
Deep Representation Learning with Genetic Programming

por

Lino Alberto Rodrı́guez Coayahuitl

Tesis sometida como requerimiento parcial para obtener el grado de

Doctor en Ciencias, en el área de Ciencias de la Computación

por el

Instituto Nacional de Astrofı́sica, Óptica y Electrónica

Julio, 2020

Sta. Ma. Tonantzintla,
Puebla, México.

Director:

Dr. Hugo Jair Escalante Balderas

Co-Directora:

Dra. Alicia Morales Reyes

c© INAOE

El autor otorga al INAOE permiso para la reproducción y distribución

del presente documento.

PROGRAMA DE POSGRADO EN CIENCIAS

EN CIENCIAS DE LA COMPUTACIÓN

Aprendizaje Profundo de Representaciones mediante

Programación Genética

Tesis

para cubrir parcialmente los requisitos necesarios para obtener el grado de

Doctor en Ciencias

Presenta:

Lino Alberto Rodrı́guez Coayahuitl

Sta. Maria Tonantzintla, Puebla, México

2020

Tesis defendida por

Lino Alberto Rodrı́guez Coayahuitl

y aprobada por el siguiente comité

Dr. Hugo Jair Esalante Balderas

Codirector del Comité

Dr. Alicia Morales Reyes

Codirector del Comité

Dr.

Miembro del Comité

Dr.

Miembro del Comité

Dr.

Miembro del Comité

Dr.

Miembro del Comité

Dr.
Coordinador del Programa de

Posgrado en Ciencias de la Computación

Dr.
Director de Estudios de Posgrado

Diciembre, 2019

iii

Resumen de la tesis presentada como requisito parcial para la obtención del grado de Doctor en Ciencias en
Ciencias de la Computación.

Aprendizaje Profundo de Representaciones mediante
Programación Genética

En esta tesis se propone el desarrollo de un nuevo modelo de aprendizaje profundo basado en el entorno
de trabajo de Programación Genéntica (PG). Aunque el aprendizaje profundo es normalmente considerado
una área concerniente exclusivamente al estudio de cierto de tipo de redes neuronales artificiales, en esta
tesis se aborda el aprendizaje profundo como un cambio de paradigma, en donde las dos etapas clásicas de
una solución basada en aprendizaje maquina, i.e. la extracción de caracterı́sticas y la predicción, se fusionan
en un solo algoritmo de aprendizaje, representado por una estructura única compuesta por una secuencia
de transformaciones no-lineales. La revisión de literatura que se presenta en esta tesis defiende esta nueva
perspectiva, al presentar nuevos modelos de aprendizaje profundo propuestos recientemente en la literatura
cientı́fica, que no basan su implementación en el uso de redes neuronales artificiales.

Como resultado de esta investigación, se proponen dos modelos de aprendizaje profundo basados en PG,
uno para aprendizaje no supervisado y otro para aprendizaje supervisado. El modelo propuesto para apren-
dizaje no supervisado consiste en un método basado en PG para la evolución de algoritmos autocodificantes.
De acuerdo a la experiencia del autor de esta tesis, ésta es la primera vez que algoritmos autocodificantes
se obtienen mediante un modelo de aprendizaje máquina distinto al de las redes neuronales artificiales. El
rendimiento obtenido por los algoritmos autocodificantes generados mediante PG es comparable a los que
obtenian las redes neuronales profundas de hace diez años; sin embargo, nosotros consideramos que el marco
de trabajo de la PG es más general que el de las redes neuronales artificiales, dado que no solamente se busca
un vector de pesos, sino toda la estructura de la solución, y que ahı́ radica la relevancia de este resultado.

El modelo propuesto para aprendizaje supervisado consiste en una modificiación de la representación de
la soluciones en PG. Este nuevo modelo, denominado FractalGP, permite la evolución / aprendizaje de man-
era eficiente de estructuras más profundas de lo que la representación clásica de PG permite. La evaluación
experimental del modelo propuesto confirma un rendimiento superior con respecto a la versión clásica de
PG. Adicionalmente, se propone una variante al FractalGP inspirada en las redes neuronales convolucionales,
que perimite la evolución de arquitecturas de aprendizaje profundo donde todas las neuronas artificiales son
reemplazadas por árboles sintácticos de PG.

Sin embargo, el resultado que consideramos más significativo de esta investigación está relacionado con
un fenómeno que se observa después de un análisis minucioso de las soluciones generadas por el algoritmo
FractalGP. Los resultados obtenidos muestran que en la arquitectura propuesta, en la que se reemplazan
neuronas por árboles sintácticos, el PG hace que éstos árboles sintácticos evolucionen a algo que se asemeja
a neuronas artificiales, es decir, la heurı́stica evolutiva encuentra las piezas faltantes de la heurı́stica de donde
se importan el resto de los elementos, perdiendo la capacidad de aportar soluciones novedosas al problema
tratado. La conclusión a la que se llega es que intentar importar ciertos aspectos heurı́sticos del aprendizaje
profundo clásico a la PG podrı́a ser un enfoque equivocado. Esto abre nuevas lı́neas de investigación que
habrán de ser valoradas.

Palabras Clave: Cómputo Evolutivo, aprendizaje máquina, aprendizaje profundo, aprendizaje de re-
presentaciones, procesamiento de imágenes.

iv

Abstract of the thesis presented in partial fulfillment of the requirements of the degree of PhD in Computer
Science.

Deep Representation Learning with Genetic Programming

In this thesis, we propose the development of a new Deep Learning (DL) model based on the Genetic Pro-
gramming (GP) framework. Although DL is typically considered a machine learning (ML) field solely con-
cerned with certain class of artificial neural networks (ANNs), in this thesis we approach DL as a paradigm
shift, where the two classical stages of a ML workflow, i.e. feature extraction and prediction, are fusioned
in a single ML algorithm, represented by an unified pipeline composed of non-linear transformations. Our
literature review, that revolves around recent efforts from the research community at developing new DL
architectures that depart from the classical ANN-based models, supports our point of view.

As result from our research, we propose two GP-based DL models, one for unsupervised learning and
another for supervised learning. The unsupervised learning model consists in a GP framework aimed at
evolving autoencoder algorithms. To the best of the author’s knowledge, this is the first time autoencoder
algorithms are generated though a ML model other than ANNs. The performance obtained by the evolved
autoencoders is comparable to the performance of deep networks proposed ten years ago; nevertheless, we
consider the GP framework more general than that of ANNs, due to the fact that GP searchs for the entire
solution’s structure, whereas in the ANNs framework only the weights are optimized, hence the relevance of
this result.

The proposed model for supervised learning consists in a modification of GP’s individual representation.
This new framework, we call Fractal GP, allows to efficiently evolve / learn deeper GP structures than a
vanilla GP. Empirical assessment of the proposed model confirms its superior performance over the canonical
version of GP. A further extension to the Fractal GP model inspired by Convolutional Neural Networks is
proposed, that allows to evolve complete DL convolutional architectures, where all the artificial neurons are
replaced by GP abstract syntax trees.

However, what we consider the most important result obtained from our research, concerns with a phe-
nomenon we observed after a closer inspection of the individuals generated by the FractalGP. Results ob-
tained showed that in the proposed model, where artificial neurons are replaced with syntax trees, the GP
makes the syntax trees evolve towards structures that resemble artificial neurons, i.e. the artificial evolution
heuristic finds the missing elements of the origin heuristic, thus losing the capacity of finding novel solu-
tions to the problem tackled. The conclusion we arrive from this result, is that attempting to import certain
heuristics aspects from classical DL into GP, might be a flawed approach. This opens new lines of research
for serious consideration.

Keywords: Evolutionary algorithms, machine learning, deep learning, representation learning, image
processing.

v

Agradecimientos

A mis directores de tesis, el Dr. Hugo Jair Escalante Balderas y la Dra. Alicia Morales Reyes, por

haberme brindado la oportunidad de colaborar con ellos, y por todo su apoyo brindado durante estos tres

años de trabajo realizado.

A los miembros del comité de tesis, la Dra. Pilar Gómez Gil, el Dr. Ariel Carrasco Ochoa, el Dr.

Eduardo Morales Manzanares, el Dr. Jose Martinez Carranza, y el Dr. Mario Graff Guerrero, por sus

valiosas aportaciones durante las revisiones de avance de tesis.

Al Dr. Enrique Muñoz de Cote, por todos sus conocimientos que compartió conmigo durante mi primer

año de estudios doctorales.

Al Dr. Saúl Pomares Hernández, por su fundamental apoyo en momentos crı́ticos durante mi permanen-

cia como estudiante doctoral en el Instituto Nacional de Astrofı́sica, Óptica y Electrónica.

A todos los investigadores, estudiantes y personal del Instituto Nacional de Astrofı́sica, Óptica y Electrónica,

pero en especial a los compañeros de la Coordinación de Ciencias Computacionales, por toda su enseñanza

académica.

A CONACYT y proyecto de investigación No. 436184 por su apoyo económico.

vi

“Esta investigación fue realizada gracias al apoyo del Consejo de Ciencia y Tecnologı́a del Estado de

Puebla”.

vii

Table on Contents

Page

Abstract (Spanish) iii

Abstract iv

Acknowledgements v

List of Figures x

List of Tables xii

1 Introduction 2
1.1 Genetic Programming . 4
1.2 Problem Statement . 6

1.2.1 A straightforward approach for representation learning with GP 6
1.3 Research Questions . 7
1.4 Hypothesis . 9
1.5 Objectives . 10

1.5.1 Main Objective . 10
1.5.2 Specific Objectives . 10

1.6 Motivation . 10
1.7 Contributions . 11

1.7.1 Other Technical Contributions . 11
1.8 Thesis summary . 12

2 Deep Learning 13
2.1 Representation Learning . 13
2.2 Artificial Neural Networks . 14
2.3 Deep Networks . 17

2.3.1 Training of Deep and Wide Learning Structures 18
2.3.2 Efficient Training with Large and High Dimensional Datasets 19
2.3.3 Accelerated Computing on Graphics Processing Units 20

2.4 Discussion . 20

3 Genetic Programming 22
3.1 Basics . 22

3.1.1 Individual Representation . 22
3.1.2 Genetic Operations . 23

3.1.2.1 Selection . 23
3.1.3 Population Dynamics . 24
3.1.4 Fitness Evaluation . 24

3.2 Taxonomy of Primitives . 25
3.2.1 Low Level Functions . 26
3.2.2 Mezzanine Level Functions . 26
3.2.3 High Level Functions . 27
3.2.4 Zero-argument Functions . 28

viii

Table on Contents (contd)

3.3 Advanced Techniques in GP . 29
3.3.1 Diversity Measures . 29
3.3.2 Spatially Distributed EAs . 30
3.3.3 Subroutine Finding in GP . 31
3.3.4 Memetic GP Models . 32

4 Related Work 34
4.1 Recent Deep Networks Architectures . 34
4.2 Representation Learning with GP . 36
4.3 Deep Learning from a GP perspective . 38

4.3.1 Pseudo Deep Learning with GP . 38
4.3.2 Quasi Deep Learning with GP . 39

4.4 Alternative Deep Learning Architectures . 40
4.4.1 Morphological Neural Networks . 40
4.4.2 Deep Forests . 42
4.4.3 Deep GP . 43

4.5 Discussion . 44

5 Evolving Autoencoding Structures through GP 46
5.1 Background . 46
5.2 GP Autoencoder . 48

5.2.1 Structurally Layered Genetic Programming 50
5.2.2 On-line Learning . 52

5.3 GP Configuration . 53
5.3.1 GP Operators . 54

5.3.1.1 Dual Single-point Crossover . 54
5.3.1.2 Dual Single-tree Crossover . 55
5.3.1.3 Dual Single-tree Mutation . 56

5.3.2 Population Dynamics under On-line Learning 56
5.3.2.1 Steady State . 57
5.3.2.2 Generational Replacement . 58
5.3.2.3 Efficient Steady State . 59

5.4 Empirical Assessment . 59
5.4.1 Used Datasets . 59
5.4.2 Preliminar Study . 60
5.4.3 EC Parameters Study . 64

5.4.3.1 GP as method to discover AEs . 65
5.4.3.2 Crossover vs. Mutation . 65
5.4.3.3 Population dynamics . 68
5.4.3.4 Crossover type . 69

5.4.4 Comparison with other methods . 69
5.4.5 Diversity Analysis . 72

5.5 Remarks . 73

6 Fractal Genetic Programming 76
6.1 Background . 76
6.2 FractalGP . 77

ix

Table on Contents (contd)

6.2.1 FractalGP trees creation . 79
6.2.2 FractalGP Operators . 79
6.2.3 Relationship to ADFs . 80

6.3 Convolutional FractalGP . 82
6.3.1 CFGP trees creation . 82
6.3.2 CFGP Operators . 85

6.4 Spatially Distributed Learning . 85
6.5 Hypothesis . 86

6.5.1 Credit Assignment Problem . 86
6.5.2 Tackling the CAP through GP . 89

6.6 Experimental evaluation . 89
6.6.1 Benchmark datasets . 89
6.6.2 Parameters Setup . 91
6.6.3 Results . 94

6.7 Analysis . 99

7 Conclusions 101
7.1 Recapitulation . 101
7.2 Contributions . 102

7.2.1 Additional Developments . 103
7.3 Discussion . 103
7.4 Future lines of research . 104
7.5 Publications . 106

A Convolutional Genetic Programming 107
A.1 Image Denoising . 107
A.2 Related Work . 108
A.3 Proposed Method . 108

A.3.1 Single Layer Convolutional GP Filter . 109
A.3.2 Multi-layer Convolutional GP . 109
A.3.3 Evolving Multiple Layers of Convolutional GP filters 110

A.4 Experimental Results and Analysis . 111
A.4.1 Training and Testing Datasets . 111
A.4.2 Evolutionary Algorithm Setup . 111

A.4.2.1 Fitness function . 112
A.4.3 Results . 112
A.4.4 Additional Results . 112
A.4.5 Discussion . 113

A.5 Conclusions . 113

Bibliography 116

x

List of Figures

Figure Page

List of acronyms . 1

1.1 GP individual tree . 5

2.1 Paradigm Shift . 14

2.2 Artificial Neuron . 15

2.3 MLP . 16

2.4 Alexnet . 18

3.1 Different Population Dynamics . 25

3.2 Low Level Functions . 26

3.3 Mezzanine Level Functions . 27

3.4 High Level Functions . 28

3.5 Spatially Distributed . 30

3.6 ADF . 31

3.7 Memetic GPs . 33

4.1 Depth Increase in CNN . 35

4.2 GP Time series . 39

4.3 2TGP . 40

4.4 Deep Forest . 43

4.5 Deep GP . 44

5.1 Classic Autoencoder . 47

5.2 Autoencoder GP individual . 49

5.3 Structurally Layered GP . 51

5.4 Dual Single-point crossover . 54

5.5 Dual Single-tree crossover . 55

5.6 Dual Single-tree mutation . 56

5.7 Population Dynamics On-line . 57

5.8 Partitioning Scheme . 61

5.9 1-Layer Deep . 62

5.10 Experimental Results . 63

xi

List of Figures (contd)

Figure Page

5.11 Single Point Crossover Results . 66

5.12 Single Tree Crossover Results . 67

5.13 Visual Comparison between PCA, ANN, GP . 71

5.14 Population Diversity . 73

6.1 FractalGP . 78

6.2 Fractal Crossover . 81

6.3 Fractal Mutation . 81

6.4 Noise Mutation . 81

6.5 Convolutional FractalGP . 83

6.6 Internal CFGP nodes creation . 84

6.7 Spatially Distributed Learning . 85

6.8 Convolutional GP . 88

6.9 Mezzanine-based GP . 90

6.10 BSDS . 91

6.11 Low-Level GP . 92

6.12 Trimmers . 93

6.13 Results Denoising 25 . 94

6.14 Results Denoising 50 . 95

6.15 Low Level Filter . 96

6.16 CFGP Example Solution . 97

6.17 CFGP Solution Primitives . 98

6.18 CFGP Solution Primitives Contd. 98

A.1 Convolutional GP . 110

A.2 Evolution variants . 111

A.3 Results . 113

A.4 Results . 114

xii

List of Tables

Table Page

5.1 Datasets used for experimentation. All datasets consist in grayscale images; pixel
values are normalized to fall in the range [0,1] in all cases. 60

5.2 Evolutionary parameters for the GP runs. Arithmetic operands are 2-ary and trigono-
metric functions are unary primitives. The division function is protected, meaning
that any attempt to divide between zero returns as output 1× 106, instead of an error. 61

5.3 Complete study for full training dataset . 63

5.4 Results after 10 epochs for every configuration tested. Results in bold are significantly
better within their cell. Results with ∗ denote those that are significantly better than
the others with equivalent computational cost. Result denoted with ∗∗ is the overall
best result found. Standard deviations are expressed in hundred thousands. 68

5.5 MSE results on the testing set for the compared methods. Values remarked in bold are
better. 70

6.1 Parameters used for experiments carried with synthetic regression datasets. 91

6.2 Parameters used for image denoising experiments. 93

6.3 Results from different GP approaches using synthetic images. Results expressed in
MSE. Lower is better. All setups were run for the same amount of time, given the
same computational resources. 93

6.4 Average results obtained by LowGP, MidGP, CFGP and CNN implementations, from
10 independent testing runs, for noise level of 50. Results are expressed in dB; higher
is better. 96

A.1 Average performance of all Convolutional GP architectures tested. Values expressed
in decibels. Higher is better. 112

1

List of acronyms

EA Evolutionary Algorithm

EC Evolutionary Computation

GA Genetic Algorithm

GP Genetic Programming

ML Machine Learning

DL Deep Learning

MLP Multi-layer Perceptron

ANN Artificial Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

AE Autoencoder

GP-AE GP-generated Autoencoder

SGD Stochastic Gradient Descent

CFGP Convolutional Fractal Genetic Programming

2

Chapter 1. Introduction

Machine learning (ML) is the field of computer science concerned with the development of algorithms

and software agents that master a task through the acquisition of experience from repeatedly executing the

task or by observation of an expert (Mitchell, 1997). There are different classes of ML algorithms, such

as supervised learning, unsupervised learning, reinforcement learning algorithms, among others (Ayodele,

2010; Alpaydin, 2014). In this thesis, our focus is primarily on supervised, as well as unsupervised, learning.

In supervised learning, an algorithm is presented with several examples of the task it must learn, i.e.

many inputs-outputs pairs, and the algorithm then must discover a model that correctly maps all the inputs

with their corresponding outputs (Littman & Isbell, 2015). Classification and regression are examples of

tasks that algorithms can learn to perform through supervised learning. For example, in image classification

an algorithm is presented with several sets of images, each image belonging to a particular class (e.g., images

of boats, trees, buildings, etc.). The algorithm is informed of the class each image belongs to, so it can build

a model that correlates each image to the corresponding label, so it can be used later to match new unlabeled

images. Regression is similar to classification, but where outputs are continuous instead of discrete.

On the other hand, in unsupervised learning, the algorithms are not presented with labeled pairs of input-

output, instead, it is entirely up to the algorithm to find a model that describes structures or patterns found in

the input data. A common task of unsupervised learning is clustering, which consists in grouping the input

samples in such a way that objects belonging to the same group are similar, in some way or another (e.g. in a

database of supermarket sales, products that are likely to be bought together). Unsupervised learning can be

an intermediate step to preprocess data that later will be fed to supervised learning algorithms: unsupervised

learning algorithms can remove redundancies in the sample data, making it more compact and easier to

process for supervised learning algorithms.

Reinforcement learning (RL) algorithms concern with tasks involving sequential decision making (Sut-

ton & Barto, 1998), for example, learning to play a board game, driving a car, etc. RL algorithms interact

with an environment and, according to their actions, receive feedback from the environment in a reward

form; their objective is to discover a model that allows them to take actions such that the reward they get is

maximized over an hypothetical infinite time horizon.

3

A question that remains for all types of ML scenarios is, how exactly the input data -i.e., the samples in

supervised learning or the state of the world in RL- are presented to an algorithm? In what form is data fed

to ML algorithms? If, for example, a classifier were to learn to distinguish cancer cells from healthy cells, it

would be easier for the algorithm if vectors of numbers describing shape, size and symmetry of cells were

feed to it, instead of raw cells images. Similarly, a software agent designed to learn to play Go game, would

have a head-on start if the world’s state were a matrix that represented a current state of the board instead of

a live video feed of the very board itself. On the other hand, what would happen if vectors describing cells

did not have enough information to discern a healthy from a cancer cell? Then the algorithm would not learn

to correctly classify cells.

The area that deals with these issues is feature engineering. A feature is an individual measurable

property or characteristic of the phenomenon being observed (Bishop, 2006), e.g. an input variable from

the samples that we might be trying to classify. A features’ vector that entirely describes data that an ML

algorithm needs to process is known as representation. Classification, reinforcement learning and clustering

algorithms require compact, yet descriptive, representations, because they suffer from a phenomena known as

the curse of dimensionality (Bellman, 1961), which means that execution time and/or the amount of necessary

training data of these algorithms grows exponentially with respect to the representation size (Hughes, 1968;

Bishop, 2006). This often requires for representations to be carefully handcrafted by experts of the problem’s

domain.

On the other hand, representation learning consists in automatically finding data representations such

that classifiers or predictor systems can more easily extract useful information (Bengio et al., 2013). Rep-

resentation learning methods can be broadly classified into two categories: feature selection and feature

extraction. Feature selection methods attempt to reduce dimensionality of representation by selecting a sub-

set of features from the original feature space. They achieve this by discarding redundant or low variance

features (unsupervised feature selection), or by heuristically improving a features subset by measuring a

classifier performance fed with it (supervised). In contrast, feature extraction methods attempt to reduce the

feature space by generating a new set of features as a result of linear and non-linear transformations of the

original ones. This new representation not only is more compact, but it should also be more descriptive, in

a sense that generalizes better the sample data, i.e. more abstract (Bengio et al., 2013). Feature extraction

methods include: matrix factorization (Lee & Seung, 1999, 2001), linear discriminant analysis (Mika et al.,

1999), Principal component analysis (Wold et al., 1987), Artificial Neural Networks (ANN) (Williams &

Hinton, 1986; LeCun et al., 1998; Hinton & Salakhutdinov, 2006b), among others.

In recent years ANNs have automatically produced representations that significantly boosted classifica-

4

tion systems accuracy (Ciregan et al., 2012; Krizhevsky et al., 2012; Sermanet et al., 2012). Those ANNs

consist of several stacked layers of non-linear transformations. These so called Deep Neural Networks

(DNN), were previously thought too slow to train or to converge to very poor solutions when consisted in

more than two or three layers (Hinton & Salakhutdinov, 2006a); but recent advances in the area now allow

to train DNNs of several hundred layers (Huang et al., 2016). DNNs work by generating a more compact

and more abstract representation in each forward layer, thus at the final layer data should be clear enough for

discrimination by a classification algorithm (LeCun et al., 2015).

Another computational tool that has been used for representation learning is Genetic Programming (Koza,

1992). Genetic Programming (GP) belongs to the class of Evolutionary Algorithms (EA) that search for a

solution, in this case a mathematical model or very simple computer programs, through the use of pro-

cesses that mimic natural evolution such as, mutations of candidate solutions (individuals), crossover of

good performance individuals among a population, and discarding poor performing candidate solutions.

Even though GP has been used in the past for representation learning (Bot, 2001; Trujillo & Olague, 2006;

Liu et al., 2015), many of those approaches require the designer of the system to indirectly provide some

high level information, i.e. experts’ knowledge of the problem domain is still required. Attempts to pro-

duce GP representation learning systems that do not require experts knowledge have not yield competitive

results when compared against other state of the art representation learning methods in high dimensionality

problems (Parkins & Nandi, 2004; Limón et al., 2015); the kind of problems DNNs excel at.

In this thesis, we researched into the possibility of developing a representation learning framework based

on GP, that aims at tackling disadvantages of previous approaches based on GP (i.e., the need of experts

knowledge when dealing with high dimensionality problems and efficiency issues). Our proposed frame-

work is inspired by the deep architectures briefly discussed before, in the sense that we pose that successive

layers of representations can be generated through GP that gradually transform and abstract the initial input

representation, up to the point where an useful representation for other ML tasks is obtained. From DL’s per-

spective, the main contribution of this research is a set of new DL models where the fundamental processing

units are not artificial neurons, but abstract syntax trees (the basic learning structure of GP). Therefore, this

research is one of the first attempts to provide new DL models that depart from the traditional ANN-based

approach.

1.1 Genetic Programming

GP is a framework for the evolution of simple computer programs or mathematical functions (Koza,

1992; Poli et al., 2008); GP has been used for diverse set of tasks such as analog (Koza et al., 1997) and

5

+

-

2.2 /

x 11

*

7 cos

y

Figure 1.1: Tree structures like this are typically used in GP to represent individual candidate solutions.

digital (Sakanashi et al., 1996) circuits design, hardware design (Comisky et al., 2000), cellular automata

rule discovery (Andre et al., 1996), as well as for ML tasks. Being an EA, GP relies in a population of

candidate solutions to the problem at hand, these candidate solutions are called individuals. In the context of

ML tasks, each individual’s performance is tested against a training dataset; the best individuals are selected

to reproduce through the use of genetic operations, i.e. generate slightly modified versions of themselves;

these new candidate solutions are also evaluated and the best performing replaces the worst original one,

leading to a new generation of individuals, the process repeats until a stop criterion is met.

Individuals in GP are abstract syntax trees that represent a mathematical function or simple computer

programs (Koza, 1992; Poli et al., 2008). In the canonical form, internal nodes of GP trees can be arithmetic

operations, such as +,−,×, that operate over two scalar values or maybe trigonometric functions such as

sin, cos, tan, that operate over a single scalar value; and leaf nodes are single scalar variables taken from the

feature set that describes the ML problem at hand. In this way, data flows from bottom nodes to the top root

node where the final output is generated. Fig. 1.1 shows an example of a tree structure that represents the

function f(x, y) = (2.2− (x11)) + (7 ∗ cos(y)) (Axelrod, 2007).

In modern variants and advanced GP forms, specially some geared towards high dimensionality prob-

lems, leaf nodes may not be single variables, but vectors or even arrays extracted from a large representation

space, and internal nodes may be complex functions that, either somehow transform these vector inputs to

single scalars or directly operate over one or more of these multidimensional inputs and return as output

another value of multiple dimensions. The problem with these higher forms of GP models, is that even

though they do learn new data representations, they often carry expert’s knowledge of a tackled problem

(see Sec. 4.3 for discussion); and thus cannot be considered a representation learning method (because true

6

representation learning must be performed automatically, i.e. in an agnostic fashion).

1.2 Problem Statement

High dimensional representation learning problems define intractable search spaces for GP. Using a

standard GP approach to tackle representation learning would be computationally expensive, and inefficient,

because the search space for the optimal solution includes massive amounts of very poor candidate solutions

that a GP has to filter on its own.

We approach the problem of feature extraction using GP in its canonical form; i.e. in order to ensure

that we perform representation learning through GP, we aim to process raw data without any human ex-

pert’s knowledge of the problem domain embedded within GP individuals (in the form of advanced function

nodes). From a dataset with an arbitrary number of samples, each sample j represented by a feature vector

oj that belongs to Rn, we wish to learn a new, more compact and/or abstract, representation M, such that

each sample j is now represented by a feature vector pj that belongs to Rm, and such that m � n. The

representation learned might be a by-product of another ML task, such as classification or regression, and

not necessarily the main objective GP’s evolutionary search or optimization.

1.2.1 A straightforward approach for representation learning with GP

Under a GP methodology based on canonical GP individuals, for every feature to be learned fmi ∈ M,

a GP tree is built and denoted as ti. Tree ti receives as input n original features, and returns as output the

feature fmi . Let us suppose, without loss of generality, that each tree ti, ∀fmi is composed of functions of arity

2, i.e. each ti is a binary tree. Since tree ti could require, conceivably, all n original feature to generate fmi ,

ti is a perfect binary tree, and input features can only appear on leaf nodes, thus ti height is, approximately at

least, dlog2(n)e, and the number of internal nodes is, approximately, 2dlog2(n)e. For simplicity, let us assume

for now on that n is a power of 2, therefore the number of internal nodes of ti is n. Now let us suppose that

we would use a set of K functions; each internal node can take the form of any of those K functions, then

the total size of the search space to explore is O(mKn).

Example 1 Suppose we wish to process a set of images to convert them from an original feature space of

64x64 gray scale pixels to a vector of 32 new features. Hence, n = 4096 and m = 32. We are set to search

for a GP individual composed of 32 trees; each tree, potentially, of height 12. Suppose we are considering

the following set of functions {+,−,×, /}. The GP needs to search for an optimal individual among, at

least, 32× 44096 distinct possible solutions.

7

Example 2 Suppose we wish to perform an image classification task, such that we need to convert a set of

images from their raw representation of 64x64 gray scale pixels to an output vector of 10 variables, where

each variable of the output vector signals the class to which the image belongs. In this case, n = 4096 and

m = 10. Therefore, we are set to search for a GP individual composed of 10 trees; each tree, potentially, of

height 12. Consider the same set of GP node functions of Example 1. Then, the GP needs to search for an

optimal individual among, at least, 10× 44096 distinct possible solutions.

These are optimistic, lower bound estimates, since we are not yet taking into account that constants

are probably needed as leaf nodes as well; but then again, these estimates shows us the complexity of the

problem we are dealing with. Although evolutionary algorithms are ideally suited to explore search spaces

of such exponential growth, we propose that there might exist additional steps to the standard GP that can be

taken to improve its efficiency.

Considering the structural layered processing of Deep Learning could allow to significantly improve GP

performance to tackle representation learning. A layered GP scheme that gradually transforms the search

space while reducing the computational burden.

1.3 Research Questions

In this section we state the original research questions that led our investigation, as well as accompanying

commentaries that correspond to the answers we reached after carrying out our research.

Main Research Question

How can we design and adapt a Genetic Program to efficiently generate compact, descriptive and man-

ageable representations of high dimensionality datasets associated to machine learning problems in a way

that does not require any human expert knowledge of the problem’s domain?

Results obtained by some of our proposed models suggest that rather than completely mimicking the

architectural designs of DNNs, we should revisit known, and develop new, ways for GP to evolve collections

of subroutines. This might be the GP-oriented way of simultaneously learning to perform feature extraction

while also evolving classification systems.

Research subquestions

1. How can we evaluate the quality of a learned representation? That is, what is the fitness of a GP

8

individual for representation transformation?, What objective functions can drive the evolutionary

search for representation learning with GP?

These are actually open questions in the overall representation learning research field (Bengio et al.,

2013), and we do not expect to provide a definitive answers to them; our concern is more related

with answering how to tailor our algorithms to generate useful representations for classification and

clustering tasks.

In this, thesis we propose new GP models for both unsupervised and supervised learning. The unsuper-

vised model aims to directly learn a new, more compact, representation; while the supervised approach

tackles a regression problem and only generates intermediate representations as a by-product of the

main objective; both approaches being feasible.

2. What relationship exists between GP performance and the depth of a Deep GP approach?

When measuring the performance of an algorithm, we can consider the efficacy and efficiency. The

efficacy in this context refers to the accuracy of a ML algorithm, such as the error obtained in a classi-

fication or regression task, independently of how much time the algorithm takes, or any other optimal

conditions it may require, to converge to such result; i.e. the precision. The efficiency, considers the

precision with respect to something else, such as the computational time invested in training (time ef-

ficiency), or the size of a training dataset required (data efficiency), to achieve a given accuracy. Here

we refer to time efficiency.

A trope in the deep learning field is that, in general, an increase in the depth of deep architectures can

translate into an increased accuracy (see Sec. 4.1 and He et al. (2016)). Our hypothesis revolves more

around the idea that a layered processing scheme could make the GP search more efficient (i.e., same

accuracy in a shorter time span), but could this also mean that increasing the number of layers in an

hypothetical deep GP model could also improve the accuracy of the proposed approach in complex

ML tasks?

Results suggest that efficacy is more related with the way raw input representations are decomposed

in order to be subject to local processing (see Ch. 5), rather than to the ’depth’ of a GP model. Due to

time constraints, this research could not address the efficacy issue extensively; results obtained from

our proposed approaches that explicitly attempt to increase the ’depth’ of GP models (see Sec. 6.6) are

inconclusive: at the moment we cannot determine if such proposed approaches achieve an increase in

efficacy or only in efficiency.

3. How can we implement online or semi online forms of training/evolution to further increase computa-

tional efficiency?

9

One criticism to evolutionary algorithms is their low speed of convergence, compared to other methods

such as stochastic gradient descent. Would it be possible for our proposed approach to evolve solutions

using small subsets of samples (minibatches), instead of sweeping through all the training dataset in

each generation and for every individual in the population?

The experimental evidence gathered during this research backs the feasibility of incremental or on-line

forms of learning in GP. In Ch. 6 we also propose a radically different form of incremental learning

more ad hoc for population based methods, i.e. evolutionary machine learning algorithms.

4. How can we circumvent or solve one of the fundamental problems of deep learning, the credit assign-

ment problem (Schmidhuber, 2015), in GP?

Our initial proposed approach centered around the idea of evolving layers of intermediate representa-

tions in a sequential manner, in a unsupervised learning fashion inspired by earlier deep networks (Hin-

ton & Salakhutdinov, 2006b); but modern deep networks successfully optimize dozens of feature ex-

traction layers simultaneously thanks to the backpropagation algorithm (under certain circumstances

and in combination with other techniques), could a similar mechanism be implemented in GP?

In Ch. 6 we establish the argument that GP is a mechanism that circumvents the credit assignment

problem: notice how GP is a framework where complex, sequentially processing, systems are evolved.

With this insight in mind we propose a modified version of GP that manages to evolve structures akin

to deep networks, where artificial neurons are replaced by GP syntax trees, further proving evidence

for this argument.

5. How the proposed method compares with other state-of-the-art representation learning methods, such

as PCA, Deep Learning, and expert’s knowledge embedded GPs?

Our results show that GP still lacks behind state-of-the-art deep learning architectures. Results and

comparisons performed for both unsupervised and supervised learning approaches proposed in chap-

ters 5 and 6 respectively, show that GP might be a less precise ML method than DNN-based models,

thus signaling that efficacy issues should be addressed before attempting increasing the efficiency of

the GP framework.

1.4 Hypothesis

It is possible to achieve a higher efficiency1 than the straightforward approach in the evolutionary search

for representation learning if we direct the search towards individuals that mimic the models of Deep Learn-
1Better quality solutions in the same amount of time, given the same amount of computational resources.

10

ing, i.e. models based on multiple GP layers that generate intermediate representations that gradually trans-

form the feature space. With these enhancements, GP can reach a competitive performance with modern

deep learning networks.

1.5 Objectives

In this section we state the objectives that led our research.

1.5.1 Main Objective

Design, develop, implement and evaluate a multilayered representation learning framework based on

Genetic Programming, that can obtain competitive performance with state of the art solutions.

1.5.2 Specific Objectives

1. To define a set of objective functions to assess solutions, i.e. individuals, at a fitness level, to act as a

proxy for their performance in learning useful representations for other ML tasks.

2. To provide conclusive experimental evidence on the behavior of the proposed GP framework perfor-

mance as a function over the depth, i.e number of layers, of the proposed multi-layer GP architecture.

3. To implement or, if necessary, develop different incremental learning methods in order to avoid full

training datasets evaluations every generation.

4. To develop a method that attempts to evolve simultaneously all layers of a multi-layer GP approach.

5. To evaluate the proposed framework on image datasets commonly used in ML research, and compare

its performance with state of the art deep architectures.

1.6 Motivation

So far, state of the art results in feature extraction with GP have been achieved only through heavy use

of high level functions nodes in GP individuals’ representation (e.g. Trujillo & Olague (2006); Shao et al.

(2013); Yan et al. (2014); see Sec. 4.3.1 for further discussion). The problem with this approach is that: (a)

high level functions are a form of human expert knowledge brought to the system by a designer and, (b)

resulting systems are somewhat limited to capabilities of such hand-crafted high level functions. Nowadays,

machine learning algorithms for representation learning that do not require any expert knowledge input and

11

that can transform input features in any way needed are more desirable. DNNs have succeeded in this

regard in certain scenarios, and hence their importance. GPs that are restricted to the use of basic function

nodes (canonical representation) could provide a way to solve both issues, since they do not contain any

implicit nor explicit expert knowledge, and have more flexibility in the process of transforming original

features; however they pose a new challenge: in high dimensionality problems, candidate solutions can be

of potentially unmanageable sizes; the vast number of features that define a landscape can make the problem

computationally intractable.

Neural networks and deep neural networks have stood out as a machine learning tool among many others

thanks to their ability to represent any function as needed. This property has make them to be considered

universal function approximators (Hornik et al., 1989). Although there are not equivalent theorems for

GP, as far as the author of this research is aware of, we suspect that GP can also produce universal function

approximators. For this reason, we consider GP a relevant computational tool that should be further explored

and expanded. In our literature review we presented a wide variety of works that prove GP’s usefulness

for feature extraction/representation learning. However, we also brought light to the fact that GP based

approaches for representation learning hit a wall when encountered with problems with massive amounts of

features.

To solve this issue, we propose an approach partially inspired by deep architectures, that learns multiple

layers of representations that gradually abstract the initial feature space.

1.7 Contributions

The main contributions of this thesis research are:

1. A new deep learning architecture based on GP abstract syntax trees instead of artificial neurons.

2. A GP approach to unsupervised representation learning through the use of autoencoding structures.

3. A new classification system (taxonomy) to categorize and understand efforts from GP research com-

munity to representation learning/feature extraction.

1.7.1 Other Technical Contributions

Besides the scientific contributions product of our research, there is at least one non-scientific, technical

contribution we consider significant:

12

• A new GP software library aimed at ML tasks, where all proposed models and experiments were

implemented. The library is written in Python, and it is opensource, in line with the commitments of

reproducibility and repeatability of modern research.

1.8 Thesis summary

The remainder of this document is organized as follows:

2. In Ch. 2 we analyze the concept of deep learning. We provide an overview on the main methods,

algorithms, and architectures used in what are considered modern deep networks. We discuss what

makes a network deep, rather than shallow, and what is the essence of deep learning.

3. In Ch. 3 we provide a thorough review on basic and advanced GP concepts. The contributions of our

research are built upon all concepts reviewed in this chapter. We also propose a taxonomy to categorize

different classes of GP methodologies found in literature.

4. Ch. 4 consists in a literature review where we cover from works related to representation learning with

GP, to unconventional deep learning architectures recently proposed by other scientific teams. We also

discuss how the idea of deep learning has also been somewhat present in the GP research community

for a long time.

5. In Ch. 5 we propose an unsupervised learning method to representation learning based on the synthesis

of autoencoding algorithms.

6. In Ch. 6 we present an extension to the GP frameworks that allows to evolve deeper tree structures

than typically possible with the vanilla GP representation. We further extend this model to a new class

of deep learning architecture based on GP, where all artificial neurons are replaced by GP’s abstract

syntax trees.

7. Finally in Ch 7 we provide a recapitulation on our research and discuss some possible future lines of

research that emerge as a conclusion of the results found.

13

Chapter 2. Deep Learning

In this chapter we present the basic theoretical framework of Deep Learning (DL); this chapter is not

meant to be a complete or detailed description on the mathematical foundations of DL, but rather a general

introductory overview on: (i) the most important concepts of DL, (ii) modern techniques and methods used

by DL practitioners, (iii) some unanswered and controversial issues in the field of DL to date, (iv) and how

all these methods and concepts relate to the approach we are proposing in this thesis research.

2.1 Representation Learning

Representation learning is a set of methods that allow a machine to be fed with raw data and automat-

ically discover representations needed for detection or classification (LeCun et al., 2015). The key word

in this definition is automatically. All representation learning methods are either feature extraction or fea-

ture selection methods, but not the other way around: not all feature extraction methods are representation

learning techniques. It is possible to develop feature extraction, or even feature selection methods, that can

leverage from human experts’ knowledge of the problem’s domain being tackled; in such scenario, automa-

tion in the process of generating a new representation is partially lost, and therefore cannot be considered

a representation learning. It is important to make this clarification because many GP systems for feature

extraction cannot be classified as representation learning methods, and the success of those that can be con-

sidered true representation learning is limited to low dimensional problems (for further discussion on this

topic see Ch. 4), hence the importance of our research.

Formally, all DL methods are considered, at their core, representation learning methods (Bengio et al.,

2013; LeCun et al., 2015); though this can be somewhat debatable. On one hand, it is certain to assert that DL

methods are field agnostic: DL methods can process raw ML datasets without needing any human expertise

or prior knowledge on the problem’s nature. On other hand, unlike principal component analysis or matrix

factorization, the aim of DL methods is rarely to simply come up with a new data representation; instead,

most DL frameworks consist of complete ML pipelines that take as input samples in raw representation

and return as output the classification or prediction, leaving generated representation somewhere in between

nested layers of the DL model. Hence, DL can be considered more sort of a change of paradigm, where the

typical ML workflow that is composed of a feature engineering stage and a ML prediction stage are replaced,

14

Figure 2.1: Comparison between a classical ML workflow vs Deep Learning approach.

by a fusion system where the whole process is performed by means of artificial intelligence. Fig. 2.1 visually

depicts this contrast. We wish to made these remarks because, while in Ch. 5 we do present a GP system

specifically aimed at learning new representations, in Ch. 6 we propose a framework based on GP aimed

at supervised ML tasks, such as regression or classification, that nevetheless we consider a Deep Learning

model, because it process input samples in raw form (even if does not returns as output a new representation

per se).

All classical DL methods are based on artificial neural networks. In the next section we provide a basic

description of these artificial neurons.

2.2 Artificial Neural Networks

ANNs are machine learning models that can be represented by a graph, where nodes represent sim-

ple processing units (the artificial neurons) and the edges are weight factors that must be calibrated for the

network to correctly perform the desired ML task (Mitchell, 1997). Mathematically, ANNs are linear alge-

bra systems that transform an input through a cascade of simple matrix operations, along with non-linear

transformations in-between.

Mathematically, an artificial neuron is the composition of a linear transformation with a non-linear func-

tion. Eq. 1 defines the behavior of a single artificial neuron, while Fig. 2.2 shows the typical graphical

depiction of an artificial neuron.

y = ϕ

(
m∑
i=0

wixi + wb

)
(1)

15

Σ φ y

x
0

x
1

x
m

w
0

w
1

w
m

w
b

Figure 2.2: An artificial neuron is composed by an input vector, weights that modify its input, a summation of
these products and an activation function.

In Eq. 1, y is the neuron output, x is the input vector of size m, w is the weight vector, or parameters that

must be tuned, and ϕ is the non-linear function that transforms summation’s output before the final output. ϕ

is a function such as hyperbolic tangent, sigmoid function, unit step function, among others. ϕ is commonly

known as activation function.

A single neuron, using a unit step function as activation function, may be already used as a ML model

to perform classification. In such case, correct parameters values (weights) may be (efficiently) found by

minimizing the error by expressing it as a function of weights and using a gradient optimization method,

such as gradient descent. This simple model composed of a single neuron is known as the perceptron

(Rosenblatt, 1957).

However, such an approach would be severely limited because it makes the assumption that the mapping

that correctly classifies the input samples is a linear one. So, when dealing with complex ML scenarios,

multiple neurons are interconnected in some network topology that allows them to tackle non-linear ML

problems. Fig. 2.3 shows an example of one possible topology: the fully connected feed-forward network,

also known as the Multi-layer Perceptron (MLP).

When training (finding the weight parameters) multilayer neural networks, an additional algorithm needs

to be used in order to express the error (also called cost function) in terms of all the internal weights; this

algorithm is known as the backpropagation algorithm (Rumelhart et al., 1985; Yann, 1987).

Artificial neurons are the basic building block of all conventional DL models. Even though many DL

models exists that are not always referred as neural networks, such as Deep Belief Networks (DBN) (Hinton

et al., 2006) or Deep Restricted Boltzmann Machines (RBM) (Smolensky, 1986), all these models do rely

on artificial neurons as their backbone. The same applies to ANNs variants specially tailored toward certain

domains, such as Convolutional Neural Networks (CNN) (Fukushima, 1988; LeCun et al., 1995) and Recur-

rent Neural Networks (RNN) (Rumelhart et al., 1985). In the case of CNNs, these ANNs are composed of

16

Figure 2.3: Single hidden layer, Multi-Layer Perceptron.

convolutional filters, i.e., artificial neurons that are slid across their input space, while RNNs have neurons

with recurrent connections that act as memory units.

On other hand, unconventional DL models that do not use artificial neurons do exist. Those atypical DL

models are just beginning to appear in the research literature; we review some of these in Ch. 4. The models

that we propose in this research thesis fall under this category of new DL approaches.

At this point, we can evidence some weaknesses and strengths of artificial neurons, and their models.

Notice how an artificial neuron is fundamentally a linear transformation coupled with a single non-linear

transformation. Even a basic non-linear transformation such as the multiplication of two feature variables

cannot be achieved unless at least two sequential layers of neurons are used in network; this is in contrast to

the basic building unit of GP, that is an abstract syntax tree, that can represent multiple non-linear operations

in cascade. It is one of the reasons we consider important to develop new DL models based on learning units

other than artificial neurons.

Artificial neurons and their networks have mathematical properties for training through gradient descent

and backpropagation algorithms, which are very efficient algorithms. Attempting to build a DL model with-

out these goodnesses is one of the challenges in this research.

One of the most controversial questions in DL is, when an ANN is considered deep? In the next section

we review the most distinctive traits that set apart deep neural networks from ANNs.

17

2.3 Deep Networks

In this section we will discuss defining characteristics of deep learning models, and how they differ or

are considered different from standard or older ANNs. We will focus on Deep Neural Networks and Deep

Convolutional Neural Networks, though most of what will be exposed here also applies to Recurrent Neural

Networks, and to a lesser degree to the rest of the other classical deep learning models referred before (DBNs,

RBMs, etc.).

The concept of such thing as ”deep” networks probably arose due to the following two factors:

• In the late 1980s and during 1990s researchers from ANNs field began to speculate and gather some

empirical evidence that ANN composed of multiple layers could substitute the need for manual feature

engineering in ML classification problems, i.e. ANNs composed by several layers of neurons could

potentially replace human experts in the problem’s domains (Rumelhart et al., 1985; Yann, 1987;

LeCun et al., 1995).

• Roughly at the same time, researchers also realized that the backpropagation algorithm -despite its

mathematical elegance- struggled to train ANNs composed of more than a single hidden layer (Hochre-

iter, 1998; Bengio et al., 1994).

These two factors combined lead the search for methods to efficiently train neural networks composed

by two or more layers (1 hidden + 1 output) a kind of holy grail status among researchers of the area; while

at the same time it suggested that deep networks were a step towards artificial general intelligence.

During the entire decade of the 2000s scientists came up with several advances that eventually led to

development and publication of the first deep neural network. AlexNet (Krizhevsky et al., 2012) is a CNN

targeted at image recognition tasks. It was published in Neural Information Processing Systems conference

in 2012 and it is commonly considered the first deep neural network, or at least, the first modern deep neural

network. Fig. 2.4 shows the schematics of AlexNet.

AlexNet incorporated some methods that set it apart from earlier attempts at developing deep networks.

In the following subsections we will review each of these methods and how they have evolved to date. It

should be noted, however, that the reason on why AlexNet was so pivotal is probably due the fact that

it surpassed all other ML methods at its time at a difficult image recognition challenge by a significant

margin, effectively demonstrating that these so called deep networks could replace the handcrafted features

engineered by human experts.

18

Figure 2.4: Alexnet is a DNN composed of 8 layers in total (Krizhevsky et al., 2012).

2.3.1 Training of Deep and Wide Learning Structures

One of the main characteristics of AlexNet is the activation functions used in the hidden layers of the net-

work. AlexNet uses Rectified Linear Units (ReLU) (Nair & Hinton, 2010), or simply Rectifiers. Rectifiers

are the key ingredient that allowed backpropagation algorithm to train more than a single hidden layer effi-

ciently and allowed scientists to train deep networks of up to a couple dozen layers (Simonyan & Zisserman,

2014; Szegedy et al., 2015).

Before the advent of ReLUs, most ANN relied on other activation functions, such as the sigmoid or the

tanh. LeNet-5 (LeCun et al., 1998) is an ANN very similar to AlexNet, but one of its main difference is

that LeNet-5 uses tanh as activation functions. ANNs such as LeNet-5 took considerably more time to train

and/or required that the initial weights in the network to be close to the correct values, i.e. ANN could not

be initialized with completely random weights. Some techniques were developed in order to tune networks’

weights to these optimal initial values (Hinton & Salakhutdinov, 2006a), but eventually the usage of ReLUs

were fundamental to the birth of modern deep networks.

Nowdays, deep neural networks can consist of several dozens or even hundreds of layers (Huang et al.,

2016). These newer deep networks still rely heavily on ReLUs but they also require of other methods in

order to train that many layers. Two of the most important techniques in this regard are batch normalization

(BN) (Ioffe & Szegedy, 2015) and residual connections (He et al., 2016).

BN allowed to train networks beyond of what ReLUs allowed, giving birth to famous deep networks such

as the more advanced versions of the Inception networks (see Sec. 4.1). As the name implies, BN consists

in applying a parametrized normalization to the set of training samples in each one of the layers, similar to

how it is done to a training or testing dataset at the start of any ML pipeline.

19

Residual connections on the other hand, consist in each layer sending its output not only to the next

immediate layer, but also a few layers ahead. This kind of networks, known as ResNets (Huang et al., 2016),

break the traditional paradigm of ANNs’ layers being completely sequential.

When rectifier units and residual connections are not used, deep networks may suffer from a phenomenon

called exploding/vanishing gradients, which consist in error signal unable to back propagate to, or becomes

unstable at, the first layers of the network.

So, while ReLUs, ResNets and BN allow a network to grow deeper, other techniques allow the networks

to grow wider, i.e. to have more neurons (convolutional filters) per layer. Another method which AlexNet

was pioneer in adopting is dropout (Dahl et al., 2013). Dropout consists in setting, with a random probabil-

ity, each weight in the network equal to zero, i.e. randomly disconnecting some inputs for all neurons, in

each forward pass of data. This damage made on purpose on the networks helps to avoid overfitting, which

consists of ML methods to memorize training sets and perform poorly on new samples. Large neural net-

works are particularly prone to overfitting because the number of parameters inside of them may allow them

to easily memorize the training dataset, so dropout is a very effective method in deep networks to prevent

overfitting.

Newer techniques exists that allow to train even deeper networks, with up to a thousand layers, such as

stochastic depth (Huang et al., 2016); but these techniques are still more experimental, while the rest of the

methods mentioned in this section are nowdays commonly found in DL literature.

2.3.2 Efficient Training with Large and High Dimensional Datasets

Deep learning is, to a large extent, about solving very difficult optimization problems (Kathuria, 2018).

The optimization algorithms that make possible to train networks composed of thousands, or even millions,

of parameters play a significant role in the field of modern deep learning.

A key trait of modern deep networks is their capability of using mini-batched training. In mini-batched,

or also called on-line training, a ML algorithm is not presented with the entire training dataset each time it

has to update the internal parameters of the model being trained; instead, only a small fraction of the training

set is used. This approach can accelerate orders of magnitude the training time.

In the case of DNNs, the algorithm stochastic gradient descent (SGD) (Bottou, 2010) is the on-line

version of a standard gradient descent algorithm. Newer algorithms that belong to the family of gradient

following optimizators have been developed recently and specifically for training deep networks, such as

20

RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2014). These algorithms also train neural

networks using mini-batches and can be considered enhanced versions of SGD.

Even though optimizing a DNN is known to be a non-convex problem, the fundamental reasons on

why gradient methods converge to very good solutions, or even global minima, remain unknown. Some

hypotheses in this regard have been formulated (Haeffele & Vidal, 2017; Frankle & Carbin, 2019; Zhou

et al., 2019), but it is still an open line of research.

2.3.3 Accelerated Computing on Graphics Processing Units

It turns out that ANNs are particularly prone to be accelerated orders of magnitude on Graphics Process-

ing Units (GPU), modules originally designed for video games playback (Oh & Jung, 2004). This is thanks

to the fact that the fundamental operations used by neural networks (matrix operations) are the same used in

3D rendering.

All current implementations of deep networks are run in GPUs. For example, the authors of AlexNet

made publicly available a highly optimized software library for implementing CNNs in GPUs; one remark-

able feature of this library, is that allowed to split the implementation of networks across multiple GPUs,

thus taking the scalability of parallel execution one step further.

Some researchers (Hernández et al., 2017; Such et al., 2017) have hinted that most of DL success is due

to this new available raw computing power, rather than to truly new theories or methods. The reasoning

behind this asseveration is true to a certain extent: deep networks are overparametrized (Frankle & Carbin,

2019), and in order to be trained, large training datasets are required, and large datasets require high com-

putational resources if one is to obtain acceptable results in reasonable amounts of time. So, it is true to

assert that deep learning may have not been possible without this unprecedented, easy-accessible, processing

power; nevertheless, we should not overlook the technical (even if heuristic in nature at times) developments

discussed in previous subsections.

2.4 Discussion

We close this chapter with a wrap-up on the DL concepts presented so far, how these relate to the

proposed approach, and finally, with our own definition on deep learning.

In the previous sections we discussed some techniques that are commonly used to differentiate ANNs

from modern deep networks, which can be summarized as follows:

21

1. Deep Networks rely on techniques specifically designed to facilitate the training of networks composed

of more than a single hidden layer (such as ReLU activations, BD, and residual connections).

2. Deep Networks rely on techniques that allow them to efficiently handle large training datasets (such

as SGD, its variants, as well as GPU acceleration).

However, some reseachers have argued that the merits of deep networks such as AlexNet have been

overstated, and that DNNs have long existed (Schmidhuber, 2015). According to Schmidhuber (2015), the

first networks that can be considered deep, were succesfully trained in the the Soviet Union during the 1970s,

by Alexey Ivakhnenko, through a method called Group method of data handling (Ivakhnenko, 1968, 1971).

In the framework for this thesis, we share this point of view, and even though (as stated earlier) we do

not overlook the great technical advances aimed at enhancing the performance of deep networks presented

through Sec. 2.3, we do consider that the only real requirement for considering a method deep is that is

composed of more than a single layer of non-linear processing.

Now, we can formulate our own definition of deep learning: deep learning is a set of ML methods

that: (a) do not require previous knowledge of the problem’s domain being tackled, (b) perform the feature

extraction and prediction stages in a single, unified, learning structure/pipeline, and (c) work by performing

multiple non-linear transformations in cascade.

Notice how the above definition does not restrict DL methods to belong exclusively to the area of ANNs.

This is important because recent attempts (see Sec. 4.4) at developing DL-alike ML that do not rely on

artificial neurons can now be considered DL on their own right, as well as the methods proposed in this

thesis research (presented in Ch. 5 and Ch. 6).

22

Chapter 3. Genetic Programming

GP is an evolutionary computation technique, such as Genetic Algorithms (GA), Evolutionary Strategies

(ES) (Beyer & Schwefel, 2002) or Differential Evolution (DE) (Storn & Price, 1997), aimed at automatically

solving problems, even if the user does not know the structure of the solution in advance (Poli et al., 2008). It

shares the main components of evolutionary algorithms: a population composed of individuals -that represent

candidate solutions- and a set of operators that transform both the individuals and the population (Koza,

1994). In this chapter we present a thorough conceptual framework on GP.

In the first section of this chapter we describe the basic components of GP. In the second section we

introduce a taxonomy for the types of primitives found in the GP works, that in Ch. 4 will allow us to

classify different current GP methodologies; this classification system is an original contribution of this

research thesis, and will also help us in clearly differentiate our main method, presented in Chapter 6, from

the rest of the works found in the area, and why its relevance. The final section of this chapter discusses

advanced concepts of GP that will be required to understand, or can be contrasted with, the main proposed

method of Chapter 6.

3.1 Basics

In this section we present the basic elements that compose the GP framework. Some of them were briefly

introduced in Ch. 1; here are described in greater detail.

3.1.1 Individual Representation

An individual in GP is a candidate solution to the phenomenon being modeled or problem being tackled.

Traditionally, individuals in GP take the form of an abstract syntax tree that represents a mathematical

function or simple computer programs. In a GP tree, every node represents itself a function. The primitives

set represent the available functions that nodes can represent, hence functions represented by nodes are

known as primitives. All node functions must be taken from the primitives set. Internal nodes represent

typical functions, in the sense that these are functions which take as input some arguments, apply some

transformation over them, and return an output for further processing. Values returned by the children nodes

23

of a given node are input arguments for the function such node represents. On the other hand, leaf nodes are

what it is known as zero-argument functions, or terminals. These nodes do not take any input, as they can

be constant values or variables taken directly from the problem being modeled. In the context of machine

learning and representation learning, these variables can be taken from the feature set.

Tree structures can be directly used for scalar function regression and binary or one-class classification;

however, they fall short in capabilities for other tasks. Some GP representations make use of forests, a set of

trees, to represent a single candidate solution, that is, multiple trees account for a single individual. Forest

naturally extend the capabilities of GP to tackle problems as diverse as vector function regression, prototype

generation, representation learning, multiclass classification, among others. Nevertheless, it is still important

to understand the tree structure as the backbone of individual representation in GP.

3.1.2 Genetic Operations

GP operators are functions that transform the population, and individuals within, in order to find better

performing candidate solutions for the problem being tackled. Similarly to standard GAs, the typical opera-

tors in GP are mutation, crossover, and selection. GP operators are applied at an individual level implicitly

modifying the entire population. Through evolution, better individuals are generated to improve performance

of the tackled problem.

3.1.2.1 Selection

The process of selecting individuals that will pass to the next generation in an EA is sometimes consid-

ered also an operator, since these selection mechanisms take as input a number of individuals and return as

output a new set of individuals, very much like mutation and crossover operators. However, unlike mutation

or crossover that only modify the population implicitly, selection is an operator aimed directly at modifying

the population as a unit, by pruning it from poor performing individuals, and shifting it towards promising

areas in the search space.

In GP the selection mechanism are the same of those found in GA, such as roulette-wheel selection (Baker,

1987), tournament selection (Blickle & Thiele, 1996), truncation selection (Mühlenbein & Schlierkamp-

Voosen, 1993), and elitist selection (Thierens & Goldberg, 1994), to name a few. Some of these methods are

non-deterministic (roulette-wheel, tournament), while others are deterministic (truncation, elitism).

Selection in GP can happen at two moments during each evolutionary cycle: (1) when selecting the

24

individuals from which offspring will be generated, i.e. individual that will serve as parents, and (2) when

selecting the individuals, both from offspring and original population, that will survive to the next generation.

In the first selection process (assembling the parents pool), usually mechanisms such as tournament or

roulette-wheel selection are used, whereas in the second selection process (assembling the next generation)

elitism or no selection mechanism is used at all, depending on the population dynamic used. The available

population dynamics will be described in detail in the following subsection.

3.1.3 Population Dynamics

In GP, the dynamics that govern how populations are modified in each evolutionary cycle can be of two

main types: generational or steady state.

A steady state population dynamics consists in replacing part of the current population with newly gen-

erated offspring. Conventionally, an elitist selection procedure, where the best individuals from both the

original population and the offspring generated, are selected in a non-deterministic way to form the next

generation. Individuals from the original population and the offspring pool may or may not compete for

selection, i.e. even though an elitist selection procedure is used, one may choose to select half of the next

generation from the original population and the other half from the offspring pool, or in some other pro-

portion. This can be done this way in order to introduce diversity in the population, i.e. that early high

performance individuals do not conquer the entire population too quickly.

On the other hand, in generational population dynamics, the entire pool of individuals that comprise

the current population is replaced by offspring (Eiben et al., 2003). The only evolutionary pressure happens

when selecting the pool of highly fitted individuals that undergo reproduction. Elitism can still be used

in generational replacement, but only to keep the single best performing individual found so far in each

iteration.

3.1.4 Fitness Evaluation

Every individual in a GP is evaluated against an objective function. The result of this evaluation is

assigned as a fitness value to the corresponding individual in the population. This evaluation process is

repeated in every generation, and this fitness value is used by the selection mechanism to choose highly fitted

individuals in a population that will pass to the next generation or that will be allowed to breed offspring to

generate new individuals. This fitness measure along with the selection mechanism generate the evolutionary

25

Population
Parent

Selection
Mechanism

Parents
Pool

Genetic
Operations Offspring

pool

Population

Evaluation
Evaluated
Offspring

pool

Evaluated
Population

Survivor
Selection

Mechanism
Next

Population

F(x) F(x)

Population
Parent

Selection
Mechanism

Parents
Pool

Offspring
pool

Evaluation
Evaluated
Offspring

pool

Survivor
Selection

Mechanism
(none)

Next
Population

F(x)F(x)

Genetic
Operations

a)

b)

a)a)

Figure 3.1: Flow diagrams for different evolutionary population dynamics: a) steady state; b) generational
replacement. They follow the next steps: 1. Initial random population, 2. Parent selection mechanism (such as
binary tournament), 3. Candidate parents pool, 4. Genetic operators are applied, 5. Offspring’s pool breeding,
6. Individuals evaluation, 7. Evaluated individuals pools gathering, 8. Survivors selection mechanism (such as
elitism or tournament), 9. Next generation assembly.

pressure that pushes the overall population towards promising areas in the search space, and that eventually

yield acceptable or near-optimal solutions to the problem at hand. The objective function works as the high

level question we want the GP to answer (Poli et al., 2008).

3.2 Taxonomy of Primitives

In this subsection we propose a new classification system for the types of primitives found in the GP

research literature. As stated in previous sections, GP is a tool that has been used for a wide range of task

such as regression, classification, feature extraction, etc. The types of primitives used in each of these works

vary so widely among them that we consider necessary to develop a classification system that could help us

better understand the state of the art in GP. This taxonomy is an original contribution of this thesis research.

This taxonomy will help us to clearly differentiate our contributions from the rest of the works found in

the area, as well as draw some analogies between ANNs/DNNs and GP in the next chapter.

There are two main classes of primitives: input based functions (internal nodes), and zero-argument

functions (leaf nodes), also called terminals. Input based functions are further divided into three groups,

26

+

x 3

sin

x ...

a) b)

Figure 3.2: a. Two examples of low level functions: arithmetic addition and sine function; b. A generic depiction
of low level functions. Low level function may have any fixed number of inputs, but all should be scalars, as well
as their output.

depending on the dimension of the inputs and the output of the function, and zero-argument functions into

four categories, also depending on their dimension but also on their type (variable or constant).

3.2.1 Low Level Functions

We call low level functions to those that take as input n scalars as argument, and return a single scalar

as output. Examples of such kind of functions are all arithmetic operations such as, addition, subtraction,

multiplication, etc. Trigonometric functions also fall in this category. Fig. 3.2 shows some examples of

low level functions as tree nodes. Genetic programs that use only low level functions are primarily used for

scalar function regression, as well as for classification tasks. The main characteristic of low level functions

is their simplicity, and as such, they do not contribute any expert knowledge about the problem at hand being

tackled.

3.2.2 Mezzanine Level Functions

We call mezzanine level functions to those that take as inputs some vector, array or tensor form of data,

and return as output a single scalar. Examples of such kind of functions are statistical measures of data, such

as the mean or the standard deviation, or algebraic operations, such as the dot product. These functions serve

the purpose of connecting high level functions and complex forms of data, to lower level functions; but at the

27

mean

[3,4,5,6]

a) b)

4.5

dot

[1,3,-5]

3

[4,-2,-1]
...

Figure 3.3: a. Two examples of mezzanine level functions: the mean over the elements of a vector, and the dot
product of two vectors; b. A generic depiction of mezzanine level functions: mezzanine level function may have
any fixed number of inputs, and they may be of any dimension > 0, but their output is always a single scalar. In
the figure, the dashed arrows that serve as edges to the tree nodes represent the inverse flow of multidimensional
data.

same time, they can contribute expert knowledge to the set of primitives used in a GP, and by doing so, they

may be used as a feature extraction stage in a GP individual. Fig. 3.3 shows some examples of mezzanine

level functions.

3.2.3 High Level Functions

We call high level functions to those that take as inputs vectors, arrays or tensors, and return as output

either vectors, arrays or tensors, but not scalars. Examples of such kind of functions are a convolution of

a kernel filter over an image, such as an edge detector, or matrix operations (addition, subtraction, etc.).

High level operations, along some type of mezzanine functions, can contribute the highest amount of expert

knowledge to a GP, so it does not has to process data from scratch, nor discover on its own complex operations

that are useful for the problem being treated. Fig. 3.4 shows some examples of high level functions.

Notice how in a GP tree there can be only a single ’layer’ of mezzanine functions, i.e. two mezzanine

functions cannot be stacked, while low and high level functions can account for most of the tree depth.

Mezzanine functions work mostly as connectors or brief feature extraction stages between high dimensional

data and low level functions, while at the same time, high-level functions must necessarily connect to low-

level ones through mezzanine functions (hence the name mezzanine).

28

Rotate ADD

...

a) b)

Figure 3.4: a. Two examples of high level functions: the rotation and addition of images; b. A generic depiction
of high level functions: high level function may have any fixed number of inputs, and they may be of any
dimension > 0, and they yield their output in an vector, array or tensor form of data. In the figure, the dashed
arrows that serve as edges to the tree nodes represent the inverse flow of multidimensional data.

3.2.4 Zero-argument Functions

Just as regular functions are classified according to the data size they receive as input and return as output,

zero-argument functions can also be classified according to the amount and type of data they deliver. We

further classify zero-argument functions into four types:

• Type-1 (I1) are scalar variables that describe input data of GP candidate solutions. These can be

meaningful data, such as the total amount of red color in an image, or raw data, such as the individual

value of a pixel. Type-1 zero-argument functions’ output can be input arguments only to low level

functions.

• Type-2 (I2) are constant scalar values that modify the model being constructed by the GP. They remain

constant across all sample data presented to GP individuals. Type-2 zero-argument functions output

can be input arguments to low level functions only.

• Type-3 (I3) are vector, array or tensor variables. These can be, for example, complete -or partial-

images, time series, etc. Type-3 zero-argument functions output can be input arguments to mezzanine

or high level functions, but not to low level functions.

• Type-4 (I4) are constant vectors, arrays or tensors. Examples of this kind of functions are prototypes,

image masks, or any other constant signal. They are to Type-3 functions, what Type-2 are to Type-1.

Type-4 functions’ output can serve as input arguments to both mezzanine and high level functions.

29

3.3 Advanced Techniques in GP

In the final section of this chapter we cover some GP techniques that are uncommonly used, and that are

aimed at enhancing the performance of GP. We review these techniques because the proposed methods in

chapters 5 and 6 make use of them, or propose new methods derived from them or that can be contrasted

with them.

3.3.1 Diversity Measures

In general terms, diversity is understood as how many of the individuals from a population are actually

different from each other, i.e. how many unique candidate solutions are in the population. This means that

in a GP run, some individuals become repeated in the population as the time progresses. This is not only

common, but actually it is the standard behavior, not only for GP, but for all EAs in general.

Over course of a run, the population in a GP (or any EA), will eventually be dominated by a single

individual repeated multiple times, taking most part of the population; in other words, diversity will deplete

or extinguish. This happens as a consequence of the very nature of EAs, where only fittest individuals survive

each evolutionary cycle.

However, diminishing diversity is an undesired phenomenon, because diversity is the actual key of suc-

cess for an EA: if all individuals are the same in the population, the effect of crossover operator losses

strength, and the evolutionary search may converge to something like multiple hill climbers, pushed forward

only by the mutation operator.

In GP in particular, diversity can be measured in two broad ways: at genotypic or phenotypic levels.

Genotypic diversity refers to the differences in the individuals’ representations, i.e. the how the abstract

syntax trees that represent each individual in the population differ from one another. The similarity between

two trees can be measured in several ways, such as by the tree edit distance, which measures how many

changes have to be done in a tree in order to transform it into the other one.

There are two main problems with measuring diversity at genotypic level: the first one is that it is a

computationally expensive way to calculate diversity, and the second problem is that, even if two individuals

are different at a structural level, it does not mean they perform the task differently, since one or both of

the trees may be composed of non-functional subtrees (known as introns), i.e. parts that do not modify the

behavior of the tree, such as subtrees that are reduced to the multiplication or addition of the neutro; this

would mean that two trees that are considered different at genotypic level in fact perform the same function.

30

Phenotypic diversity, on the other hand, is measured by observing how many different results are obtained

in a population at the task performed, i.e. by comparing their predictions or their fitnesses. Unlike genotypic

diversity, phenotypic diversity can be calculated fast, and there is no risk two individuals are considered

different, even if they are not.

In the next section we will review one of the main methods used to promote diversity in EA.

3.3.2 Spatially Distributed EAs

One effective technique that allows to sustain diversity for an extended number of generations, is to split

the population into multiple subpopulations. There are two main approaches to do so: the island model (Co-

hoon et al., 1987) and the cellular model (Manderick & Spiessens, 1989; Gorges-Schleuter, 1989). Under

this framework, the standard approach with a single population is called panmictic model.

a) b)

Figure 3.5: Two standard models of spatially distributed EAs: (a) island model; (b) cellular model. (Tomassini,
2006)

In the island model, also called multipopulation model, the population is split into a few smaller popu-

lations. Each of these populations evolve in isolation and behave as a panmictic population would do, only

exchanging a small percentage of individuals between them every certain number of generations. The links

of exchange between these islands can be static or dynamic, if dynamic they may be random, and if static

they may adhere to some topology, such as a ring or lattice topology. In Fig. 3.5a shows the concept of a

multipopulation scheme composed of 5 islands, with a random dynamic topology.

The cellular models takes the island model to a extreme, where individuals reside in isolated cells, and a

spatial configuration is defined for the population, such that each individual can only interact with neighbor-

ing cells. In cellular models, the process of replacing the individual in each cell in every generation, consists

31

of assembling a micropopulation composed of the individuals in the surrounding cells, then the processes of

parent selection, offspring generation and survivor selection take place in order to find the new individual to

reside in the cell. Fig. 3.5b shows a lattice arranged cellular model.

Spatially distributed approaches help to maintain and promote diversity in EAs, because they do not

allow top performing individuals to take over the population as fast as in the panmictic model.

3.3.3 Subroutine Finding in GP

Subroutine finding, evolution, synthesis or also called discovery, is the concept of enhancing the GP

framework to allow it to discover on its own, re-utilizable pieces of code (expressed in the form of abstract

syntax trees), such that the GP individuals become modular (Poli et al., 2008). Just as human programmers

rely heavily on subroutines in order to write complex code, the search efficiency of a GP may benefit if such

GP could define and re-use pieces of code.

+

3ADF1

x 2

*

i
1 1

+ /

i
2 2

sin

*

i
1 2

Root

ADF2 ADF1 Main branch

Figure 3.6: Depiction of an GP individual that includes Automatically Defined Functions. In this particular
case, the individual includes two ADFs.

Koza’s Automatically Defined Functions (ADF) (Koza, 1994) probably remain as the most well-known

framework for subroutine synthesize (Poli et al., 2008). The ADF framework consists in including additional

trees in the individual representation, so the individual becomes effectively a forest, where the first tree

represents the ”main branch”, i.e. the code or equation that is executed when the individual is used for

evaluation or application purposes, and each other tree represents a subroutine that the main branch may

call upon. The subroutines may appear in the main branch as nodes, just as if they were primitives; and,

depending on how the ADFs are configured, it may also be possible for an ADF to invoke another ADF.

Fig. 3.6 shows a GP individual with two subroutines embedded.

32

Koza proposed an extreme use case of ADFs where ADFs replace all primitives. In this scenario per-

forming crossover can become problematic. Koza proposed a series of complex rules that should be observed

in order to use crossover under this scenario. In Ch. 6 we propose a similar modified GP framework that

resembles this extreme case, but we propose to use a parametrized representation of GP trees that allows to

improve the functions represented by ADF trees through a special mutation operation, instead of relying on

crossover and the rules proposed by Koza.

3.3.4 Memetic GP Models

GP has the ability to find symbolic expressions that, depending on the set of primitives available, do not

have to constrain to a predefined form (e.g., a polinomial of some degree). However, that does not mean that

GP can efficiently search across such large candidate solution space.

For example, let us suppose that a GP is used in a regression problem where the searched function com-

plies to the form of a third degree polinomial (unbeknownst to the designer). A GP may find an expression

as the one depicted in Fig. 3.7a, which represents the function x3 − 0.3x2 − 0.4x− 0.6. This function may

yield an acceptable error in the hypothetic regression scenario, nevertheless it is possible that by finding the

correct coefficients of the expression, the optimal solution could be found. Notice however that in a stan-

dard GP setup, where genetic operations such as subtree crossover or subtree mutation are applied, a lot of

computational effort will be wasted by altering the structure of this near-optimal individual in ways that do

not push it closer to the optimal solution (i.e., by disrupting the thrid degree polinomial form), before the

optimal solution can be found.

Early GP researchers noticed this issue and proposed to enhance the standard heuristic search of GP with

some forms of local search (i.e. local optimization methods). At least as early as (Evett & Fernandez, 1998),

researchers began to propose methods that focused on altering the numeric constants in leaf nodes of GP

trees with the intention of performing a fine tuning of candidate solutions. The idea is to let the GP search

act as a global search that sorts through the general structural search space, whereas these complementary

methods carry a local search. Such methods that combine both types of global and local search, belong to

the family of memetic algorithms (Moscato et al., 1989).

For example, Evett & Fernandez (1998) proposed to use a mechanim similar to simulated annealing

to fine tune the numeric constants in a GP tree, without disrupting the general structure. Experimental

evaluation of the proposed method showed promising results when compared against a standard GP.

Notice how once there is a local optimization mechanism available to be combined with the GP search,

33

-
{ }3

x

x

*

0.3{ }2

-

x

*

0.3

-
{ }3

x

x

*

0.3{ }2

-

x

*

0.4

--

0.30.6 -

{ }3

x

{ }2

-
{ }3

x x

{ }2

x

w
0

w
1

w
2

-
0.30.6w

3

a) b)

w
4 w

5

w
6

w
7

w
8

Figure 3.7: Examples of (a) standard GP individual vs (b) memetic enhanced GP individual representations.
Notice how in (a) blue nodes represent coeffiecients of the polinomial expression, and the red node is the bias
factor; both being subject to be efficiently optimized through numeric optimization methods; unfortunately
the coefficient is absent for the green leaf node, in order to optimize the entire expression. In contrast, model
depicted in (b) considers all the necessary coefficients for the same class of polinomial of (a), while also being
more compact, and potentially more easy to find by a GP search.

the GP individual representation can be modified in order to further take advantage of the local optimizer.

Fig. 3.7b depicts an example of such representation. Individual shown in Fig. 3.7b represents the function

w8(w7(w6(w4(w0x)
3 −w5(w1x)

2)−w2x)−w30.6). Notice how this expression is a generalization of the

model of Fig. 3.7a, while also being more compact and pontentially easier to find by the GP search, while

the search for the optimal coefficients wi is left entirely to the local search method.

Memetic GP variants can carry some problems that require designers to take important decisions, most

prominently if coefficient values are subject to be inherited by offspring generated through standard GP

operations (Lamarckian evolution) or if offspring generated will reset coefficient values (darwinian evolu-

tion). For an in-depth analysis of this and other issues associated to local search-enhanced GPs, as well as

experimental evaluations, please refer to Emigdio et al. (2014).

34

Chapter 4. Related Work

In this chapter, we review recent efforts related to the aim of our research thesis: developing a DL

framework based on GP or, in more general terms, developing DL frameworks not based on ANN.

First, we perform a quick review and analysis on how DNNs architectures have progressed during the

last years. Then, we move into the field of GP by reviewing some efforts related to learning representations

with GP, that are related to our research, but were never intended to be the basis of a GP-DL framework.

Next, we draw the resemblance that exists between DL architectures and modern GP approaches, and list

some works that have leveraged from such similarity. Next, we review the most recent efforts at developing

DL frameworks based on learning units other than artificial neurons. We close this chapter with a summary

on how the proposed research differs from all works presented through these sections.

4.1 Recent Deep Networks Architectures

In this section, we present a brief review on some of the most popular deep networks from the recent

years. Our focus is on how an increase in depth in deep networks has translated, for the most part, in increases

in accuracy in ML tasks, at least in what concerns to CNNs and image processing tasks (e.g. classification,

denoising, segmentation, etc.), respectively. For a more detailed analysis and discussion on the overall field

of DL, refer to Ch. 2.

Fig. 4.1 compares the performance of the winning contestants in the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) from 2010 to 2015. ImageNet (Deng et al., 2009) is a dataset of more than 14

million images, hand labeled and hierarchically organized. A subset of around 1.2 millions images from

ImageNet have been used to perform a ML image recognition challenge: images have to be classified among

1000 possible categories, with around 1000 images per class for training purposes. ILSVRC has been pivotal

for the birth, development and recognition of the deep learning field; first, because ILSVRC large size has

allowed to train deep CNNs that otherwise would have suffered overfitting on smaller datasets, and secondly,

because it is a very difficult ML task, where DNNs can shine over many other ML methods.

In 2012, AlexNet, a CNN won the ILSVRC contest by a significant margin, even outclassing methods

that relied on handcrafted feature extraction engines designed by experts on the field of image process-

35

Figure 4.1: Winners of the ImageNet image recognition challenge from 2010 to 2015 (He et al., 2016; Nguyen
et al., 2017). Plot depicts classification error, lower is better. Notice plot is time backwards.

ing (Russakovsky et al., 2015), effectively demonstrating that deep networks could replace the need for

manually engineered feature transformation stages in ML pipelines.

Notice how Fig. 4.1 also depicts both, a trend in depth increase in CNNs, and a correlation between this

increase in depth and the performance obtained by newer CNNs architectures. After the release of AlexNet,

newer and deeper CNNs have taken the place as winners of the ILSVRC contests. ILSVRC is fundamentally

a natural image classification problem, and winners of each year contest become popular CNNs because

they end up serving as templates for other application- or area- specific image processing tasks. Some of

these popular networks are VGG (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015) and

ResNet (He et al., 2016); all these networks being considerable deeper than AlexNet (the number of layers

of each one is shown in Fig. 4.1).

Naturally, this correlation translated into a search for increasingly deep ANNs architectures. GoogleNet,

also known as Inception network, and ResNet, implement special techniques and methodologies aimed

specifically at allowing the successful training of such deep networks (discussed in Sec. 2.3); authors of

both architectures acknowledge that the main motivation behind their technical contributions was to de-

velop networks deeper than what was the state-of-the-art at their time. Newer architectures still follow this

trend (Huang et al., 2016), though research has also shifted toward understanding why networks need to be

so large (Frankle & Carbin, 2019).

At this point is also important to remark how all these networks are aimed at a supervised learning task.

36

Even though DL is defined as a representation learning method (Bengio et al., 2013; LeCun et al., 2015),

notice how all these DL approaches use a supervised learning task as a mean to compare their performance.

The idea of utilizing ANNs for the mere purpose of learning a new representation is probably more

related with the past fact that deep networks were difficult to train, and gradually training a deep network by

means of unsupervised learning proved to be the way to achieve such feat (Hinton & Salakhutdinov, 2006b;

Schmidhuber, 2015). Hinton & Salakhutdinov (2006b) proposed to train deep networks (i.e. ANNs with

more than a single hidden layer) by gradually training autoencoder structures. In Ch. 5 we follow a similar

approach by training a GP-based autoencoder.

However, and as recent progress in the field of DL shows, once researchers managed to train deep

networks even when tackling classification or regression tasks, the representation learning process in itself

passed to be a by-product, or an automatic hidden/intermediate step, of training these large networks. In

Ch. 6 we present a DL architecture based on GP aimed at a regression task, which we could argue it is also

an implicit representation learning method.

4.2 Representation Learning with GP

In this section, we present relevant efforts to the task of representation learning with GP. The key char-

acteristic of the works presented in this section is that the only concern was to generate a new representation

through GP, while the classification or prediction stage was relegated to another ML algorithm. In the area of

feature learning, this is what is known as filter or wrapper methods to feature selection and extraction (Tran

et al., 2016; Gao et al., 2017; Doucette et al., 2012).

The main difference between filter and wrapper methods, is that filter methods perform the feature trans-

formation in an unsupervised learning fashion, i.e. they use some measure or rule to select or transform

features without concern if this does enhance the performance of some classification or regression algorithm.

In contrast, wrapper methods perform the feature extraction with the aid of some classification algorithm, the

score obtained by such algorithm using the generated representation is used as guide to further enhance the

feature transformation process; i.e. they work in a supervised fashion and through an iterative cycle, where

an initial new representation is generated, then sent to the classification algorithm, and the score is returned

to the extraction method as feedback signal, and the process repeats until some stop criterion is met.

Most representation learning approaches performed through GP are probably wrapper methods. Bot

(2001) is recognized as one of the first authors to propose the use of GP to generate a representation to

enhance the accuracy of a Nearest Neighbour classification algorithm; his approach was limited in the sense

37

that only a single feature was generated each iterative wrapper cycle; Limon et al. further enhanced Bot’s ap-

proach by enabling GP to generate multidimensional representations each cycle (Limón et al., 2014; Limon

et al., 2014; Limón et al., 2015). Zhang & Rockett even experimented with a wide range of classification

algorithms fed with GP regenerated representations (Zhang & Rockett, 2009, 2011). The previous exam-

ples were limited to low dimensionality problems, but Shao et al. (2013) applied a wrapper approach to

image classification by linking a GP feature extraction stage with a SVM classifier; later, they applied their

approach to video classification too (Liu et al., 2015).

Filter approach to feature extraction with GP is somewhat more complicated, because a non-obvious ob-

jective function that guides the search for a new representation, without actual feedback from a classification

algorithm, is required. Trujillo & Olague (2006) developed an interest point detector that transforms images

into a vector representation more prone for classification and detection tasks, in order to do so they used a

special objective function aimed at evaluating these kind of representations, without actually using a classi-

fication algorithm. Other approaches to learn represententations through GP under the filter approach are:

using Fisher criterion (Guo et al., 2008), using clustering measures (Lensen et al., 2017), and very recently,

through manifold learning (Lensen et al., 2019).

It should be clarified that some of the works just mentioned are not true representation learning methods

in the strictest sense, as discussed in Sec. 2.1. Particularly, methods such as (Trujillo & Olague, 2006; Shao

et al., 2013; Liu et al., 2015) rely on high or mezzanine level primitives (see Secs. 3.2.2 and 3.2.3) that

contain human experts knownledge of the problems’ domains. This clarification is important, because it is

precisely those works the ones that tackle high dimensionality problems, hence one of the motivations of

our research, to develop a deep learning framework (i.e., a representation learning method, not just a feature

extraction one) based on GP; in other words, when GP is faced with high dimensionality problems, true

representation learning is difficult.

There is a third approach other than filter or wrapper methods, that is embedded methods (Doucette et al.,

2012; Tran et al., 2016).. In embedded methods, both the feature extractor and the classifier algorithm are

trained (evolved, synthetized, etc.) simultaneously. In this regard, the entire deep learning paradigm can be

considered merely a embedded method. GP flexible solution representation (syntax trees representing highly

non-linear functions) makes GP prone to embody an embedded method all by itself, just like DNNs.

One noteworthy GP method for embedded approach consists in sequentially evolving GP classifiers,

such that each new classifier uses the output of the previously evolved one as a new feature that is added to

the representation vector (Lin et al., 2007, 2008). This layered structure might be seen as a primitive form of

38

deep learning. The disadvantage of such method is that only a single new feature is generated at each ”layer”.

Although some other clever mechanisms to embedded approach have been attempted through GP, such as

defining the root node of a GP tree as one of different possible, very simple, classification algorithms (Sherrah

et al., 1997), or using co-evolutionary algorithms to build ensembles of GP trees (Doucette et al., 2012),

our main concern is with embedded approaches where some of the deeper nodes on a GP individual act

as a feature extraction stage, while the upper nodes supposedly act as the classification algorithm. These

approaches will be discussed in detail in the following section.

4.3 Deep Learning from a GP perspective

The idea of executing the complete ML workflow (feature extraction + prediction) with a single algo-

rithm, just as DL does, has emerged in a natural way in the GP community in the past. The abstract syntax

tree structure of GP has enticed researchers to find ways to allocate some layers of the GP trees for feature

extraction while using the rest of the tree to perform the classification or regression per se. There is a vast

corpus of academic GP literature where this approach has been attempted, and in this section we will review

representative works of such approach.

These works can be considered as the classical approach to perform deep learning alike processing

through GP, and although they can be considered as a direct precedent to our approach, the main method we

propose, in Chapter 6, diverges significantly from all the works mentioned here.

4.3.1 Pseudo Deep Learning with GP

The idea of using bottom level nodes of GP trees as feature extraction stages probably arose in works

from the area of financial time series prediction. In the seminal works of Neely et al. (1997) and Allen &

Karjalainen (1999), a GP methodology is used such that the leaf nodes of GP individuals consist in time

series filters that were known to work as financial technical indicators. This approach departs from the tradi-

tional GP individual representation where, leaf nodes would typically be individual time ticks (being a time

series problem). This methodology was further explored and expanded in the works of Potvin et al. (2004);

Lohpetch & Corne (2009); Myszkowski & Bicz (2010); Esfahanipour & Mousavi (2011). The modifica-

tions proposed consisted in decomposing the specialized leaf nodes into small subtrees of couple levels of

depth, such that subtree mutation or crossover operations could make modifications to these feature extrac-

tion stages (Potvin et al., 2004; Esfahanipour & Mousavi, 2011), or defining these leaf nodes as parametric

functions, along defining new type of mutation operation that modify their parameters (Myszkowski & Bicz,

39

2010). In this way, a complete ML pipeline can be trained by means of only GP, very similar to the aim of

DL.

AND

AND

AND

AND

<

RSI 76.02

|I
3
|=14

>

DMA -.0007

|I
3
|=100

<

RSI 29.69

|I
3
|=14

<

ROC 0.593

|I
3
|=5

>

SMA -.0075

|I
3
|=100

SMA

|I
3
|=200

SMA

|I
3
|=40

-

<

96.98

SMA

|I
3
|=200

SMA

|I
3
|=40

-

>

.0015

AND

AND

Figure 4.2: This tree was generated by the GP methodology proposed by Myszkowski & Bicz (2010). Blue nodes
are time series filters that can operate over different window size inputs (red nodes), i.e. mezzanine functions.

In Fig. 4.2, a GP tree obtained by these type of methodologies is shown. In this tree, the nodes enclosed

in boxes compose the feature extraction stage of the tree, while the rest of the nodes can be considered as the

classification stage, in a striking similar fashion as how in DL networks convolutions are typically considered

feature extraction stages, while fully connected layers are the classifier.

It should be noted, however, that none of these methodologies can be considered deep learning, for the

main reason that the feature extraction nodes contribute expert knowledge of the problem’s domain (known

financial indicators); while a fundamental requirement of any DL approach is to be domain agnostic.

4.3.2 Quasi Deep Learning with GP

The approaches described in the previous subsection eventually resulted in similar attempts at image

processing tasks, with the added benefit that these new methods relied on more agnostic feature extraction

stages. Al-Sahaf et al. (2012a,b) proposed a GP methodology to image classification relying on mezzanine

type of nodes. Fig. 4.3 shows the resulting individual generated by their approach; in this type of individual,

most of the parent nodes of leaf nodes are mezzanine functions, while the leaf nodes work as the parameters

or input data to these kind of mezzanine functions. In this particular case, the mezzanine functions are rather

40

generic statistical measurements, such as the mean or standard deviation over a region, thus this kind of

approach can be considered a quasi deep learning, except for the fact that, by the very nature of mezzanine

functions, the feature extraction stage is limited to be shallow, rather than deep, as in deep networks.

Figure 4.3: This tree was generated by the ”Two-Tier GP” algorithm (Al-Sahaf et al., 2012a).

Previous attempts at increasing the size of the feature extraction stage in these kind of approaches

failed (Atkins et al., 2011; Al-Sahaf et al., 2012b), until recently (Evans et al., 2018). Atkins et al. (2011)

developed a GP method for image classification based on both mezzanine and high level primitives, that al-

lowed to perform a greater amount of high dimensionality processing than if using only mezzanine functions.

However, this method was proved to be inferior to that of Al-Sahaf et al. (2012b), showing that extending

the ’pre-processing’ feature extraction stages of GP trees was not trivial.

4.4 Alternative Deep Learning Architectures

In this section we review relevant works centered around the idea of performing deep learning with

frameworks other than artificial neural networks. As discussed in a previous chapter, deep learning can be

viewed as a change of paradigm, where the manual, or automatic, feature engineering and extraction stages

along the prediction algorithms of a ML pipeline are unified in a single, layered, learning structure, capable

of performing multiple non-linear transformations in cascade that both, finds the representations required to

correctly make predictions, as well as learning to perform the prediction itself.

Under the above definition, there is no restriction that obliges deep learning to be limited to ANN-alike

structures; and the next works reflect the desire of the research community to find novel ways to perform

deep learning.

4.4.1 Morphological Neural Networks

Since the inception of the Perceptron by Rosenblatt (1957) in the late 1950s, little has changed regarding

the fundamental structure of the artificial neuron other than newer activation functions (Hernández et al.,

41

2017; Schmidhuber, 2015); it is perhaps due to this stability of the basic building block of ANNs and DNNs

that the methods to train these networks have been allowed to progress significantly.

Nevetheless, some researchers do have proposed new variants and improvements to the basic artificial

neuron model. One of such efforts is known as morphological neurons (MN) (Davidson & Hummer, 1993),

and their more recent version, dendrite morphological neurons (DMN) (Ritter & Urcid, 2003).

Mathematically speaking, MNs and DMNs incorporate lattice algebra operators such as inf and sup to

the function that performs the neuron. MNs and DMNs can form networks, just as regular artificial neurons.

In a dendrite morphological neural network (DMNN), the function of neuron j is given by Eq. 2, where x

is the input vector received by neuron j, w is the vector of synaptic strenghts between neuron j and the ith

neuron that connects to neuron j, and a and b are excitation parameters that can take the value of +1 or −1,

that denote the excitation or inhibition of neuron j and i, respectively. Contrast this with Eq. 1 given for

standard artificial neurons.

τ j(x) = aj ∨ni=0 bij(xi + wij)

or

τ j(x) = aj ∧ni=0 bij(xi + wij)

(2)

On a conceptual level, MN and DMN work by projecting hypercubes or even hyper ellipsoids (Arce

et al., 2017) in the feature space, that attempt to cluster and separate classes; in comparison, standard artificial

neurons are only capable of projecting hyperplanes. DMN are difficult to train, and EC is a useful tool to

train these kind of networks (Arce et al., 2018), but other methods exist (Sossa & Guevara, 2014), and even

gradient techniques have been now applied to certain extent (Zamora & Sossa, 2017).

In a set of limited experiments (Hernández et al., 2017), it has been empirically proved, that DMNNs

can achieve higher, or at least equal, accuracy on classification tasks than that of DNNs of greater total

depth (and hence, higher parameter count). This results have opened the door to the possibility of newer

DL architectures where some of the artificial neurons are replaced by DMNs. However, it is still not clear

yet if these MN can indeed replace standard neurons in what is considered the feature extraction stage of a

deep network, or only in the late classification stage; in the first case, it would mean a new generation of DL

architectures, while in the second case, it would be more akin to some efforts where the typical MLP at the

end of a DL network is replaced by some other classification algorithm, such as a Support Vector Machine.

42

4.4.2 Deep Forests

Deep Forests (Zhou & Feng, 2017, 2018) are the first explicit attempt at developing a new kind of deep

learning architecture. Deep Forests consist in a deep learning framework based on decision trees / random

forests, rather than ANNs.

In the context of ML, Decision Trees (DT) is a non-parametric, supervised learning, method that can be

used for classification or regression tasks (Pedregosa et al., 2011). DTs work by building a model in the form

of a tree where nodes represent decision processes based on the values of the features for some particular

instance; DTs’ trees are completely unrelated to GP syntax trees. In a DTs trees, prediction is performed

from top to bottom, and leaf nodes nodes are the output of the model, where a class or value is returned.

Random Forests (RF) are an extension to the DTs method in the form of an ensemble. Ensemble learning

is an ML technique that consists in aggregating the prediction of several models, rather than using only one,

by some mechanic like averaging or voting. The combined prediction should be stronger than that of any of

the single models used, if certain guidelines are followed when generating the individual models. Basically,

in a RF, each DT is generated with some degree of variability. This variability can come in the shape of

generating DTs with different training samples subsets, and/or different subsets of features.

RF are the conventional approach to use DTs; however Deep Forests take the DTs framework one step

further. In Deep Forest, several layers composed of sets of RF are trained sequentially. Architecturally,

the concept is very similar to those of deep networks: sequential layers of processing extract features and

perform a prediction in an unified pipeline, and even a convolution-alike operator has been employed in Deep

Forest in order to be used in image processing tasks; however, there are several key important differences.

Unlike artificial neurons, DTs represent non-differentiable, non-linear, non-parametric functions; these traits

make RF unable to take advantages of training methods such as gradient descent and backpropagation. This

translates in the fact that Deep Forest have to be trained in a completely different fashion to that of deep

networks. Fig. 4.4 depicts the general architecture of Deep Forests.

Deep Forests are trained sequentially, layer by layer, unlike most deep networks approaches. In each

layer of Deep Forests, there are two sets of RFs: forests of one set are all generated by attempting to perform

the classification or regression task desired, while the RFs of the other set are generated by using as objective

a clustering function (this is done this way on order to promote feature extraction). Through a special process,

features are extracted from the RFs generated in both sets and concatenated with features from all previous

layers, and this vector is the new representation generated by this layer that will serve as input for the next

layer of RFs.

43

Figure 4.4: Deep Forest architecture. In each layer, there are several RF that generate an intermediate repre-
sentation. Notice there are two different classes of RF per layer (blacks and blues) (Zhou & Feng, 2018).

Zhou & Feng (2018) tested this deep learning paradigm in a variety of large and low dimensionality

ML datasets, from all sort of different ML problems (images, audio, text, etc.) and obtained competitive

results when compared with conventional deep networks, effectively giving birth to a new generation of

deep learning algorithms not based on ANN. Our thesis work, belongs to this new class of algorithms.

4.4.3 Deep GP

Parallel to the development of our research, another ”Deep GP” paradigm emerged. Evans et al. (2018)

developed a GP approach to image classification derived from the class of approaches described in Sec. 4.3,

but where the feature extraction stage is composed of more than a single layer. Fig. 4.5 shows an example

GP tree evolved through this approach.

Instead of relying on image pixel-wise arithmetic operations as in the work of Atkins et al. (2011), this

new GP approach takes inspiration directly from deep convolutional neural networks, such that the high level

primitives that compose the generated trees are the convolution and pooling operations. Convolution takes as

input two arguments, the first one is the input image, or the output from another convolution or pooling node,

and the second one is a 3 × 3 constant mask. The high level stage of these GP trees (called ”Convolutional

layer”) connects to layer composed of mezzanine nodes (called ”Aggregation layer”) which finally connects

to the top section of the tree, composed of only low level nodes, and is considered the classification layer,

similar to how a fully connected MLP is considered the predictor component in CNNs.

It is important to remark that one of the main contributions of our research (see Ch. 6) bears little resem-

44

Figure 4.5: A Deep GP architecture as proposed in (Evans et al., 2018). The ’feature extraction’ stage has deepen
in comparison with earlier works, and now is reminiscent of convolutional deep networks.

blance to the method just described. Our proposed method attempts to find new functions that replace the

artificial neurons inside the layers of a deep learning model, whereas the method proposed by Evans et al.

(2018) works more akin to an architectural search in the feature extraction stage of the DL pipeline, taking

for granted the use of convolutions, and only replacing the MLP for a GP tree. In this sense, our method is

more related to the Deep Forest method described in Sec. 4.4.2.

4.5 Discussion

In this section, we present a comparison between the proposed approach of this research, and the works

described so far in this chapter. The objective is to contrast the novelty of our research against to what has

been developed to date.

• The proposed method draws inspiration from the standard, artificial-neuron-based, deep architectures

discussed in Ch. 2 and Sec. 4.1; specifically, we take the multi-layer processing architecture of such

models, and attempt to export it to the GP framework. However, that is where similarities end, since

the model we propose does not rely on the artificial neuron, backpropagation algorithm, or gradient

optimization methods, which are the cornerstones of the classical DL field.

• Through Sec. 4.3 we performed a historical review on how GP’s scientific community has attempted

in the past to develop a DL-alike paradigm shift, such that GP candidate solutions contain both, feature

extraction and prediction stages. The main drawback of the first efforts in this regard, is that the feature

45

extraction stages in these GP trees were usually special nodes embedded with some form of human

expert knowledge. The work described in Sec. 4.4.3 is one of the most recent developments in this

trend, and it is noteworthy because it is the first work that successfully managed to take advantage

of more than one feature extraction level in a GP tree. We wish to remark the contrast between their

approach and ours: while they include the convolution operation and convolutional masks as available

primitives for a GP, we propose to use GP trees as replacements for artificial neurons in a DNN or

CNN architecture, i.e. both approaches can be considered sort of the opposite to each other.

• In Sec. 4.4.2 we presented a recently proposed, exotic DL model, where rather than layers of artificial

neurons, the presented algorithm makes use of layers of RFs; this is perhaps the most related work

to the approach proposed in this research thesis, with the difference that we propose the use of GP

abstract syntax trees, instead of RFs or DTs.

We can summarize the novelty of the proposed approach as an attempt to import some elements that have

proven successful to certain heuristic to tackle high dimensional learning problems (the sequential layered

structure in ANNs, a convolution-alike operation), to another framework that also has traditionally struggled

in high dimensional scenarios (GP). The expectation, i.e. our hypothesis, is that incorporating these elements

into GP, enhance it beyond of what current approaches proposed in the literature can achieve.

46

Chapter 5. Evolving Autoencoding Structures through GP

Historically, unsupervised learning approaches were employed to train DNNs as a mean to avoid some

of the common pitfalls in training DNNs for supervised learning tasks (Schmidhuber, 2015). These methods

were employed before the advent of the techniques that defined modern deep networks, as discussed in

Sec. 2.3.

In this chapter, we will focus in a particular class of algorithms used for unsupervised learning, known

as autoencoders. Autoencoders are specifically used to learn new representations and were typically imple-

mented using only ANNs; here we present the first efforts on developing autoencoding structures through

GP. The main motiviation behind this approach is to explore some of the methods that were used to train

deep networks, and how we can import them to another paradigm such as is GP.

Verbatim sections, images and tables from this chapter were previously published in the following ar-

ticles: Rodriguez-Coayahuitl et al. (2018, 2019b), and have been reproduced here with permission of the

editorial.

5.1 Background

Autoencoders (AEs) are models that aim to learn to map inputs to an intermediate representation and

also to reconstruct the original input from this intermediate code. Usually, the intermediate representation is

more compact than the original one. AEs have been traditionally implemented with artificial neural networks

(ANN). Autoencoders are implemented through multilayer ANN with a small, bottleneck, neuron layer at

the center of their architecture. Data is compressed (decompressed) as traverses half the network, from the

input (central) layer to the central (output) layer. This ANN is fed with training samples, and then trained

to mimic its input to its output, in the process forcing the input samples to be converted to a more compact

representation at its bottleneck layer.

Neural networks based AEs were proposed as early as the mid eighties (Goodfellow et al., 2016), see,

e.g., Yann (1987); Ballard (1987); Gallinari et al. (1987); Bourlard & Kamp (1988). Initially, they were

methods for dimensionality reduction and feature extraction (Goodfellow et al., 2016), as well as used for

unsupervised learning tasks (Schmidhuber, 2015); however, many other applications have been found for

47

Figure 5.1: Diagram of an autoencoder (Jordan, 2018). AEs are composed of two parts: the encoder and the
decoder; amid there is usually a bottleneck layer where a new compact representation is generated.

autoencoders, such as: image denoising (Zhang et al., 2017; Mao et al., 2016) image deblocking (Zhang

et al., 2017), classification (Betechuoh et al., 2006), super-resolution (Mao et al., 2016), and image com-

pression (Theis et al., 2017).

Before the advent of the modern field of Deep Learning, Hinton & Salakhutdinov (2006b) proposed that

AEs could be used as method to train DNNs, in order to build the feature transformation stages that precede

other machine learning tasks. Since training networks composed of more than a single hidden layer had

proved difficult at the time, they proposed to take advantage of the autoencoders capability of being trained

sequentially, i.e., instead of training an entire ANN through backpropagation/SGD, a deep network could be

trained layer-wise, step by step, by connecting first the input layer to the output layer of an AE, then adding

the second layer and layer before the output (while keeping the weights of the previously trained pair of

layers), and so on. In this way, the fundamental problem of DL could be circumvent, and from the resulting

autoencoder, the encoding stage could be used as feature extraction engine for other ML tasks. This primitive

idea on how to train deep networks is what served as inspiration for a prototype DL framework based on GP.

Fig. 5.1 show a standard, ANN-based, autoencoder

In this chapter, we propose a framework to synthesize AEs through GP as a method for representation

learning. In the past, works that proposed generating autoencoding structures through evolutionary compu-

tation (EC) focused on discovering and/or optimizing ANN-based AEs architectures with techniques such

as NEAT or HyperNEAT, i.e. still conventional AEs. An example of this kind of works can be found

in (Fernando et al., 2016). In contrast, AEs presented here are fully generated by standard tree-based GP

48

individuals. One of the main ideas behind this concept is to investigate the possibility of discovering AE

algorithms that do not rely on ANN structures. That is, a scheme of deep learning based on evolutionary

algorithms.

One important element of the GP based AEs proposed in this chapter is their capability of being evolved

in an on-line way (Bottou, 1998). This is achieved by partitioning a training dataset into many small mini-

batches, in a reminiscent way of, and directly inspired by, the SGD family of algorithms. In fact, as GP began

to be used on increasingly more complex problems with larger training datasets, researchers had to devise

clever mechanisms to reduce the number of evaluations required for a GP run, such as using co-evolutionary

algorithms that dynamically co-evolved subsets of training samples along the main model solutions (Pagie

& Hogeweg, 1997; Dolin et al., 2002; Schmidt & Lipson, 2008; Doucette et al., 2012). Here in contrast we

propose to use a rather simple method for evolving GP individuals using only a small fraction of randomly

selected training cases each generation, in a similar fashion to both random subsampling (Gathercole & Ross,

1994) and SGD. The experimental results presented in this chapter, that reaffirms GP ability of evolving

solutions in an on-line fashion, is one of the key contributions of our research.

In the following sections we propose and describe a methodology for the evolution of autoencoder algo-

rithms through GP, and perform a quantitative comparison with both, results from ANNs models that perform

similarly with respect to older classical networks, as well as to more modern architectures. Results show that

the proposed GP methodology performs comparabily to deep networks proposed prior to the introduction

of AlexNet, i.e. not modern, or state of the art, DNNs. Nevertheless, we wish to bring forth the fact that

GP’s candidate solutions are constructed from a more general set of elements in comparison with the ANNs

framework. In general terms, ANNs’ ML paradigm consists in searching for the right numerical values of

a large weights vector (considering all layers in a network); this ML model is only feasible if certain other

elements (such as the activation functions) of an ANN architecture are pre-established and known to work.

In contrast, in GP, the architecture of the solution or the form of the function (p.e. a polynomial of some

degree), are not known or predefined in advance. The ability to achieve the same results that previously

required more elements to be predefined, is one of the most important achievements of our research.

5.2 GP Autoencoder

In this section, we describe both the individual representation for GP-based AEs along a partitioning

scheme that allows it to be used on high dimensionality problems, as well as an on-line learning approach

for GPs efficient evolution when using large training datasets.

49

In our proposal, a GP based AE is represented by two forests, E and D, connected through an m dimen-

sional data bus, that receives an n dimensional input vector and outputs a vector with the same dimensionality

as the input. The data bus connecting both forests is also a vector. Forest E (D), from now on the encoder

(decoder), is a list of m (n) standard GP syntax trees.

Ei ∈ E is the i-th encoder’s tree. Leaf nodes of encoder tree Ei, can be constant values within some

range, or can be variables taken directly from the whole autoencoder’s input vector, i.e. individual features

from input representation. Ei generates as output the i-th element in the data bus vector connecting encoder

and decoder.

Di ∈ D is the i-th decoder’s tree. Di leafs, can also be constants or be variables taken from, and only

from, the data bus connecting encoder and decoder (i.e., decoder trees cannot see any feature variables from

the original input representation). A Di tree generates as output the i-th element in the autoencoder’s output

vector.

In general, when an autoencoder is used for dimensionality reduction and/or representation learning

purposes, it holds that m < n, this means that the bus connecting encoder and decoder is an encoded

representation of autoencoder’s input samples. Fig. 5.2 illustrates a GP based AE individual; arrows from

each tree in the figure indicate that its output generates corresponding feature variable in the subsequent

vector.

Decoding
forest

Encoding
forest

Data bus
z

Input
vector x

Output
vector yGP Autoencoder

Figure 5.2: GP based Autoencoder’s individual representation. Each individual consist of two forests connected
through a bus. Variable leaf nodes in encoder trees can only be features from the input vector x, whereas
variable leaf nodes in decoder trees can only be features from encoded representation stored in z.

50

In the following subsection we describe a strategy that allows us to use the proposed GP-AEs in certain

types of high dimensionality problems.

5.2.1 Structurally Layered Genetic Programming

In order to use the proposed GP based AE in high dimensional problems (which pretty much represent

target problems of representation learning and dimensionality reduction algorithms), we propose to partition

the problem into very small subproblems, that GP can deal with, such that each subset is processed by an

independent GP, generating their corresponding partial intermediate (compact) representation and output

reconstruction. Fig. 5.3 illustrates this kind of partitioning when applied to GP based AEs. Notice that this

approach can only be applied when the objective function can be decomposed too1. We call this technique,

Structurally Layered Genetic Programming (SLGP) when applied to AEs which will be described in detail

in this section.

Let x be the vector that represents the autoencoder input; let y represent the autoencoder output vector;

and let z be the vector that represents the data bus connecting encoder and decoder, from now on called

compact representation. Both, x and y are composed of n feature variables such that x = (x1, x2, ...xn), y =

(y1, y2, ...yn), where x,y ∈ Rn, while z is composed ofm feature variables such that z = (z1, z2, ...zm) and

z ∈ Rm. Input vector x is partitioned into c = n
β indexed partitions Ci, where β is the size of the partition’s

sets and β > 1, such that |Ci| � n and |Ci| = |Cj |, ∀i, j2. Both output and compact representation vectors

are also partitioned into c indexed subsets, Ki and Qi, respectively. Subsets Ci, Ki and Qi are associated

in such a way that the compact representation (output) feature zj ∈ Qi (yj ∈ Ki) is generated by a GP tree

which leaf nodes can only be feature variables xj (zj) such that xj ∈ Ci (zj ∈ Qi), or constants within

some range. Each set of three associated subsets, Ci, Ki and Qi, are distributed to independent GPs, and

the final solution is assembled by joining the best individuals that emerge from each process. Notice that

the above definitions do not contemplate overlappings between subsets Ci; however, there is no real reason

why the regions defined by subsets Ci could not share some neighboring elements, (conceivably enhancing

the performance of the method) even though in such case, they could not be considered a partition in the

mathematical sense.

Notice that the purpose of the SLGP is threefold: (1) it radically reduces the solutions search space

by limiting the number of possible variable leaf nodes in every tree, in both encoder and decoder, and dis-

tributing different feature variables that might be used as leaf nodes strategically across different forests’
1There are tasks such as classification or scalar regression, where the output cannot be decomposed in multiple parts, in such

way that each part of the output is solved using a subspace of the entire input, as proposed by our approach
2Considering β a factor of n

51

Partitioned
input vector

Partitioned
output vector

Partitioned
abstract

representation
vector

Partitioned
encoder forest

Partitioned
decoder forest

Subset
C

1

Subset
Q

1

Subset
K

1

Subset
C

2

Subset
Q

2

Subset
K

2

Subset
C

3

Subset
Q

3

Subset
K

3

Subset
C

4

Subset
Q

4

Subset
K

4

Figure 5.3: Structurally Layered GP based AE that performs a 4-to-3 dimensionality reduction. Input and
output vectors, encoder and decoder forests and internal compact representation vector are all partitioned and
corresponding partitions are coupled together and processed independently from other partitions sets.

sections; (2) since each set of subsets is processed by a GP, it increases the genetic operators strength. For

example, instead of applying a dual single-tree mutation (see Sec. 5.3.1) once per individual for autoencod-

ing a whole image, mutation is applied according to the number of partitions, or in other words, instead of

applying a single forest crossover or mutation within a large individual composed of multiple trees, multi-

ple crossovers/mutations happen simultaneously across the equivalent structure that represents the complete

solution; (3) and finally, and related to point one, it directs genetic operators effect, such as mutation or

crossover, by limiting the range where exchanged genetic material may be imported into an individual. For

example, notice that for a GP based AE without any input partitioning scheme, a single-tree crossover might

exchange trees between points too distant within the AEs’ structure, possibly decoding a region from unre-

lated encoded features; whereas in a Structurally Layered GP all genetic operators are confined to contiguous

regions3 where it makes more sense to import and export genetic material.

It is important to remark that even though the proposed SLGP has many advantages over a conventional
3This holds only if partitions are built by grouping contiguous features, given problems that allow to do so, such as in image,

audio, text and time series problems. In unstructured datasets, a manual partionting scheme relying on domain knowledge could be
required.

52

scheme that operates over the entire input space, it also has one important disadvantage: by generating

each partial solution from a sample of the input representation, instead of the whole set of feature variables,

important information that could enhance the desired outcome, could be lost. This could happen if there

are relationships between features that end up in different partitons, relationships that could otherwise be

useful if, for example, two input feature are highly correlated, one could be discarded further improving the

encoding process.

It is important to remark that Structurally Layered GP can only be performed when the final solution can

be assembled by concatenating solutions of small subproblems derived from a whole problem. In the case

of an AE used for image encoding and decoding, this can be done if the objective function used to compare

the similarity between original and reconstructed samples and to guide the evolutionary search, is a linear

function, such as the mean squared error (MSE). This is due to the additive property of linear functions, that

specifies that a linear function f preserves the addition operation such that f(x+ y) = f(x) + f(y); notice

how this property allows a problem to be evaluated in parts, i.e. that the total error is equivalent either if

we evaluate the whole assembled output, or if we average the error obtained by the all the elements of the

partition. Notice the emphasis in the aspect that linearity allows the problem to be evaluated, which does not

imply that can be also solved in parts. This is related to what is expressed in the previous paragraph, in the

sense that there is information loss with the SLGP, and that the resulting outcome is only an approximation

to the optimal result that could be obtained shall all the feature variables could be used to generate each

component of the output. As stated before, there are problems, such as classification or scalar regression,

where there is no obvious way to split the output in order to solve it by parts; there has been, however,

some proposed approaches that share the same principle of tackling a large scale problem by splitting the

input represenation, while requiring a special treatment regarding the assembly of the output; some of those

methods are ensemble learning (Geurts et al., 2006) and cooperative co-evolutionary algorithms (Potter &

De Jong, 1994).

5.2.2 On-line Learning

Another important aspect of the proposed GP based AE is its capability to be evolved in an incremental

way, i.e., instead of using an entire training dataset for every generation, it can be split in many small

batches and each batch is used to test individuals in every generation. This allows a more efficient use of a

training dataset, as well as provide a form of regularization. In this section, we describe this on-line form

of evolution, and in Sec. 5.3.2 we discuss some of the consequences regarding the computational cost for

different population dynamics such as steady state or generational replacement.

53

The on-line learning approach to evolution we propose is inspired by the stochastic gradient descend

(SGD) technique used to train ANN, as a method to accelerate evolution in GP when dealing with very large

datasets (hundreds or thousands of training samples). The method consists in splitting the original training

dataset into many, much more smaller (in number of samples), minibatches. Each generation, individuals

are evaluated using only a single minibatch, instead of the entire training dataset. A different minibatch is

used every generation. Each sample of the training dataset belongs to only one minibatch, and the union of

all minibatches must equal the entire training dataset. Hence, the number of minibatches derived from the

training dataset is the number of generations required so that the GP can see all training samples available;

we call this an epoch, similar to SGD/ANN. A GP is not necessarily limited to last only one epoch, as we

will see in Sec. 5.4, giving more than one epoch is beneficial for achieving better solutions.

Notice that this method involves a fundamental change to the conventional objective function used in GP.

Traditionally, the objective function in GP consists of an average of fitness cases across an entire training

set (Poli et al., 2008). For example, if we were to reduce the difference between AEs’ input images and its

reconstructions, we could use the MSE as a method to compare originals vs reconstructions, and average

the MSE an individual obtains across all training samples. Reducing such average would be the objective

function. The on-line learning proposed method requires however, a moving target as an objective function,

because, an individual’s performance is evaluated using only the current minibatch, and in the next genera-

tion, the evaluation of the objective function will change, given that reducing the average over originals and

reconstructions differences of a distinct minibatch will now be used as objective function.

This method of evolution makes a more efficient use of the training dataset, because it allows more

generations to elapse given the same number of training samples as well as taking less time evaluating

individuals per generation. However, there is a special computational toll when using this approach to

evolution when combined with an steady state style of evolutionary population dynamics. This issue will be

further discussed in the Sec. 5.3.2.

5.3 GP Configuration

In this section, we discuss two aspects of synthesizing GP based AEs directly related to evolutionary

aspects of GP, namely, GP operators and population dynamics. First, we propose three different types of

genetic operations for GP AEs’ individuals. These operations allow us to evolve acceptable AEs algorithms

through GP. Then, in the next subsection we discuss how the on-line evolutionary paradigm proposed in

Sec. 5.2.2 affects the computational run times of different EC population dynamics, such as steady state and

generational replacement.

54

Parent A

Offspring A’

Parent B

Offspring B’

Dual
Single-
point

crossover

Figure 5.4: Dual Single-point crossover. Red lines in parents’ forests show crossover points to create offspring
by mixing the forests.

5.3.1 GP Operators

Three different GP operators can be used to evolve GP based AEs: two different types of crossover

and one type of mutation. Further down, in Sec. 5.4, performance of both types of crossover are compared

experimentally when combined with different mutation probabilities.

5.3.1.1 Dual Single-point Crossover

Single-point crossover is a type of crossover for forest-like GP representations directly inspired in the

way crossover is performed on a canonical Genetic Algorithm. For GP individuals comprised of a single

forest the operation consists in taking two individuals as parents, A and B, and generates two offspring,

A′ and B′. Formally, let n be the number of trees in individuals A,A′, B,B′. Let i be a random integer

between 1 ≤ i ≤ n that will serve as crossover point. A′ (B′) forest is generated by copying trees A0 (B0)

up to Ai (Bi) and trees Bi+1 (Ai+1) up to Bn (An). In GP individuals composed by two forests, such as in

AEs, the operation is carried twice (dual term), but making sure of generating each offspring’s forest from

corresponding parents’ forests4. Fig. 5.4 depicts such type of crossover in GP based AEs’ individuals.

Single-point or Dual Single-point crossover might be considered as explorative genetic operators, be-

cause they are disruptive and potentially expands GPs’ search to new points in the search space.
4Trying to mix portions of encoder and decoder forests to generate an offspring’ decoder or encoder would be an error, because

two random crossover points would need to be picked in order to guarantee that the resulting forest has a proper number of trees

55

Parent A

Offspring A’

Parent B

Offspring B’

Dual
Single-tree
crossover

Figure 5.5: Dual Single-tree crossover. Hollow trees are selected to be exchanged between individuals. Encoder
(decoder) trees are only exchanged with other encoder (decoder) trees.

5.3.1.2 Dual Single-tree Crossover

In Single-tree crossover, GP forest individuals exchange only one tree to create an offspring. This is in

stark contrast to Single-point crossover, where offspring may differ up to 50% from their parents.

The formal definition of Single-tree crossover is as follows. Let n be the number of trees in individuals

A,A′, B,B′. Let i and j be random integers between 1 ≤ i, j ≤ n. Individual A′ (B′) is generated by

making a full copy of A (B) where only tree A′i (B′j) are replaced by tree Bj (Ai).

For GP based AEs the process is performed twice. Two random integers are generated, each one to select

trees that are copied from parents’ encoders and decoders. Offspring encoders can only import trees from

parents’ encoders, and the same applies for decoders. Fig. 5.5 shows this type of crossover for GP based

AEs’ individuals.

Even though both Single-tree and Single-point are both crossover operations, they are fundamentally

different. While Single-point is an exploration operator, Single-tree is exploitative in nature, since it takes

two already good solutions and exchange bits of them in order to see if further enhancements can be done to

their structures. Notice also how in Single-point crossover, even though structures of individuals are mixed,

positional value of each tree is held, because they generate the same features zi or yi (even though some of

its neighboring trees have changed), whereas in Single-tree crossover, a (supposedly) good GP syntax tree

that generates some given feature zi or yi, will be tested if it fits in generating a different feature zj or yj

56

Parent A Offspring A’

Dual Single-
tree mutation

Figure 5.6: Dual Single-tree mutation. The hollow trees are those to be replace by new randomly generated
ones.

(and with different structure around it).

5.3.1.3 Dual Single-tree Mutation

Single-tree mutation is similar to Single-tree crossover. From one parent a single offspring is generated

by copying the parent’s entire forest structure except for a single tree, that gets replaced; but instead of

replacing it with one taken from another parent, it gets replaced by a completely new, randomly generated

one. For individuals composed by two forests, such as GP based AEs, this process is performed twice,

such that one decoder’s tree and one encoder’s tree is replaced by new randomly generated trees. Fig. 5.6

illustrates this type of genetic operation on a GP based AE’s individual.

It is important to stress both the similarities and differences between Single-tree mutation and Single-

tree crossover. They can be both considered exploitative genetic operators, because they take good solutions

and only perform a small change to them; however, single-tree crossover can be considered even further

exploitative because the change applied to generate the offspring comes from another already good solution,

whereas in Single-tree mutation, the change is randomly made, without any kind of guarantees regarding the

preceding quality of the replacing tree.

5.3.2 Population Dynamics under On-line Learning

In this subsection, we discuss how classical population dynamics models, such as steady state and gen-

erational replacement, are affected when applied to the proposed on-line learning approach, in terms of its

computational cost. It will be shown that steady state style of evolution requires twice the number of indi-

vidual evaluations as generational replacement; this extra computational effort is only associated to on-line

learning, while under offline learning steady state and generational replacement carry the same computa-

tional cost. We also propose a new population dynamics that attempts to close the computational cost gap

57

Population
Parent

Selection
Mechanism

Parents
Pool

Genetic
Operations Offspring

pool

Population

Evaluation
Evaluated
Offspring

pool

Evaluated
Population

Survivor
Selection

Mechanism
Next

Population

F(x) x2F(x) x2

Population
Parent

Selection
Mechanism

Parents
Pool

Offspring
pool

Evaluation
Evaluated
Offspring

pool

Survivor
Selection

Mechanism
(none)

Next
Population

F(x)F(x)

Genetic
Operations

Population
Parent

Selection
Mechanism

Parents
Pool

Genetic
Operations Offspring

pool

Parents
Pool

Evaluation
Evaluated
Offspring

pool

Evaluated
Population

Union Next
Population

F(x)F(x)

a)

b)

a)a)

c)

Figure 5.7: Flow diagrams for different evolutionary population dynamics under on-line learning scheme: a)
steady state; b) generational replacement; c) efficient steady state. Contrast this flow diagrams, with those
presented in Fig. 3.1 for their behavior under an non-incremental learning scheme.

between steady state and generational replacement, we call it efficient steady state.

Classical popoulation dynamics were previously introduced in Sec. 3.1.3. Here we will discuss them

concerning only on their behavior under on-line learnining schemes.

5.3.2.1 Steady State

A steady state population dynamics consists in replacing part of the current population with newly gen-

erated offspring. This would require, in theory, an evaluation on both individuals pools (current population

and offspring) such that a deterministic or partially stochastic selection process can be performed to select

individuals from both pools that will survive into the next generation. Notice however that in a conventional

GP without any form of incremental or on-line learning (i.e. all training samples are used every generation)

current population evaluation is not necessary at all, because those individuals have already been evaluated:

a fitness value was associated with them in the immediately previous generation when they were evaluated

58

in order to be eligible to make it into the next generation or in the initial evaluation when the GP started.

Therefore, in such case, only individuals in the offspring pool are evaluated.

In contrast, in the proposed incremental learning method, the samples set changes every generation. In-

dividuals in current generation have to be evaluated again using the current minibatch data even though they

already had a fitness value. This means that both the entire current population and the offspring needs to be

evaluated before the selection process for the next generation. This double effort is still quite small com-

pared with a non-incremental learning approach (given that the minibatches are small enough). This double

evaluation process is not present in other population dynamics, such as generational replacement. Fig. 5.7a

illustrates one evolutionary cycle for steady state population dynamics; notice how the initial population

needs to be evaluated along newly generated offspring, which means the computational effort of steady state

is twice the population size (given that the offspring pool is the same size as the population).

5.3.2.2 Generational Replacement

In generational replacement population dynamics, the entire pool of individuals that comprise the cur-

rent population is replaced by the offspring pool (Eiben et al., 2003). This means that in a generational

replacement scheme and under an incremental learning approach, the current population is not compared

against the current minibatch, only the offspring, and only because it is evaluated to start the next cycle

(parents selection can happen immediately), not because offspring are selected (all offspring pass to the next

generation). There is no double effort in generational replacement under on-line learning: the population

size is exactly the number of individuals that are evaluated every generation, unlike steady state, where it is

twice the number of individuals in the population that are evaluated every cycle.

Even though either generational replacement or steady state can be accelerated orders of magnitude under

an incremental learning approach, there still remains the question of which one is actually more efficient

(given the same time, which achieves the higher quality solution). So a large part of the experimental

evidence presented in this chapter (Sec. 5.4) is geared towards answering such a question. But before that, we

will present an alternative version of steady state that aims at achieving the computational cost of generational

replacement but with a behavior closer to steady state. Fig. 5.7b shows an abstract depiction of the steps

that comprise generational replacement evolution style; notice how the starting population is completely

discarded, and consequently there is no extra effort in the evaluation stage.

59

5.3.2.3 Efficient Steady State

Efficient Steady State (ESS) is a modified version of steady state population dynamics that consists in (1)

generating a smaller offspring pool and (2) leveraging on the parent selection process to prematurely select

individuals from the original population that will make it into the next generation. If both the offspring pool

and the parents pools are setup to be half the size of the entire population, then this variant of steady state

has the same computational costs of a generational replacement approach, i.e. the number of individuals

evaluated each iteration is the same as the size of the population. There is however one important caveat

regarding the use of this approach: individuals from the original population that are selected to pass to the

next generation are also based on their performance obtained with previous minibatch, even though they are

evaluated again with the current minibatch, the selection process has already happened. This is an important

difference when compared with the regular version of steady state. Our hypothesis is that this approach will

be more efficient than the original steady state dynamics. In Sec. 5.4 we compare both approaches.

ESS is specifically aimed at reducing the computational cost of steady state style dynamics when com-

bined with incremental learning approaches. Notice that ESS does not make sense in an non-incremental

learning scenario, because steady state is not twice as expensive in such cases, as explained in Sec. 5.3.2.1.

Fig. 5.7c shows the flow diagram of ESS dynamics.

5.4 Empirical Assessment

In this section, we present results of experimental evaluations of the proposed GP based AEs. We per-

formed four main studies. First, we performed a preliminary study where we compare the performance of the

SLGP against a standard GP approach where no partitioning of the input space is done, as well as comparing

the SLGP with and without on-line learning. The second study is an exhaustive study of EC parameters to

control GP, including population dynamics, balancing GP operators probabilities, types of crossovers and

population sizes. The third study compares the performance of synthesized GP based AEs with an ANN im-

plementation that performs similar to earlier Deep Neural Networks (DNN); finally, we carried out a small

study that examines the diversity of individuals in the populations for the different population dynamics.

5.4.1 Used Datasets

For experimentation we considered three datasets: handwritten digits MNIST (LeCun, 1998), faces

dataset Olivetti (Samaria & Harter, 1994) and a special version of Labeled Faces in Wild, LFWCrop (An-

derson, 2014); all being gray scale image datasets. We chose MNIST and Olivetti because there has been

60

Table 5.1: Datasets used for experimentation. All datasets consist in grayscale images; pixel values are normal-
ized to fall in the range [0,1] in all cases.

Dataset MNIST LFWcrop Olivetti
Images Resolution 28x28 (784) 64x64 (4,096) 64x64 (4,096)
No. Training samples 60,000 12,000 360
No. Testing samples 10,000 1,233 40

previous studies with ANN-based autoencoders with such datasets (Hinton & Salakhutdinov, 2006b) that we

could compare against. We added LFWCrop to the battery of tests in order to try the proposed methods in a

image dataset similar to Olivetti but with more training data available. All datasets were split in training and

testing sets. Table 5.1 details the number of training and testing samples of each dataset, as well as image

sizes. Input representation for developed AEs is formed by all image pixels, i.e. the number of pixels per

image equals the number of features of the initial representation to be encoded.

5.4.2 Preliminar Study

We tested three different configurations for GP autoencoders. The first setup consists of a straightforward

GP approach, i.e. all GP trees that generate the encoded representation can see all input features, as well as

all GP trees in the decoder can see all encoded features. The compression ratio is setup to 4 : 3.

The second setup consists of a structured layer GP autoencoder, as described in Sec 5.2.1. The compres-

sion ratio is the same as in the first setup, for a valid comparison, and the n (m) features from representation

x (z) are split into c = n
4 , (k = m

3 = c) subsets Ci (Ki), such that |Ci| = 4, (|Ki| = 3), ∀i. That is, four

features from input representation x are assigned to each subset Ci, and from this, and only this, subset of

features, is that features in subset Ki can be generated. Mirroring this configuration, the decoding forest

is also partitioned in subsets of four trees, such that trees in each subset can only see the subset of three

features of some subset Ki. All these subsets, (4) input features-(3) encoding trees-(3) new features-(4)

decoding trees, are coupled together, to form a miniautoencoder. The compression ratio is kept low because

in these set of experiments we only wish to test GP capability of generating an intermediate representation,

i.e. if it is able to evolve at least two layers of processing, where there is function composition, rather than

actually test the compression limits/capabilities of the proposed technique, which will be explored in further

experiments. We use every four neighboring pixels in the same row to be in subset Ci; Fig. 5.8 illustrates

such partitioning scheme. Notice how since there are no overlapping between subsets, borders do not require

any special treatment.

The third setting is exactly as the second one, except that we use a minibatch based form of training, as

described in Sec. 5.2.2.

61

Figure 5.8: Partitioning scheme for a 4 : 3 compression ratio setup. Each subsets consisting of 4 pixels is reduced
to 3 new variables in the intermediate representation and then decoded back to 4 pixels.

Table 5.2: Evolutionary parameters for the GP runs. Arithmetic operands are 2-ary and trigonometric functions
are unary primitives. The division function is protected, meaning that any attempt to divide between zero
returns as output 1× 106, instead of an error.

Parameter Value
Population size 60
Max. Tree depth 4
Set of Primitives < +,−,×,÷, sin, cos >
Constants range [0,1]
Crossover Prob. 0.6
Mutation Prob. 0.3
No. Generations 40/40/600

For this set of experiments we used ESS population dynamics, with a 0.6 probability of crossover (single

tree) and a 0.3 probability of mutation. Table: 5.2 summarizes the rest of the GP parameters used. Notice

that the number of generations given for the on-line version is significantly greater than for the other two

approaches; this due the fact that the on-line approach can perform the evaluations much faster.

To determine similarity between an original sample and the reconstructed output from the autoencoder,

we used the mean square error (MSE), defined in Eq. 3. MSE receives as input an original sample x and its

reconstructed y vector, and compares them feature by feature, averaging the difference across all features.

MSE output can be thought as a distance between a sample and its reconstruction:

dMSE(x,y) =
1

n

n∑
i=1

(xi − yi)2 (3)

where xi (yi) is the i-th variable of original (reconstruction) vector x (y), and n is the size of representa-

tion vectors.

62

The objective function in the first two setups described is to minimize the average MSE across all pairs

sample-reconstruction from some given dataset. At every generation, each individual of the population is

tested against the entire training dataset, the resulting MSEs for every instance in the dataset are averaged,

and this result is assigned as the fitness for a given individual. On the other hand, the objective function in the

third setup is minimizing average MSE for all samples in the current minibatch presented to the population.

Fig. 5.9 shows the results obtained by the straightforward GP, the structured layer GP and the minibatch

training version of it; minibatches were composed of 100 samples. We compared the three approaches

in MNIST dataset. Models were trained using half of the training set of MNIST (30,000 samples). The

straightforward GP can make use of the multiple processing cores by parallelizing the evaluation of sample-

reconstructions pairs. On the other hand, both structured layer GP approaches distribute evolution of multiple

miniautoencoders across most (but not all) processing threads available, and in this case the evaluations of

the sample-reconstructions pairs is done sequentially for each miniautoencoder.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Training MSE Testing MSE

Straightforward
approach

Structured
Layer GP

Structured
Layer GP
(Minibatch)

0.381
0.382

0.027
0.027

0.015
0.015

Straightforward
approach

Exec. time

40:00

48:00

01:43

Lower is better

Lower is better

a)

b)

00:00 04:48 09:36 14:24 19:12 24:00 28:48 33:36 38:24 43:12 48:00

Structured
Layer GP

Structured
Layer GP
(Minibatch)

Figure 5.9: Results obtained by the three different GP setups (a) MSE across all samples in training and testing
datasets. (b) Execution time expressed in hh:mm.

Fig. 5.10 compares the reconstruction for the first ten images in the training set, as obtained by the best

63

Table 5.3: Average MSEs and exec. time for a minibatch approach varying the size of the batches to 30, 60, 100,
300, and 600 samples; and giving 1, 2 and 5 forward passes over the dataset.

Mini Batch Size
30 60 100 300 600

Epochs Training Testing Time Training Testing Time Training Testing Time Training Testing Time Training Testing Time
1 0.013 0.013 04:44 0.012 0.012 03:36 0.013 0.013 03:15 0.017 0.017 02:49 0.020 0.020 02:39
2 0.010 0.010 09:31 0.011 0.011 07:24 0.011 0.011 06:32 0.014 0.014 05:30 0.017 0.017 05:31
5 0.009 0.009 23:27 0.008 0.008 18:04 0.009 0.009 16:27 0.011 0.011 14:26 0.014 0.014 13:23

autoencoders generated by the three different experimental setups. For the third setup we also performed a

test varying the size of the minibatches and increasing the number of generations in order to allow the GP

to see each sample more than just once. Table 5.3 shows results of varying the size of minibatches to 30,

60, 100, 300, and 600 samples; and allowing the algorithm to give one, two and five forward passes over the

training data; in this case, the entire training set of MNIST (60,000 samples) was used for training purposes.

All experiments were carried on a Intel Core i5 at 4.2 GHz, with 16GB in RAM, running Debian Linux 9.

All algorithms were implemented in a in-house GP library developed in Python version 3.6.

From the results presented in this section we can appreciate that the structured layer GP approach is one

order of magnitude better than a straightforward GP approach in average MSE . In fact, the straightforward

approach does not reach an acceptable solution at all given approximately the same amount of time, making

clear the advantage of the proposed approach. Even though the difference, in terms of quality of solutions,

is not as decisive between the structured layer GP and its minibatch learning version, the gap in execution

time between them is also one order of magnitude. Results also show that the size of the minibatches have

to be carefully selected in order to get a balance between quality of solution and execution time. We also

confirmed that the minibatch version can benefit from making several passes over the training data.

Figure 5.10: Comparison of the reconstruction of the three experimental setups. From top to bottom: orig-
inal first 10 images from the training set, best straightforward GP reconstruction, best structured layer GP
reconstruction, structured layer GP + minibatch training reconstruction.

64

5.4.3 EC Parameters Study

In this section, we present results of an experimental study carried out in order to gather evidence that

sheds light on to the following questions regarding the evolution of GP based AEs structures: (1) is GP a

capable method to learn AEs algorithms?; (2) are crossover and mutation a different type of genetic oper-

ation, or is crossover equivalent to mutation?; and if so, what is the optimal relation (probability) between

both; (3) which population dynamic (generational, steady state, ESS) is more efficient? and (4) which type

of crossover (single-point or single-tree) yields better results?.

We organized experiments in the following way: we evolved AEs to perform a 4:3 dimensionality re-

duction on Olivetti dataset varying crossover / mutation probabilities balance between four options (0.9/0.1,

0.7/0.3, 0.5/0.5, 0.3/0.7), four different population sizes (25, 50, 100, 200), and using generational replace-

ment, steady state and ESS population dynamics; we performed all those experiments using single-point

crossover and single-tree mutation, and then repeated the entire set of experiments substituting single-point

crossover for single-tree variant. Each experiment (combination of crossover/mutation balance - population

size - population dynamic - type of crossover) was performed 5 times in order to obtain an average behavior

of the given setup and perform statistical analyses. Olivetti training set is split into six mini-batches of 60

images each. Each experiment ran for 10 epochs (60 generations). The rest of the EC parameters (max tree

depth, set of primitives, constants range) are the same as those stated in Table 5.2.

Since in this study we are only interested in observing the effects of different EC parameters combina-

tions on EAs evolution, we did not vary the dimensionality reduction ratio, nor used another dataset than

Olivetti for this study; although these limitations could naturally represent a bias in the obtained results,

the analysis performed in Sec. 5.4.5 seem to corroborate that the behavior of the parameters herein studied

are not related with the dataset used or the reduction ratio, but rather with the preservation of diversity they

contribute to the population. In the next experimental set we test GP based AEs performance given different

reduction rations on different datasets. Preliminary experiments revealed that the smaller the partitions, the

better the performances, this is consistent with the well-documented dimensionality scalability issues of GP

(and counter-intuitively with the idea that larger partitions have more context information that could lead to

better performance).

The 4,096 pixels in original images from Olivetti dataset are the input representation. These pixels are

grouped into 1,024 subsets Ci each consisting of four pixels. These subsets are assembled by picking 4

contiguous pixels from the same row without any overlapping. From each subset Ci, a subsetKi of 3 feature

variables from the compact input representation are generated, and from this Ki the corresponding original

65

4 pixels are reconstructed into subset Qi. This way the compression ratio of 4:3 is achieved according to

the structured layered GP approach described in Sec. 5.2.1. We used average MSE minimization across all

images per minibatch as the objective function.

Plots in Figures 5.11 and 5.12 show the average MSE obtained by each setup in the testing dataset

after every epoch of training. Fig. 5.11 corresponds to all configurations where Single-point crossover was

used, and Fig. 5.12 to those of Single-tree. Each figure contains three plots, corresponding to three different

population dynamics tested; and each plot is further divided into four groups that correspond to different

population sizes. Table 5.4 shows the MSE obtained in the testing dataset in average for all the different

setups after 10 epochs.

For every group of different crossover/mutation probabilities setups that share the other configuration

parameters (type of crossover, population size and population dynamics), we performed a statistical test to

determine which one of such probabilities balances, if any, provides the best results after 10 epochs. We

applied Dunn’s test (Dunn, 1961) to determine if there is a significant difference among the probabilities

balances in each group. Results show that they are significantly different. We used a level of significance

of 0.05 for all tests. Each cell in Table 5.4 groups the different probabilities balances that share the other

configuration parameters. For all cells, the configuration with the lowest mean is significantly lower (better)

than the two with the highest mean, and not significantly different from that with second-lowest mean.

5.4.3.1 GP as method to discover AEs

The results obtained in the preliminar experiments and those observed in Figures 5.11 and 5.12, show

that GP can systematically reduce reconstruction error for most given EC parameters setups, and for two

distinct datasets, providing evidence that the proposed method is capable of synthesizing AEs algorithms.

5.4.3.2 Crossover vs. Mutation

According to the results obtained for all setups after 10 epochs (Table 5.4), a generational replace-

ment dynamics yields better results with a balance that favors crossover over mutation, for either kind of

crossover (even though more so for Single-tree crossover), whilst the opposite is true for steady state dynam-

ics, where is preferable to perform at least as many mutations as crossover, if not more. ESS is somewhat

of a mixed case, depending on the style of crossover utilized, however we can notice that an equal pro-

portion of crossover and mutation is consistently better for this type of population dynamics. Notice how

generational replacement does not keep a steady pool of good performing individuals, so it benefits from

66

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

25 50 100 200

Steady State

0.9 / 0.1 0.7 / 0.3 5.0 / 5.0 0.3 / 0.7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

25 50 100 200

Generational

0.9 / 0.1 0.7 / 0.3 5.0 / 5.0 0.3 / 0.7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

25 50 100 200

Efficient Steady State

0.9 / 0.1 0.7 / 0.3 5.0 / 5.0 0.3 / 0.7

M
SE

M

SE

M
SE

Epochs

Pop Size

Epochs

Pop Size

Epochs

Pop Size

Crossover / Mutation:

Crossover / Mutation:

Crossover / Mutation:

Figure 5.11: Performance of GP based AEs evolved under different setups using Dual Single-point crossover.
Results show the average MSE obtained by 5 GP based AEs across 10 epochs when transforming and recon-
structing all images from the testing set under the given configuration.

67

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

25 50 100 200

Steady State

0.9 / 0.1 0.7 / 0.3 5.0 / 5.0 0.3 / 0.7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

25 50 100 200

Generational

0.9 / 0.1 0.7 / 0.3 5.0 / 5.0 0.3 / 0.7

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

25 50 100 200

Efficient Steady State

0.9 / 0.1 0.7 / 0.3 5.0 / 5.0 0.3 / 0.7

M
SE

M

SE

M
SE

Epochs

Pop Size

Epochs

Pop Size

Epochs

Pop Size

Crossover / Mutation:

Crossover / Mutation:

Crossover / Mutation:

Figure 5.12: Performance of GP based AEs evolved under different setups using Dual Single-tree crossover. Re-
sults show averaged MSE obtained by 5 GP based AEs across 10 epochs when transforming and reconstructing
all testing set images for the given configuration.

68

Table 5.4: Results after 10 epochs for every configuration tested. Results in bold are significantly better within
their cell. Results with ∗ denote those that are significantly better than the others with equivalent computational
cost. Result denoted with ∗∗ is the overall best result found. Standard deviations are expressed in hundred
thousands.

Single Point

G
en

.

Prc / Prm 25 50 100 200
0.9 / 0.1 0.0278 ± 46 0.0181 ± 30 0.0134 ± 30 0.0096 ± 7.2
0.7 / 0.3 0.0212 ± 25 0.0160 ± 16 0.0124 ± 18 0.0099 ± 17
0.5 / 0.5 0.0356± 10 0.0276± 45 0.0224± 13 0.0198± 9.0
0.3 / 0.7 0.0561± 64 0.0411± 95 0.0326± 28 0.0274± 2.0

SS
Prc / Prm 25 50 100 200

0.9 / 0.1 0.0205± 18 0.0138± 23 0.0097± 11 0.0065± 7.9
0.7 / 0.3 0.0132± 34 0.0092± 18 0.0063± 11 0.0044± 8.0
0.5 / 0.5 0.0108 ± 23 0.0073 ± 16 0.0051 ± 14 0.0036 ± 9.5
0.3 / 0.7 0.0094 ± 10∗ 0.0065 ± 7.1∗ 0.0045 ± 8.4∗ 0.0032 ± 9.4

E
SS

Prc / Prm 25 50 100 200
0.9 / 0.1 0.0307± 43 0.0196± 21 0.0145± 14 0.0105± 13
0.7 / 0.3 0.0196 ± 5.6 0.0145 ± 9.2 0.0105 ± 6.4 0.0073 ± 6.3
0.5 / 0.5 0.0178 ± 22 0.0134 ± 16 0.0098 ± 16 0.0072 ± 9.3
0.3 / 0.7 0.0200± 31 0.0146± 11 0.0111± 13 0.0088± 11

Single Tree

G
en

.

Prc / Prm 25 50 100 200
0.9 / 0.1 0.0152 ± 28 0.0110 ± 32 0.0083 ± 16 0.0062 ± 11
0.7 / 0.3 0.0166 ± 24 0.0134 ± 8.8 0.0119 ± 18 0.0115 ± 24
0.5 / 0.5 0.0318± 74 0.0247± 25 0.0212± 8.7 0.0195± 16
0.3 / 0.7 0.0524± 59 0.0386± 38 0.0313± 14 0.0270± 32

SS

Prc / Prm 25 50 100 200
0.9 / 0.1 0.0092± 27 0.0060± 24 0.0043± 9.6 0.0031± 6.7
0.7 / 0.3 0.0065± 7.5 0.0046± 5.9 0.0035± 6.3 0.0026± 3.1
0.5 / 0.5 0.0056 ± 9.2∗ 0.0041 ± 6.4∗ 0.0031 ± 5.3∗ 0.0024 ± 1.6∗∗
0.3 / 0.7 0.0057 ± 15 0.0042 ± 6.5 0.0033 ± 3.4 0.0026 ± 5.0

E
SS

Prc / Prm 25 50 100 200
0.9 / 0.1 0.0137± 27 0.0103± 36 0.0073± 17 0.0054± 4.9
0.7 / 0.3 0.0104± 43 0.0075± 16 0.0056 ± 12 0.0044 ± 11
0.5 / 0.5 0.0087 ± 12 0.0067 ± 9.5 0.0054 ± 7.5 0.0044 ± 9.0
0.3 / 0.7 0.0100 ± 24 0.0074 ± 13 0.0059± 11 0.0049± 4.9

operations that implicitly conserve the best performing individuals such as single tree crossover; in contrast,

steady state consists in always ensuring survival of best fitted individuals, that gradually deplete diversity; as

such, this dynamics benefits the most from operations that introduce random changes to the individuals in

the population, such as mutation.

5.4.3.3 Population dynamics

We also compared each top performer setup after 10 epochs from steady state configurations against

the ESS setup configured with twice the population size also after 10 epochs (because they require the

same computational effort), i.e. the top setup of steady state with 25 population size against ESS with 50

population size, both with the same type of crossover; the top steady state with 50 population size against

the top ESS with 100 population size, and so on, and then again with the other type of crossover. We applied

Wilcoxon rank sum test (Wilcoxon, 1945) to compare each pair and used a level of significance of 0.05 for

all tests. Results showed that steady state yields statistically better results in all cases. Unfortunately our

proposed population dynamics, ESS, did not manage to achieve higher efficiency than steady state, i.e. it

69

is always preferable to use a steady state setup with any given population size than an ESS with twice such

population size. Generational replacement dynamics on the other hand lags even further than ESS to steady

state.

5.4.3.4 Crossover type

From the results observed in Figures 5.11, 5.12 and Table 5.4 we can realize that there are significant

differences between different crossover/mutation balances, meaning that they are indeed different kind of GP

operations for this kind of individuals representation (otherwise they would all behave the same). We tested

the top performers from each steady state population size study, to determine which of the two crossover

styles yields results significantly better, i.e. we tested the top steady state of 25 population size single-point

against the top steady state with 25 population size single-tree, and so on. We also used Wilcoxon rank sum

test for comparison. Results showed that, in all cases, Single-tree crossover yields significantly lower (better)

average MSE values than Single-point crossover.

5.4.4 Comparison with other methods

In this section, we compare the proposed GP based AEs performance against another popular representa-

tion learning method. We picked up the best configuration found from the analysis described in the previous

section (Steady State - Single-tree - 0.5/0.5 crossover/mutation prob) and compared its performance against

an ANN that performs similar to earlier deep networks. We performed the comparison for three differ-

ent encoding ratios, 2:1, 4:1, and 8:1. For this tests, we used all three datasets described in Section 5.4.1,

LFWCrop, Olivetti and MNIST. The number of features generated given the three encoding ratios tested

were, for MNIST (Olivetti/LFWCrop), 392 (2,048), 196 (1,024) and 98 (512).

We used fully connected ANNs, composed of three layers for encoding and decoding stages each. The

first encoder’s two layers are composed of exponential linear units (ELUs) while the last layer (where the

encoded representation resides) is made up of linear units. The decoder follows a similar architecture, where

the first two layer are made up of ELUs and the last, output, layer is composed of sigmoid units. The archi-

tectures of the encoding networks are as follows, for MNIST (Olivetti/LFWCrop), 784-588-490-392 (4098-

3072-2560-2048), 784-392-294-196 (4098-2048-1536-1024), and 784-392-196-98 (4098-2048-1024-512).

The decoding networks followed an architecture that mirrored that of the corresponding encoding network.

We set the minibatch size to 60 samples for all setups, and used Adam Optimization algorithm (Kingma &

Ba, 2014) variant of SGD for network training. We trained networks for 100 epochs, at which point they no

longer appeared to improve.

70

Table 5.5: MSE results on the testing set for the compared methods. Values remarked in bold are better.

Reduction
Ratio

GP ANN CNN

MNIST
2:1 0.0158 0.0018 0.0047
4:1 0.0241 0.0016 0.0079
8:1 0.0373 0.0020 0.0113

Olivetti
2:1 0.0032 0.2176 0.0085
4:1 0.0058 0.0089 0.0089
8:1 0.0177 0.0063 0.0108

LFWCrop
2:1 0.0014 0.0349 0.0018
4:1 0.0024 0.0068 0.0029
8:1 0.0050 0.0073 0.0034

We also include the comparison with CNNs. The CNNs used are composed of three layers for encoding

and decoding stages each. The number of convolutional filters of the encoding networks at each layer are as

follows, for MNIST (Olivetti/LFWCrop), 24-24-24 (32-32-32), 24-12-12 (32-16-16), and 24-12-6 (32-16-

8), for the 2:1, 4:1, and 8:1 encoding ratios respectively. All convolutional filters are of size 3 × 3; ReLUs

are used as activation functions on all layers; each convolutional layer is also followed by a Max Pooling

layer of 2 × 2. The decoding networks followed an architecture that mirrored that of the corresponding

encoding network, where the Max Pooling layers are replaced by Up Sampling layers. The Max Pooling

layers in combination with the number of filters at the last enconding layer achieve the desired reduction

ratio (approximately in the case of MNIST, and exact in the case of Olivetti and LFWCrop). All CNNs’

last layer consist in a single convulutional filter of 3× 3 with a sigmoid activation unit. RMSProp was used

as optimization method in all cases. These networks’ architectures were based on the suggestion presented

by Chollet (2016), and cannot be considered state of the art CNNs; the purpose of this comparison is merely

to compare the proposed GP-AEs against a CNN and not only against fully connected networks.

For the GP we made some adjustments in order to set it up to perform the desired encoding ratios. We

established windows of 4×2, 4×4, and 4×4 pixels, to form sets Ci, from where such patches were reduced

to 4, 4, and 2 features respectively, using the SLGP scheme. For all experiments we set the population size

to 100 solutions, and let the GP evolve through 10 (20) epochs for MNIST and LFWCrop (Olivetti). We also

changed the maximum allowed tree depth to 6 for all experiments, for both encoders and decoders.

Table 5.5 shows the average MSE obtained by each method for the testing sets of each dataset. From

these results, we can appreciate that GP is competitive: it yields better results than an ANN when training

data is scarce in comparison to the network size, or competitive results when the reduction ratio is not too

aggressive.

71

a)

b) c)

Figure 5.13: Reconstructions generated from encodings of two different methods at a reduction ratio of 4:1.
(a) MNIST; (b) Olivetti; (c) LFWCrop. From top to bottom, for all sets: originals, ANN and GP reconstructions.

In Fig. 5.13 we can observe that the qualitative results generated by GP based AEs at a reduction ratio

of 4:1 are still acceptable, whereas from the same figure and from Table 5.5 we can conclude that 8:1 is an

upper limit for dimensionality reduction of the proposed technique. On the other hand, Olivetti training set

is comprised of only a few hundred samples, and a DNN that attempts to reduce such images to only half

their initial dimensionality has too many parameters to calibrate while having too few training samples to do

so. In contrast, GP does not suffer from this phenomenon, due to its non-parametric learning nature. By this

we mean that GP does not rely on a number of internal parameters to tune in order to build models, i.e. it is

parameter-free (unlike all kinds of ANN). LFWCrop is another case where the lack of massive amounts of

training data puts the proposed GP approach on par with the ANN, if not better.

Notice from Table 5.5 how GP performance degrades as the reduction ratio increases, whereas the ANN

performance increases. Once the reduction ratio is of certain factor, our proposed scheme cannot make small

enough partitions for GP. Further techniques are required to adapt GP to higher dimensionality problems.

72

5.4.5 Diversity Analysis

Our final study consisted in analyzing the amount of diversity of individuals in GP based AEs populations

for different population dynamics set at their corresponding best crossover/mutation balance. The purpose

of this study is to analyze the decay in diversity as generations elapse, and to determine if there is a type of

GP operator, population dynamics, or combination of both, that allows to better preserve diversity, and see

if there is any type of correlation between efficiency delivered by each setup and population diversity. This

study also allows us to measure how much computational effort is wasted in evaluating the same individuals

over and over again in a GP, a typical problem found in most EC paradigms.

We developed a method to measure diversity in a population of GP based AEs’ individuals. The process

involves extracting a genotype signature from each individual, so in every generation we store those signa-

tures from all individuals in a list, and then we count how many of the signatures in the list are unique. We

define diversity as the ratio of different signatures found over the total size of the population:

Diversity =
UniqueSignatures

PopSize
(4)

The signature of each individual is assembled by extracting a genotype signature of every tree in its

corresponding forests. A tree signature is formulated from its nodes’ list. All encoder trees signatures are

concatenated, as well as all decoder trees signatures, then encoder and decoder signatures are concatenated

to form an individual’s complete signature. Notice, however, that the process for building individuals’ signa-

tures also generates encoders’ and decoders’ independent trees signatures as an initial step. This allow us to

also measure diversity of distinct trees found across all encoders and decoders, because it might be the case

that two individuals are considered different according to their signature, but they actually are composed of

the same trees in their encoders and decoders, but organized differently.

We ran a single diversity analysis for each one of the top performing configurations of population dy-

namics and crossover style. Figure 5.14 shows the decay of diversity as generations elapse. Results suggest

that single-tree crossover is more successful at preserving diversity at the individual level, while steady state

does so at tree level, and this is the reason why the combination of both parameters yields the best results5.

Still, diversity at individual level drops to half of the population (half of the population is duplicated)

in just 40 or less generations, and yet diversity at tree levels drops even more dramatically. These results
5Consider that diversity at any given number of generations for steady state has to be compared against 2x the number of

generations for ESS or generational replacement, because at such points the computational effort is equivalent. Under this caveat,
diversity superiority of steady state becomes much more evident

73

Dual Single-point Dual Single-tree

G
en

er
at

io
n

al
S

te
ad

y
S

ta
te

E
S

S

10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

Generations

D
iv

er
si

ty

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Generations

D
iv

er
si

ty

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Generations

D
iv

er
si

ty

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Generations

D
iv

er
si

ty

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Generations

D
iv

er
si

ty

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Generations

D
iv

er
si

ty

60 60

6060

60

Individual Diversity
Encoder Trees Diversity
 Decoder Trees Diversity

Individual Diversity
Encoder Trees Diversity
 Decoder Trees Diversity

Individual Diversity
Encoder Trees Diversity
 Decoder Trees Diversity

Individual Diversity
Encoder Trees Diversity
 Decoder Trees Diversity

Individual Diversity
Encoder Trees Diversity
 Decoder Trees Diversity

Individual Diversity
Encoder Trees Diversity
 Decoder Trees Diversity

Figure 5.14: Diversity vs generations on structurally layered GP under different configurations, to perform
4-to-3 dimensionality reduction in the Olivetti dataset. There is a total of 1024 partitions per setup, plots are
individuals, and trees average diversity, while colored areas represent the standard deviation to the mean.

show us that there is a huge amount of computational resources, both memory and processing time, wasted.

These results entices us to open new research directions regarding maintaining population diversity, revisit

paradigms of evolutionary computation where only the top performer individual survives to the next genera-

tion or even propose new paradigms of GP where we evaluate atomic components that conform individuals,

and find ways to infer hypothetical individuals performances defined as combinations of the already evalu-

ated atomic components.

5.5 Remarks

In this chapter, we proposed a model for the evolution of autoencoding structures through GP. Instead of

relying on evolving ANN-alike algorithms like several previous works, the method presented in this work

consisted in evolving native GP structures, i.e. forests comprised of GP syntax trees. Our analysis included

74

a complete comparison on different population replacement methods and genetic operators.

We argued that the on-line learning approach to evolution, discussed in this chapter, represents different

computational tolls depending on the population dynamics used. While a generational replacement dynam-

ics requires the evaluation of as many individuals as the population size, a steady state population dynamics

requires as twice as many. We also proposed a new population dynamics that attempted to lower the com-

putational cost of steady state dynamics to that of generational replacement, but still preserving its general

behavior. Our experimental study showed however, that when given the same number of evaluations (either

because the population size is halved for steady state / duplicated for the other methods; or because the

steady state is run for half generations, etc.), steady state stands as the most efficient evolutionary dynamics

when evolving autoencoding structures. Still, it remains to be seen if this result holds when GP is used to

solve other problems, i.e. evolving individuals other than autoencoders, such as classifiers.

Another important result from our research is the outcome from comparing the role of different genetic

operators. Our results show that, in the case of evolving autoencoders, both mutation and crossovers are

indeed different genetic operations, and that a single-tree crossover yields better results than a single-point

type. Results also show that an exact balance between crossover and mutation achieve higher efficiency than

other combinations. This results stands among other similar studies (Luke & Spector, 1997, 1998; White

& Poulding, 2009) when trying to evolve individuals composed of a single tree, the role of crossover has

been controversial. This results vindicates both role and importance of the crossover operator for this type

of individuals, and sets GP apart from a mere random search.

Unfortunately results shows that GP based AEs as a method for representation learning still lag behind

other available options. Their performance is, at best, comparable to that of state of the art neural networks

of fifteen years ago. From the experimental evidence presented here, GP has difficulty with high dimensional

problems, and aggressive feature reduction is one such problem. Newer techniques are required to adapt GP

to such scenarios.

Nevertheless, it’s important to remark that right from the start it was not the purpose of this research to

beat the state-of-the-art methods for representation learning or dimensionality reduction, but rather to show

GP capabilities to generate autoencoder algorithms that are not based on ANN-alike structures. Therefore,

to summarize the contributions of this work, we can highlight:

• A GP-based method of representation learning for high dimensionality datasets, i.e., an approach

that allows GP to perform feature extraction on large-scale problems without the need of specialized

75

primitives.

• A GP individual representation for AEs’ algorithms.

• We presented experimental results that provide evidence of the performance gains of implementing

such an autoencoder with the proposed method compared against a straightforward GP approach.

• An on-line evolution approach for learning in GP, and its detailed study under different EC population

dynamics.

• A thorough comparison between different GP operators for evolving GP based AEs.

• Finally, we compared the proposed GP-AE against conventional, ANN-based autoencoder.

76

Chapter 6. Fractal Genetic Programming

In this chapter, we introduce a new DL framework based on GP. In the proposed model, artificial neurons

are replaced by GP abstract syntax trees, and genetic operations along with evolutionary search perform the

optimization task typically carried out by stochastic gradient descend algorithms’ family in DNNs. The

proposed framework is deep in the strictest sense: models generated are composed by multiple non-linear

processing layers, and perform both feature extraction and prediction stages, in a single, unified, pipeline.

Results show that, although not yet competitive with the latest state-of-the-art ANN-based deep models, it

does perform comparably to modern GP approaches that require human expert knowledge of the problem

domain. However, what we consider the two most important results gathered from these experiments are:

(a) evidence that the GP paradigm could circumvent the fundamental DL problem all along, i.e. that GP in

itself can generate complex, multilayer, sequential data processing, structures; although in a fundamentally

different way to that of backpropagation; and (b) closer inspection to models generated by the proposed

framework indicates new research directions, as well as some reasons on why our approaches so far attempted

for a EC-based DL framework might be flawed (these points will be discussed in the final chapter of this

thesis document, see. Ch. 7). We call this framework, Fractal Genetic Programming (FractalGP).

We also introduce a new form of incremental learning, we call spatially distributed learning (SDL). This

type of evolutionary training is a requirement for the FractalGP algorithm, because otherwise it is too time

consuming.

This chapter is divided in 7 sections. Section 6.1 presents the context under which the FractalGP frame-

work is proposed. In section 6.2, we introduce in detail the FractalGP method, while in Sec. 6.3 we propose

a ”convolutional” variant of FractalGP. Next, in Section 6.4, SDL method is described. The main motivation

that lead to FractalGP development is discussed in Sec. 6.5. Section 6.6 presents an empirical assessment of

the proposed approach, and its comparison to modern GP implementations as well as modern deep networks

in an image processing task. And finally, Sec. 6.7 discusses some implications of the results found so far.

6.1 Background

DL is, in practial terms, about attempting to train/learn increasingly larger structures. It has been ex-

perimentally proved that these larger learning models are capable of solving ML problems where all other

77

methods have failed. One of the possible reasons why those larger models seem to work better than shallow

ones might be due to mathematical expressiveness and data transformation capabilities of them over simpler

models; i.e., those larger models, such as DNNs, are capable of expressing transformations that are needed

in order to map each input to its corresponding output more accurately. Another possible reason behind

the success of models such as DNNs, are the number of degrees of freedom offered by larger structures. A

parametric deep learning model has a large number of parameters that need to be found, but this could also

be translated into a fine tuning capability not present in models with far fewer number of weight parameters.

These are, however, hypothesis on the superiority shown by larger models over smaller ones; other

possible strong reasons are proposed and discussed in (Veit et al., 2016; Frankle & Carbin, 2019). One

way or another, superior performances offered by larger models should not be understated. It should also

be stressed out how ANNs’ researchers struggled for a great period of time attempting to came out with

methods and mechanisms that allow them to train such deep networks (see Ch. 2)

Here, we present a model that allows the GP framework to evolve considerably larger learning structures

than it is normally possible with the canonical solution representation. Not much work has been done re-

garding evolution of large tree structures in GP. On the contrary, an undesirable phenomenon that commonly

occurs in GP is that tree structures grow significantly in size, but without attaining significant gains in their

performance; such phenomenon is known as bloating (Banzhaf & Langdon, 2002). Since large structures

are computationally more expensive, not only in memory footprint, but also -and more importantly- in eval-

uation time, bloating is an unwanted effect, and a lot of research has been carried out for understanding

and mitigating bloating (Langdon & Poli, 1998; Bleuler et al., 2001; Luke & Panait, 2006). Nevertheless

we consider that, as the area of DL has proved, some problems require complex solutions that cannot be

expressed through shallow computational models.

Some proposed mechanisms that have been explicit or implicit attempts to generate more complex struc-

tures through GP are: automatic subroutine discovery (Poli et al., 2008), cooperative co-evolutionary al-

gorithms (Potter & De Jong, 1994), and ensemble learning (Dietterich, 2000). From all these, subroutine

discovery (introduced in Sec. 3.3.3) is the most related to the method proposed in this chapter; their similar-

ities and differences will be highlighted at the end of the next section.

6.2 FractalGP

FractalGP is a new extension for the GP framework that we propose in this thesis, and it is a contribution

to the overall field of evolutionary ML. In FractalGP, individuals are represented by abstract syntax trees, just

78

f(x)

h(x) g(x)

i(x) j(x) k(x)

m(x) n(x)

*

+ /

x
1 1 2x

0

w
0
=1.1

w
1
=.98 w

2
=.7

w
3
=.54 w

3
=.2 w

4
=1.2

w
5
=2.5

g(x)

a) b)

Figure 6.1: Examples of (a) FractalGP individual, and (b) inside-tree in one of its nodes. In a FractalGP tree,
each node is a tree in itself, instead of a simple primitive. Each node in the inside-tree has a coefficient that can
be tuned in order to enhance its functionality. Notice how Fractal GP greatly increments the real total depth of
a GP individual.

as in standard GP, but with one major difference: internal nodes do not take the shape of a function selected

from a predefined set of primitives, instead the function they express is defined by an abstract syntax tree

that is built using the standard set of primitives one would use in GP. That is, each node in a FractalGP tree

is in itself a GP tree. Fig. 6.1 shows a FractalGP tree and the inside of one of its nodes. From now on, we

will refer to the trees inside the nodes of FractalGP trees as molecular primitives or inside-trees, and to the

set of primitives from which they are assembled as, atomic primitives.

Trees inside FractalGP trees nodes, i.e. molecular primitives, are just like standard GP trees with one

addition: each node in a molecular primitive consists of an atomic primitive as well as a coefficient that

modifies the node’s output; so, in formal terms: let us say that tree t is a molecular primitive; t represents

ft(x) function; each u node, whether internal or leaf, that belongs to t, expresses a fu function, such that

when u is a leaf node, fu(x) = wu · xi or fu(x) = wu · c, where xi is a variable taken from x and c

is a constant value1, and when u is an internal node fu(z) = wu · p(z), where p is an atomic primitive

and z is u children nodes’ output. This form of representation where each node in a tree has associated a

multiplicative factor is not new and has been used in the past when GP has been exported to the context of

memetic algorithms (Emigdio et al., 2014); FractalGP is, however, not a memetic algorithm. We will explain

this in the following subsection.

For example, the function represented by the inside-tree depicted in Fig. 6.1b is
1Note that if t is a leaf node in the FractalGP tree, then x is the input representation vector, otherwise is a vector generated from

t children nodes outputs

79

g(x) = 1.1

(
.98(.54x1 + .2(1))× .7

(
1.2x0
2.5(2)

))
(5)

The original purpose of FractalGP was to extend the GP model to allow it to use more complex func-

tions as primitives, instead of just very simple arithmetic or trigonometric operations, but at the same time,

without the need to define such functions manually while retaining the ability to polish them in some degree.

However, notice how the proposed representation carries another benefit: it promotes subroutine finding.

This happens because if a FractalGP tree undergoes crossover with itself, integral pieces of code replicate

across the tree structure.

6.2.1 FractalGP trees creation

The process of creating an initial population in FractalGP is pretty much the same as it would be in a

traditional GP, only requiring additional attention to a few new details. There are two new hyperparameters

in FractalGP: max allowed depth and max allowed arity in molecular primitives.

FractalGP trees are created recursively from the root. Any method such as random depth or full depth

may be used. When the root is created, or any other internal node, instead of selecting a primitive for the node

as in traditional GP, we randomly generate a syntax tree (the molecular primitive) using atomic primitives

and the max allowed arity (as well as random constants within some range) as building blocks. The method

to create this tree can also be random or full depth or any other variant of the kind. Once a tree is created, it

has to be parsed, to count how many different leaf variables appeared within. This value will determine how

many children a node will spring, and it is restricted by the max allowed arity parameter.

When a leaf node of an inner-tree in a FractalGP tree is generated (either because max depth has been

reached or because it has been randomly chosen to), the max arity parameter is not used. Instead, molecular

primitive’s leaves may be any original feature variables of the targeted problem (or constants within some

range). Coefficients for all nodes in all inner-trees within a FractalGP tree are initialized to wu = 1, ∀u.

6.2.2 FractalGP Operators

Available genetic operators for FractalGP trees are structural crossover, structural mutation and noise

mutation, which will be described below.

Structural crossover or simply crossover, performs GP’s conventional crossover operation at FractalGP

trees level; i.e. it does not alter in any way insides of molecular primitives. This operations treats FractalGP

80

trees’s nodes as black boxes, and just swaps parts of FractalGP trees structures using as a crossover point

some node picked at random. Fig. 6.2 illustrates this FractalGP operation.

Structural mutation is a type of mutation that is technically the same as the original mutation defined

for standard GP individuals. It works by replacing a subtree from a FractalGP tree with a new, randomly

generated, one; the process of generating the new subtree follows the same steps as when generating a

complete FractalGP tree (Sec. 6.2.1), but with a reduced max allowed depth, so that the new subtree can be

attached to the original tree at the mutation point without breaking the max allowed depth limit. Fig. 6.3

shows an example of this type of operation.

Noise mutation is a new kind of operator defined for FractalGP trees. When a FractalGP tree is selected

to undergo noise mutation, a single offspring is derived from the original tree where all coefficients of inner-

trees’ nodes have been perturbed by adding a small random value generated according to some probability

distribution centered around zero, such as Gaussian distribution, N (µ, σ2), such that µ = 0. It is important

to remark that the proposed FractalGP framework is not a memetic algorithm, because even though inner-

trees representation may resemble memetic GP variants, noise mutation does not imply that individuals

enter a local or global search algorithm where optimal values in nodes’ coefficients are attempted to be

found; noise mutation is a single step genetic operation just as crossover or regular mutation. Nevertheless,

FractalGP may partially behave as a memetic algorithm during late generations of an evolutionary run,

because once population diversity has been exhausted, and one or two individuals repeat throughout the

population, applying noise mutation repeatedly becomes a local search. Fig. 6.4 shows a case of how noise

mutation modifies the coefficients of an inside-tree.

Notice how noise mutation purpose is to polish molecular primitives that were randomly generated when

the initial population was created. Then, two original genetic operations can be used as in standard GP,

with the difference that primitives composing trees are potentially more complex functions than just atomic

primitives.

6.2.3 Relationship to ADFs

FractalGP can be considered a modified version of the extreme ADFs case proposed by Koza (1994)

(see chapters 21 through 25). Koza proposed a scenario where all primitives and terminals are replaced by

ADFs. The total number of ADFs in this setup is also undetermined. In this extreme case, crossover becomes

problematic, and a number of complex rules have to be observed in order to perform crossover (Koza did

not established mutation requirements). The FractalGP framework proposes new genetic operations that are

81

f(x)

i(x) j(x)

g(x) h(x)

a(x)

d(x) e(x)

b(x) c(x)

k(x) l(x)

1

2 3

4 5

1

2
3

4 5 6 7

f(x)

h(x)c(x)

k(x) l(x)

a(x)

d(x) e(x)

b(x)

i(x) j(x)

g(x)

Structural
Crossover

Parents Offspring

Figure 6.2: Example of Structural Crossover operation defined for FractalGP individuals. Notice that it is the
standard GP crossover operation. Molecular primitives inside the nodes of the trees are not altered in anyway.

f(x)

i(x) j(x)

g(x) h(x)

k(x) l(x)

1

2
3

4 5 6 7

Structural
mutation

f(x)

i(x) j(x)

g(x) a(x)

b(x)

1

2
3

4 5 6

Figure 6.3: Example of Structural Mutation; a subtree in the offspring is replaced by a new, randomly gener-
ated, molecular primitives. It is fundamentally the same operation as standard GP subtree mutation.

*

+ /

x
1 1 2x

0

w
0
=1.1

w
1
=.98 w

2
=.7

w
3
=.54 w

3
=.2 w

4
=1.2 w

5
=2.5

Noise
Mutation

*

+ /

x
1 1 2x

0

w
0
=1.2

W
1
=.98001 w

2
=.75

w
3
=.541 w

3
=.18 w

4
=1.111 w

5
=2.3

Figure 6.4: Example of the effect of noise mutation inside a molecular primitive. Noise mutation actually alters
all molecular primitives in a FractalGP individual. Notice it does not alter the structure of the syntax tree.

82

more lax in requirements than ADF’s crossover. This new operators take advantage of a memetic GP syntax

trees variant and recent results from GA-derived optimization techniques for deep networks.

6.3 Convolutional FractalGP

Convolutional FractalGP (CFGP) is a variant of FractalGP to specifically target image processing tasks.

In CFGP, nodes in a FractalGP tree receive as input an array, this array is processed by a node (a GP tree or

molecular primitive) in a ”convolutional” fashion, i.e. a node function is slid through an array, and generates

as output another array that results from this convolution-alike operation.

When nodes are leaves, they receive as input an image array to be processed, and as an output a feature

map array is returned. Feature maps are intermediate transformations of an input representation that are

stepping stones for achieving a desired output. Those feature maps can be stacked, forming 3D arrays that

serve as input to internal nodes in a CFGP tree. Internal nodes also output a single feature map, for further

processing in upper layers of a CFGP tree. In applications where a desired output is a complete image, such

as filtering, segmentation or inpainting, an output at root node in a CFGP tree can be used as final result,

without having to undergo any further processing; Fig. 6.5 shows this type of architecture. In the case where

a desired output is not an image, such in classification tasks, an output at root node in a CFGP tree should be

used as input representation for an extra layer of processing, similar to the role that a fully connected MLP

layers play at the endpoint of deep convolutional networks2.

6.3.1 CFGP trees creation

One additional detail has to be observed when creating CFGP trees in comparison to creating regular

FractalGP trees. In FractalGP, when a new internal node is created during a tree creation process, an inside-

tree has to be parsed to find out how many children such node will spring. This process is straightforward; it

simply consists in counting how many different input variables appear in leaf nodes of a molecular primitive

(which is limited by the max arity parameter). In CFGP this process is similar but with a caveat.

First, CFGP has an extra configuration hyperparameter: the sliding window size that operate over input

arrays. This value defines an input variables range that may appear within molecular primitives but that

actually refer to a 3D input array with volume = 1, i.e. a molecular primitive only requires a single feature

map as input, and thus it only has one children node. If input variables in a molecular primitive overflow this
2Although this is an abuse of language, because in Convolutional Nets there is no such thing as ”fully-connected” layers (Yann

LeCun comment on his Facebook page).

83

Input Image CFGP Node
Leaf

Feature Map
generated by
CFGP Node

CFGP Node
Internal

3D Array Generated
by stacking 1 or
more feature maps

Input Layer First Layer Second Layer Third Layer Output/Fourth
 Layer

Output Image

Figure 6.5: Diagram of a CFGP individual. Tree structure is shown horizontally, root node is to the right, leaf
nodes are to the left. Each node is a GP tree that operates in a convolutional fashion over its input array; this
array may be composed of one or more ”feature maps”, forming a 3D array. In this particular example all
internal nodes receive as input 3D arrays composed by 2 feature maps. This individual has 4 processing layers,
hence it can be considered an homologous deep learning model.

84

? ? ?

0 ... 8 9 ... 17 0 ... 8 9 ... 17

0 ... 8 9 ... 17

Children = 1 Children = 1

Children = 2

Figure 6.6: Parsing of a CFGP node considering a 3 × 3 pixels sliding window with maximum arity equals 2.
Depending on feature variables at leaf nodes of an inside-tree, a node may have one or two children nodes.

range, then it may or may not, require two feature maps as input, i.e. 3D input array with volume = 2; this

depends on variables appearing within first range or not.

To clarify this scenario, suppose a CFGP setup with sliding windows of 3×3 pixels, and maximum arity

2. When creating a root’s inner-tree, or any other internal node, parsing is required in order to know how

many children nodes must be created for that particular node. In this example, there are three possible cases:

(1) all inner-tree feature variables fall within [0, 8] range, in such case the node will only spring one children

node; (2) all inner-tree feature variables fall within [9, 17] range, then the node will only spring one children

node; (3) feature variables fall within entire [0, 17] range, then the node will have two children nodes. Note

that feature variables cannot fall beyond [0, 17] range, because maximum arity equals 2; if maximum arity

is setup to 3, then range would be extended to [0, 26], and there would be different cases when nodes would

spring one, two or three children nodes. Fig. 6.6 illustrates these three possible scenarios.

Those rules do not apply to leaf nodes, simply because they do not spring more nodes, and because their

input is fixed to a single 2D array (an input image). Understanding in detail how CFGP trees are created is

important because it help us to explain an additional genetic operation specific to CFGP individuals.

85

Batch 18Batch 18

Batch 2Batch 2Batch 1Batch 1 Batch 3Batch 3 Batch 4Batch 4 Batch 5Batch 5 Batch 6Batch 6 Batch 7Batch 7 Batch 8Batch 8

Batch 9Batch 9 Batch 11Batch 11 Batch 12Batch 12 Batch 13Batch 13 Batch 14Batch 14 Batch 15Batch 15 Batch 16Batch 16

Batch 17Batch 17 Batch 19Batch 19 Batch 20Batch 20 Batch 21Batch 21 Batch 22Batch 22 Batch 23Batch 23 Batch 24Batch 24

Batch 25Batch 25 Batch 26Batch 26 Batch 27Batch 27 Batch 28Batch 28 Batch 29Batch 29 Batch 30Batch 30 Batch 31Batch 31 Batch 32Batch 32

Batch Batch
1010

Figure 6.7: SDL example: during cell 10 evaluation, individuals from cells 2, 9, 11 and 18 (cross shape neigh-
bourhood), as well as their offspring, are tested against minibatch 10, and the best performing individual from
that micro-population replaces current individual at cell 10.

6.3.2 CFGP Operators

Feature Leaf Mutation is an specific CFGP operation outside FractalGPs regular context. It consists in

performing a random shift in every leaf node that is a variable (i.e. not constants) with some probability.

This shift should be constrained to the range in which already resides the variable; this is done in this way

in order to avoid disconnecting children nodes from their parents; without this prevision it could be the case

that a parent node that undergoes feature mutation would end up no longer referencing one of the feature

maps it receives as input, which would effectively leave entire subtrees disconnected within individuals.

For example, suppose a CFGP individual configured with sliding windows of 3×3 pixels, and maximum

arity equals 2 that generates an offspring through Feature Leaf Mutation. If there is a variable leaf node in

one inside-tree set to feature 3 (15), this leaf could take a new value only within [0, 8] ([9, 17]) range in a

mutated offspring, otherwise a node would stop using one of its two input features maps, or points to a non

existent feature map, if it only has one child.

From our experimental assessment (see Sec. 6.6), CFGP algorithm shows high instability in its perfor-

mance, with high variance in its results; but even so, in a set of preliminary runs we found that CFGP without

feature leaf mutation is severely capped, unable to achieve any acceptable performance in any run. Feature

leaf mutation is a requirement for CFGP because it manages to modify and to improve inner-trees in a way

that noise mutation (the only other inner-tree altering operation) is unable too.

6.4 Spatially Distributed Learning

SDL is a highly experimental incremental learning scheme that consists in distributing minibatch learning

across space, instead of time (such as in SGD). SDL is used in combination with a cellular population

86

(see Sec. 3.3.2). Each cell is associated to a different minibatch, and when evaluating such cell, a micro-

population assembled with it, its neighboring cells, and the offspring generated with both of them, gets

evaluated against the referred minibatch, in order to determine which individual will replace the current cell.

There are three important aspects of SDL to remark: (i) each individual is tested against more than a

single minibatch, since it is not only tested against its cell’s minibatch, but also against minibatches from

neighboring cells, thus good performing and generalizing individuals will propagate across the population;

(ii) Under this scheme, each generation roughly corresponds to one epoch, unlike SGD-alike methods where

many generations are required to see an entire training dataset, this is because GP as a whole sees all training

samples every generation (although the same cannot be said of any individual in the population), thus each

generation corresponds to a pseudo-epoch; (iii) note that the best individual at the end of an entire GP run

will be probably overfit towards some minibatch, and this entices the idea of using the whole population as

an ensemble learner; this idea has not been tested.

Fig. 6.7 visually depicts an SDL scheme. Though we have not yet thoroughly tested the SDL method,

some of the best solutions found with CFGP were obtained under this learning scheme. Thus, we consider

to briefly introduce this scheme even if still is at early development stages. We have used SDL along CFGP

only; all other FractalGP instances and other GP variants described in the following section were assessed

using standard on-line learning methods.

6.5 Hypothesis

Motivations that led to propose the FractalGP framework are to develop a model that: (1) allows to

evolve large GP structures, (2) offers fine-grained tuning degree capability, and to a lesser extent, that (3)

promotes subroutine discovery. However, the main idea behind FractalGP is to test the hypothesis that GP

can circumvent the credit assignment problem (CAP).

In this section, we state the CAP, its relationship with the deep learning paradigm, and the intuition

behind our believe that GP is a viable method to target the CAP.

6.5.1 Credit Assignment Problem

When we develop a complex system, how should we distribute the credit obtained from its successes and

errors to the multiple parts that compose it? That is, how do we individually evaluate the parts that compose a

system when we can only directly quantify the global output generated by the system? Or, in more practical

87

terms, how can we know what parts of a complex system we have to improve and what parts we should left

intact, in order to improve its overall performance? This is what is known as the credit assignment problem.

The CAP was first formalized by Minsky (1961), however its roots can be traced back to the development

of Dynamic Programming (Bellman & Kalaba, 1957). Nowadays, the CAP can be considered a fundamen-

tal problem in the entire field of computer science, but perhaps specially for areas of Machine Learning

and Artificial Intelligence. The CAP can be found in the context of planning (Bellman & Kalaba, 1957),

Reinforcement Learning (Sutton & Barto, 1998), and Evolutionary Computation (Potter & De Jong, 1994).

Schmidhuber (2015) considers that the CAP is the fundamental problem in Deep Learning. This analysis

considers the backpropagation algorithm as a Dynamic Programming-derived method. In general terms, we

share this point of view, and we believe it is not difficult to understand why the CAP defines the Deep

Learning essence.

Considering that even the most basic DL architecture must be composed by two interconnected parts:

feature extractor and predictor. How can we evaluate each of them, when we only get a measurable output

from predictor’s end point? If one may try to make modifications to one of the parts, the other may be

rendered useless or viceversa, it does not matter how much we attempt to improve one of the parts if the

other one is negatively affected. This problem is even further aggravated when we consider a DL system

composed by multiple sequential layers of feature extraction stages.

For ANN-based deep networks, the CAP is resolved through the backpropagation algorithm, a calculus-

based method that allows to dispatch and distribute the error signal across all layers within a DL model.

Backpropagation can be applied to this particular dynamic programming setting because of the very nature

of artificial neurons, that is, learning units that represent differentiable mathematical functions. However,

this would not suit a DL model based on non-differentiable learning units, such as the one we are herein

proposing, or even a case where a new mechanism to train deep models other than backpropagation is

envisioned.

Let us suppose a DL architecture similar to CNNs, with the difference that artificial neurons are replaced

with GP abstract syntax trees structures. For simplicity let us assume that we wish to tackle an image

processing task that does not necessarily require an MLP at the end of the architecture, such as image

denoising, segmentation or inpainting. In its simplest form, this architecture could be composed of a single

processing layer with a single filter (GP tree) within that is slid across an input image to generate an output.

Fig. 6.8a depicts this first instance. In this case, system’s evaluation is trivial, because output’s error is

directly attributed to the single filter tree in the system.

88

d

n filters

n feature maps feature maps

First Layer

d

Second Layer Output LayerInput Layer

Input Image Output ImageInner / “Hidden” Layer
(Feature Map)

c)

Input Image

d

d

Output Image

GP Filter

a) b)

Figure 6.8: Multilayer GP architecture. a) Single layer, single filter; b) Two layer, one filter per layer; c) Three
layer, first layer and second with n filters, third layer with only 1, output, filter.

A second variant of this system would be when there are two layers of sequential processing, each one

with a single GP tree filter within. Stacking small sliding, i.e. convolution-alike, filters like this has the

advantage of being a more efficient way of processing large input spaces than using larger filters or even the

whole input (LeCun et al., 1998). But even in this still simple case, evaluating the performance of the system

becomes problematic, as there is no obvious way of evaluating the performance of each layer with only the

global output as feedback signal. This model is drawn in Fig. 6.8b.

The general case to this hypothetical architecture is when it is composed of several layers, and in each

layer there are several GP tree filters, such as in standard CNNs. Fig. 6.8c shows this Multilayer Convolu-

tional GP architecture. In Rodriguez-Coayahuitl et al. (2019a), we implemented these types of GP models

and called them Convolutional GP. We proposed different mechanisms that attempted to train multilayer

variants without success: none of the models composed of two layer or more could outperform the model

composed of a single-layer, single filter. The methods proposed in Rodriguez-Coayahuitl et al. (2019a) are

presented in Appendix A.

89

6.5.2 Tackling the CAP through GP

In the area of EAs, the CAP has emerged when researchers have attempted to divide complex problems

into smaller subproblems, but the evolved subproblems’ solutions cannot be evaluated separately (unlike the

SLGP Autoencoder proposed in Ch. 5). For those cases, a framework called Cooperative Co-evolutionary

algorithms (Potter & De Jong, 1994) has been proposed. In cooperative co-evolutionary algorithms, each

component is evolved in a separate ’island’, and each island imports members (usually only the best) from

the rest of the islands so it can complete the processing chain and evaluate each individual. Cooperative Co-

evolutionary algorithms were originally proposed for GAs in order to tackle large optimization problems,

however this framework has also been used in GP (Krawiec & Bhanu, 2003; Doucette et al., 2012).

However, we hold that GP alone represents a mechanism to tackle the CAP. Notice how GP generated

solutions consist in multilayer structures that process data sequentially; if any element in these processing

chains is not performing adequately, the entire structure would perform poorly. Take for example the indi-

vidual evolved for image denoising shown in Fig. 6.9. This GP tree is composed of up to eight processing

nodes in sequence in some of its subtrees. Although admittedly each of these processing nodes are much

more simpler in nature than a tunable- artificial neuron, the question then arises, could GP be used to tackle

the CAP when nodes represent more complex functions? And, could the GP framework benefit, either in

terms of efficacy or efficiency, shall nodes represent more complex functions? These are the questions we

attempt to provide some clues through the proposed FractalGP framework.

6.6 Experimental evaluation

This section presents an empirical assessment of FractalGP and CFGP proposed models. First, Frac-

talGP is tested in two artificial regression datasets and compared against a standard GP; then both FractalGP

and CFGP are tested in a real life image processing task, and their performance is compared against two

commonly used GP and DL variants.

6.6.1 Benchmark datasets

For synthetic benchmark datasets, 1000 training samples were generated, and 200 testing samples using

the following functions:

f(x) =
√
x (6)

90

min

mean

0

1

mean

2

-
3

84

4

mMED

5

mean

-

6

7

8

84

9

mMED

10

11

-12

mean

13

84

38

mMEAN

14

15

mMEAN

16

17

mean
18

-
19

84
20

mMED

21

22

-
23

84
24

mMEAN

25

26

ReLU
27

ReLU
28

x

29

cos

mMAX

31

32

30

-33

84
34

x2

35

mMEAN

36

37

Figure 6.9: Image denoising algorithm synthesized through GP. Mezzanine-type of nodes were used in this
evolutionary setup.

and

f(x, y) =
sin(5x(3y + 1)) + 1

2
(7)

Both are non-linear functions. For experiments with both artificial datasets,
√
x, sin and cos are removed

from the primitives set. Because the experimental purpose is to demonstrate GP’s and FractalGP’s ability

to approximate complex surfaces using as starting point an arbitrary set of simple functions as primitives;

consider that in real life scenarios is highly unlikely that the functions we are trying to approximate are

already in the primitives set.

On the other hand, for performance testing of both FractalGP and CFGP in a real life scenario, image

denoising was selected as the target task. Image denoising consists in extracting a clean image x from a

noisy observation y such that, for additive noise, y = x + v, where v is a contamination process; a typical

example is when v follows a Gaussian distribution with some given σ, such case is known as Additive White

Gaussian Noise (AWGN).

We used the Berkeley Segmentation Dataset (BSDS) (Roth & Black, 2005) for training and testing

purposes. We converted 200 images from BSDS to grayscale and extracted 14000 patches of the following

sizes: 3×3, 9×9, 13×13, 21×21 pixels. For each patch size, we generated two datasets by contaminating

91

Figure 6.10: Sample images from the Berkeley Segmentation Dataset

images (before patches extraction) with AWGN with two different noise levels, σ = 25 and σ = 50. We

used 12000 patches for training and 2000 for testing for each patch size and noise level. Fig. 6.10 show

samples images from BSDS.

We chose image denoising because it is a high dimensionality problem, suitable to compare FractalGP

and CFGP performance with modern GP variants typically used for image processing and other high dimen-

sionality tasks, as well as current DL networks. These GP variants are described in the following section.

Testing different algorithms on different patch sizes allows to observe how they scale to increasingly higher

dimensionality problems.

6.6.2 Parameters Setup

For synthetic datasets, we compare traditional GP performance, for now on referred to as Low-Level GP

(LowGP), configured with two different maximum allowed tree depths, against FractalGP. Table 6.1 resumes

most parameters used for all algorithms tested with synthetic datasets.

Table 6.1: Parameters used for experiments carried with synthetic regression datasets.

Parameter LowGP-8 LowGP-16 FractalGP
PopSize 400
Generations Variable / Fixed time (30 min. per run)
Max Tree Depth 8 16 4
Max Inner-Tree Depth N/A 4
Max Allowed Arity N/A 2
Crossover Prob .50 .25
Mutation Prob .50 .25
Noise Mutation Prob N/A .50

(Atomic) Primitives
+, −, ×, ÷, x2,

max, min, mean, ReLU

The set of (atomic) primitives used consists of binary arithmetic operands +, −, ×, ÷, and binary

operations mean, max, min, and finally ReLU, which is unary; division is protected meaning that, any

division between zero will return zero, which is customary in GP literature (Poli et al., 2008). As already

92

stated in the previous section, typical GP primitives
√
x, sin and cos are disabled for this set of experiments.

For image denoising, we tested four algorithms: a Low-Level GP, a Mid-Level GP (Mid-GP), a FractalGP

and a CFGP. Low-level and mid-level GPs nomenclature comes from the fact that these implementations are

configured to use low-level only, and mezzanine along low level primitives (see Sec. 3.2) respectively. For

example, Mid-GP is capable of generating individuals like the one shown in Fig. 6.9, i.e. individuals with

mezzanine type of primitives that operate over features arrays, whereas Low-Level GP is only capable of

evolving individuals like one shown in Fig. 6.11, i.e. GP trees that can operate only with individual features

at their leaf nodes.

+

sin x

mean C ReLU

Cx
0

x
1

Figure 6.11: ”Low Level” GP individual. Leaf nodes consist only of single feature variables or scalar constants.
It can be considered as a ”canonical” GP candidate solution representation.

For Low-Level GP, Mid-Level GP, and FractalGP variants, a square cellular population scheme with 20

× 20 individuals is used. Table 6.2 resumes all parameters used for these three variants. Crossover and

mutation are protected so max allowed tree depth is never exceeded. Max, min and mean listed in low-level

functions category are two-arity functions that operate over two single scalar variables or constants, whereas

mMean, mMax, etc., are mezzanine functions that operate over a trimmer ’s output (see below). A limited

amount of time (24 hrs.) is determined for all setups execution, given the same computational resources (a

single Intel Xeon thread at 2.9 GHz), instead of setting a predefined number of generations.

Trimmers serve as leaf nodes for mezzanine nodes. Their purpose is to limit the amount of information,

so mezzanine functions do not always operate over the same data (a complete image patch). There are seven

types of trimmers defined: Center (takes the center region of 3×3 pixels of a patch), ring (takes first and last

columns and rows from a patch), corners (takes one of the four patches’ corners, about 1
4 of the patch), and

full (passes the full patch). Fig. 6.12 illustrates trimmers. Corners and full trimmers adapt to the patch size;

the rest of the trimmers remain static for all patch sizes.

Low-GP, Mid-GP and FractalGP are configured to deal with denoising as a simple regression problem:

the objective function is to minimize the average mean square error (MSE), from attempting to clean the

93

Table 6.2: Parameters used for image denoising experiments.

Parameter Low-GP Mid-GP FractalGP CFGP
Pop Size 400
Generations Variable / Fixed time (24 hrs. per run)
Max Tree Depth 8 4
Max Inner-Tree Depth N/A 5
Max Allowed Arity N/A 2
Crossover Pr. .5 .25 .25
Mutation Pr. .5 .25 .25
Noise Mutation Pr. N/A .50 .25
Shift Mutation Pr. N/A .25
Low-Level +, −, ×, ÷, sin, cos, √, max, min, mean, ReLU
Mezzanine N/A mMean, mMax, mMin, mMed N/A
Type-1 zero-arg Individual pixels
Type-2 zero-arg Constants within range [-1,1]
Type-3 zero-arg N/A Trimmers N/A

Figure 6.12: Trimmers. From left to right: center, ring, NW, SW, SE, NE, Full.

central pixel from all patches in a training set. In order to clean a complete image, any generated model

is slid through the full image in a convolutional fashion to clean it, but for the first round of denoising

experiments, we limited ourselves to test generated models in the testing set of 2000 patches, cleaning only

the central pixel. The best model that resulted from those experiments is then compared against CFGP, which

is trained in a standard convolutional fashion by cleaning complete patches.

CFGP is also trained using different evolutionary dynamics than the rest of the GP variants. CFGP uses

SDL (see Sec. 6.4), whereas all other GP approaches use standard on-line learning. Moreover, CFGP also

uses a special scheme called centric selection (Simoncini et al., 2009), which consists in enforcing, with a

decaying probability, either noise or feature mutation; this allows to polish molecular primitives during first

generations of an execution, before standard GP operations are applied.

Table 6.3: Results from different GP approaches using synthetic images. Results expressed in MSE. Lower is
better. All setups were run for the same amount of time, given the same computational resources.

LowGP-8 LowGP-16 FractalGP
avg best worst avg best worst avg best worst

SQRT 8.690 ± 6.434 1.313 24.04 39.149 ± 30.731 8.339 95.31 1.459 ± 0.731 0.341 2.44
SINE 0.079 ± 0.014310 0.061 0.10 0.109 ± 0.013 0.078 0.12 0.079 ± 0.006 0.065 0.087

94

6.6.3 Results

Table 6.3 shows average, standard deviation and best results from 10 executions per approach of LowGP-

8, LowGP-16 and FractalGP using synthetic benchmarks. The purpose of this set of experiments is to test if

the FractalGP scheme is capable to capitalize in a more efficient way larger tree individuals than a standard

GP representation. Therefore, the idea is to compare FractalGP against a traditional GP configured to an

optimal max tree depth (LowGP-8) and against a traditional GP configured to a max tree depth equivalent

to the total depth of FractalGP (LowGP-16). Results show that FractalGP is indeed a superior approach. In

the case of the square root function, FractalGP manages to reduce the error to a lower level than a standard

GP configured to an optimal max tree depth, meanwhile the allocation of very large (deep) trees structures

cannot be properly exploited by standard GP representation/algorithm. For the second dataset, FractalGP

and the optimal standard GP yield the same average result, but variance for FractalGP is lower, making it a

more reliable method, while a standard GP approach configured with a conservative max allowed depth still

manages to find better results, meaning that given enough trial runs, it is a better approach.

Figure 6.13: Results obtained from LowGP, MidGP and FractalGP approaches, for image denoising with noise
level σ = 25, for different patch sizes. Results expressed in dB; higher is better.

Figures 6.13 and 6.14 show the average and best performances obtained by LowGP, MidGP and Frac-

talGP variants when targeting image denoising, for two noise levels and different patch sizes (perceptive

field). Results are expressed in decibels (dB) peak signal to noise ratio (PSNR). Fig. 6.9 is an actual depic-

tion of the best individual found with MidGP configuration with training 13× 13 patches, which is also the

95

Figure 6.14: Results obtained from LowGP, MidGP and FractalGP approaches, for image denoising with noise
level σ = 50, for different patch sizes. Results expressed in dB; higher is better.

best performer across all the board, for all patch sizes and GP variants. In contrast, the solution shown in

Fig. 6.15, which is the best solution found with LowGP variant; this Low level solution was obtained with

7× 7 pixels patches.

The purpose of this set of experiments is to test how different algorithmic approaches behave as di-

mensionality of the problem increases, which would require (presumably) larger candidate solutions (deeper

trees). Notice how LowGP average and best performances decrease significantly as dimensionality increases,

whereas MidGP best performances keep steady even for large patch sizes. MidGP model disadvantage is

that system’s designer has to define mezzanine functions as well as trimmers; in contrast, a LowGP is a more

agnostic machine learning algorithm, which is more in tone with DL concept.

Therefore, even though LowGP is a more desirable approach, these results confirm the status of mezzanine-

based models as an standard GP methodology for high dimensionality problems. The proposed FractalGP

model is an attempt to close the gap between these two classical GP approaches (note that FractalGP is

fundamentally a Low level GP approach, since no mezzanine functions are defined for it). Unfortunately,

FractalGP does not show the same competitive performance shown with synthetic datasets when target in

image denoising; results suggest that FractalGP requires enhancements to tackle high dimensionality prob-

lems.

96

sin

*

1

sin

2

min
12

sqrt

3

cos

4

mean

5

ReLU

6

-

9

x2

7

9

8

2

10

31

11

sin

13

-

16

cos

14

44

15

24

17

mean

18

mean

19 mean

30

mean

20

mean

27

mean

21

min

24

10

22

2

23

23

25

16

26

25

28

31

29

mean

31

mean

37

max

32

mean

35

21

33

19

34

23

42

15

36

mean

38

17

41

30

39

37

40

Figure 6.15: GP solution for image denoising using only individual pixels and low-level nodes as available prim-
itives

Table 6.4: Average results obtained by LowGP, MidGP, CFGP and CNN implementations, from 10 independent
testing runs, for noise level of 50. Results are expressed in dB; higher is better.

avg best worst
LowGP 17.81 ± 2.31 20.94 15.97
CFGP 19.30 ± 1.12 22.18 18.20
MidGP 20.67 ± 3.32 23.66 16.99
DNN-6 23.46 ± 0.11 23.56 23.27
DNN-32 24.40 ± 0.05 24.43 24.31

Next, we compared MidGP (current top performer) versus CFGP (previous empirical assessment top

performer). Table 6.4 shows both approaches for σ = 50 noise level; MidGP was trained using 13 × 13

patches, while CFGP model was generated with a maximum tree depth of 4, which is equivalent to have

trained it with 11 × 11 image patches. Results show that, in general, CFGP performance is worst than

MidGP that tends to find either very good or very bad solutions with more or less equal probability (hence

its high variance), whereas CFGP converges to non-competitive solutions (not too bad, but not acceptable

either) most of the time, while in rare occasions converges to good solutions.

We also compare the performance of the CFGP against that of a LowGP and two deep networks. We

perform the comparison against a LowGP with an equivalent number of maximum allowed of nodes to that

of the CFGP. Both methods can be considered agnostic, i.e. without any human expert knowledge embedded

97

A

B E

B B

0

1 13

2 7

C B
3 4

C D

B
8

B
11

5 6

C D
9 10

C
12

C
14

Figure 6.16: Best CFGP solution found. All nodes are ”convolutional”. This is fundamentally a deep model,
composed by 5 stacked convolutional processing layers.

(unlike the MidGP), so the purpose is to compare if CFGP can enhance agnostic GP implementations, even

though its performance may not be comparable to that of the MidGP. Results show that the CFGP obtains

better average performance, as well as better best and worst results than a LowGP.

On the other hand, we also implemented two deep networks for image denoising based on the network

proposed by Zhang et al. (2017). Zhang et al. (2017) proposed a 17-layer CNN for image denoising; each

layer is composed of 64 3 × 3 convolutional filters with ReLU functions, except for the last, output, layer

which consists of a single 3 × 3 convolutional filter without any activation function. We implemented two

variant of this network, where we only used a 5 layer architecture (which is equivalent to the number of layers

allowed to the CFGP); for one variant (DNN-32) we used 32 convolutional filters per layer, whereas for other

variant (DNN-6) we only used six filters per layer. The number of layers of the DNN-6 is configured such

that the total number of parameters of the networks is roughly equivalent to that of the CFGP setup tested,

in order to perform a parameter-wise comparison. Results shows that in both cases the CNNs outperform all

of the GP approaches tested, in all regards: average, best, worst and variance, thus making GP an ineffective

method to compete against deep networks at this class of problems.

A closer inspection to the best CFGP individual obtained revealed an interesting pattern, and shed light

on some possible reasons behind underwhelming performance of CFGP. These issues will be discussed in the

following section. Fig 6.16, depicts the overall architecture of top CFGP performer found, and Figures 6.17

and 6.18 show its molecular primitives.

98

-

f

f

A

mean

*

mean

sin

f

f

sin

f

mean

c

f

B

min

+

mean

+

ReLU

f

√

f

√sinf

f

√c

C

-

*

f

cos

c

f

D

Figure 6.17: Molecular primitives of solution depicted in Fig. 6.16.

max

f

max

ReLU
c

f

sin

E

Figure 6.18: Molecular primitives of solution drawn in Fig. 6.16. Nodes denoted with c stand for constants,
while f are individual feature variables taken from windows that slide over input feature maps.

99

6.7 Analysis

In this final section of this chapter, we will discuss some phenomena that can be observed in the best

solution found by the CFGP, depicted in detail in Figures 6.16 through 6.18; this analysis will also allow us

to pitch some hypotheses regarding the highly unreliable performance of CFGP, and some possible ways to

improve it.

In Fig. 6.16 we can notice that the individual is composed, in broad terms, by three classes of nodes:

one main type of internal node (B), and two main types of leaf nodes (C and D); there are, however, one

internal node (A, the root) and one leaf node (E, a child of the root) that do not belong to the node’s main

classes. At this point it is important to remember that these molecular primitives, even repeated across the

entire main structure, actually have different coefficients assigned in each of their internal nodes, and their

leaves may also correspond to different input variables, so they are not fully identical. However, the fact

that this solution exhibits a highly modularized nature, suggests that GP is attempting to find sort of artificial

neurons, i.e. basic learning units that can replicate across the structure, and tune them later (through noise

and feature mutation) in order to improve the overall performance.

From one perspective, this can be considered a significant result because it seems to suggest that GP’s

artificial evolutionary processes tend towards the very same results than that of natural evolution: finding

the nerve cell once, and then build large information processing structures by combining a number of these

cells; this results also mimics foundations on which connectionist ML field is built.

From another point of view, these results could also be expected for two main reasons: first, modularity

is, perhaps, the ”shortest path” to came up with sophisticated information processing systems, i.e. it is

probably simpler to synthesize a ”brain” using very simple units as building blocks, repeated across an

entire structure, rather than generating a very heterogeneous system as a whole (this is also probably why

nature reached the same type of solution); secondly, and maybe even more importantly, notice that CFGP

is actually a method that imports some intuition and logic from one heuristic (ANNs are an heuristic in the

full sense) into another heuristic of a completely different nature (Genetic Programming). CFGP employs

a convolution-alike operation and a layered, sequentially processing, pipeline, both very intrinsic to ANNs

nature, so it is only natural to expect that EC/GP fills the gaps by finding the missing pieces of the jigsaw

puzzle, i.e., artificial neurons.

This could also explain the reasons behind low CFGP performance: it requires that neuron-type molec-

ular primitives appear in the initial population so it can replicate and propagate them (remember that any

genetic operation defined for CFGP can modify molecular primitives at a structural level); and not only that,

100

but it also requires these neuron-alike nodes appear in three different nodes classes: leaf, internal and root

nodes. This last issue is important to clarify further: notice how internal nodes can never become leaf nodes,

so nodes prone to work as basic learning units are required to appear both as internal and as leaf nodes; also,

internal nodes cannot become the root (there is no genetic operation that ”prunes” a GP tree from atop), thus

the root node is either also a neuron-alike node or at least a ”transparent” node that allows to pass information

from children nodes without too many modifications (notice how this is the case for node A in Fig. 6.17).

Therefore, it can be said that CFGP requires to hit the jackpot three times; hence its poor performance.

There are at least two possible ways to improve CFGP: (a) define new genetic operations that modify

molecular primitives at a structural level (and not only their internal coefficients or leaf variables), in this

way CFGP does not has to win the lottery three times, i.e. instead of requiring the necessary neuron-alike

primitives to appear in the initial population, it can gradually work towards building (evolving) them; and

(b) restrict CFGP to make use of only a few available molecular primitives (more akin to the original ADF

paradigm proposed by Koza), in this way CFGP has to sort for neuron-alike primitives over a lesser number of

possible options. Both proposed approaches are not exclusive in between, on the contrary, they complement

each other and would probably be required to implement both of them to truly improve the performance of

the proposed CFGP.

Despite CFGP lower performance when compared with more conventional MidGP approach, we con-

sider both CFGP and FractalGP successful in their main purpose, that was to prove if GP could evolve

complex, layered, systems where building blocks are composite elements rather than mere basic arithmetic

operations or trigonometric functions.

Therefore, we conclude that proposed FractalGP, and its convolutional variant, CFGP, are promising new

techniques that deserve further study and improvements; some possible methods to enhance CFGP have also

been proposed in this section.

101

Chapter 7. Conclusions

7.1 Recapitulation

In this thesis, we researched the idea of developing a new DL framework based on learning units other

than artificial neurons; more specifically, we thoroughly explored the possibility of performing the same type

of tasks at which DL methods excel, through GP.

In Chapter 2, we presented a review on the main concepts and ideas behind the field of Deep Learning.

We presented a brief historical review on how the field of Deep Learning came to be, and discussed some

techniques that define and distinguish modern deep networks implementations from previous attempts at

developing these large learning models.

In Chapter 3, we presented a thorough description on the some of the most relevant concepts from the

GP framework. GP is an evolutionary algorithm that can be used for ML tasks, as such GP has been used for

classification, regression, feature extraction as well as for representation learning. GP candidate solutions

consist in abstract syntax trees that represent mathematical functions or simple computer programs.

In Chapter 4, we performed a literature review on works that are related to the approach proposed in

this thesis research. We discussed how functions represented by GP trees can be highly non-linear in nature,

and their intrinsic layered structure has enticed researchers to develop DL-alike, or pseudo-DL, approaches

for ML tasks based on GP, i.e., evolving algorithms that perform both, feature extraction and prediction,

represented by an unified processing pipeline of a GP tree. We also presented newer and exotic models of

DL, where artificial neurons are replaced by other learning models, such as decision trees, very similar in

spirit to the framework we hypothetize.

In this research, we proposed two main schemes that attempted to fusion some classic DL aspects or

strategies, such as training deep learning structures or applying sequential convolutional layers for greater

high dimensionality processing efficiency, but from the general GP learning model perspective. We proposed

both, supervised and unsupervised learning, approaches for DL-alike processing, using the GP paradigm.

For the unsupervised model, in Chapter 5, we developed a GP framework for the evolution of autoen-

coder algorithms. The proposed framework allowed us to confirm the ability of GP for on-line learning,

102

greatly reducing processing time for large training datasets. The local processing concept of neighboring

features was also implemented, which laid foundations for convolutional-alike schemes based on GP.

In the case of supervised learning, in Chapter 6 we presented a GP framework extension, we call Frac-

talGP, and a further variant aimed at image processing tasks, CFGP. FractalGP purpose is to allow, in a

simple way, evolving considerably larger (deeper) tree structures through GP. Meanwhile, models evolved

through CFGP resemble convolutional deep networks, where all artificial neurons have been replaced by a

GP variant of abstract syntax trees.

Nevertheless, none of the proposed models could reach modern, ANN-based, DL models’ performance.

This opens an entire new line of questioning regarding the reasons behind this lackluster performance. Our

research carried so far, and presented in this document, focused mostly on one possible reason: high dimen-

sionality problems have always been challenging for GP. Both in chapters 5 and 6 empirical evidence on this

issue was presented, as well as in Ch. 4 scientific literature recollected related to works that also struggled

with this particular issue.

Also noteworthy, is the taxonomy presented in Sec. 3.2, where we classified different types of nodes used

in modern GP implementations: from our perspective many of these special nodes emerged as a workaround

to adapt GP to high dimensionality scenarios.

There could be other possible reasons (beside the curse of dimensionality) that hold GP from attaining

the same level of performance of deep networks. Some of these issues will be discussed in further sections

of this chapter.

7.2 Contributions

In this section, we recapitulate the main contributions of our research, already stated in the first chapter

of this thesis, in greater detail.

1. We have developed two significant extensions to the GP framework: FractalGP and CFGP. FractalGP

allows GP to evolve larger structures to those possible with GP’s canonical representation. We pre-

sented empirical evidence that shows that, in low dimensionality problems, FractalGP succeeds in

exploiting with greater efficiency larger GP individuals. Meanwhile, CFGP is a Fractal GP variant

aimed at high dimensionality problems, such as image processing tasks. Notice also how CFGP gen-

erates fundamentally deep architectures where all neurons have been replaced with abstract syntax

103

trees, and where a GP algorithm manages to optimize them favourably up to a certain degree. Both

methods can be considered deep learning models in their full right.

2. We generated autoencoder algorithms through GP, which also marked the first time autoencoders are

learned with an ML tool other than any belonging to the family of ANN-related methods. We consider

this an important result, because it shows that GP is as flexible as an ML approach based on ANNs,

thus further providing evidence that a DL-paradigm based on GP, that is competitive with classical

DL-models, might be possible in the near future.

3. We developed a GP primitives classification system (taxonomy), that allowed us to categorize different

efforts from GP’s research community regarding the development of complex ML systems. Reviewed

through the lens of this proposed taxonomy, we presented an argument about GP’s community long

attempt to came up with the ”Deep Learning” paradigm shift (performing feature extraction + predic-

tion in a unified pipeline), in an almost parallel race to that from the ANN community. We consider

this analysis of equal relevance to that of our technical contributions, because it opens discussion on

why GP researchers failed (or at least stopped) where ANN researchers succeed, and what are the true

technical or theoretical limitations of the GP framework that does not allow to tackle the same kind of

problems ANNs excel at.

7.2.1 Additional Developments

1. The development of an opensource GP library is one of the main contributions that resulted from

this thesis research. The new library is aimed specifically at ML tasks, and is designed to evolve GP

individuals that contemplate different classes of nodes described in our proposed taxonomy, as well as

FractalGP and CFGP variants. The library is available for download at: https://sourceforge.

net/projects/turbogp/.

7.3 Discussion

The final question we wish to answer is whether or not our hypothesis hold. Our research began with

the assumption that if we biased GP towards models that mimic deep networks layered architectures, then

GP could also learn intermediate representations necessary to tackle complex, high dimensionality, ML

problems.

Considering the results gathered during this research we reach the conclusion that there is little evidence

that support our hypothesis. If we focus on CFGP results (which directly imitates deep networks architec-

tures), and compare it with more classical GP approaches performance, it is clear that there is no apparent

https://sourceforge.net/projects/turbogp/
https://sourceforge.net/projects/turbogp/

104

benefit in attempting to do so. Classical GP models (such as MidGP) outmatch CFGP. In contrast, standard

FractalGP is a more promising approach when compared against other typical GP models, and FractalGP

imports few ideas from the field of DNNs, i.e. is more akin to the GP paradigm. However, FractalGP is still

not ready for high dimensionality problems.

From inspection of the best individuals generated by CFGP, we found out that the evolutionary process

converge towards finding few building blocks that can replicate in order to build complex information pro-

cessing systems, instead of coming up with different functions in each processing node. As already discussed

in the previous chapter, this well could be the byproduct of importing so many elements of one heuristic, so

that the evolutionary process naturally tends towards finding the missing elements of the original heuristic.

Therefore, if what we are after is efficiency, then we should probably restrict CFGP to evolve a few pro-

cessing units that can replicate across the entire structure. In such way, the evolutionary search would be

considerable more focused, and better results could be achieved in less amounts of time. In fact, this is how

nature actually worked: the nerve cell evolved once, and then from it, complex nervous systems were built.

However, the question still remains: why GP cannot achieve a performance comparable to that of deep

learning? is it a problem of high dimensionality or is it something else? To answer this question we will have

to compare GP’s performance against DNNs in low dimensionality problems. We suspect that there might

be other factors besides high dimensionality that detriment GP’s performance. One factor we believe could

affect GP from achieving better results is the optimization process accuracy.

In Ch. 2 we briefly discussed how DL is really about solving very difficult optimization problems, and

how gradient descent family of algorithms have come a long way even since the era of AlexNet. Notice how,

in contrast, GP genetic operations are far more coarse in their manipulation of candidate solutions than a

gradient based technique that operates over thousands or even millions of tunable parameters. This is one of

the reasons we proposed FractalGP with internal weight factors, but even the proposed genetic operator that

modifies these weights is primitive in comparison with modern gradient descent variants; in this regard more

research is necessary.

7.4 Future lines of research

Finally, in this section we discuss some possible routes our research can take from here.

• One of the most immediate issues that should be answered is, how GP compares to ANNs in low

dimensionality problems? A battery of tests, in both artificial and real life datasets, should be carried

105

on with both methods, but preferably with artificial datasets where emphasis is made on generating

complex surfaces that are challenging to approximate, and where the number of training samples

can be controlled. Results obtained with our GP-AE suggested that GP outclasses ANN when training

data is scarce, and recent research suggest that deep networks are overparametrized (Frankle & Carbin,

2019), further signaling GP as a preferable choice for problems with scarce training data over deep

networks; but high dimensionality has to be taken out of the equation for proper investigation into the

issue.

• FractalGP showed promising results in low dimensionality problems, but its performance declined

dramatically when faced with higher number of feature variables. We propose that genetic operations

similar to feature leaf mutation, defined only for CFGP, could adapt FractalGP to problems like the

image denoising task.

• We consider CFGP an algorithm that showed some interesting properties. Notice how it is an algo-

rithm capable of generating deep models without having to manually define some hyperparameters

(no. of layers/filters per layer), as well as finding skipping connections, that resemble ResNets to a

certain extent. Its current drawback is that, since it cannot modify the overall structure of molecular

primitives, it depends on a chance to find suitable neuro-alike primitives to achieve acceptable per-

formance. Therefore, it is important to develop new genetic operations for CFGP that can perform

changes inside molecular primitives structures.

• Another important priority is to further develop the noise mutation operation. So far it is a very simple

operation. We propose to enhance its behavior by incorporating the logic of optimization heuristics

such as simulated annealing, i.e. deviation of distribution from which random additive factors are

extracted decays over time. Another option is to incorporate elements from more current optimization

methods such as the cross-entropy method (Rubinstein & Kroese, 2013). We consider this issue of the

upmost importance, considering how, as already discussed in this thesis, DL methods have progressed

to a large extent thanks to the development of enhanced gradient optimization methods.

• Finally, and considering a longer term research, we draw the possibility of developing a capped CFGP

version where a single molecular primitive is searched for, which is then repeated across the entire

deep structure and finally its weights tuned. The purpose of such model is to find new possible forms

of artificial neurons with GP’s help. Notice how modern deep models birth happened thanks to the

artificial neuron model refinement with the activation function substitution, i.e. ReLU incorporation;

also, as reviewed in Ch. 4, newer variants of the artificial neuron model are also being proposed and

researched. GP could be an useful tool for this kind of research.

106

7.5 Publications

The following journal publication is a direct product of this thesis research:

• Rodriguez-Coayahuitl, L., Morales-Reyes, A., & Escalante, H. J. (2019). Evolving autoencoding

structures through genetic programming. Genetic Programming and Evolvable Machines, 1-28. JCR

Q2

The following conference publications are also a direct product of this thesis research:

• Rodriguez-Coayahuitl, L., Morales-Reyes, A., & Escalante, H. J. (2018, April). Structurally layered

representation learning: towards deep learning through genetic programming. In European Conference

on Genetic Programming (pp. 271-288). Springer, Cham.

• Rodriguez-Coayahuitl, L., Morales-Reyes, A., & Escalante, H. J. (2019, June). Convolutional Genetic

Programming. In Mexican Conference on Pattern Recognition (pp. 47-57). Springer, Cham.

• Rodriguez-Coayahuitl, L., Morales-Reyes, A., & Escalante, H. J. (2019, November). Comparison

between levels of abstraction in Genetic Programming. In Autumn Meeting on Power, Electronics and

Computing. IEEE Xplore. Received Best Paper Award in the Computing track.

107

Appendix A. Convolutional Genetic Programming

In this section we explore the possibility to implement the fundamental architecture of Convolutional

Neural Networks through GP. CNNs are a type of connectionist machine learning (ML) algorithms particu-

larly adept at image processing tasks (LeCun et al., 1989, 1995), thanks to a clever architectural design that

allows them to scale well to high dimensionality problems.

In recent years, convolutional variants of DNNs have achieved record performance in typical ML tasks

such as classification, regression or prediction. DNNs have achieved this performance thanks to an ever

increasing number of stacked convolutional layers (Krizhevsky et al., 2012; Szegedy et al., 2015; He et al.,

2016).

Our motivation to import the architectural design of CNNs into GP is twofold: first, we wish to explore

the idea of replacing neurons in CNNs with GP syntax trees, as we believe they have the same, or even

higher, computational power than that of CNNs’ neurons; and secondly due to the fact that GP does not scale

well to high dimensionality problems (Gathercole & Ross, 1997), and we suspect it might benefit from the

same architectural design than that of CNNs.

We use image denoising as target problem in order to test our proposed approach. The purpose of image

denoising is to recover a clean image from contaminated original. The contamination model may be of

different kinds. In this work we attempt to clean images from additive gaussian noise.

Verbatim sections, images and tables from this appendix were previously presented in Rodriguez-Coayahuitl

et al. (2019a).

A.1 Image Denoising

The problem of image denoising is defined as follows: extract a clean image x from a noisy observation

y such that y = x+ v, where v is a contamination process; a typical example is when v follows a Gaussian

distribution with some given σ, which case is known as Additive Gaussian Noise (AWGN).

108

A.2 Related Work

GP has been succesfully used in the past to synthetize image filers. Examples of these type of works can

be found in Yan et al. (2014); Khmag et al. (2017). However, these works rely on a modified version of the

canonical GP individual such that primitive functions may include already specialized image filters or at least

well known image processing functions, i.e. high level primitives (see Sec. 3.2). This property is undesirable

if we wish to build ML systems that rely as little as possible on domain human expert’s knowledge, i.e.

highly automated learning systems. A more agnostic approach has been proposed in Hernández-Beltrán

et al. (2016), where terminals of the syntax trees consist in simple statistics taken over regions of pixels.

It is relevant to contrast such specialized GP approaches with recent developments in the area of DL.

There is really nothing specialized regarding image processing in the architecture of DNNs other than the

use of convolution to efficiently process images. DnCNN (Zhang et al., 2017) is a recent DNN designed to

tackle image denoising; its flexibility is such that, by just switching the dataset with which is trained, the

same network can learn to remove vastly different types of noises such as Gaussian noises with different

or unknown levels of deviation, deblocking artifacts, and can even perform super resolution. DnCNN is

competitive with fully and partially handcrafted image filters designed by human experts, thus positioning

DNNs as very powerful learning systems.

In more general terms, high dimensionality issues have been long acknowledged in the GP commu-

nity (Gathercole & Ross, 1997). Standard approaches to tackle such issues generally involve grouping input

features in one way or another, process each cluster separately, and then attempt to assemble a joint global

solution (Tran et al., 2017; Rodriguez-Coayahuitl et al., 2018). In contrast, in this work we draw inspiration

from CNNs and propose a single sliding GP window that swipes an input image for processing, instead of

many multiple independent GP processes.

A.3 Proposed Method

Our approach to evolve image denoising filters through GP is to leverage from the CNNs’ architecture,

where we replace neurons with GP syntax trees. Initially we propose to evolve a single sintax tree that acts

as image filter by sliding over the noisy input image and cleaning pixel by pixel. Thereafter, we propose

to stack multiple layers of these GP filters. We explain the theoretical advanges of stacking filters in this

manner further below in this section.

109

A.3.1 Single Layer Convolutional GP Filter

We propose to use a standard GP individual representation, i.e. a syntax tree, to act as an image filter.

This filter operates over a small window region of d×d pixels (where d is an odd number), receiving as input

the pixels within such region, and returning as output a single value that is the level of noise of the central

pixel in the operating window; in order to filter a whole image, the window is slided over an the entire image,

generating a residual image the same size of input image that we desire to clean of noise. Fig. A.1a shows

a depiction of the proposed sliding GP filter. This residual image represents the (estimated) level of noise

of each pixel that composes the input image. In order to retrieve an approximation of the clean image, we

simply substract the residual image from the noisy input image.

The leaf nodes of the GP individual should be the individual pixels in the region being processed, or

constanst values within some range. The primitives can be any function that can operate at this individual

pixel level. This is done in this way to avoid the use of any image filtering expert’s knownledge.

A.3.2 Multi-layer Convolutional GP

Additionally we also propose to stack multiple of these sliding GP filters, both in parallel and in series,

since DNNs are actually designed this way. That is, instead of using a single GP syntax tree that filters the

image, we can slide multiple, different, GP syntax trees that generate as output different feature maps, which

are intermediate transformations of the input that may be useful for generating the desired output. All these

feature maps form a volume of codified information that is further processed by another GP sliding tree that

generates the final output, i.e. the residual image. Fig. A.1b shows a GP filter architeture composed of two

stacked filter in series, while Fig. A.1c depicts an architecture with multiple GP filters both in series and in

parallel.

Stacking these convolutional filters in series carries the advantage of increasing the field of view. This

means that if we use two sliding filter with windows of 3× 3 in series, when we reconstruct the central pixel

at the output of the second filter, we are actually using information of a 5× 5 window size around it (this is

as along as the first filter did manage to codify information at feature map it outputs). Notice however how

when using this approach in such example scenario, we are using only 18 features as inputs (9 for the first

filter and 9 for the second) whereas if we attempt to directly process filters of 5× 5 window size, then such

filter would need to process 25 input features. This is one of the reasons on why CNNs scale well to high

dimensionality problems and image processing tasks.

On the other hand, stacking filters in parallel per layer allows to generate more than one feature map at

110

d

n filters

n feature maps feature maps

First Layer

d

Second Layer Output LayerInput Layer

Input Image Output ImageInner / “Hidden” Layer
(Feature Map)

c)

Input Image

d

d

Output Image

GP Filter

a) b)

Figure A.1: Multilayer GP architecture. a) Single layer, single filter; b) Two layer, one filter per layer; c) Three
layer, first layer and second with n filters, third layer with only 1, output, filter.

each layer. Each feature map might codify different information useful for the next layer of processing.

The canonical form of GP contemplates individuals that are composed of a single syntax tree. In our

proposed method, in the case of multiple stacked filters, we would need to evolve more than a single GP

tree. Although there do exists GP individual representations based on forests (multiple trees), in this type

of representations the trees are loosely dependent on each other, whereas in the multilayer architecture we

are proposing here, the filter trees series rely completely on the output generated by the previous trees in the

structure.

A.3.3 Evolving Multiple Layers of Convolutional GP filters

In order to train this complex architecture, we propose three different approaches: (straightforward)

define the GP individual as the entire set of trees across all layers, evolve individuals by applying genetic

operations layer-wise; (sequential) evolve the multi-layer structure sequentially, i.e. evolve the first layer

for fixed number of generations; once this first evolution is finished, the second layer of filters are evolved,

which take as input a cleaner version of the noisy image generated by the first layer, and so on; (ensamble)

the third approach is based on the idea that the multiple feature maps at the penultimate layer might actually

111

GP IndividualGP Individual

Filters of
Layer 1

Filters of
Layer 2

Filters of
Layer 3

Individual GP 1Individual GP 1

Filters of
Layer 1

Filters of
Layer 2

Filters of
Layer 3

Individual GP 2Individual GP 2 Individual GP 3Individual GP 3

Filters of
Layer 1

Filters of
Layer 2

GP IndividualGP Individual

Mean

a) b) c)

Figure A.2: Different possible GP individual representations for multilayer GP filters.

act as ensamble learner, with the last layer only performing the mean function, so in this architecuture we

enforce this behavior by taking as output the mean over the feature maps of the last layer. Fig. A.2 illustrates

these three variants.

A.4 Experimental Results and Analysis

A.4.1 Training and Testing Datasets

We generated the training data following the works of Zhang et al. (2017); Schmidt & Roth (2014); Chen

& Pock (2017). From the Berkeley Segmentadion Dataset (Roth & Black, 2005) we extracted 19,200 unique

40× 40 image patches for training purposes. For testing, we use the same classic image processing set used

in Zhang et al. (2017); Yan et al. (2014); Khmag et al. (2017), composed of well-known pictures such as

”Lena” and ”Boats”. A total of 12 (seven 256× 256 and five 512× 512) pictures were used for testing.

We contaminated both the training patches and the testing images by adding them noise masks generated

with a Gaussian distribution of σ = 25. All training and testing was performed on grayscale images.

A.4.2 Evolutionary Algorithm Setup

For all experiments we used a multi-population, island based, model. We used a population of 500

individuals splitted across 5 islands each with 100 individuals. We used an heterogeneous and asynchronous

model where each island had different crossover/mutation probabilities, and every 10 generations send their

top 10 performing individuals to another, randomly selected, island (migration). The crossover/mutation

probabilities were set as follow for each island: [0.9/0.1, 0.7/0.3, 0.5/0.5, 0.3/0.7, 0.1/0.9]. The set of

primitives used consist on binary arithmetic operators, [+,−,×,÷], binary functions max, min, mean, and

unary functions x2, x3, and Rectifier Linear Units (ReLUs).

We utilized an on-line form of learning defined in Rodriguez-Coayahuitl et al. (2018). We partitioned

the entire training dataset into mini-batches of 60 samples, and use one mini-batch per evolutionary cycle for

evaluating both individuals and offspring generated. We used a steady state population replacement policy.

112

Table A.1: Average performance of all Convolutional GP architectures tested. Values expressed in decibels.
Higher is better.

Noisy
Image

Single
GP, 3x3

Single
GP, 5x5

Strfwd-GP
(2 Layers)

Sequential GP
(2 Layers)

Ensamble
(2L + Mean) DnCnn

20.32 25.96 25.07 25.22 25.93 23.60 30.43

A.4.2.1 Fitness function

We used the minimization of the mean square error (MSE) between the predicted noise level and the

actual noise level to drive the evolution of all systems proposed.

A.4.3 Results

We tested two Single Layer Convolutional GP, one consisting in a sliding window of 3 × 3 pixels, and

another with a window of 5× 5 pixels.

We tested three different Multi-layer Convolutional GP, each under one of the three different proposed

methods for evolving multi-layer GPs. All Multi-layer architectures consisted in only 2 layers (2 layers +

mean, in the case of the ensamble method). Both the straightforward and the sequential architectures were

composed of 3 filters in the first layer, and 1 filter in the second layer (3 filters in both layers for the ensamble

method). All filters were 3× 3 windows.

Table A.1 shows the results obtained by the different tested approaches. We include in Table A.1 the

values of the unfiltered noisy images (to understand how much the proposed approaches actually denoise the

images), as well as the performance of the DnCNN network (Zhang et al., 2017), to fully appreciate how far

GP is from modern DNNs. These results were obtained on the same testing dataset for all approaches (in-

cluding the DnCNN), and using the same training dataset (also applies for DnCNN). All the GP approaches

were given the same computational time1. Therefore these results are based on a comparison as fair as

possible.

Fig. A.3 shows the performance of a 2-Layer, Sequentially evolved variant GP, on ten training patches.

We found no visually appreciable difference between this output and the one from a single layer GP.

A.4.4 Additional Results

We also performed experiment using 10 filters per layer for the Multi-layer GP architectures. Although

we found them to be consistently inferior in performance to the 3 filters per layer reported above, we found
1DnCNN runs in less time than GP, due to being accelerated in GPU and implemented in highly optimized DL software libraries.

113

Figure A.3: Visual results of the output generated by a 2-Layer Convolutional, Sequentially evolved, GP. From
top to bottom: original images, noisy samples, filtered images.

that these GP variants generated interesting paterns in the hidden layer. Fig. A.4 shows the feature maps

generated by the ten filters for ten different training patches. Some of the feature maps appear to be signaling

borders or other points of interest.

A.4.5 Discussion

Results shows that GP can succesfully synthetize image denoising filters, even though none of the pro-

posed methods allows GP to benefit from a multi-layer convolutional architecture, thus positioning a single

layer GP filter as the reference method-to-beat in future works based on GP.

Results also confirm that GP struggles with high dimensionality problems. In this case, a single layer

5 × 5 window GP filter does not performs any better, if not worse, than a 3 × 3 window one, even though

the first one has more than twice context information that theoretically should allow it to perform a better

filtering.

A.5 Conclusions

In this section we have introduced a method to evolve image denoising filters with GP, through an archi-

tecture inspired by CNNs. Our results have confirmed that:

• GP is a viable method to synthetize image denoising filters, even when processing images at individual

pixel level.

• GP struggles with high dimensionality problems, since it cannot make use of input samples with as

low as 25 features.

• GP cannot directly benefit from a stacked convolutional architecture. More research is necessary in

this direction.

114

Figure A.4: Feature maps generated by a 2-layer GP in the hidden layer given 10 different input patches. From
top to bottom: first row, noisy patches rows 2 to 10, feature maps; last row, filtered final output.

115

We have also draw a clear, quantitavive, performance gap between GP and DL based methods, by using

the same exact training and testing datasets, and making head-to-head direct comparison with modern DNN

architectures.

We believe this work should serve a reference for future works that attempt to attack problems with GP

in which DL excels at.

116

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467.

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large
databases. En: Acm sigmod record. ACM, Vol. 22, pp. 207–216.

Ahmed, S., Zhang, M., Peng, L., & Xue, B. (2014). Multiple feature construction for effective biomarker
identification and classification using genetic programming. En: Proceedings of the 2014 Annual Confer-
ence on Genetic and Evolutionary Computation. ACM, pp. 249–256.

Al-Sahaf, H., Song, A., Neshatian, K., & Zhang, M. (2012a). Extracting image features for classification by
two-tier genetic programming. En: 2012 IEEE Congress on Evolutionary Computation. IEEE, pp. 1–8.

Al-Sahaf, H., Song, A., Neshatian, K., & Zhang, M. (2012b). Two-tier genetic programming: Towards raw
pixel-based image classification. Expert Systems with Applications, 39(16): 12291–12301.

Al-Sahaf, H., Zhang, M., & Johnston, M. (2014). Genetic programming evolved filters from a small number
of instances for multiclass texture classification. En: Proceedings of the 29th International Conference on
Image and Vision Computing New Zealand. ACM, pp. 84–89.

Allen, F. & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal of
financial Economics, 51(2): 245–271.

Alpaydin, E. (2014). Introduction to machine learning. MIT press.

Anderson, C. (2014). Lfwcrop face dataset. http://conradsanderson.id. au/lfwcrop/ .

Andre, D., Bennett III, F. H., & Koza, J. R. (1996). Discovery by genetic programming of a cellular automata
rule that is better than any known rule for the majority classification problem. En: Proceedings of the 1st
annual conference on genetic programming. MIT Press, pp. 3–11.

Angeline, P. J. & Pollack, J. B. (1992). The evolutionary induction of subroutines. En: Proceedings of the
fourteenth annual conference of the cognitive science society. Bloomington, Indiana, pp. 236–241.

Arce, F., Zamora, E., & Sossa, H. (2017). Dendrite ellipsoidal neuron. En: 2017 international joint confer-
ence on neural networks (IJCNN). IEEE, pp. 795–802.

Arce, F., Zamora, E., Sossa, H., & Barrón, R. (2018). Differential evolution training algorithm for dendrite
morphological neural networks. Applied Soft Computing, 68: 303–313.

Atkins, D., Neshatian, K., & Zhang, M. (2011). A domain independent genetic programming approach to au-
tomatic feature extraction for image classification. En: 2011 IEEE Congress of Evolutionary Computation
(CEC). IEEE, pp. 238–245.

Axelrod, B. (2007). Genetic programming. https://en.wikipedia.org/wiki/File:Genetic_
Program_Tree.png. Accessed 05/05/17.

Ayodele, T. O. (2010). Types of machine learning algorithms. En: New advances in machine learning.
InTech.

https://en.wikipedia.org/wiki/File:Genetic_Program_Tree.png
https://en.wikipedia.org/wiki/File:Genetic_Program_Tree.png

117

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. En: Proceedings of the second
international conference on genetic algorithms. Vol. 206, pp. 14–21.

Ballard, D. H. (1987). Modular learning in neural networks. En: AAAI. pp. 279–284.

Banzhaf, W. & Langdon, W. B. (2002). Some considerations on the reason for bloat. Genetic Programming
and Evolvable Machines, 3(1): 81–91.

Bellman, R. (1961). Adaptive control process: a guided tour.

Bellman, R. & Kalaba, R. (1957). On the role of dynamic programming in statistical communication theory.
IRE Transactions on Information Theory, 3(3): 197–203.

Bengio, Y. et al. (2009). Learning deep architectures for ai. Foundations and trends R© in Machine Learning,
2(1): 1–127.

Bengio, Y., Simard, P., Frasconi, P., et al. (1994). Learning long-term dependencies with gradient descent is
difficult. IEEE transactions on neural networks, 5(2): 157–166.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8): 1798–1828.

Betechuoh, B. L., Marwala, T., & Tettey, T. (2006). Autoencoder networks for hiv classification. Current
Science, pp. 1467–1473.

Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution strategies–a comprehensive introduction. Natural com-
puting, 1(1): 3–52.

Bhowan, U., Johnston, M., Zhang, M., & Yao, X. (2012). Evolving diverse ensembles using genetic pro-
gramming for classification with unbalanced data. IEEE Transactions on Evolutionary Computation,
17(3): 368–386.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bleuler, S., Brack, M., Thiele, L., & Zitzler, E. (2001). Multiobjective genetic programming: Reducing
bloat using spea2. En: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.
01TH8546). IEEE, Vol. 1, pp. 536–543.

Blickle, T. & Thiele, L. (1996). A comparison of selection schemes used in evolutionary algorithms. Evolu-
tionary Computation, 4(4): 361–394.

Bot, M. C. (2001). Feature extraction for the k-nearest neighbour classifier with genetic programming. En:
European Conference on Genetic Programming. Springer, pp. 256–267.

Bottou, L. (1998). Online learning and stochastic approximations. On-line learning in neural networks,
17(9): 142.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. En: Proceedings of
COMPSTAT’2010. Springer, pp. 177–186.

Bourlard, H. & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decompo-
sition. Biological cybernetics, 59(4-5): 291–294.

Cano, A., Ventura, S., & Cios, K. J. (2017). Multi-objective genetic programming for feature extraction and
data visualization. Soft Computing, 21(8): 2069–2089.

CEDAR (1992). 1, usps office of advanced technology.

118

Chen, Y. & Pock, T. (2017). Trainable nonlinear reaction diffusion: A flexible framework for fast and
effective image restoration. IEEE transactions on pattern analysis and machine intelligence, 39(6): 1256–
1272.

Chollet, F. (2016). Building autoencoders in keras.

Chollet, F. (2017). Keras (2015). URL http://keras. io.

Chou, C.-H., Su, M.-C., & Lai, E. (2004). A new cluster validity measure and its application to image
compression. Pattern Analysis and Applications, 7(2): 205–220.

Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classi-
fication. En: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, pp.
3642–3649.

Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. (1987). Punctuated equilibria: a parallel genetic
algorithm. En: Genetic algorithms and their applications: proceedings of the second International Con-
ference on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge,
MA. Hillsdale, NJ: L. Erlhaum Associates, 1987.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language
processing (almost) from scratch. Journal of Machine Learning Research, 12(Aug): 2493–2537.

Comisky, W., Yu, J., & Koza, J. (2000). Automatic synthesis of a wire antenna using genetic programming.
En: Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, Las Vegas,
Nevada. Citeseer, pp. 179–186.

Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013). Improving deep neural networks for lvcsr using rec-
tified linear units and dropout. En: 2013 IEEE international conference on acoustics, speech and signal
processing. IEEE, pp. 8609–8613.

Damianou, A. & Lawrence, N. (2013). Deep gaussian processes. En: Artificial Intelligence and Statistics.
pp. 207–215.

David, O. E. & Greental, I. (2014). Genetic algorithms for evolving deep neural networks. En: Proceedings
of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation.
ACM, pp. 1451–1452.

Davidson, J. L. & Hummer, F. (1993). Morphology neural networks: An introduction with applications.
Circuits, Systems and Signal Processing, 12(2): 177–210.

Davies, D. L. & Bouldin, D. W. (1979). A cluster separation measure. IEEE transactions on pattern analysis
and machine intelligence, (2): 224–227.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. En: CVPR09.

Dietterich, T. G. (2000). Ensemble methods in machine learning. En: International workshop on multiple
classifier systems. Springer, pp. 1–15.

Dolin, B., Bennett III, F. H., & Rieffel, E. G. (2002). Co-evolving an effective fitness sample: experiments
in symbolic regression and distributed robot control. En: Proceedings of the 2002 ACM symposium on
Applied computing. ACM, pp. 553–559.

119

Doucette, J. A., Mcintyre, A. R., Lichodzijewski, P., & Heywood, M. I. (2012). Symbiotic coevolutionary
genetic programming: a benchmarking study under large attribute spaces. Genetic Programming and
Evolvable Machines, 13(1): 71–101.

Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of cybernetics, 4(1):
95–104.

Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association,
56(293): 52–64.

Eiben, A. E., Smith, J. E., et al. (2003). Introduction to evolutionary computing, Vol. 53. Springer.

Emigdio, Z., Trujillo, L., Schütze, O., Legrand, P., et al. (2014). Evaluating the effects of local search in
genetic programming. En: EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolu-
tionary Computation V . Springer, pp. 213–228.

Escalante, H. J., Garcı́a-Limón, M. A., Morales-Reyes, A., Graff, M., Montes-y Gómez, M., Morales, E. F.,
& Martı́nez-Carranza, J. (2015). Term-weighting learning via genetic programming for text classification.
Knowledge-Based Systems, 83: 176–189.

Esfahanipour, A. & Mousavi, S. (2011). A genetic programming model to generate risk-adjusted technical
trading rules in stock markets. Expert Systems with Applications, 38(7): 8438–8445.

Evans, B., Al-Sahaf, H., Xue, B., & Zhang, M. (2018). Evolutionary deep learning: A genetic programming
approach to image classification. En: 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE,
pp. 1–6.

Evett, M. & Fernandez, T. (1998). Numeric mutation improves the discovery of numeric constants in genetic
programming. Genetic Programming, pp. 66–71.

Fernando, C., Banarse, D., Reynolds, M., Besse, F., Pfau, D., Jaderberg, M., Lanctot, M., & Wierstra, D.
(2016). Convolution by evolution: Differentiable pattern producing networks. En: Proceedings of the
2016 on Genetic and Evolutionary Computation Conference. ACM, pp. 109–116.

Folino, G., Pizzuti, C., & Spezzano, G. (2004). Boosting technique for combining cellular gp classifiers. En:
European Conference on Genetic Programming. Springer, pp. 47–56.

Frankle, J. & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable neural networks.
En: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern recognition.
Neural networks, 1(2): 119–130.

Gallinari, P., LeCun, Y., Thiria, S., & Fogelman-Soulie, F. (1987). Memoires associatives distribuees. Pro-
ceedings of COGNITIVA, 87: 93.

Gao, L., Song, J., Liu, X., Shao, J., Liu, J., & Shao, J. (2017). Learning in high-dimensional multimedia
data: the state of the art. Multimedia Systems, 23(3): 303–313.

Gathercole, C. & Ross, P. (1994). Dynamic training subset selection for supervised learning in genetic
programming. En: International Conference on Parallel Problem Solving from Nature. Springer, pp.
312–321.

Gathercole, C. & Ross, P. (1997). Tackling the boolean even n parity problem with genetic programming
and limited-error fitness. Genetic programming, 97: 119–127.

120

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63(1): 3–42.

Gogna, A. & Majumdar, A. (2016). Semi supervised autoencoder. En: International Conference on Neural
Information Processing. Springer, pp. 82–89.

Goldberg, D. E. & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms.
Foundations of genetic algorithms, 1: 69–93.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Gorges-Schleuter, M. (1989). Asparagos an asynchronous parallel genetic optimization strategy. En: Pro-
ceedings of the third international conference on Genetic algorithms. pp. 422–427.

Guo, H., Zhang, Q., & Nandi, A. K. (2008). Feature extraction and dimensionality reduction by genetic
programming based on the fisher criterion. Expert Systems, 25(5): 444–459.

Haeffele, B. D. & Vidal, R. (2017). Global optimality in neural network training. En: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 7331–7339.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. En: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 770–778.

Hernández, G., Zamora, E., & Sossa, H. (2017). Comparing deep and dendrite neural networks: a case study.
En: Mexican Conference on Pattern Recognition. Springer, pp. 32–41.

Hernández-Beltrán, J. E., Dı́az-Ramı́rez, V. H., Trujillo, L., & Legrand, P. (2016). Restoration of degraded
images using genetic programming. En: Optics and Photonics for Information Processing X. International
Society for Optics and Photonics, Vol. 9970, p. 99700K.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen,
P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Processing Magazine, 29(6): 82–97.

Hinton, G. E. & Salakhutdinov, R. R. (2006a). Reducing the dimensionality of data with neural networks.
Science, 313(5786): 504–507.

Hinton, G. E. & Salakhutdinov, R. R. (2006b). Reducing the dimensionality of data with neural networks.
science, 313(5786): 504–507.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural
computation, 18(7): 1527–1554.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and problem
solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02): 107–
116.

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applica-
tions to biology, control, and artificial intelligence. MIT press.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approxi-
mators. Neural networks, 2(5): 359–366.

Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks with stochastic depth.
En: European Conference on Computer Vision. Springer, pp. 646–661.

121

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database
for studying face recognition in unconstrained environments. Reporte técnico 07-49, University of Mas-
sachusetts, Amherst.

Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. IEEE transactions on informa-
tion theory, 14(1): 55–63.

Iba, H. (1999). Bagging, boosting, and bloating in genetic programming. En: Proceedings of the 1st Annual
Conference on Genetic and Evolutionary Computation-Volume 2. Morgan Kaufmann Publishers Inc., pp.
1053–1060.

Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167.

Ivakhnenko, A. G. (1968). The group method of data of handling; a rival of the method of stochastic
approximation. Soviet Automatic Control, 13: 43–55.

Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems, Man, and
Cybernetics, (4): 364–378.

Jordan, J. (2018). Introduction to autoencoders. Accessed 30/09/19.

Kathuria, A. (2018). Intro to optimization in deep learning: Gradient descent. Accessed 29/08/19.

Khmag, A., Ramli, A. R., Al-haddad, S., Yusoff, S., & Kamarudin, N. (2017). Denoising of natural images
through robust wavelet thresholding and genetic programming. The Visual Computer, 33(9): 1141–1154.

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural selection,
Vol. 1. MIT press.

Koza, J. R. (1994). Genetic programming ii: Automatic discovery of reusable subprograms. Cambridge,
MA, USA.

Koza, J. R., Bennett, F. H., Andre, D., Keane, M. A., & Dunlap, F. (1997). Automated synthesis of analog
electrical circuits by means of genetic programming. IEEE Transactions on evolutionary computation,
1(2): 109–128.

Krawiec, K. & Bhanu, B. (2003). Coevolution and linear genetic programming for visual learning. En:
Genetic and Evolutionary Computation Conference. Springer, pp. 332–343.

Krizhevsky, A. & Hinton, G. (2010). Convolutional deep belief networks on cifar-10. Unpublished
manuscript, 40.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. En: Advances in neural information processing systems. pp. 1097–1105.

Langdon, W. B. & Poli, R. (1998). Fitness causes bloat. En: Soft Computing in Engineering Design and
Manufacturing. Springer, pp. 13–22.

LeCun, Y. (1998). The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/ .

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989).
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4): 541–551.

122

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10): 1995.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11): 2278–2324.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553): 436–444.

Lee, D. D. & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature,
401(6755): 788.

Lee, D. D. & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. En: Advances in neural
information processing systems. pp. 556–562.

Lensen, A., Xue, B., & Zhang, M. (2017). Improving k-means clustering with genetic programming for fea-
ture construction. En: Proceedings of the Genetic and Evolutionary Computation Conference Companion.
ACM, pp. 237–238.

Lensen, A., Xue, B., & Zhang, M. (2019). Can genetic programming do manifold learning too? En:
European Conference on Genetic Programming. Springer, pp. 114–130.

Limon, M., Escalante, H. J., Morales, E., & Morales-Reyes, A. (2014). Simultaneous generation of pro-
totypes and features through genetic programming. En: Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation. ACM, pp. 517–524.

Limón, M. G., Escalante, H. J., & Morales, E. F. (2014). Towards simultaneous prototype and feature
generation. En: Power, Electronics and Computing (ROPEC), 2014 IEEE International Autumn Meeting
on. IEEE, pp. 1–6.

Limón, M. G., Escalante, H. J., Morales, E., & Pineda, L. V. (2015). Class-specific feature generation for 1nn
through genetic programming. En: Power, Electronics and Computing (ROPEC), 2015 IEEE International
Autumn Meeting on. IEEE, pp. 1–6.

Lin, J.-Y., Ke, H.-R., Chien, B.-C., & Yang, W.-P. (2007). Designing a classifier by a layered multi-
population genetic programming approach. Pattern Recognition, 40(8): 2211–2225.

Lin, J.-Y., Ke, H.-R., Chien, B.-C., & Yang, W.-P. (2008). Classifier design with feature selection and feature
extraction using layered genetic programming. Expert Systems with Applications, 34(2): 1384–1393.

Littman, M. & Isbell, C. (2015). Machine learning - supervised learning. https://www.youtube.
com/watch?v=Ki2iHgKxRBo. Accessed 11/02/16.

Liu, H. & Motoda, H. (1998). Feature extraction, construction and selection: A data mining perspective,
Vol. 453. Springer Science & Business Media.

Liu, L., Shao, L., Li, X., & Lu, K. (2015). Learning spatio-temporal representations for action recognition:
A genetic programming approach. IEEE transactions on cybernetics, 46(1): 158–170.

Lohpetch, D. & Corne, D. (2009). Discovering effective technical trading rules with genetic programming:
Towards robustly outperforming buy-and-hold. En: Nature & Biologically Inspired Computing, 2009.
NaBIC 2009. World Congress on. IEEE, pp. 439–444.

Lohpetch, D. & Corne, D. (2010). Outperforming buy-and-hold with evolved technical trading rules: Daily,
weekly and monthly trading. En: European Conference on the Applications of Evolutionary Computation.
Springer, pp. 171–181.

https://www.youtube.com/watch?v=Ki2iHgKxRBo
https://www.youtube.com/watch?v=Ki2iHgKxRBo

123

Lohpetch, D. & Corne, D. (2011). Multiobjective algorithms for financial trading: Multiobjective out-trades
single-objective. En: Evolutionary Computation (CEC), 2011 IEEE Congress on. IEEE, pp. 192–199.

Loveard, T. & Ciesielski, V. (2001). Representing classification problems in genetic programming. En:
Evolutionary Computation, 2001. Proceedings of the 2001 Congress on. IEEE, Vol. 2, pp. 1070–1077.

Luke, S. & Panait, L. (2006). A comparison of bloat control methods for genetic programming. Evolutionary
Computation, 14(3): 309–344.

Luke, S. & Spector, L. (1997). A comparison of crossover and mutation in genetic programming. Genetic
Programming, 97: 240–248.

Luke, S. & Spector, L. (1998). A revised comparison of crossover and mutation in genetic programming.
Genetic Programming, 98(208-213): 55.

Manderick, B. & Spiessens, P. (1989). Fine-grained parallel genetic algorithms. En: Proceedings of the third
international conference on Genetic algorithms. pp. 428–433.

Mao, X., Shen, C., & Yang, Y.-B. (2016). Image restoration using very deep convolutional encoder-decoder
networks with symmetric skip connections. En: Advances in neural information processing systems. pp.
2802–2810.

Martinez, Y., Trujillo, L., Naredo, E., & Legrand, P. (2014). A comparison of fitness-case sampling methods
for symbolic regression with genetic programming. En: EVOLVE-A Bridge between Probability, Set
Oriented Numerics, and Evolutionary Computation V . Springer, pp. 201–212.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H.,
Navruzyan, A., Duffy, N., et al. (2019). Evolving deep neural networks. En: Artificial Intelligence in
the Age of Neural Networks and Brain Computing. Elsevier, pp. 293–312.

Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K.-R. (1999). Fisher discriminant analysis
with kernels. En: Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal
Processing Society Workshop.. IEEE, pp. 41–48.

Miller, G. F., Todd, P. M., & Hegde, S. U. (1989). Designing neural networks using genetic algorithms. En:
ICGA. Vol. 89, pp. 379–384.

Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1): 8–30.

Mitchell, T. (1997). Machine learning. wcb.

Montana, D. J. & Davis, L. (1989). Training feedforward neural networks using genetic algorithms. En:
IJCAI. Vol. 89, pp. 762–767.

Morse, G. & Stanley, K. O. (2016). Simple evolutionary optimization can rival stochastic gradient descent
in neural networks. En: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference.
ACM, pp. 477–484.

Moscato, P. et al. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards
memetic algorithms. Caltech concurrent computation program, C3P Report, 826: 1989.

Moscinski, R. & Zakrzewska, D. (2015). Building an efficient evolutionary algorithm for forex market
predictions. En: International Conference on Intelligent Data Engineering and Automated Learning.
Springer, pp. 352–360.

124

Mühlenbein, H. & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic algorithm i.
continuous parameter optimization. Evolutionary computation, 1(1): 25–49.

Myszkowski, P. B. & Bicz, A. (2010). Evolutionary algorithm in forex trade strategy generation. En:
Computer Science and Information Technology (IMCSIT), Proceedings of the 2010 International Multi-
conference on. IEEE, pp. 81–88.

Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. En: Proceed-
ings of the 27th international conference on machine learning (ICML-10). pp. 807–814.

Neely, C., Weller, P., & Dittmar, R. (1997). Is technical analysis in the foreign exchange market profitable?
a genetic programming approach. Journal of financial and Quantitative Analysis, 32(4): 405–426.

Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. En: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 427–436.

Nguyen, K., Fookes, C., Ross, A., & Sridharan, S. (2017). Iris recognition with off-the-shelf cnn features:
A deep learning perspective. IEEE Access, 6: 18848–18855.

Oh, K.-S. & Jung, K. (2004). Gpu implementation of neural networks. Pattern Recognition, 37(6): 1311–
1314.

Olague, G. & Trujillo, L. (2011). Evolutionary-computer-assisted design of image operators that detect
interest points using genetic programming. Image and Vision Computing, 29(7): 484–498.

Olague, G., Clemente, E., Dozal, L., & Hernández, D. E. (2014). Evolving an artificial visual cortex for
object recognition with brain programming. En: EVOLVE-A Bridge between Probability, Set Oriented
Numerics, and Evolutionary Computation III. Springer, pp. 97–119.

Otero, F. E. & Johnson, C. G. (2013). Automated problem decomposition for the boolean domain with
genetic programming. En: European Conference on Genetic Programming. Springer, pp. 169–180.

Pagie, L. & Hogeweg, P. (1997). Evolutionary consequences of coevolving targets. Evolutionary computa-
tion, 5(4): 401–418.

Parkins, A. & Nandi, A. K. (2004). Genetic programming techniques for hand written digit recognition.
Signal Processing, 84(12): 2345–2365.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay,
E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12: 2825–
2830.

Plaut, D. C. (2016). Unsupervised learning.

Poli, R., Langdon, W., & McPhee, N. (2008). A field guide to genetic programming (with contributions by
jr koza)(2008). Published via http://lulu. com.

Potter, M. A. & De Jong, K. A. (1994). A cooperative coevolutionary approach to function optimization.
En: International Conference on Parallel Problem Solving from Nature. Springer, pp. 249–257.

Potvin, J.-Y., Soriano, P., & Vallée, M. (2004). Generating trading rules on the stock markets with genetic
programming. Computers & Operations Research, 31(7): 1033–1047.

125

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., & Kurakin, A. (2017). Large-
scale evolution of image classifiers. En: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, pp. 2902–2911.

Ritter, G. X. & Urcid, G. (2003). Lattice algebra approach to single-neuron computation. IEEE Transactions
on Neural Networks, 14(2): 282–295.

Rodriguez-Coayahuitl, L., Morales-Reyes, A., & Escalante, H. J. (2018). Structurally layered representation
learning: towards deep learning through genetic programming. En: European Conference on Genetic
Programming. Springer, pp. 271–288.

Rodriguez-Coayahuitl, L., Morales-Reyes, A., & Escalante, H. J. (2019a). Convolutional genetic program-
ming. En: Mexican Conference on Pattern Recognition. Springer, pp. 47–57.

Rodriguez-Coayahuitl, L., Morales-Reyes, A., & Escalante, H. J. (2019b). Evolving autoencoding structures
through genetic programming. Genetic Programming and Evolvable Machines, pp. 1–28.

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project Para. Cornell
Aeronautical Laboratory.

Roth, S. & Black, M. J. (2005). Fields of experts: A framework for learning image priors. En: null. IEEE,
pp. 860–867.

Rubinstein, R. Y. & Kroese, D. P. (2013). The cross-entropy method: a unified approach to combinatorial
optimization, Monte-Carlo simulation and machine learning. Springer Science & Business Media.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propa-
gation. Reporte técnico, California Univ San Diego La Jolla Inst for Cognitive Science.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3): 211–252.

Sakanashi, H., Higuchi, T., Iba, H., & Kakazu, Y. (1996). Evolution of binary decision diagrams for digital
circuit design using genetic programming. En: International Conference on Evolvable Systems. Springer,
pp. 470–481.

Salakhutdinov, R. & Hinton, G. (2009). Deep boltzmann machines. En: Artificial Intelligence and Statistics.
pp. 448–455.

Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution strategies as a scalable alternative
to reinforcement learning. arXiv preprint arXiv:1703.03864.

Samaria, F. S. & Harter, A. C. (1994). Parameterisation of a stochastic model for human face identification.
En: Applications of Computer Vision, 1994., Proceedings of the Second IEEE Workshop on. IEEE, pp.
138–142.

Sanderson, C. (2014). Lfwcrop face dataset.

Schmid, C., Mohr, R., & Bauckhage, C. (2000). Evaluation of interest point detectors. International Journal
of computer vision, 37(2): 151–172.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61: 85–117.

Schmidt, M. D. & Lipson, H. (2008). Coevolution of fitness predictors. IEEE Transactions on Evolutionary
Computation, 12(6): 736–749.

126

Schmidt, U. & Roth, S. (2014). Shrinkage fields for effective image restoration. En: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 2774–2781.

Seitz, C. L. (1985). The cosmic cube. Communications of the ACM, 28(1): 22–33.

Sermanet, P., Chintala, S., & LeCun, Y. (2012). Convolutional neural networks applied to house numbers
digit classification. En: Pattern Recognition (ICPR), 2012 21st International Conference on. IEEE, pp.
3288–3291.

Shao, L., Liu, L., & Li, X. (2013). Feature learning for image classification via multiobjective genetic
programming. IEEE Transactions on Neural Networks and Learning Systems, 25(7): 1359–1371.

Sherrah, J. R., Bogner, R. E., & Bouzerdoum, A. (1997). The evolutionary pre-processor: Automatic feature
extraction for supervised classification using genetic programming. Genetic Programming, pp. 304–312.

Simoncini, D., Verel, S., Collard, P., & Clergue, M. (2009). Centric selection: a way to tune the explo-
ration/exploitation trade-off. En: Proceedings of the 11th Annual conference on Genetic and evolutionary
computation. ACM, pp. 891–898.

Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. Re-
porte técnico, Colorado Univ at Boulder Dept of Computer Science.

Sossa, H. & Guevara, E. (2014). Efficient training for dendrite morphological neural networks. Neurocom-
puting, 131: 132–142.

Sotelo, A., Guijarro, E., Trujillo, L., Coria, L. N., & Martı́nez, Y. (2013). Identification of epilepsy stages
from ecog using genetic programming classifiers. Computers in biology and medicine, 43(11): 1713–
1723.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple
way to prevent neural networks from overfitting. Journal of machine learning research, 15(1): 1929–1958.

Stanley, K. O. & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evo-
lutionary computation, 10(2): 99–127.

Stanley, K. O., D’Ambrosio, D. B., & Gauci, J. (2009). A hypercube-based encoding for evolving large-scale
neural networks. Artificial life, 15(2): 185–212.

Storn, R. & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization, 11(4): 341–359.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017). Deep neuroevolu-
tion: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement
learning. arXiv preprint arXiv:1712.06567.

Suganuma, M., Shirakawa, S., & Nagao, T. (2017). A genetic programming approach to designing con-
volutional neural network architectures. En: Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, pp. 497–504.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. En:
Advances in neural information processing systems. pp. 3104–3112.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning: An introduction, Vol. 1. MIT press Cambridge.

127

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich,
A. (2015). Going deeper with convolutions. En: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 1–9.

Tang, Y. (2013). Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239.

Teredesai, A., Park, J., Govindaraju, V., et al. (2001). Active handwritten character recognition using genetic
programming. Lecture notes in computer science, pp. 371–379.

Theis, L., Shi, W., Cunningham, A., & Huszár, F. (2017). Lossy image compression with compressive
autoencoders. arXiv preprint arXiv:1703.00395.

Thierens, D. & Goldberg, D. (1994). Elitist recombination: An integrated selection recombination ga. En:
Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Com-
putational Intelligence. IEEE, pp. 508–512.

Tieleman, T. & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for machine learning, 4(2): 26–31.

Tomassini, M. (2006). Spatially structured evolutionary algorithms: Artificial evolution in space and time.
Springer.

Tran, B., Xue, B., & Zhang, M. (2016). Genetic programming for feature construction and selection in
classification on high-dimensional data. Memetic Computing, 8(1): 3–15.

Tran, B., Xue, B., & Zhang, M. (2017). Using feature clustering for gp-based feature construction on high-
dimensional data. En: European Conference on Genetic Programming. Springer, pp. 210–226.

Trujillo, L. & Olague, G. (2006). Synthesis of interest point detectors through genetic programming. En:
Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM, pp. 887–894.

Trujillo, L. & Olague, G. (2008). Automated design of image operators that detect interest points. Evolu-
tionary Computation, 16(4): 483–507.

Veit, A., Wilber, M. J., & Belongie, S. (2016). Residual networks behave like ensembles of relatively shallow
networks. En: Advances in neural information processing systems. pp. 550–558.

Vladislavleva, E. Y. (2008). Model-based problem solving through symbolic regression via pareto genetic
programming. Tesis de doctorado, CentER, Tilburg University.

White, D. R. & Poulding, S. (2009). A rigorous evaluation of crossover and mutation in genetic program-
ming. En: European Conference on Genetic Programming. Springer, pp. 220–231.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics bulletin, 1(6): 80–83.

Williams, D. & Hinton, G. (1986). Learning representations by back-propagating errors. Nature, 323(6088):
533–538.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent
laboratory systems, 2(1-3): 37–52.

Yan, R., Shao, L., Liu, L., & Liu, Y. (2014). Natural image denoising using evolved local adaptive filters.
Signal Processing, 103: 36–44.

128

Yann, L. (1987). Modeles connexionnistes de lapprentissage. Tesis de doctorado, PhD thesis, These de
Doctorat, Universite Paris 6.

Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead, M., & Soderland, S. (2007). Textrunner: open
information extraction on the web. En: Proceedings of Human Language Technologies: The Annual Con-
ference of the North American Chapter of the Association for Computational Linguistics: Demonstrations.
Association for Computational Linguistics, pp. 25–26.

Zamora, E. & Sossa, H. (2017). Dendrite morphological neurons trained by stochastic gradient descent.
Neurocomputing, 260: 420–431.

Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian denoiser: Residual learning
of deep cnn for image denoising. IEEE Transactions on Image Processing, 26(7): 3142–3155.

Zhang, M., Ciesielski, V. B., & Andreae, P. (2003). A domain-independent window approach to multi-
class object detection using genetic programming. EURASIP Journal on Advances in Signal Processing,
2003(8): 206791.

Zhang, Y. & Rockett, P. I. (2009). A generic multi-dimensional feature extraction method using multiobjec-
tive genetic programming. Evolutionary Computation, 17(1): 89–115.

Zhang, Y. & Rockett, P. I. (2011). A generic optimising feature extraction method using multiobjective
genetic programming. Applied Soft Computing, 11(1): 1087–1097.

Zhou, Y., Yang, J., Zhang, H., Liang, Y., & Tarokh, V. (2019). Sgd converges to global minimum in deep
learning via star-convex path. arXiv preprint arXiv:1901.00451.

Zhou, Z.-H. & Feng, J. (2017). Deep forest: towards an alternative to deep neural networks. En: Proceedings
of the 26th International Joint Conference on Artificial Intelligence. AAAI Press, pp. 3553–3559.

Zhou, Z.-H. & Feng, J. (2018). Deep forest. National Science Review, 6(1): 74–86.

	Abstract (Spanish)
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Genetic Programming
	Problem Statement
	A straightforward approach for representation learning with GP

	Research Questions
	Hypothesis
	Objectives
	Main Objective
	Specific Objectives

	Motivation
	Contributions
	Other Technical Contributions

	Thesis summary

	Deep Learning
	Representation Learning
	Artificial Neural Networks
	Deep Networks
	Training of Deep and Wide Learning Structures
	Efficient Training with Large and High Dimensional Datasets
	Accelerated Computing on Graphics Processing Units

	Discussion

	Genetic Programming
	Basics
	Individual Representation
	Genetic Operations
	Selection

	Population Dynamics
	Fitness Evaluation

	Taxonomy of Primitives
	Low Level Functions
	Mezzanine Level Functions
	High Level Functions
	Zero-argument Functions

	Advanced Techniques in GP
	Diversity Measures
	Spatially Distributed EAs
	Subroutine Finding in GP
	Memetic GP Models

	Related Work
	Recent Deep Networks Architectures
	Representation Learning with GP
	Deep Learning from a GP perspective
	Pseudo Deep Learning with GP
	Quasi Deep Learning with GP

	Alternative Deep Learning Architectures
	Morphological Neural Networks
	Deep Forests
	Deep GP

	Discussion

	Evolving Autoencoding Structures through GP
	Background
	GP Autoencoder
	Structurally Layered Genetic Programming
	On-line Learning

	GP Configuration
	GP Operators
	Dual Single-point Crossover
	Dual Single-tree Crossover
	Dual Single-tree Mutation

	Population Dynamics under On-line Learning
	Steady State
	Generational Replacement
	Efficient Steady State

	Empirical Assessment
	Used Datasets
	Preliminar Study
	EC Parameters Study
	GP as method to discover AEs
	Crossover vs. Mutation
	Population dynamics
	Crossover type

	Comparison with other methods
	Diversity Analysis

	Remarks

	Fractal Genetic Programming
	Background
	FractalGP
	FractalGP trees creation
	FractalGP Operators
	Relationship to ADFs

	Convolutional FractalGP
	CFGP trees creation
	CFGP Operators

	Spatially Distributed Learning
	Hypothesis
	Credit Assignment Problem
	Tackling the CAP through GP

	Experimental evaluation
	Benchmark datasets
	Parameters Setup
	Results

	Analysis

	Conclusions
	Recapitulation
	Contributions
	Additional Developments

	Discussion
	Future lines of research
	Publications

	Convolutional Genetic Programming
	Image Denoising
	Related Work
	Proposed Method
	Single Layer Convolutional GP Filter
	Multi-layer Convolutional GP
	Evolving Multiple Layers of Convolutional GP filters

	Experimental Results and Analysis
	Training and Testing Datasets
	Evolutionary Algorithm Setup
	Fitness function

	Results
	Additional Results
	Discussion

	Conclusions

	Bibliography

