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Abstract

Purpose: We propose the Bessel Circular Functions as alternatives of the Zernike

Circle Polynomials to represent relevant circular ophthalmic surfaces.

Methods: We assess the fitting capabilities of the orthogonal Bessel Circular Func-

tions by comparing them to Zernike Circle Polynomials for approximating a vari-

ety of computationally generated surfaces which can represent ophthalmic

surfaces.

Results: The Bessel Circular Functions showed better modelling capabilities for

surfaces with abrupt variations such as the anterior eye surface at the limbus

region, and influence functions. From our studies we find that the Bessel Circular

Functions can be more suitable for studying particular features of post surgical

corneal surfaces.

Conclusions: We show that given their boundary conditions and free oscillating

properties, the Bessel Circular Functions are an alternative for representing spe-

cific wavefronts and can be better than the Zernike Circle Polynomials for some

important cases of corneal surfaces, influence functions and the complete anterior

corneal surface.

Introduction

In the field of vision and visual optics there is a number

of surfaces related either to the anatomy and physiology

of the eye or to optical instruments designed to measure

and correct its aberrations. Some examples of real surfaces

are the tear film and anterior corneal surfaces. On the

other hand, there exist phase surfaces such as wavefronts

and wavefront aberrations as well as influence functions

in deformable mirrors. It is important to measure and

mathematically model these surfaces in order to study

their properties. There has been an extensive utilisation of

Zernike Circle Polynomials (ZCP) to represent all of these

surfaces regardless of their nature (real surfaces or phase

functions). The ZCP are now the standard functions for

the description of wave front aberrations of the human

eye and have been also used in the modelling of corneal

surfaces.1–6 Although ZCP representation has proved to

be useful in describing the majority of corneal surfaces,

there are some reports showing their limitations, particu-

larly when applied to complex ophthalmic surfaces with

high spatial frequency content or ‘discontinuities’ result-

ing from surgical interventions.6–11

Many alternative functional representations have been

proposed to describe ophthalmic surfaces, ranging from

generalised conic functions to more complicated represen-

tations such as the fractional Zernike polynomials and

spherical harmonics.12–14 Other techniques include combi-

nations of modal and zonal approaches.15–17 Each of these

approaches exhibits certain advantages and disadvantages

with respect to the standard ZCP representation. As in the

case of the ZCPs, none of them, however, is able to ade-

quately account for a possible high spatial frequency con-

tent occurring in an ophthalmic surface, as it appears, for

example, in total anterior eye surface including cornea, lim-

bus, and sclera, or in higher ocular aberrations in the tran-

sitional zones of a progressive corrective lens.18–20 It has

been noted that the simple increase in the model order of

the polynomial decompositions (i.e., over-parameteriza-

tion) does not improve the representation of those surfaces.4

The origin of the ZCPs can be traced to a mathematical

physics theory known as Sturm-Liouville (S-L) theory.21,22
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Within the framework of this theory, the set of ZCPs is only

a member of a class of families of functions that are orthog-

onal in the unit disk, meaning that a sum of them can be

used to approximate any surface defined in that domain.

The Bessel Circular Functions (BCF), which arise naturally

in many two dimensional problems with cylindrical sym-

metry, is another example of the aforementioned class. This

set of functions have been applied in different fields that

range from modelling impact crater surface elevation to

pattern recognition.23,24 The BCF due to their more uni-

form and radial quasi-periodic behaviour have advantages

over the ZCP when approximating surfaces with high

frequency content.

We aim to investigate the applicability of BCF in model-

ling ophthalmic surfaces, applying a rigorous and system-

atic analysis and evaluating advantages and disadvantages

of the BCF representation with respect to those of the ZCP.

Methods

Modal representation of surfaces

The Zernike Circular Polynomials (ZCP) were first

obtained by Nijboer25 by applying the S-L theory.21,22 In

general, this theory allows to construct complete and

orthogonal sets of functions or modes. The ZCPs and the

BCFs are both obtained from applying the S-L theory to

a particular two variable rotationally invariant partial

differential equation (RIPDE) with a different choice of

parameters and boundary conditions. The corresponding

solutions, ZCPs and BCFs are obtained as a separable prod-

uct of an azimuthal and a radial function. For both sets, the

azimuthal factor is given by

/m ¼ sinðmuÞ for oddm
/m ¼ cosðmuÞ for evenm ð1Þ

These functions can be also expressed in complex form,

/ = exp( � imu). This representation should not be

regarded merely as an alternative to the sine and cosine

representation, since it has important physical interpreta-

tions. For instance, they are applied in the representation of

complex pupils26, the extended Nijboer-Zernike analysis27,

and Laguerre-Gaussian beam mode propagation28. For the

ZCP, the most accepted representation of their radial func-

tion is1

Rjmj
n ðrÞ ¼

Xðn�jmjÞ=2

s¼0

ð�1Þsðn� sÞ!
s! nþjmj

2 � s
� �

! n�jmj
2 � s

� �
!
rn�2s

ð2Þ

where n � m so the parity of a polynomial is the same as

the corresponding n. Putting together the two variable

modes in this case yields the ZCPs which are given in nor-

malised form by:

Zm
n ðr;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ
1þ dm;0

s
Rm
n ðrÞcossin ðmuÞ: ð3Þ

The mathematical properties of the ZCPs have been exten-

sively studied and widely discussed.29,30 Each one of the

Zernike modes is associated to a number known as eigen-

value, given by c = n(n + 2) that appears in the RIPDE

mentioned above, i.e. these eigenvalues arise from the S-L

theory. These eigenvalues are used to determine an

ordering scheme for the Zernike pyramid as described by

Mahajan.31

By choosing a different set of parameters and boundary

conditions in the RIPDE21,22, the radial solution is no

longer the radial Zernike polynomials but the Bessel func-

tions of the first kind32

JmðcmkrÞ ¼
X1
s¼0

ð�1Þs
s!ðmþ sÞ!

cmkr

2

� �mþ2s

: ð4Þ

Notice that the Bessel functions of the first kind are power

series with infinitely many terms as opposed to the finite

number of terms of the Zernike radial polynomials. They

are oscillatory quasi-periodic and their envelope decay as

1/(cr)1/2 as the argument cr grows32. Comparative plots are

shown in Figure 1. For this case, the two dimensional

Figure 1. Radial Zernike Polinomials are plotted in a: m = 0, n =0, 2, 4,

6. c: m = 1, n =1, 3, 5, 7. Bessel functions of the first kind b: m = 0, n

=1, 2, 3, 4. d: m = 1, n =1, 2, 3, 4. Although the radial order of the Bes-

sel functions is lower, the number of intersections with the horizontal

axis is the same.
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modes are the BCFs which have a normalised expression

given by

Bm
k ðr;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ dm;0

s
1

Jmþ1ðcmkÞ JmðcmkrÞcossin ðmuÞ:

ð5Þ

The corresponding eigenvalues c of the BCFs are associ-

ated to the number k of zeros in the domain of the

Bessel function Jm and is determined by c = cmk. This

appear in the argument of the Jm, as a result, each func-

tion is scaled to its k-th zero. This scaling is related to

the orthogonality of the Bessel functions.32 As in the case

of the ZCPs, the eigenvalues are used to establish the

order for the BCFs.

The S-L theory establishes that an arbitrary function can

be expanded as a linear combination of orthogonal modes:

Sðq;uÞ ¼
X1
n;m

amn w
m
n ðq;uÞ; ð6Þ

where wm
n ðq;uÞ; could be either ZCPs or BCFs, that are

defined in the same domain as the function S. The coeff-

cients anm are strength factors of the corresponding modes

obtained from a superposition integral

amn ¼ 1

p

Z 1

0

Z 2p

0

Sðq;uÞwm
n ðq;uÞqdqdu: ð7Þ

The ZCPs and BCFs are said to be complete orthogonal

sets. Orthogonality of modes means in a broad sense, that

in the modal expansion of the function S(q, u) each mode

carries a certain amount of information about S which does

not overlap the information carried by any of the other

modes. Completeness, on the other hand, means that an

arbitrary function like S(q, u) does not carry more infor-

mation than the whole set of modes, so that the complete

set of modes is capable of representing the surface. These

two properties guarantee that any arbitrary function can be

approximated as much as needed by its infinite modal

expansion as expressed in equation (6) and will be equal if

they satisfy the same boundary conditions.

Representing surfaces with finite models

As mentioned earlier, a finite model of a surface is always

necessary for computational purposes. This means that the

surface of interest will be sampled over the domain. This is

noticeable, for example in Placido disk devices, where the

corneal height data is represented by a cloud of discrete

points. The number of functions employed for the modal

expansion of the surface has to be finite also, so the infinite

sum (6) is truncated to a finite number of terms. This

truncated sum of modes is no longer equal to the function

S, so an approximation error or fitting error has to be eval-

uated. Using a finite subset of orthogonal ZCP or BCF dis-

crete (sampled) functions, we can form the linear model

Sðqd;udÞ ¼
XP
p¼1

apwpðqd;udÞ þ epðqd;udÞ: ð8Þ

The subindex d refers to the sample point and the total

number of samples is D. The single index p accounts for n,

m indices used before. Equation (8) can be written in

vector form as

S ¼ waþ e ð9Þ

where S is a column vector of D elements that represents a

surface sampled at discrete points (qd, ud), d = 1, 2…D. w
is a (D 9 P) matrix of orthogonal modes also sampled at

discrete points: wp(qd,ud). The vector a is a P -element col-

umn vector of coefficients, and e is a column vector of D

elements that represents the measurement and modelling

error at the sample points. One is interested in finding the

vector â of coefficient that minimises the square of this

error. This is achieved by the least-squares method which

yields

â ¼ ðwTwÞ�1wTS ð10Þ

where the superindex T denotes the transposition, provided

that the inverse exists. We use this method to study how

the BCF behave as compared to the standard ZCP in mod-

elling ophthalmic surfaces.

Next we need to decide the finite subset of BCFs and

ZCPs that will be compared. A reasonable requirement is

that we use the same number of modes from each set. If we

choose to organise the Bessel modes in terms of their associ-

ated eigenvalues, the arrangement results in an inverted

pyramid (see Figure 2). This way, fixing the radial index for

both sets will result in including modes with different azi-

muthal order and vice versa. However, we will have almost

the same amount of modes in each base. The eigenvalues of

the BCFs can be easily obtained numerically due to the

quasi-periodic behaviour of the Bessel functions but are also

widely available in tables33 (Algorithms for finding succes-

sive zeros of Bessel functions are available at MathWorks

website. The corresponding author has a custom tailored

algorithm which he is willing to share).33 So, it is easy to

organise the BCF modes. We use the arrangement men-

tioned above to choose the set of BCFs that will be com-

pared to the ZCPs. We have tested the Bessel functions as

compared to the Zernike functions for a variety of artifi-

cially created surfaces. All the surfaces have been produced

in a unit disk simulating a normalized pupil or corneal area.
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Results

In order to compare the BCF base to the ZCP base a set of

30 BCFs was used, this subset included two modes for each

of the orders m = 5,6,7 (see Figure 2). For the ZCPs, a

number of 36 modes corresponding to n = 7 were

employed. This choice was done fixing the azimuthal order,

which yields a BCF radial order of n = 4.

A. Gaussian Surfaces

We started with an off axis Gaussian surface defined by

Gðx; yÞ ¼ A exp
ðx � hÞ2 þ ðy � kÞ2

W 2

)(
ð11Þ

varying its width and the position of its centre. This type of

function has been frequently used in the modelling of influ-

ence functions of adaptive optics systems.34,35 A thin

Gaussian i.e. W2 = 0.1 would correspond to a flexible mir-

ror, while a broader one, to a stiffer mirror. This type of

function could also be useful to model Keratoconic cor-

neas, since there is a protuberance on their anterior surface.

On axis Gaussian functions were better fitted by BCFs as

long as the width was smaller than unity, the ZCP fitting

becomes better at around W2 = 1.1 which corresponds to a

normalised surface with boundary condition of approxi-

mately 0.5. In Figure 3 we present a set of three Gaussian

surfaces with various widths at the same off axis position

within the unit disk. The error figures display the rms error

measured in dB units for increasing concentric subdo-

mains. The figure shows a better fitting of the BCFs for off

axis Gaussian functions of intermediate width. The behav-

iour inverts as the Gaussian function gets wider, the ZCPs

give a better fitting in this case because the surface gets flat-

ter. This effect is due to the higher radial frequencies of the

BCFs and their zero boundary conditions. This same prop-

erty of the BCFs causes larger modelling errors either when

the Gaussian is broader than the unit disk or its centre is

such that the surface is not fixed at the boundary of the unit

disk.

In deformable mirrors, increasing the effective pupil of

the system is equivalent to having narrower influence func-

tions in the normalized domain. Since BCFs produce better

fittings than ZCPs for narrower Gaussian surfaces, suffi-

ciently close to the centre of the unit disk, they might help

to control adaptive optics systems with larger effective

pupils.

Surfaces with rings

A ring structure can be obtained by a radial Gaussian

function centred at a radius r0 and a constant angular

factor,

m
n

–9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7
1 27 21 17 11 7 5 3 1 2 4 8 12 16 20 26

9 8 6 5 4 3 2 3 4 5 6 8 9
2 43 37 31 25 19 13 9 6 10 14 18 24 32 38 44

9 8 7 6 4 6 7 8 9
3 53 49 45 39 33 29 23 15 22 28 34 40 46 50 54

8 7 8
4 59 57 55 51 47 41 35 30 36 42 48 52 56 58 60

Figure 2. Graphical representation of the BCFs. The numbering is done according to the eigenvalues of the SL problem. The regions enclosed

(inverted pyramids) can be used for benchmarking the BCF representation with the corresponding ZCP representation for different radialor azimuthal

order. We used the first 30 terms enclosed in black.
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uðr;uÞ ¼ exp
�ðr � r0Þ2

W2

)(
: ð12Þ

This type of surface could represent the effects of wearing a

certain type of contact lenses. A multiple ringed surface, for

instance a sum of two or more similar functions, could also

represent a wavefront generated by a multifocal lens. We

performed the comparison of BCFs and ZCPs with the

same number of modes as in the previous case. Here, the

BCFs presented a slightly better fitting capability for

complete rings, especially at the central zone of the

structure (Figure 4). If the ring structure is such that the

boundary is not fixed at zero, the BCFs present a large fit-

ting error. We also produced incomplete rings (Figure 4)

by combining a radial Gaussian function with an azimuthal

super-Gaussian function:

uðr;uÞ ¼ exp
�ðr � r0Þ2

W2

)(
exp

�ðu� u0Þ2N
W2N

u

)(

ð13Þ
where N is a positive integer. The fitting capabilities of the

ZCPs and BCFs showed a very similar behaviour as that for

(a)

(b)

(c)

Figure 3. Gaussian functions of various widths a. w2 =0.1 B. w2 =0.5 and c. w2 = 15 on a disk of r = 4. The BCFs approximate better for narrower

Gaussian functions, while the ZCPs for wider ones. The zero boundary condition is also important for BCFs performance.
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complete rings, however if the incomplete ring structure

gets closer to the centre, the BCFs produce a better fitting.

In real cases, concentric rings might be off axis, this fact

will affect the fitting abilities of the BCFs, however a pre-

processing of the data points would allow to re-centre the

surface and perform the desired fitting. Incomplete ring

structures could be useful in modelling the effect of the eye-

lid pressure on the anterior corneal surface.

Some zonal approaches develop modal approximations

at subsets of the corneal surface. Once the best sphere is

subtracted from the main surface in this zone, the reminder

is modelled. A rough model of a post-surgical surface,

could be done in a semi meridian by:

uðrÞ ¼ rn exp � r

W

� �2
��
; ð14Þ

Where n is a positive integer and W is a shape parameter.

This surface exhibits a similar feature as the BCFs of n � 1

at the central zone. For this reason, the BCFs have a signifi-

cantly better approximating performance for m = 5,6,7.

We performed simulations for several values of W and n

and in all cases the behaviour was similar to the one shown

in Figure 5.

Complete eye model

An interesting case is the model of the total anterior eye

surface, which includes the anterior surface of the cornea,

limbus and sclera. This was done by etching together two

spherical surfaces of different radii. To produce this model

we employed typical parameters for anterior corneal radius,

visible iris and diameter of the eye. This results in a surface

with a discontinuity in the first derivative precisely in the

limbus region (Figure 6a and its normalization b). The sur-

face is radially symmetric, therefore we could choose modes

of higher radial orders but restrict the set to m = 0. In

Figure 6c, we present the approximating errors using only

four modes of each base with m = 0. In this case it is not

possible to decide which base is better. However, if we use

five modes, the BCFs give a more stable error at the limbus

region at r = 0.6, where the error increases in both cases

(b)(a)

(d)(c)

Figure 4. Gaussian rings are better approximated by the BCFs at the central region, but the errors converge. In the case of incomplete rings both sets

produce very similar fitting errors.
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(see Figure 6d). In average, the error is smaller for the

BCFs. If we increase the number of modes to six, the BCFs

outperform the ZCPs in the whole surface and the fitting

error remains smaller for the BCFs, as can be clearly seen in

Figure 6e.

The BCFs have a better performance than the ZCPs when

fitting this type of surfaces due to the fact that the radial

component of the BCFs has more zeros, resulting in more

oscillations, within the unit interval than the ZCPs for the

same radial order.

Discussion

We can observe from Figure 2 that some elements of the

BCF base are similar to particular elements of the ZCP base

making possible a rough analogy between the sets.

An ordering of the BCFs according to the eigenvalues of

the equation leads to a matching mode scheme which

makes sense in terms of the aforementioned analogy. Once

the number of modes is fixed, the BCFs show a very good

behaviour for centred structures such as Gaussian

Figure 5. A post surgical surface, modelled by equation (14).The plot shows a significantly better fitting capability of the BCFs in this kind of

surfaces.

(a) (b)

(c) (d) (e)

Figure 6. a. Total eye model with typical parameters. b. The normalised model. c. Fitting errors for four modes. d. Fitting error for five modes. E.

Fitting error for six modes.
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functions, and surfaces with many radial ripples. However

the approximating error for BCFs increases for surfaces

with considerable amplitude at the boundary of the circular

domain because of the required zero boundary condition

of the BCF set. The very smooth surfaces were better repre-

sented by the ZCPs because the quadratic nature of the low

order terms carry enough information to describe such

surfaces.

A given value of the azimuthal order m restricts the cor-

responding elements of radial order n in the ZCP set. This

does not happen in the BCF base, where there exist a mode

for any combination or radial and azimuthal order. This

gives the BCFs an advantage for representing surfaces of

radial symmetry even when there are discontinuities in the

first derivative, as in the model of the total anterior eye

surface.

In most of the simulations in this work we restricted the

BCFs to a set that exhibits similar features as the ZCPs and

therefore limited their behaviour. However, we showed that

the particular case of the total eye, by lifting this restriction

and increasing the number of BCF modes with m = 0

resulted in a better performance.

Conclusions

We have presented the Bessel Circular Functions that are

also orthogonal in the unit circle and compare them to the

known Zernike Circular Polynomials to fit various surfaces

which represent common cases appearing in the field of

visual optics. We found out that the BCFs had a very good

behaviour proving to be a competitive candidate for the

ZCPs to represent all kinds of surfaces from front corneal

surfaces to influence functions. The BCFs showed a better

behaviour to model surfaces that present an abrupt varia-

tion as in the case of the total anterior eye surface at the

limbus region, and influence functions. We also show that

the BCF set is a suitable candidate to study particular fea-

tures of post surgical corneal surfaces such as single ring

surfaces resembling residual surfaces from ablations.

A more detailed study of these cases will be published else-

where. We expect to apply the BCFs to model influence

functions on deformable mirrors in order to maximise the

effective pupil. This set is a good candidate for modal

expansion especially in complex pupil functions as

approached by the Extended Zernike-Nijboer theory.
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