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With the Ronchi test a technician controls the manufacturing process using the following procedure: first, a Ronchigram
is simulated which is scale-printed and placed on the surface as a mask and is usually printed with a low spatial
resolution. This simulated Ronchigram is compared visually with the experimental pattern observed. This way of
comparison leads to systematic errors in the evaluation of the surface, because it depends largely on the experience of
the technician. Therefore, the main objectives of this work are to increase the spatial resolution and eliminate the
dependence on the technician’s experience. Therefore, we compare the simulated Ronchigrams obtained by lateral
shear interferometry, whose profiles are cosine, with Ronchigrams obtained experimentally. We present the simulation
algorithm for the Ronchigrams of spherical and aspherical surfaces based on the expressions of a lateral shear
interferometer. We show the results, of the comparison between simulated Ronchigrams (ray tracing and lateral shear
interferometry) and experimental Ronchigrams. # 2013 The Japan Society of Applied Physics
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1. Introduction

In the Ronchi test, one observes at the exit pupil the
reflection of a ray of light passing through a ruling with
bright and dark parallel bands equally spaced, placed near
the radius of curvature, producing an interference pattern,
called Ronchigram (Fig. 1). This is one of the most powerful
methods used to measure aberrations of optical surfaces
and systems; the wavefronts errors can be estimated from
the deviation of the observed fringe pattern on the exit
pupil in the comparison between simulated and calculated
patterns.1,2)

Generally, in optical fabrication shops, a technician uses
the Ronchi test to verify the manufacturing process of an
optical surface, by simulating a Ronchigram generated from
a ray tracing algorithm,2–5) which is scale-printed as a mask.
This Ronchigram generally has a low spatial resolution
(Fig. 2), i.e., it is composed of three to seven fringes;
consequently, it has areas not adequately verified. The
Ronchigram is placed on the surface being produced and is
compared with the experimental pattern, the manufacturing
process of the surface ends when the experimental fringes
match the mask. This process leads to systematic errors in
the evaluation of the surface, one of which depends on the
criterion of the observer, which is qualitative. Another error
introduced is the generation of mask fringes, which are
generated in the binary form, while the observed irradiance
pattern on the exit pupil of the system is in a cosine form,
which also limits a direct comparison of images by
computational methods.

In this paper we describe a method for increasing the
spatial resolution (i.e., have more fringes and also eliminate
the criterion of the observer, thus providing a quantitative
test) by comparing the experimental Ronchigram with a

simulated one, which is obtained from an algorithm based
on lateral shear interferometry. With this new proposed
algorithm, we can calculate the irradiance pattern with a
cosine form that is actually observed experimentally and
automatically.

Fig. 1. Basic configuration of Ronchi test.

Fig. 2. Ronchigram simulated by ray tracing. (a) Mask placed on
the surface being produced. (b) Theoretical fringes marked on the
surface.
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In the following section, we describe the algorithm we
developed for simulating Ronchigrams with cosine irradi-
ance. In Sect. 3, we present examples of Ronchigrams
simulated with our algorithm and compared against experi-
mental and simulated by the conventional ray tracing
techniques. Finally, some conclusions are presented about
the work done.

2. Algorithm Description

In this section we describe the algorithm we developed,
shown in a flowchart in Fig. 3.

Step 1: Parameter acquisition
In this step we introduce the geometric parameters of the

surface that we wish to generate, which are the paraxial
radius of curvature r, the conic constant k, and the diameter;
and also the distance from the exit pupil of the surface to the
Ronchi ruling, D, and the lines per millimeter of the ruling,
lpi (see Fig. 4).

Step 2: Optical path difference calculus (OPD) and synthetic
Ronchigram generation

The original wavefront calculus is realized with the
differences between the sagitta for the aspheric surface to
be tested [zcðx; yÞ] and its corresponding osculating sphere
[zeðx; yÞ]1) then

2Wðx; yÞ ¼ zcðx; yÞ � zeðx; yÞ; ð1Þ
where the sagitta is defined by the next relation,1)

z ¼ c�2
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where c is the inverse of the radius of curvature, �2 is the
spatial coordinates of the pupil ðx2 þ y2Þ, and k is the
conic constant for the surface, whose values are shown in
Table 1; A1, A2, A3, and A4 are the aspheric deformation
constants.

To generate a synthetic Ronchigram, the Ronchi test
results can be analyzed as a lateral shear interferometer,6–8)

where the optical path difference is given in one dimension
by

OPD ¼ @Wðx; yÞ
@x

�x ¼� Wðx; yÞ �Wðxþ�x; yÞ; ð3Þ

where Wðx; yÞ and Wðxþ�x; yÞ are the original and shear
wavefronts given by Eq. (1), respectively, while �x is the
shear displacement between the diffraction orders generated
by the Ronchi ruling1) as

�x ¼ �r

d
; ð4Þ

where � is the wavelength used, d is the Ronchi ruling
period, and r is the curvature radius of the surface under
test.

If we place a light detector at an observation plane,
a distorted irradiance pattern9) will be approximately given
by

Iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos 2�OPD

�
� �

� �
; ð5Þ

where aðx; yÞ and bðx; yÞ are the background illumination and
local contrast coefficients, respectively, and the parameter
� is determined by the lateral displacement of the ruling
position.

Fig. 3. Flowchart of the algorithm.

Table 1. Values of conic constants for conic surfaces.

Type of conic surface
Conic constant value

(k)

Hyperboloid k < �1

Paraboloid k ¼ �1

Ellipse rotated about its major axis �1 < k < 0

Sphere k ¼ 0

Ellipse rotated about its minor axis k > 0

Fig. 4. Parameters used in the Ronchi test.

OPTICAL REVIEW Vol. 20, No. 3 (2013)272 D. AGUIRRE-AGUIRRE et al.



Step 3: Correlation between the simulated and experimental
Ronchigrams

Now, we proceed to the comparison of the simulated
Ronchigram with the experimental Ronchigram under the
criterion of the two-dimensional correlation between two
images. Initially a routine was used for the correlation
between the full images of the Ronchigrams; however, this
analysis was incorrect, since the correlation was determined
from the entire images, i.e., taking into account the areas
outside of the exit pupil.

To solve the above problem we generate an algorithm for
the calculation of the correlation within the exit pupil of the
system, with the equation

C ¼

X
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X
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where A and B are the matrices of the intensity values of
the simulated and experimental Ronchigrams, respectively;
while �A and �B are the average intensity levels of their
respective Ronchigrams.10) C takes values between 0 and 1,
where 0 means that they are not equal and 1 means that both
images are equal.

We take the Ronchigram images in Fig. 7(a) for the
calculation of the correlation over the entire image and the
results obtained are shown in Table 2. This demonstrates an
inconsistency in the correlation values for the ray tracing
versus experimental and therefore the correlation is only
calculated within the exit pupil of the system.

3. Experimental Results

To verify the performance of the proposed algorithm two
aspherical surfaces and one spherical surface were analyzed.
Experimental Ronchigrams with different number of fringes
were acquired and compared with simulated Ronchigrams
using the algorithm described in previous sections, as well as
with one obtained by ray tracing. As can be seen in the next
sections, better results are derived by applying the algorithm
proposed in this paper, than by applying the ray tracing
for the simulated Ronchigrams. The Ronchi ruling used to
acquire the Ronchigrams has �3:15 lines per millimeter (80
lines per inch).

3.1 Spherical surface
The spherical surface being tested has a diameter of

12.80 cm and a curvature radius of 49.85 cm. The Ronchi
ruling positions in Figs. 5(a) and 5(b) are 49.65 and

49.30 cm, respectively. These positions were measured with
a commercial measuring tape.

In an experiment, several Ronchigrams were simulated
at different positions of the Ronchi ruling, to verify the
reliability of measurements. By observing the variation of
the obtained correlation coefficient, the values measured
with the commercial measuring tape were erroneous, that is,
a measured value of 49.65 cm was obtained with a
correlation coefficient of 0.8126, whereas for a value of
49.63 cm the correlation coefficient was 0.8277 [Fig. 5(a)].
This means an error of 0.02 cm; thus, one conclusion is that
the Ronchi test with the proposed algorithm is insensitive to
an error in the Ronchi ruling position. For an experimental
Ronchigram, several simulated Ronchigrams were calcu-
lated for different ruling positions; therefore different
correlation values were derived. The best correlation value
in the experimental and simulated Ronchigrams is associated
with the ruling position closest to the experimental position.
With this technique we can eliminate the errors introduced
by our experimental measurement of the position of the
ruling.

3.2 Parabolic surface
The parabolic surface being tested has a paraxial

curvature radius of 273.10 cm, a diameter of 20.50 cm,
and a conic constant of �1. The images shown in Fig. 6
were taken while the surface was in the manufacturing
process; this is the reason for the deformations on the
experimental Ronchigram fringes. The Ronchi ruling posi-
tions in Figs. 6(a) and 6(b) are 272.35 and 271.45 cm,
respectively.

From Fig. 6 we can see that the value of correlation
obtained by comparing ray tracing Ronchigrams with the
experimental ones remains low; again, the value increases
for the comparison between the Ronchigrams generated
with our algorithm and the experimental ones. The value
remains low because the Ronchigrams were taken during
the manufacturing process and the surface was slightly
deformed.

3.3 Hyperbolic surface
The hyperbolic surface being tested has a paraxial

curvature radius of 53.30 cm, a diameter of 7.32 cm, and a
conic constant of �3:65. The Ronchi ruling positions in
Figs. 7(a) and 7(b) are 53.25 and 52.90 cm, respectively.

From Fig. 7, we can observe that the correlation value
is very high, since for this case the Ronchigrams were
taken when the technician indicated that the polishing
process of the surface was finished. We can see a good
quality of the fringes except for the problems at the edge
of the surface that occur in the conventional polishing
process.

3.4 Increasing spatial resolution
One of the objectives of this study is to increase the spatial

resolution of the analyzed Ronchigrams. In the previous
subsections, three optical surfaces were analyzed. In
Figs. 5–7, we can see the Ronchigrams with a few fringes,

Table 2. Correlation values over entire image and within the exit
pupil.

Correlation values
Ray tracing vs

experimental values
Proposed algorithm vs
experimental values

Over entire image 0.7486 0.8771
Within exit pupil 0.0890 0.8585
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i.e., low spatial resolution. This is because the technician
usually uses a simulated Ronchigram, scale-printed as a
mask and since it is easier for the technician to visually
analyze few fringes; a small number of fringes are used to
fabricate a surface.

Figures 8(a) and 8(b) show the experimental and simu-
lated Ronchigrams with the proposed algorithm for a
spherical surface of 9.0 cm in diameter and a curvature
radius of 60.1 cm. The Ronchigrams have 7 and 17 fringes,
respectively. Note that the correlation coefficient remains
high even when the number of fringes is increased. This

validates the usefulness of the proposed algorithm for
reproducing Ronchigrams with a high spatial resolution.

4. Conclusions

An algorithm was developed that simulates cosine profile
Ronchigrams for aspheric and spherical surfaces, these
simulated Ronchigrams to match cosine profiles observed
in experimental Ronchigrams. This algorithm allows us to
determine a correlation parameter, and subsequently obtain
the surface quality desired in the polishing process. To
evaluate the algorithm we developed, the same comparison

Fig. 6. Ronchigrams of a parabolic surface. Ruling positions: (a) 272.35 cm; (b) 271.45 cm.

Fig. 5. Ronchigrams of a spherical surface. Ruling positions: (a) 49.65 cm; (b) 49.30 cm.
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was carried out for experimental Ronchigrams against ray
tracing-simulated Ronchigrams. As can be seen from
Figs. 5–7, better results are derived from the algorithm
proposed here.

This proposed method eliminates the systematic errors
introduced by the technician in the surface evaluation during
the fabrication process, since the proposed method presented
in this paper is quantitative. In this comparison, a correlation
operation was established between experimental and simu-
lated Ronchigrams, where you can use the correlation
coefficient as a reference to monitor the fabrication of an
optical surface, and provide the technician a new tool that

can increase the accuracy of the fabrication of optical
surfaces.

We found that the correlation value is low by comparing
experimental and ray tracing Ronchigrams. This finding
is quite reasonable owing to the way of generating the
Ronchigram images, in which only the central position of
each fringe in the Ronchigram is calculated and plotted.
On the other hand, the correlation is high when comparing
experimental Ronchigrams and those generated with the
proposed algorithm, because both have cosine profiles. Since
no other method of generating Ronchigrams with the cosine
profile exists in the literature, we compared our algorithm

Fig. 8. Correlation coefficient values: (a) low spatial resolution; (b) high spatial resolution.

Fig. 7. Ronchigrams of a hyperbolic surface. Ruling positions: (a) 53.25 cm; (b) 52.90 cm.
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with ray tracing because this is the way the technicians
generate reference Ronchigram masks in optical shops.
An important result is that the proposed algorithm gives us
a computational method to compare Ronchigram images,
without the need of scale-printed masks.
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