
tion 2.5.1). The initial stage in Algorithm 18 approaches a constraint MOP as an uncon-
strained problem; this is calculated by PPS as a contraint handling technique. Thus, solu-
tions within neighborhoods are evaluated in function *?30C4(>;DC8>=, see Algorithm 19
and according to their aggregation values. See lines 27 and 28 of Algorithm 18.

Di�erent from cMOGA/D, where only one comparison and one replacement is done, in
cMODE/D a stronger impact throughout the search is given by the replacement criterion
through an extra parameter =A , it allows increasing the number of comparisons and the
maximum number of replacements within the neighborhood.

In Algorithm 19, =A parameter is included as a control to the maximum number of re-
placements that will be made within the neighborhood. Vectors 6. and 6# are compared
in a random index 9 , since multiple comparisons are made, any solution in the neigh-
borhood is given the opportunity to be compared to o�spring or evolved solutions. This
process is repeated until =A number of replacements have been made, or all solutions in
the neighborhood have been compared.

For the second stage, cMODE/D uses Improved Epsilon as CHT [27]. Improved Epsilon
CHT de�nes a �exible n parameter which is dynamically reduced with generations. It
allows a lossless value of the total sum of constraints violation for considering o�spring
as feasible solutions or not. This dynamic n is updated every generation according to
Equation 2.6.6 and its value decreases to zero as it is considered that, in �nal generations,
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Algorithm 19:*?30C4(>;DC8>=(~8 , % , # , 6. , 6# , 8, =A )
1 A = ∅, 2 = 0;
2 while % ≠ ∅ or 2 ≠ =A do
3 9 = uniform random number between 1 and B8I4 (%);
4 if 6. ( 9) ≤ 6# ( 9) then
5 A = A

⋃{~8 , # 9 };
6 2 = 2 + 1;
7 ? ( 9), 6. ( 9), 6# ( 9) = ∅;
Result: A

solutions had reached feasible regions within the landscape.
The Improved Epsilon algorithm, see Algorithm 20, utilizes overall constraints viola-

tion sum (q ()) of solutions for comparison. Similar to Algorithm 19, =A parameter is used,
and variable 9 is chosen as the solution in the neighborhood with the highest aggregation
value. The idea is to replace as many bad solutions as possible.

In the �rst two conditions of the Algorithm 20, the overall constraints violation sum is
compared, as well as the epsilon value, depending on these conditions another comparison
is made between aggregation values of each solution. If o�spring has smaller aggregation
value, it is saved to replace the solution; in the same way, in the second condition aggre-
gation value is taken as a priority. Finally, if neither �rst two conditions are satis�ed, in
the last condition solution’s feasibility is taken as a priority. Thus, if a solution has a lower
overall constraints violation sum it is chosen to replace the neighborhood solution.

Figure 5.2 shows in detail internal functioning of the replacement mechanism. This is
also shown in Algorithms 19 and 20 considering di�erent algorithmic steps according to
PPS.

Using a cellular structure provides the bene�t of using di�erent approaches to update
the grid. It is at this point that solutions are replaced. All solutions stored in l are used.
Similar to cMOGA/D, in cMODE/D, three types of updating are de�ned: Synchronous,
Line Sweep, and Asynchronous. Depending on updating criterion, the algorithm will
have di�erent behavior, increasing or decreasing the spread of the solutions througout
the grid. In Algorithm 18, synchronous update type is taken out of the reproductive cycle,
while asynchronous and line sweep are taken into the cycle. This di�erence makes asyn-
chronous and line sweep versions more aggressive at introducing new solutions, unlike
the synchronous version. In Section 2.9.1, those di�erent updating criteria are explained
in details. Algorithms 10, 11 and 12 are common to cMOGA/D and cMODE/D in lines 35
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Algorithm 20: �<?A>E4�?B8;>=(~8, %, # ,6.,6#, n (:), 8, =A )
1 A = ∅, 2 = 0;
2 while % ≠ ∅ or 2 ≠ =A do
3 9 =<0G (6# );
4 if q (~8) ≤ n (:) and q (% (# 9 )) ≤ n (:) then
5 if 6. ( 9) ≤ 6# ( 9) then
6 A = A

⋃{~8 , # 9 };
7 2 = 2 + 1;
8 else if q (~8) == q (% (# 9 )) then
9 if 6. ( 9) ≤ 6# ( 9) then
10 A = A

⋃{~8 , # 9 };
11 2 = 2 + 1;
12 else if q (~8) < q (% (# 9 )) then
13 A = A

⋃{~8 , # 9 };
14 2 = 2 + 1;
15 ? ( 9), 6. ( 9), 6# ( 9) = ∅;

Result: A

Replacement mechanism
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Figure 5.2: Replace mechanism for cMODE/D algorithm.
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and 37 of Algorithm 18.

5.1.4 Feedback mechanism

Lines 39 and 40 in Algorithm 18 de�ne an updating mechanism through an external
archive. Thus, an external archive is used to store the best solutions in every genera-
tion to feedback the population as a good diversity source. This mechanism is inherited
from MOCell algorithm [9],

Algorithm 21:*?30C4�GC4A=0;�A2ℎ8E4 (0A2ℎ8E4, %)
1 0A2ℎ8E4 = #�( (0A2ℎ8E4, 1);
2 if B8I4 (�A2ℎ8E4) > B8I4 (%) then
3 Use crowding distance to rank the archive.
Result: 0A2ℎ8E4

Algorithm 21 shows how an external archive is �lled. Only o�spring evolved in every
generation are used and they are �ltered by using non-dominated sorting to obtain those
at the �rst front. If the archive exceeds population’s size, crowding distance is used to
truncate it by removing solutions with worst distances. In cMODE/D algorithm, intensity
of feedback mechanism is modi�ed by considering a solutions percentage within the pop-
ulation located at a feasible areas within the landscape. If more than 50% of the population
is in an infeasible zone, the feedback mechanism is applied through Algorithm 22.

Taking a maximum number of random (X parameter) solutions from the population
and to replace them with random solutions from the external archive, results in an aggres-
sive attempt to introduce good solutions to the population, trying to increase population’s
feasibility.

Algorithm 22: �443102: (0A2ℎ8E4, %)
1 ='4? =<8=(<8=(X, B8I4 (%)), B8I4 (0A2ℎ8E4));
2 for i=1 to nRep do
3 0, 1 = A0=3 ;
4 % (0) = 0A2ℎ8E4 (1);
Result: %

When the population exceeds 50% feasibility, the feedback mechanism described in
Algorithm 23 is deployed. This feedback criteria, similarly to previous one, randomly se-
lect a number of solutions to be replaced. A main di�erence is that the maximum number
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of solutions to replace is 1
3 of X parameter, thus f = X · 13 . This means that when feasi-

bility is high, it is not necessary to have a large number of replacements throughout the
population. In this way, a number of good solutions is maintained through �nal stages
of the search without a negative e�ect. To control which solutions are replaced an extra
condition must be ful�lled. It compares a solution in the population against an individual
in the external archive. If the solution to be replaced is worse in terms of non-dominance,
replacement is made by the external archive solution; otherwise this "replacement" is not
considered until the maximum number of replacements is evaluated.

There are two extra cases, one in which all solutions are replaced, and another in
which no solution is replaced because current solutions in the population are better ones
than those selected from the external archive. Also an intermediate case in where more
than one solution and less than f solutions are replaced.

Algorithm 23: '4?;024,>ABC�443102: (0A2ℎ8E4, %)
1 ='4? =<8=(<8=(f, B8I4 (%)), B8I4 (0A2ℎ8E4));
2 83G%>? = A03><(?>?D;0C8>=, ='4?);
3 83G�A2ℎ8E4 = A03><(0A2ℎ8E4, ='4?);
4 [A0=:%>?, A0=:�A2ℎ8E4] = #�( (?>?D;0C8>=(83G%>?)⋃0A2ℎ8E4 (83G�A2ℎ8E4));
5 for i=1 to nRep do
6 if A0=:%>? (8) > A0=:�A2ℎ8E4 (8) then
7 % (83G%>? (8)) = 0A2ℎ8E4 (83G�A2ℎ8E4 (8));

Result: %

5.2 Experimental Design

For a thorough empirical assessment, the proposed cMODE/D is compared against two
popular algorithmic approaches: MOEA/D and MOCell using the Push and Pull Search
as CHT. For experimental deployment, a multiobjective optimization platform called
PlatEmo, [74] has been used. It is fully developed in MatLab and provides several di�er-
ent algorithms and benchmark functions as well as a friendly testing environment with
widely accepted performance metrics in the area.

Following parameters con�gured for each algorithmic approach including the pro-
posed cMODE/D are shown in Table 5.1. Parameters for MOEA/D-PPS algorithm are the
same to those Authors used in their proposal [28]. MOCellPPS is con�gured with the same
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Table 5.1: Parameters con�guration.

MOEA/D-PPS cMODE/D MOCELLPPS
Population size # = 300

Population ?< = 1
=

, where = is the decision vector dimension
Distribution index is set to 20.

DE parameters
�' = 1.0, � = 0.5

GA parameters
Crossover ratio %2 = 1,

Distribution index for SBX �B2 = 20.
Neighborhood size T=30 Neighborhood size T=9

CHT parameters
)2 = 800, U = 0.95,

g = 0.1, 2? = 2, ; = 20,
=A = 2, d = 14 − 3

CHT parameters
)2 = 800, U = 0.95,
g = 0.1, ; = 20,

d = 14 − 3, =A = 2,
X = 30, f = 10.

CHT parameters
)2 = 800, ; = 20, d = 14 − 3, X = 20

Stopping condition: each algorithm is executed 30 independent runs
and stops when 300,000 function evaluations are reached.

PPS parameters as MOEA/D-PPS as well as cMODE/D since they share the same CHT.
MOCellPPS X parameter is the same as reported in the original paper [9]. cMODE/D adds
two new parameters, X which is the maximum number of replacements in the feedback
mechanism which is set to 10% of the population, and f as mentioned above is calculated
as 1

3 of X .

5.2.1 Benchmark functions

For an empirical validation, the LIRCMOP benchmark proposed in [27] was used, which
is composed of fourteen restricted functions, as described below:

1.- In problems 5-14, the functions are multiplied by a scalar value, which increases
convergence di�culty.

2.- In problems 1-4, one can appreciate those feasible regions are small.

3.- In problems 5 and 6, there are convex and concave Pareto fronts and their actual
Pareto fronts are the same as the constrained Pareto fronts.

4.- In problems 7 and 8, unconstrained Pareto fronts are located in infeasible regions,
and actual Pareto fronts are located at constraints limits.
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5.- In problems 9-12, there are two di�erent types of constraints, the �rst type creates
large zones of infeasibility, the second type generates discontinuity between these
zones making more di�cult the search throughout objective functions landscapes.
In addition to solutions located at constraints limits.

6.- Finally, in problems 13 and 14, there are functions with 3 objectives. Pareto front
in function 13 is the same as its unconstrained counterpart. On the other hand, the
Pareto front in function 14 is located at the limits of its constraints.

This benchmark proposes a more complex scheme, in the constrained multiobjective
optimization area, since it proposes functions with characteristics where �nding the op-
timal front is more demanding, thus representing a more di�cult searching context to
any algorithm. Crossing infeasible zones in reduced time without losing diversity is a
more complex task than in more general benchmarks such as MW [75]. Figure 5.3 shows
a graphic representation of each type of problem in the LIRCMOP benchmark.

The di�erence between LIRCMOP and MW is that MW divides its functions into four
di�erent types of problems, each one trying to have general characteristics of constrained
multiobjective problems, but maintaining di�erent characteristics in itself. In contrast,
LIRCMOP is a more complex benchmark specialized in measuring algorithms’ perfor-
mance when dealing with large infeasible regions. The role of di�erential evolution op-
erator and polynomial mutation is important. Polynomial mutation allows faster conver-
gence when compared to SBX. It achieves good solutions, however this operator is less
aggressive in terms of exploration, thus, it takes more generations to locate solutions in
feasible areas. Therefore, di�erential evolution operators had reported good performance
in this type of problems [43, 28, 29, 27], Combining di�erential evolution operator and
polynomial mutation on a decentralized cellular population joins together bene�ts of lo-
cal exploitation in DE and exploration throughout the cellular population’s topology.

Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica



5.2 Experimental Design 85

1f

2f
Infeasible regions
Constrained PF

Unconstrained PF

(a) Type 1

1f

2f
Feasible region
Constrained PF

Unconstrained PF

1f

2f
Feasible region
Constrained PF

Unconstrained PF

(b) Type 2

1f

2f

Constrained PF = Unconstrained PF

Infeasible regions
Constrained PF

Unconstrained PF

(c) Type 3

1f

2f
Infeasible regions
Constrained PF

Unconstrained PF

(d) Type 4

1f

2f
Infeasible regions
Constrained PF

Unconstrained PF

(e) Type 5

Feasible region
Constrained PF

2
f

3
f

1f2
f

3
f

1f

(f) Type 6

Figure 5.3: Constrained multiobjective problems classi�cation of the LIRCMOP bench-
mark. Each sub�gure represents a type of problem regarding the previous list.

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems



86 5. Cellular Multiobjective Differential Evolution Algorithm based on Decomposition

5.3 Results Analysis

Tables 5.2 and 5.3 show overall cMODE/D performance results in comparison to previ-
ous works in terms of IGD and HV metrics. The proposed approach is empirically com-
pared to two previously proposed approaches known as MOCellPPS and MODEA/D-PPS.
cMODE/D is con�gured with three di�erent types of updating mechanisms: Synchronous
(SY), Line Swipe (LS), and Asynchronous (AS). Also, the Wilcoxon test is considered and
cMODE/D-AS thus its asynchronous version is taken as a reference.

In Table 5.2, cMODE/D algorithm shows a signi�cantly better performance than
MOEA/D-PPS and MOCellPPS in 8 out of 14 problems for IGD metric. On the other hand,
for HV metric in Table 5.3 obtained results are shown, where better results in 6 problems
are obtained. In these results, Wilcoxon test indicates that one solution is statistically
equal.

Using an adaptive feedback mechanism based on population’s feasibility impacts the
searching process. Applying a random based feedback criterion to this type of problems,
where feasible solutions are very important, would stagnate the search in the middle of the
evolutionary process. At the beginning of the search, solutions in the population tend to be
mostly infeasible solutions, through evolutionary search and as generations elapses, indi-
viduals move to feasible landscape’s areas. At an early searching stage, a random feedback
mechanism works well because it seeks an exploration of the search space. When popu-
lation feasibility trends towards 50% or higher, exploration does not bring many bene�ts
because it would only create stagnation. Thereby a feedback mechanism to only replace
worst solutions aims at maintaining an exploitative search.

Comparing cMODE/D updating mechanism: synchronous, line sweep, and asyn-
chronous. Results shows that the asynchronous version has better performance followed
by the line sweep and synchronous version. For a clear perspective in cMODE/D-AS per-
formance, sub�gures in Figure 5.4 show di�erent achieved Pareto fronts, these are the
average of 30 individual runs.

In Figures 5.4a, 5.4b, 5.4c, and 5.4d, it can be seen that cMODE/-AS and MOEA/D-
PPS adjust to the true Pareto fronts (marked in black with + symbol). It is also observed
that indeed the CHT perfectly delimits feasible areas. In Figures 5.4e, 5.4f, 5.4g, 5.4h, 5.4j
and 5.4k, there is an almost perfect adjustment of cMODE/D-AS and MOEA/D-PPS, al-
though according to IGD and HV metrics, MOEA/D-PPS algorithm achieves superior per-
formance. In those �gures, it is observed that di�erence between both average solutions
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is almost null. On the other hand, in Figures 5.4i and 5.4l, it is observed that cMODE/D-
AS cannot reach central zones of the real Pareto front; although di�erence is minimal.
Another algorithmic behaviour observed in results is that MOCellPPS algorithm progress
with di�culty when adjusting to benchmark problems, mainly because this algorithm
is based only on non-dominance criterion and although follows a cellular structure, this
benchmark presents large infeasibility zones. Finally, Figures 5.4m and 5.4n show prob-
lems with three objectives. Although, it is di�cult to observe clear di�erences. It can be
noticed that MOCellPPS algorithm tends to leave Pareto front zone, while cMODE/D-AS
and MOEA/D-PPS adjust correctly.

Table 5.2: IGD metric results for cMODE/D vs MOcell and MOEA/D-PPS on LIRCMOP
benchmark functions. cMODE/D updating mechanisms: synchronous (SY), line Swipe (LS)
and asynchronous (AS). Columns " and � correspond to the number of objectives and
vector’s dimension, respectively. Wilcoxon statistical test with cMODE/D-AS as reference
is applied, the results marked in grey are the best results obtained from each function,
"+/−/≈" means corresponding algorithm is signi�cantly better, worst or not signi�cantly
di�erent to cMODE/D-AS.

Problem " � MOEA/D-PPS MOCellPPS cMODE/D-SY cMODE/D-LS cMODE/D-AS
LIRCMOP1 2 30 6.7835e-2 (6.18e-2) − NaN (NaN) 1.2460e-2 (8.64e-3) + 2.4438e-2 (1.70e-2) ≈ 3.1013e-2 (1.78e-2)
LIRCMOP2 2 30 3.8530e-2 (2.28e-2) − NaN (NaN) 3.6752e-3 (6.15e-3) + 8.6877e-3 (6.39e-3) + 1.2165e-2 (5.82e-3)
LIRCMOP3 2 30 5.6070e-2 (2.61e-2) − NaN (NaN) 2.1463e-2 (1.99e-2) + 3.6226e-2 (1.95e-2) ≈ 4.2382e-2 (2.20e-2)
LIRCMOP4 2 30 5.4034e-2 (3.40e-2) − NaN (NaN) 1.6025e-2 (2.78e-2) + 2.1427e-2 (1.14e-2) ≈ 2.5411e-2 (1.17e-2)
LIRCMOP5 2 30 1.4444e-3 (3.50e-5) + 2.9182e-1 (5.22e-2) − 2.4981e-3 (2.43e-4) − 2.3437e-3 (2.14e-4) ≈ 2.2577e-3 (1.47e-4)
LIRCMOP6 2 30 1.3569e-3 (1.81e-5) + 2.8527e-1 (8.26e-2) − 2.3928e-3 (1.01e-4) − 2.2161e-3 (5.57e-5) ≈ 2.2100e-3 (6.21e-5)
LIRCMOP7 2 30 3.2460e-3 (2.20e-4) − 8.5224e-1 (2.77e-2) − 4.6115e-3 (1.50e-3) − 7.4497e-3 (1.91e-2) − 2.7559e-3 (6.23e-5)
LIRCMOP8 2 30 3.0345e-3 (1.50e-4) + 9.4820e-1 (6.49e-1) − 4.6087e-3 (1.06e-3) − 3.6130e-3 (1.77e-3) ≈ 3.8915e-3 (2.39e-3)
LIRCMOP9 2 30 2.5841e-3 (5.63e-4) + 8.6131e-1 (2.48e-1) − 1.0079e-1 (1.38e-1) ≈ 5.3615e-2 (3.45e-2) ≈ 5.1393e-2 (3.49e-2)
LIRCMOP10 2 30 2.4831e-3 (7.37e-5) − 2.5493e-1 (1.68e-1) − 1.1058e-2 (2.42e-2) − 5.3257e-3 (1.70e-2) − 2.1117e-3 (1.24e-4)
LIRCMOP11 2 30 3.5157e-2 (5.10e-2) − 8.5336e-1 (3.45e-1) − 5.7200e-2 (7.71e-2) − 4.4555e-2 (8.36e-2) − 1.4085e-2 (3.74e-2)
LIRCMOP12 2 30 4.6194e-3 (1.92e-4) + 9.7970e-1 (5.84e-2) − 1.3455e-1 (3.57e-2) − 1.0438e-1 (6.27e-2) ≈ 1.1176e-1 (5.88e-2)
LIRCMOP13 3 30 6.5150e-2 (3.53e-4) − 8.0003e-2 (1.91e-3) − 6.5470e-2 (7.82e-4) − 6.5487e-2 (1.48e-3) ≈ 6.4760e-2 (1.11e-3)
LIRCMOP14 3 30 6.7190e-2 (6.37e-4) + 9.8719e-2 (3.71e-3) − 6.8965e-2 (1.71e-3) − 6.8322e-2 (1.11e-3) ≈ 6.8020e-2 (1.23e-3)

+/−/≈ 6/8/0 0/10/0 4/9/1 1/3/10
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Table 5.3: HV metric results for cMODE/D vs MOcell and MOEA/D-PPS on LIRCMOP
benchmark functions. cMODE/D updating mechanisms: synchronous (SY), line Swipe (LS)
and asynchronous (AS). Columns " and � correspond to the number of objectives and
vector’s dimension, respectively. Wilcoxon statistical test with cMODE/D-AS as reference
is applied, the results marked in grey are the best results obtained from each function,
"+/−/≈" means corresponding algorithm is signi�cantly better, worst or not signi�cantly
di�erent to cMODE/D-AS.

Problem " � MOEA/D-PPS MOCellPPS cMODE/D-SY cMODE/D-LS cMODE/D-AS
LIRCMOP1 2 30 2.1318e-1 (2.19e-2) − NaN (NaN) 2.3666e-1 (2.39e-3) + 2.3334e-1 (4.72e-3) ≈ 2.3161e-1 (5.34e-3)
LIRCMOP2 2 30 3.4418e-1 (1.13e-2) − NaN (NaN) 3.6075e-1 (5.81e-3) + 3.5886e-1 (3.04e-3) + 3.5730e-1 (2.60e-3)
LIRCMOP3 2 30 1.8898e-1 (1.05e-2) − NaN (NaN) 2.0127e-1 (7.54e-3) + 1.9734e-1 (5.77e-3) ≈ 1.9598e-1 (5.43e-3)
LIRCMOP4 2 30 2.9180e-1 (1.77e-2) − NaN (NaN) 3.1073e-1 (1.23e-2) + 3.0827e-1 (4.69e-3) ≈ 3.0626e-1 (5.22e-3)
LIRCMOP5 2 30 2.9385e-1 (4.08e-5) + 1.5702e-1 (1.93e-2) − 2.9325e-1 (1.59e-4) − 2.9334e-1 (1.19e-4) ≈ 2.9339e-1 (8.68e-5)
LIRCMOP6 2 30 1.9918e-1 (2.63e-5) + 1.1706e-1 (1.78e-2) − 1.9862e-1 (5.34e-5) − 1.9871e-1 (2.94e-5) − 1.9873e-1 (2.89e-5)
LIRCMOP7 2 30 2.9574e-1 (2.46e-4) − 8.4394e-2 (1.81e-2) − 2.9517e-1 (7.61e-4) − 2.9399e-1 (8.46e-3) − 2.9618e-1 (7.82e-5)
LIRCMOP8 2 30 2.9596e-1 (1.08e-4) + 9.2349e-2 (3.96e-2) − 2.9524e-1 (5.52e-4) − 2.9579e-1 (8.45e-4) ≈ 2.9568e-1 (1.11e-3)
LIRCMOP9 2 30 5.6735e-1 (6.06e-4) + 2.7505e-1 (5.46e-2) − 5.3720e-1 (3.99e-2) ≈ 5.5234e-1 (8.87e-3) ≈ 5.5290e-1 (8.88e-3)
LIRCMOP10 2 30 7.0875e-1 (7.81e-5) + 5.7668e-1 (7.32e-2) − 7.0510e-1 (7.90e-3) − 7.0753e-1 (5.29e-3) ≈ 7.0858e-1 (1.08e-4)
LIRCMOP11 2 30 6.7553e-1 (3.22e-2) − 4.1270e-1 (9.73e-2) − 6.5876e-1 (4.99e-2) − 6.6677e-1 (5.35e-2) ≈ 6.8668e-1 (2.40e-2)
LIRCMOP12 2 30 6.2033e-1 (1.59e-5) + 3.0678e-1 (5.80e-2) − 5.7000e-1 (1.37e-2) − 5.8186e-1 (2.38e-2) ≈ 5.7901e-1 (2.24e-2)
LIRCMOP13 3 30 5.6227e-1 (8.16e-4) ≈ 5.4807e-1 (1.68e-3) − 5.6070e-1 (1.78e-3) − 5.6080e-1 (2.00e-3) ≈ 5.6181e-1 (1.51e-3)
LIRCMOP14 3 30 5.6528e-1 (1.08e-3) + 5.4079e-1 (2.91e-3) − 5.6039e-1 (1.63e-3) − 5.6078e-1 (1.79e-3) ≈ 5.6140e-1 (1.29e-3)

+/−/≈ 7/6/1 0/10/0 4/9/1 1/2/11
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Figure 5.4: Average PFs for MOCell, MOEA/D-PPS and the proposed algorithm cMODE/D-
AS on di�erent representative test problems.
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5.3.1 Time Analysis

All experimental assessment was carried out on a processor Intel Core I5 2.30 GHz, in
64 bits Windows 10 operating system, with 8GB RAM. The code was written in MATLAB
R2019a, all tests were done on PlatEMO [74] platform fully developed in MATLAB [76]. To
carry out the time analysis, the total time that the algorithm takes to run was calculated,
then the algorithm was executed independently 30 times, in the same way as the IGD and
HV metrics; Table 5.4 shows the average in seconds that an algorithm takes to complete
the 300,000 assigned evaluations for every problem.

Results show that MOEA/D-PPS presents longest times, this is due to the neighbor-
hoods size used by MOEA/D-PPS which are proportional to the population size. There-
fore, as the population size increases, neighborhoods tend to become larger. Moreover,
MOEA/D-PPS takes longer to calculate and to perform solution replacement; because ini-
tially MOEA/D-PPS takes random indexes to compare between o�spring and parents,
after this process is performed =A number of times until any of both following conditions
are satis�ed: 1) all solutions are evaluated against o�spring, if evolved solutions are worst
replacement does not take place; 2) if o�spring are better, this process is carried out =A
number of times until the maximum number of replacements is achieved; this makes the
algorithm computationally more expensive.

cMODE/D makes use of =A parameter in the same way as MOEA/D-PPS. However,
in cMODE/D neighborhoods are not related to the population size. cMODE/D makes use
of the Moore neighborhood and although the number of comparisons increases when
using =A parameter, it does not have the same number of comparisons as in MOEA/D-
PPS, since neighbourhood are smaller. Concerning the adaptive feedback mechanism that
was proposed, this does not seem to have a great impact on the Algorithm time, since in
most of the problems cMODE/D achieves a higher performance than MOEA/D-PPS, this
is re�ected in Table 5.4. On the other hand, MOCellPPS is based on the cellular EAs model
but it does not use decomposition methods thus it is faster than the others. However,
MOCellPPS results regarding IGD and HV metrics, its performance is easily overcome by
the other two algorithms.

5.3.2 Algorithm complexity for evolutionary algorithms

For an in-depth analysis, a complexity analysis for evolutionary algorithms that have been
used on competitions at the Congress on Evolutionary Computation, one of the top con-
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Table 5.4: Runtime results for cMODE/D vs MOcell and MOEA/D-PPS on LIRCMOP
benchmark functions. cMODE/D updating mechanisms: synchronous (SY), line Swipe
(LS) and asynchronous (AS). Columns " and � correspond to the number of objectives
and vector’s dimension. Wilcoxon statistical test with cMODE/D-AS as reference is ap-
plied, the results marked in grey are the best results obtained from each function, "+/−/≈"
means corresponding algorithm is signi�cantly better, worst or not signi�cantly di�erent
to c/MODE/D-AS.

Problem " � MOEA/D-PPS MOCellPPS cMODE/D-SY cMODE/D-LS cMODE/D-AS
LIRCMOP1 2 30 3.3902e+2 (2.28e+1) − 1.0627e+2 (7.52e+0) + 1.6021e+2 (1.52e+1) − 1.5193e+2 (9.52e+0) − 1.2308e+2 (5.52e+0)
LIRCMOP2 2 30 3.3146e+2 (2.41e+1) − 1.1315e+2 (1.15e+1) + 1.4886e+2 (7.79e+0) − 1.3952e+2 (8.56e+0) − 1.2256e+2 (6.40e+0)
LIRCMOP3 2 30 4.1209e+2 (9.54e+1) − 1.0794e+2 (1.03e+1) + 1.6889e+2 (1.59e+1) − 1.5708e+2 (9.38e+0) − 1.2642e+2 (6.68e+0)
LIRCMOP4 2 30 3.2951e+2 (2.11e+1) − 1.0395e+2 (1.01e+1) + 1.6170e+2 (1.30e+1) − 1.5943e+2 (1.66e+1) − 1.4420e+2 (1.50e+1)
LIRCMOP5 2 30 2.7316e+2 (1.72e+1) − 9.6394e+1 (6.07e+0) + 1.5441e+2 (9.76e+0) − 1.6359e+2 (1.62e+1) − 1.4270e+2 (1.21e+1)
LIRCMOP6 2 30 2.7628e+2 (1.80e+1) − 9.5473e+1 (6.55e+0) + 1.3945e+2 (5.51e+0) ≈ 1.3760e+2 (6.30e+0) ≈ 1.4328e+2 (1.62e+1)
LIRCMOP7 2 30 3.0801e+2 (1.89e+1) − 1.1916e+2 (1.49e+1) + 1.6423e+2 (1.18e+1) − 1.5430e+2 (9.93e+0) − 1.3192e+2 (7.56e+0)
LIRCMOP8 2 30 3.4114e+2 (4.58e+1) − 1.0009e+2 (8.32e+0) + 1.4807e+2 (7.12e+0) − 1.3857e+2 (8.36e+0) − 1.1958e+2 (6.74e+0)
LIRCMOP9 2 30 3.3807e+2 (2.35e+1) − 9.7001e+1 (5.31e+0) + 1.4796e+2 (5.97e+0) − 1.3615e+2 (7.18e+0) − 1.2341e+2 (5.27e+0)
LIRCMOP10 2 30 3.3771e+2 (3.11e+1) − 1.2293e+2 (1.38e+1) + 1.3707e+2 (9.30e+0) + 1.3913e+2 (9.08e+0) + 1.4443e+2 (1.48e+1)
LIRCMOP11 2 30 3.3422e+2 (2.23e+1) − 1.2439e+2 (1.55e+1) ≈ 1.4501e+2 (7.44e+0) − 1.3415e+2 (7.17e+0) − 1.2057e+2 (6.13e+0)
LIRCMOP12 2 30 3.3140e+2 (1.83e+1) − 1.1161e+2 (9.62e+0) + 1.4881e+2 (7.59e+0) − 1.3808e+2 (7.64e+0) − 1.2370e+2 (6.93e+0)
LIRCMOP13 3 30 2.5252e+2 (1.51e+1) − 1.2614e+2 (1.17e+1) − 1.3416e+2 (7.20e+0) − 1.3237e+2 (7.39e+0) − 1.1802e+2 (6.75e+0)
LIRCMOP14 3 30 2.8202e+2 (2.27e+1) − 1.2130e+2 (9.60e+0) − 1.4493e+2 (8.07e+0) − 1.3373e+2 (6.80e+0) − 1.1346e+2 (5.67e+0)

+/−/≈ 0/14/0 11/2/1 1/12/1 1/12/1

ferences in the area, is carried out [77, 78, 79, 80, 81]. In the evolutionary computing
community, the term complexity algorithm was attributed to this procedure although it
is not closely related to formal mathematical analysis. The main idea behind this analysis
is to de�ne what is the exact time that the algorithm demands without including the eval-
uation process of the objective functions. Finally, this measure is divided by a value that
is de�ned by the time it takes for a computer to execute a de�ned number of calculations,
to normalize the �nal result.

The three variables that this analysis involves are de�ned below.

• A) ) 0 is obtained by evaluating the machine time to perform the following evalua-
tions:
5 >A 8 = 1 : 100000
G = 0.55 + 8;
G = G + G ;G = G/2;G = G ∗ G ;G = B@AC (G);G = ;>6(G);G = 4G? (G);G = G/(G + 2);
4=3

• B) ) 1 is obtained by evaluating the time it takes to evaluate a chosen function =
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number of times. In this case, 300,000 evaluations were used and the LIRCMOP3
problem of the LIRCMOP benchmark was chosen.

• (c) ) 2 is the time for the algorithm to solve a function with a maximum number of
evaluations, from this value )̂ 2 value is calculated. )̂ 2 is the average running time
for 30 executions targeting the LIRCMOP3 benchmark problem.

Once these three values are calculated, the following calculation is carried out ()̂ 2 −
) 1)/) 0. The value obtained from this operation shows the total time it takes for the al-
gorithm to complete all evolutionary stages (selection, recombination, mutation, and re-
placement) while excluding the time it takes to evaluate the objective function, which
is normally the bottleneck calculation in most optimization evolutionary algorithms. In
Table 5.5, achieve values are presented.

Table 5.5: Results of the operation ()̂ 2 −) 1)/) 0.

Algorithm ()̂ 2 −) 1)/) 0
MOEA/D-PPS 4.634859581169369e+03
MOCellPPS 1.084289493744679e+03

cMODE/D-SY 1.795804360844909e+03
cMODE/D-LS 1.657937411206620e+03
cMODE/D-AS 1.300020334499597e+03

From Table 5.5, it can be seen that these results e�ectively con�rm results shown in
Table 5.4, with MOEA/D-PPS being the slowest-running algorithm. In the case of MO-
CellPPS algorithm, as explained in Section 5.3.1, since it is based on non-dominance and
is simpler than cMODE/D, it is faster, but its performance is overcome in IGD and HV
metrics.

It can be noticed that depending on update criterion that cMODE/D applies, time com-
plete all evaluations increases, being the asynchronous version the fastest of the three,
following by Line Sweep version and �nally the Synchronous one. This behavior is given
by how the grid is updated, synchronous version must keep in a temporary variable all so-
lutions to replace, and wait to �nish the generation to be able to update. On the contrary,
asynchronous criterion does not use this temporary variable, while as a middle case, Line
Sweep criterion uses the temporary variable but the current generation does not need to
evolve completely to be able to update.
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5.4 Summary

In this chapter cMODE/D algorithm was presented. It uses advantages of cellular evo-
lutionary algorithms as well as di�erential evolution in combination with MOEA/D
decomposition principles. Similar to cMOGA/D, cMODE/D is focused on solving con-
strained MOPs, therefore Push to Pull search and Improved Epsilon CHT were imple-
mented. cMODE/D also uses di�erent update schemes: synchronous, line sweep, and
asynchronous. Its feedback mechanism adapts to population’s feasibility, thus having two
ways to be applied. If population’s feasibility is lower to 50%, a random feedback mecha-
nism of X replacements is applied. If feasibility increases by more than 50%, the number of
replacements is decreased and replacement is only applied if solutions in the population
are dominated by those in the external �le.

From tests carried out on the LIRCMOP benchmark, it can be seen that cMODE/D in its
asynchronous version obtains superior performance than MOEA/D-PPS and MOCellPPS
algorithms in terms of IGD and HV metrics. A time analysis was also conducted, conclud-
ing that cMODE/D is at least twice as fast as MOEA/D-PPS, and shows a competitive time
against MOCellPPS.

The next chapter summarizes the research of this thesis and presents its conclusions.
Furthermore, some possible guidelines for future work are presented.

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems
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Chapter 6

Conclusions and Future work

In this research two novel algorithmic approaches to tackle constrained multiobjective
problems are presented. A cellular multiobjective Genetic Algorithm based on decompo-
sition (cMOGA/D) and a cellular multiobjective Di�erential Evolution based on decom-
position (cMODE/D) are designed and empirically assessed. Both take advantage of struc-
tural properties in cellular evolutionary algorithms and combines core concepts of well
established MOEA/D. A thorough experimental assessment showed that cMOGA/D out-
performs previously proposed approaches when tackling standard benchmark problems
such as those in Ma and Wang (MW) benchmark test [75]. On the other hand, cMODE/D,
combines the same algorithmic structure but deploys those evolutionary operations cor-
responding to di�erential evolution. Empirical evaluation presented in this thesis research
shows promising results, in a more specialized and more complex benchmark Large in-
feasible regions constrained multiobjective problems (LIRCMOP) [27].

Decentralized population schemes implemented in cMOGA/D and cMODE/D were
promising optimization tools not only to tackle constrained MOPs but also to improve the
performance of centralized approaches. Therefore, at this point, it can be concluded that
the hypothesis initially proposed in this thesis was con�rmed. Besides, all the objectives
set and the expected contributions were successfully reached.

An important aspect in cMOGA/D and cMODE/D is the possibility of implementing
di�erent updating types mechanisms that structural properties allow to de�ne which can
also positively impact the searching process. Moreover, using aggregation values, which
are a main concept in MOEA/D, to assess solutions updating allows to achieve a signi�-
cantly improved performance.

cMOGA/D and cMODE/D makes use of decentralized and structured populations pro-
moting local solutions exploitation and global landscapes exploration. Moreover, in or-
der to preserve solutions diversity, three di�erent updating mechanisms have been thor-

[97]
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oughly evaluated in this thesis research, together with an external feedback criterion
brought from MOCellPPS, a previous closely related algorithmic approach. In addition,
in cMODE/D, the feedback mechanism was extended and linked to the population’s feasi-
bility population’s, in order to soften solutions’ feedback that could a�ect the �nal stages
of the evolutionary process.

Testing cMOGA/D on MW benchmark allowed to verify its algorithmic ability to solve
CMOPs with a number of characteristics such as low feasible rations, convergence di�-
culty and high dimensional decision vectors. Thus, cMOGA/D was developed focusing on
solving general constrained multiobjective problems. On the other hand, cMODE/D was
developed to deal with more complex problems such those in LIRCMOP benchmark. In
LIRCMOP, large infeasible regions in objective spaces are created, this is the key charac-
teristic of this benchmark.

SBX operator in cMOGA/D, creates close located solutions, because SBX generates
o�spring from only two parents. However, polynomial mutation adds a small exploration
factor, insu�cient to tackle this kind of benchmarks. Therefore, even though solutions are
closely created, they can be discarded by constraint handling techniques, or in other cases,
they can have a slow convergence, and not reaching feasible areas. This impact during the
searching process is emphasized by using a decentralized population such as cellular ones;
because solutions are slowly spread throughout the mesh more slowly. Di�erential evolu-
tion operator, when directly operating decision vectors, involves a more aggressive search
and adds polynomial mutation to somehow strengthen exploration phase. DE is fast at
convergence in addition to using a decentralized population via a cellular topology, which
allows a balance between exploitation and exploration searching phases. These character-
istics make DE operations suitable for this type of benchmarks where exploration takes
a very important role in the early stages of the search. Therefore, cMODE/D integrates
di�erential evolution and polynomial mutation, as well as adaptive feedback, which was
developed to obtain an improvement in this type of benchmarks.

A signi�cant impact of having a cellular structure in cMOGA/D and cMODE/D algo-
rithms is using di�erent updating criteria. Centralized or panmictic based multiobjective
evolutionary algorithms commonly use a synchronous updating mechanism which gener-
ate all evolved solutions at once and then decide by truncation or selection. In algorithms
with parallel populations, speci�cally in algorithms with cellular structures and thus de-
centralized populations, updating criterion is key since neighborhoods are overlapped
and each solution itself is the center of a local neighborhood. Thus solutions spread-
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ing throughout the toroidal mesh depends on the established updating mechanism. Syn-
chronous updating presents a slower solutions spreading because it does not allow new
solutions (o�spring) recombination with current solutions (parents). In contrast, asyn-
chronous updating is a special case because immediately after solutions within a neigh-
borhood undergo evolution (selection, crossover, mutation, and replacement), new solu-
tion(s) from that neighbourhood are available for mating with those currently available
in close by neighbourhoods.

Empirical achieved results show the impact of the updating criteria in terms of pro-
cessing times to execute a number of evaluations. Synchronous updating takes longer
when compared to asynchronous criterion which is fastest while line sweep shows an
intermediate behaviour.

For 85% of the problems tested in MW, cMOGA/D outperformed previously proposed
approaches MOEA/D-PPS and MOCellPPS. On the other hand in 57% of the problems in
the LIRCMOP benchmark cMODE/D outperforms previous widely validate approaches.
In the same way, cMODE/D algorithm with asynchronous update criterion has a slightly
higher performance when targeting LIRCMOP benchmark, which is highly complex. Also
according to obtained results regarding processint times, cMOGA/D and cMODE/D pro-
posals obtained very promising results, performing the same number of evaluations in
less than half the time as the MOEA/D-PPS algorithm.

6.1 Future work

Future work aims to extend the algorithm to target real-world problems, as well as into
many-objectives benchmarks to �nd out other mechanisms based on structural charac-
teristics of cellular evolutionary algorithms to improve their searching. Also attacking
problems with high dimensionality, which is currently a trending topic in the evolution-
ary computation community.

A Cellular Evolutionary Algorithm To Tackle Constrained Multiobjective Optimization Problems
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• EA Evolutionary Algorithm.

• MOP Multiobjective Optimization Problem.

• CMOP Constrained Multiobjective Optimization Problem.

• CHT Constraint Handling Technique.

• MOEA Multiobjective Evolutionary Algorithm.

• GECCO The Genetic and Evolutionary Computation Conference.

• EC Evolutionary Computation.

• AI Arti�cial Intelligence.

• GA Genetic Algorithm.

• PMX Partially Mapped Crossover.

• SBX Simulated Binary Crossover.

• DE Di�erential Evolution.

• MOEA/D Multiobjective Evolutionary Algorithm based on Decomposi-
tion.

• POS Pareto Optimal Set.

• NSGA Non-dominated Sorting Genetic Algorithm.

• NSGA-II Non-dominated Sorting Genetic Algorithm II.
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• NDS Non-dominated Sorting.

• NSGA-III Non-dominated Sorting Genetic Algorithm III.

• MOGA Multiobjective Genetic Algorithm.

• PAES The Pareto Archived Evolution Strategy.

• SPEA A Strength Pareto Evolutionary Algorithm

• SPEA-2 A Strength Pareto Evolutionary Algorithm II

• MOCell MultiObjective Cellular Genetic Algorithm.

• GDE3 The third Evolution Step of Generalized Di�erential Evolution.

• MOEA/D-DE Multiobjective Evolutionary Algorithm based on Decomposi-
tion with Di�erential Evolution.

• CDP Constraint Dominance Principle.

• SR Stochastic Ranking.

• PPS Push and Pull Search.

• SIMD Single-Instruction Multiple-Data.

• MIMD Multiple-Instruction, Multiple-Data.

• MPI Message Passing Interface.

• RMI Java-Remote Method Invocation.

• CORBA Common Object Request Broker Architecture.

• GPU Graphics Processing Unit.

• cMOGA Cellular Multi-Objective Genetic Algorithm.

• cEA Cellular Evolutionary Algorithms.

• GD Generational Distance.

• IGD Inverted Generational Distance.
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• HV Hypervolume.

• IMDE Infeasible-guiding Mutation Di�erential Evolution.

• TNK abbreviation of Tanaka.

• OSY Osyczka initials.

• CTP Constrained Test Problems.

• NCTP New Constrained Test Problems.

• MODE-ECHT Multi-objective Di�erential Evolution - Ensemble of Con-
straint Handling Methods.

• SADE-CD Self-Adaptive Di�erential Evolution Algorithm with -
Constrained-Domination Principle.

• MOEA/DD Many-Objective Optimization Algorithm based on Dominance
and Decomposition.

• ARMOEA Adaptive Reference Point Multiobjective Evolutionary Algo-
rithim.

• MOEA/D-IEpsilon Multiobjective Evolutionary Algorithm based on Decomposi-
tion with Improved Epsilon.

• ICMOEA Indicator-based Constrained Multiobjective Evolutionary al-
gorithm.

• MOEA/D-Epsilon Multiobjective Evolutionary Algorithm based on Decomposi-
tion with Epsilon Constrained.

• MOEAD/D-SR Multiobjective Evolutionary Algorithm based on Decomposi-
tion with Stochastic Ranking.

• MOEA/D-CDP Multiobjective Evolutionary Algorithm based on Decomposi-
tion with Constraint Dominance Principle.

• C-MOEA/D Adaptive Constraint Handling Multiobjective Evolutionary Al-
gorithm based on Decomposition.
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• NSGA-II-CDP Non-dominated Sorting Genetic Algorithm II with Constraint
Dominance Principle.

• LIR-CMOP Large Infeasible Regions- Constrained Multiobjective Prob-
lems.

• ACDP Angle Constraint Dominance Principle.

• MOEA/D-ACDP Multiobjective Evolutionary Algorithm based on
Decomposition- Angle Constraint Dominance Principle.

• SP SPacing-based Muliobjective evolutionary Algorithm.

• RVEA Reference Vector guided Evolutionary Algorithm.

• CTAEA Constrained Two-archive Evolutionary Algorithm.

• MODE-SaE Multi-objective Di�erential Evolution- Self-adaptively Ep-
silon.

• CNS Constrained Non-dominated Sorting.

• cMOEA/H Constrained Hybrid Multiobjective Optimization Algorithm.

• pMODE-LS+SS Parallel Multi-Objective Di�erential Evolution Algorithm In-
corporating Local Dominance and Scalar Selection Mechanisms.

• ZDT Zitzler, Deb and Thiele.

• DTLZ Deb, Thiele, Laumanns, and Zitzler.

• CellDE Cellular Di�erential Evolution.

• MRMOGA Multiple Resolutions Multiobjective Genetic Algorithm.

• MOCPSO Multiobjective cellular Particle Swarm Optimization Algo-
rithm.

• MOPSO Multiobjective Particle Swarm Optimization Algorithm.

• MW Ma and Wang.
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• MOCellPPS MultiObjective Cellular Genetic Algorithm with Push and Pull
Search.

• cMOGA/D Cellular Multiobjective Genetic Algorithm based on Decom-
position.

• cMOGA/D-SY Cellular Multiobjective Genetic Algorithm based on Decom-
position -Synchronous.

• cMOGA/D-AS Cellular Multiobjective Genetic Algorithm based on Decom-
position -Asynchronous.

• cMOGA/D-LS Cellular Multiobjective Genetic Algorithm based on Decom-
position -Line Swipe.

• MOEA/D-PPS Multiobjective Evolutionary Algorithm based on
Decomposition-Push and Pull Search.

• PlatEMO Platform for Evolutionary Multi-Objective Optimization.

• MATLAB Matrix Laboratory.

• cMODE/D Cellular Multiobjective Di�erential Evolution Algorithm based
on Decomposition.

• cMODE/D-SY Cellular Multiobjective Di�erential Evolution Algorithm based
on Decomposition-Synchronous.

• cMODE/D-AS Cellular Multiobjective Di�erential Evolution Algorithm based
on Decomposition-Asynchronous.

• cMODE/D-LS Cellular Multiobjective Di�erential Evolution Algorithm based
on Decomposition-Line Swipe.
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